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Abstract— In image-based robot manipulation tasks with
large observation and action spaces, reinforcement learning
struggles with low sample efficiency, slow training speed, and
uncertain convergence. As an alternative, large pre-trained
foundation models have shown promise in robotic manipulation,
particularly in zero-shot and few-shot applications. However,
using these models directly is unreliable due to limited rea-
soning capabilities and challenges in understanding physical
and spatial contexts. This paper introduces ExploRLLM, a
novel approach that leverages the inductive bias of foundation
models (e.g. Large Language Models) to guide exploration
in reinforcement learning. We also exploit these foundation
models to reformulate the action and observation spaces to
enhance the training efficiency in reinforcement learning. Our
experiments demonstrate that guided exploration enables much
quicker convergence than training without it. Additionally,
we validate that ExploRLLM outperforms vanilla foundation
model baselines and that the policy trained in simulation can
be applied in real-world settings without additional training.
Code and videos are available at https://explorllm.github.io

I. INTRODUCTION

Foundation models (FMs) [1], which refer to models
trained on large-scale data (e.g. Large Language Mod-
els or Vision-Language Models), have shown significant
promise in robotics. Large Language Models (LLMs) such
as GPT-4 [2] demonstrate the ability to generate human-
like commonsense-aware reasoning in some scenarios. This
reasoning ability has been demonstrated as a zero-shot
planner [3], capable of breaking down complex tasks into
detailed step-by-step plans without additional training. Our
paper focuses on pick-and-place manipulation tasks, a do-
main where LLMs are recently employed to provide task-
grounding for high-level planning, executed by pre-trained
low-level robot skills [4]. Furthermore, when integrated
with Vision-Language Models (VLMs), LLMs utilize cross-
domain knowledge to achieve robot perception and planning
in manipulation tasks [5]. This synergy between LLMs and
VLMs is also harnessed to extract environmental affordances
and constraints, forming a basis for subsequent robotic
planning [6]. Despite the impressive results achieved using
FMs, it is important to note that unpredictable failures of
LLM predictions can still result in robotic errors, and their
use does not always ensure success and they in general do
not learn from past experiences [7], [8].

To address these issues, we propose to add residual re-
inforcement learning [9] to affordances recognized by FMs.
Reinforcement Learning (RL), as described in [10], provides
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Fig. 1: Graphical illustration of the ExploRLLM framework.

a powerful framework for learning decision-making and con-
trol policies for robotics [11] through interactions with the
environment. Despite the inherent errors in the information
provided by FMs, RL can adaptively learn to compensate for
those errors through trial and update. A key challenge in deep
RL is the “curse of dimensionality”, where large observation
and action spaces hinder the agent’s ability to explore and
converge efficiently. To overcome this challenge, we utilize
an LLM and a VLM to create a more compact and effective
observation space. Moreover, we introduce an object-centric
residual action space, defining the pick-or-place actions as
positional adjustments relative to the centers of detected
objects.

Although actions generated by the LLM could be sub-
optimal or sometimes lead to failures, we employ these
actions to guide exploration in RL. Previous exploration
strategies for RL (e.g., ϵ-greedy and Boltzmann explo-
ration [10]) explored the state-action space in a stochastic
manner, which focuses on the exploration-exploitation trade-
off. However, these methods lack guided mechanisms as they
do not incorporate prior knowledge to expedite convergence.
Therefore, we utilize the LLM as a few-shot planner to create
actions that act as exploration steps in RL. This strategy
increases the likelihood of encountering successful states,
thereby gathering more relevant state-action pairs for the off-
policy RL agent.

Our method, ExploRLLM, enhances the robot system
by incorporating reinforcement learning with FMs. This
integration ensures enhanced performance compared to the
plan generated by FMs, compensating for their inherent sub-
optimality and biases. In turn, the FMs aid in accelerating RL
training convergence by reducing the observation spaces and
directing the exploration process. To summarize, our main
contributions are:
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Fig. 2: Structure of ExploRLLM: a) The LLM reformulates user-provided language commands l with predefined templates
and highlights the important objects of the template into a command vector l̃. In parallel, the VLM detects objects mentioned
in the task and extracts crops centered at bounding box locations. b) RL takes the extracted image crops and object positions
as input and uses the RL agent exploration method or LLM policy programs as exploration actions.

1) We propose ExploRLLM, which employs an RL agent
with a) residual action and observation spaces derived
from affordances identified by FMs and b) uses an LLM
to guide exploration.

2) We develop the prompting method for LLM-based ex-
ploration using hierarchical-language-model-programs
and demonstrate that our exploration method signifi-
cantly shortens RL’s convergence time.

3) We show that ExploRLLM achieves better final perfor-
mance than the policies derived solely from the LLM
and VLM by comparing it to several state-of-the-art
baselines. We also show that the ExploRLLM policy
can be transferred to unseen colors, letters, tasks, and
real-world settings without additional training.

II. RELATED WORK

Recently, there has been increasing interest in integrating
robotics and the FMs by either developing robotics founda-
tion models (e.g., RT-2 [12], PALM-E [13]) or applying pre-
trained FMs to robotics. The application of FMs in robotics
primarily falls into two categories: leveraging FMs for zero-
shot or few-shot plan generation and using FMs to enhance
RL training efficiency. Our work combines both aspects to
solve robot manipulation tasks.

A. Foundation Models for Planning in Robotics

Researchers have demonstrated the ability of LLMs to
create zero-shot or few-shot plans through reasoning ca-
pabilities [3], [14]. This ability is essential for devising
high-level plans in the field of robotics. For instance, Say-
Can [4] utilizes LLMs to provide high-level planning in
robot manipulation tasks. Additionally, InnerMonologue [15]
showcased the potential of LLMs in processing feedback
sources and interactively planning, facilitating closed-loop
behaviors without additional training. Additionally, the code
completion features of LLMs have been utilized in creating
robot-centric formulations of LLM-generated programs for
robot skills [16] and task plans [17].

VLMs have been increasingly integrated into robotics.
For example, CLIPort [18] proposed an end-to-end imita-
tion learning framework that leverages the broad semantic
capabilities of CLIP [19] to interpret language instructions
and visual inputs. Socratic Models [5] integrates LLMs with
vision language model ViLD [20] to utilize cross-domain
knowledge to achieve robot perception and planning for zero-
shot manipulation tasks. VoxPoser [6] deployed a VLM and
an LLM to compose a 3D value map in observation space for
a model-based planning framework to zero-shot synthesize
closed-loop robot trajectories. However, directly applying
VLMs and LLMs for zero-shot tasks does not guarantee
success and safety, as the physical properties of the real
world remain challenging for those FMs. Instead, our work
considers the actions generated by LLMs and VLMs to be
exploratory behaviors within an RL framework.

B. Foundation Models and Reinforcement Learning

Incorporating FMs into RL frameworks has notably im-
proved RL’s effectiveness. In [21], the authors have imple-
mented LLMs as proxy reward functions, demonstrating their
utility in RL. In the context of RL for robotics, LLMs are
also capable of generating reward signals for robot actions
by connecting commonsense reasoning with low-level ac-
tions [22], self-refinement [23] and evolutionary optimization
over reward code to enable complex tasks such as dexterous
manipulation [24]. Regarding exploration, authors in [25]
reward RL agents toward human-meaningful intermediate
behaviors by prompting an LLM. LLMs are also utilized as
an intrinsic reward generator to guide exploration for long
horizon manipulation tasks [26]. Contrary to these studies,
our approach directly employs LLM-generated code policies
to guide exploratory actions rather than focusing on reward
shaping.

III. PROBLEM FORMULATION

This study aims to improve the effectiveness of RL agents
engaged in robotic pick-and-place tasks. For such manipu-



lation tasks, each episode is initiated with a goal described
in a linguistic term, represented by l. The agent, at every
time step t, perceives an observation ot, consisting of an
overhead RGB-D image and the state of the end effector.
In other tabletop manipulation tasks (e.g., Transporter [27]),
the action space is structured as a pick-and-place primitive,
denoted as {Ppick,Pplace}, where each action contains a
position for pick and a position for place in top-down
view coordinate. Our method, however, simplifies the action
space to a single motion primitive: either pick or place.
This simplification aims to make the RL challenge more
tractable. The Pick-or-Place action primitive is defined as
a tuple containing the primitive index prim (0 for pick, 1
for place) and a top-down view position, expressed as P ,
at = {primt,Pt}. At each time step, the agent receives a
reward r from the environment comprising a dense reward
component, denoted as rd, and an external sparse reward
component, referred to as rs.

IV. FRAMEWORK: EXPLORLLM

Our method utilizes FMs to enhance RL training through
the extraction of objects for observation spaces (Sec.IV-A),
the creation of an object-centric action space (Sec.IV-B),
and the direction of exploration based on guidance from
LLMs (Sec.IV-C).

A. Observation Spaces based on Foundation Models

Our methodology leverages the strengths of LLMs and
VLMs to extract the observation space used for the RL
framework, as depicted in Figure 2. LLMs reformulate user-
provided language commands into predefined templates and
highlight the objects within these templates to form an
interpreted command vector l̃. For example, it identifies
the “picked object” in a template like “put [picked object]
on [placed object]”. It is important to note that, within
a given task setting, the number and category of objects
do not change. Utilizing VLMs as open-vocabulary object
detectors, our system identifies and encloses objects rel-
evant to the task within bounding boxes from image in
raw observation space ot, represented by their locations
Pvlm = {Pvlm1

,Pvlm2
, ...}. RGB-D visual inputs are seg-

mented into crops based on bounding box positions, denoted
as Ivlm = {Ivlm1 , Ivlm2 , ...}. This method improves the
system’s robustness to detection inaccuracies and varying
object shapes. The interpreted commands l̃, the positional
data Pvlm and the image patches Ivlm are then integrated
into the reformulated RL observation st.

B. Residual Action Spaces

As the VLM already extracts each object’s position
Pt

vlm[i
t], the action space is converted into an object-centric

residual action space, as shown in Figure 2. The reformulated
action space consists of a primitive index prim, an object
index i and a residual position Pres, expressed as ãt =
{primt, it,Pt

res}, where Pt = Pt
vlm[i

t]+Pt
res. For example,

consider the task of picking the letter ‘O’, where Pt
vlm[i

t]
denotes the center of the bounding box. In this case, a

Algorithm 1 Exploration strategy πEXPL

Input: state st, instruction l̃, LLM policies πLLM
H , πLLM

L

Parameter: threshold ϵ
Output: action ãt

1: Sample a random number j from U(0, 1)
2: if j ≤ ϵ then
3: Run LLM generated high level action policy πLLM

H

At = (primt, it) = πLLM
H (st, l̃)

4: Run LLM generated low level action policy πLLM
L

Pt
res = πLLM

L (st,At)
ãt = (primt, it,Pt

res)
5: else
6: Run the reinforcement learning policy πRL

ãt = πRL(st)
7: end if
8: return action ãt

residual action Pt
res is needed to prevent failures due to the

empty center of the object.

C. LLM-based Exploration in RL

Traditional deep RL algorithms (e.g., SAC [28], PPO [29])
do not inherently ensure frequent visits to high-value states
in high-dimensional state-action spaces, which becomes par-
ticularly challenging in vision-based tabletop manipulation
tasks. In such cases, the RL agent may struggle to achieve
favorable outcomes when successful results are infrequent.
By utilizing the planning capabilities of LLMs and the
perception capabilities of VLMs, we can leverage the rich
prior knowledge within these FMs to direct the exploration
process more effectively.

The LLM-based exploration strategy, denoted as πEXPL

in Algorithm 1, draws inspiration from the ϵ-greedy strategy.
Specifically, during the rollout collection at each timestep,
the off-policy RL agent employs the LLM-based exploration
technique if a sampled random variable falls below the
threshold ϵ. Otherwise, the action is selected according to the
current RL agent’s policy, πRL, as detailed in Algorithm 1.

For the creation of plans in robotic manipulation tasks,
prior research often prompts LLMs on every step to generate
plans. However, this method of frequent LLM invocation
during the training phase is highly resource-intensive, incur-
ring significant time and financial costs due to the numerous
iterations required to train a single RL agent. Code as
Policy (CaP) [16] shows that LLMs are proficient at devising
policy by generating robot-centric formulation programs.
Drawing inspiration from CaP, our methodology employs the
LLM to hierarchically generate language model programs,
which are then executed iteratively during the training phase
as exploratory actions, enhancing efficiency and resource
utilization.

The hierarchical language model programs include both
high-level πLLM

H and low-level πLLM
L policy code programs.

A high-level plan primarily involves selecting robot action
primitives and the objects to interact with based on the
current state of the robot and the objects.



[Task Description]
A robot wants to pick up this letter with a suction gripper shown in the first Figure. The Second 
Image is a top-down view of a block with the shape of the [letter V]. We want you to design a function 
to sample the pick position in 2D to make a stable pick for the robot.

[You should do]
Finish function: generate_pick_probability_map(img, threshold=100), img is the input image and 
threshold is a threshold from 0 to 255.
1. Assuming the input image size is [28,28]
2. Detect the letter, position, and orientation of the letter
3. Based on the position and orientation of the letter, draw a 2D probability map [28,28] for the robot 
to sample the pick position in python 

[Rules]

1. You can use only Python library (numpy, opencv), input of the function is the image of the picked 

object and the image of the placed object. Some threshold parameters are allowed and can be an 

optional input of the function, for example: the threshold of the grey scale.

2. Do not always use the center of mass as the pick position, you should consider the shape of the 

letter. For example, get the contour of the letter and assign a higher probability to the area inside the 

contour area.

3. provide only 1 Python function with a brief explanation, you cannot use undefined functions in your 

code.

Image 1:
Environment Visualization

[Give 6 candidates python code completing this template]
    import cv2
    import numpy as np
    def generate_pick_probability_map(img, threshold=100):
        # you should finish
        return prob_map
[candidates]
#1 #2 #3 #4 #5 #6

Image 2: 
VLM generate crop
VLM label: Blue Letter V

(a) A prompt example that combines the task de-
scription, VLM scene description, and image. It then
generates code policy candidates for low-level skills.

Execution result  

(affordance map for 

Letters O, R and V)

# candidate 5

# 6# 5# 4# 3# 2# 1raw image

(b) LLM-generated python code and affordance heatmaps
for unseen objects.
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Fig. 3: The LLM generates low-level policy code.

In contrast to high-level tasks, instructing low-level actions
poses a more significant challenge because high-level states
and actions are more accessible and can be represented as
language. When dealing with low-level actions, the com-
plexity of the state becomes considerably more intricate,
particularly for image-based problems. Therefore, instead
of a deterministic code policy, we instruct the LLM to
produce a code policy πLLM

L for generating an affordance
map according to the input image. The low-level exploration
behavior is derived from a stochastic policy that relies on
the values within this affordance map. Although the code
generated by LLMs lacks guaranteed feasibility and accuracy
in robot environments, these models can generate potentially
useful policy candidates, with the one exhibiting the highest
success rate being selected as shown in Figure 3c.

V. IMPLEMENTATION

The main components for implementation of ExploRLLM
are RL agent, VLM-based object detection and code policy
generation by LLM.

1) Reinforcement learning agent: We use the Soft Actor-
Critic (SAC) algorithms with modifications in the collecting
rollout phase, detailed in Algorithm 1. Other implementation
aspects remain consistent with the standard SAC approach
in stable-baselines3 [30]. Figure 4 illustrates the network
architecture for RL. We employ two convolutional layers to
transform every image patch into a vector x ∈ Rn×d, where
n is the number of objects captured by VLM and d signifies
the dimension of each patch as encoded by the CNN. The
vector is subsequently concatenated with the position, robot
gripper state, and the extracted episodic language goal l̃
to form a new vector x′ ∈ Rn×d′

, where d′ denotes the
dimension of each patch’s vector following encoding and
concatenation. The self-attention layer is used to transform
vector x′. It is linearly transformed to query Q ∈ Rn×d′

,
key K ∈ Rn×d′

and values V ∈ Rn×d′
. Then the

self-attention module is applied as: Attention(Q,K,V ) =

Softmax
(

QKT

√
dk

)
V . The output features from this layer then
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Fig. 4: ExploRLLM RL architecture and action space.

go into a two-layer MLP. The aforementioned structure is
consistently utilized across all actor and critic networks.

2) VLM detection: Utilizing an open-vocabulary object
detector ViLD [20], objects in the environment can be
identified by given specific labels. However, implementing
this model online during training is time-consuming, so
ViLD is utilized solely in the evaluation phase. In the training
phase, the ground truth in the simulation is used to determine
the center positions of the bounding boxes. It is important to
note that ViLD’s position detection in real-world scenarios
is not always flawless. To simulate this imperfection, noise
following a Gaussian distribution with a standard deviation
equivalent to half the radius of the image crop is applied to
the ground truth positions.

3) Code policy generation by LLM: The policy code for
executing high-level behavior is obtained using a few-shot
prompt in GPT-4 [2]. This prompt includes a list of available
robot motion primitives to demonstrate the robot’s actions.
A custom API is also provided to aid the LLM in reasoning,
such as determining whether an object is held in the robot’s
gripper or understanding the relationships between different
objects. Following the approach demonstrated by [16], where
LLMs have been shown capable of generating novel policy
codes with example codes and commands, our prompt also
includes these examples. They are designed to guide the
LLM in formulating plans and conducting geometric rea-



soning for our specific task scenarios.
For low-level exploration actions, we employ GPT4 with

Vision [2], which generates code using prompts that combine
example images with language descriptions, enriching the
context with visual information, as shown in Figure 3. The
provided example images include a depiction of the envi-
ronmental setup featuring the robot, a simulated background,
objects, and a specific example of image patches inside VLM
bounding boxes. The prompt describes the requirements and
guidelines, enabling generated code to create a probability
affordance heatmap for the specified image patch, utilizing
external libraries like OpenCV and NumPy.

However, as indicated in Figure 3b, there are instances
where the generated affordance map may not be optimal.
For example, the optimal pick position for the letter ‘O’
should be at its rim, whereas the heatmap suggests the
center. To address those sub-optimum problems, we adopt
a stochastic policy based on the affordance map rather
than a deterministic policy that selects the point of highest
affordance. Given that RL evolves through rewards obtained
from environmental interactions, the sub-optimality in explo-
ration policy can be identified and rectified through learning.
This approach also offers the potential to provide counter-
examples during the phase of replay buffer collection.

VI. EXPERIMENTAL SETUPS

For experiments, we used a simulation and real-world
setup of different tabletop pick-and-place tasks.

A. Simulation Setup
The proposed method is trained and evaluated in a simu-

lated tabletop pick-and-place task, as depicted in Figure 5.
Similar to [27] and [18], all simulated experiments are based
on a Universal Robot UR5e with a suction gripper, and the
input observation is a top-down RGB-D image.

Our task setting draws inspiration from the “Pick the
[pick color] box and place it in the [place color] bowl” task
described in [18]. Considering that picking at the center of
the bounding box, as generated by the VLMs, is sufficiently
accurate for a block, we have increased the challenge by
substituting the blocks with various objects (such as letters).
We assess our method across two tasks: a short-horizon (SH)
task, “Pick the [pick letter] and place it in the [place color]
bowl” and a long-horizon (LH) task, “Put all letters in
the bowl of the corresponding color”. In the short-horizon
task, each episode begins with three letters and three bowls
randomly placed on the table, with the objects for the
pick-and-place action randomly chosen to create language
commands. This task is completed only when the robot
accurately places the selected letter in the specified bowl. For
the long-horizon task, both letters and bowls are randomly
arranged on the table at the beginning of each episode. This
task is considered complete only when each letter is correctly
placed in a bowl whose color matches the letters.

B. Real-world Setup
We validated our approach on a Franka-Emika Panda robot

equipped with a Schmalz suction gripper and a RealSense

(a) Short-horizon: Place [pick letter]
in the [place color] bowl

(b) Long-horizon: Put all letters in
bowls of matching colors

Fig. 5: Simulation environment settings

D405 RGB-D camera, as shown in Figure 8a, implementing
our policy and code in the EAGERx [31] framework.

Given the potential risks to hardware and the time-
intensive nature of direct training, we completed training
in simulation, with real-robot applications limited to eval-
uation. Object recognition used ViLD for bounding box
identification based on object names. To simulate real-world
conditions more accurately, we introduce noise to the bound-
ing box center’s position during the training phase in the
simulation, mimicking the positional uncertainty inherent in
VLM detection. We enhanced simulation realism by intro-
ducing noise to bounding box positions and image inputs,
simulating VLM detection uncertainty and camera noise,
including lighting variations.

VII. RESULTS

We conducted a series of experiments to evaluate our
approach. We assess the impact of LLM-guided exploration
on training speed (SecVII-A), compare the success rate of
ExploRLLM against foundation models alone (SecVII-B),
and examine the generalization capabilities of our method in
novel scenarios (SecVII-C). We also deployed ExploRLLM
in the real-world setting without further training (SecVII-D).

A. LLM-based Exploration Behavior Performance

In our experiment, we investigated how varying the fre-
quency of LLM-based exploration affects training conver-
gence, with ϵ ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}, as shown in
Figure 6. An ϵ of 0 implies a pure Soft Actor-Critic method.
We conducted training with six random seeds per frequency
to evaluate the mean and variance in performance, starting
each session with a 20,000-step warm-up phase without LLM
exploration, given no significant policy improvements were
observed in this initial phase. Post-warm-up results, depicted
in Figure 6 and detailed in Table II for short and long-horizon
tasks, demonstrate that ExploRLLM outperforms LLM-only
policies across various exploration frequencies.

In the short-horizon task depicted in Figure 6a, the training
process tends to be unstable without LLM-based exploration
actions, leading to outcomes that can be both a successful
policy or an unconverged one. When the exploration fre-
quency is within 0 < ϵ ≤ 0.5, the training becomes more
stable and converges more swiftly, with minor variations
across different ϵ settings. However, increasing ϵ beyond



TABLE I: Comparison of success and error rates of our method against baselines during 50 evaluation episodes with both seen
and unseen colors. Evaluation includes different tasks: short-horizon (SH) and long-horizon (LH) and different initialization
methods: no overlapping between objects (NO) and allowed overlapping (AO). For the ExploRLLM policy, the standard
deviations of 6 seeds are included to show the stability of the training process.

Method Overall success rate Low-level error rate
SH NO SH AO LH NO LH AO SH NO SH AO LH NO LH AO

ExploRLLM (20%) 0.86±0.05 0.80±0.06 0.70±0.11 0.54±0.09 0.14±0.05 0.20±0.06 0.18±0.10 0.22±0.9
ExploRLLM (0%) 0.56±0.40 0.48±0.36 – – 0.32±0.24 0.42±0.30 – –

CaP∗ 0.60 0.48 0.38 0.30 0.38 0.52 0.42 0.48
Socratic Models + CLIPort 0.78 0.64 0.50 0.36 0.22 0.28 0.22 0.28
Inner Monologue + CLIPort 0.82 0.72 0.58 0.42 0.18 0.26 0.20 0.24
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(a) Short-horizon task: Pick the [pick letter] and place it in the [place
color] bowl.
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(b) Long-horizon task: Put all letters in the bowl of the correspond-
ing color.

Fig. 6: Training curve with LLM-based exploration behavior

TABLE II: ExploRLLM training rewards with different ϵ

Explore ϵ (%) SH Task (25k steps) LH Task (75k steps)
0 −0.03± 1.13 −3.22± 0.29
10 0.74± 0.13 −0.73± 0.40
20 0.79± 0.06 −0.42± 0.31
30 0.76± 0.16 −0.23± 0.26
50 0.70± 0.17 −0.40± 0.23
70 −0.29± 0.98 −1.71± 1.38
90 −0.52± 1.12 −2.51± 1.09

Exploration Policy 0.53 -1.2

0.5 reduces the online data proportion, slowing progress and
introducing higher instability into the training process.

For long-horizon tasks, Figure 6b illustrates a clear pattern
where higher frequencies of LLM-based exploration, when
0 < ϵ ≤ 0.5, correlate with faster training speeds. Those
statistics demonstrate that LLM-based exploration is crucial
for a relatively difficult task in obtaining experience close to
the optimal region. This approach effectively mitigates issues
associated with extensive observation and action spaces.
However, akin to the findings in short-horizon tasks, a high
rate of exploration leads to less stable training dynamics and
slower convergence.

B. RL Performance

To evaluate the effectiveness of ExploRLLM, we bench-
mark its performance against four baselines: ExploRLLM
without LLM-based exploration policy, CaP-style policy [16]
(our exploration policy), Socratic Models [5], and Inner
Monologue [15]. Our implementation of Socratic Models and
Inner Monologue utilizes ViLD [20] as an object detector
and GPT-4 [2] as a multi-step planner. The commands of

individual steps are then executed by a pre-trained CLI-
Port [18] model with 500 demonstrations. The key difference
between Socratic Models and Inner Monologue is that Inner
Monologue features a success detector that can identify
errors in the previous step.

During the evaluation phase, the spectrum of letter col-
ors includes both seen and unseen colors. The evaluation
encompasses a variety of tasks and initialization methods.
“NO” indicates scenarios where there is no overlap between
the positions of letters and bowls at the beginning of each
episode, whereas “AO” allows overlaps. These configurations
are designed to evaluate the robustness of each method
when dealing with complex geometric relationships between
objects.

For short-horizon tasks, as illustrated in Table I, ExploR-
LLM shows stable performance, unlike versions without
the exploration policy, which sometimes fail to converge
and display significant variance in success rates and low-
level errors. Our method exceeds LLM-generated policies in
success rate, minimizes robot behavior errors, and reduces

Fig. 7: Applying the single-step agent into zero-shot LLM
planers (e.g., the Socratic Models).
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place on Yellow Bowl"

"Pick Letter O and 
place on Yellow Bowl"

Long Horizon Tasks 

"Put all letters in the bowl of the corresponding color"

(b) Pick and Place position

Fig. 8: Real robot experiments demonstrate the practical application of ExploRLLM in real-world settings. Initially trained
exclusively in a simulated environment, ExploRLLM, with the help of VLMs, effectively adapts to real-world scenarios. It
can be deployed in both short-horizon and long-horizon tasks.

the gap between NO and AO scenarios, highlighting our
exploration policy’s effectiveness in correcting FMs’ inac-
curacies. In contrast, the CLIPort-based method struggles
with novel scenarios or complex geometric relationships
between objects. For long-horizon tasks, RL agents without
LLM-based exploitation failed to converge. As depicted in
Table I, ExploRLLM outperforms Socratic Models, Inner
Monologue, and the policy generated by LLMs, showcasing
superior performance for long-horizon tasks.

C. Generalization to Unseen Long-horizon Tasks

Despite our short-horizon agent being specifically trained
for a pre-defined pick-and-place task, our approach maintains
the capability to transfer from short-horizon policy to unseen
long-horizon tasks in similar environmental settings, facili-
tated by the incorporation of a zero-shot planner framework,
e.g., Socratic Models [5]. This framework effectively breaks
down user-provided input into individual action steps, each
serving as a distinct language command for our single-step
RL agent, as illustrated in Figure 7. Following the execution
of each command, the task space is reset, allowing for the
subsequent command to be executed.

Apart from unseen colors, unseen letters are also included
to evaluate the generalization capabilities of unseen scenar-
ios. Table III demonstrates that the short-horizon ExploR-
LLM adapts to these settings, surpassing earlier Socratic
Models versions. With the help of VLMs, which provide
the bounding boxes and positions, our approach reformulates
an observation space that helps RL to focus on discerning
and learning the physical attributes of objects, which is
essential for precise picking and placing tasks. This strategy
effectively minimizes the potential distraction caused by
variations in colors and shapes.

D. Zero-shot Transfer to the Real Robot

We conducted real-world evaluations of ExploRLLM un-
der two scenarios: one replicating all letters in the simulation

TABLE III: Success rate (%) of short-horizon ExploRLLM
with Socratic Models

Task Settings Seen Unseen Color Unseen Letters
Socratic Models + ExploRLLM 74 68 56

Socratic Models + CLIPort 72 50 34

and another introducing the letter ‘C’, previously absent,
with each scenario tested over 15 episodes. The short-
horizon ExploRLLM achieved a success rate of 66.6% for
seen letters and 53.3% for the scenario with an unseen
letter. Meanwhile, the long-horizon ExploRLLM recorded
success rates of 40% for seen letter scenarios and 33.3%
for those including an unseen letter. Despite the Sim2Real
gap, our approach demonstrates promising outcomes without
any additional real-world training. As the VLM has already
extracted the observation space, the RL agent trained within
the simulation environment encounters fewer distractions
from real-world noise. Figure 8 demonstrates the adapt-
ability of our approach in managing diverse object orien-
tations, understanding logical relationships between objects,
and executing long-horizon tasks within real-world settings.
However, the strategy continues to face challenges with
noise in the color and depth perceptions of objects in real-
world scenarios, which hinders the ability of the RL agent
to manipulate objects. Employing a photorealistic simulator
combined with thorough domain randomization is expected
to enhance performance significantly.

VIII. CONCLUSION AND DISCUSSION

In this work, we presented ExploRLLM, a method that
combines RL with FMs. By utilizing actions informed by
LLMs and VLMs for guiding exploration, we effectively
speed up the convergence of RL, demonstrating the benefits
of a synergistic approach that combines the strengths of
both RL and FMs. We evaluated our proposed method



by conducting experiments involving tabletop manipulation
tasks. We demonstrated its superior success rate by compar-
ing our approach with policies solely based on LLMs and
VLMs. Additionally, we showcased that the ExploRLLM
policy can generalize to unseen colors, letters, and tasks.
Our ablation experiments included training scenarios with
different proportions of LLM-guide exploration, highlighting
their significant impact on accelerating convergence. Addi-
tionally, we explored the ability to transfer the learned policy
from simulation to the real world without further training,
employing real robot experiments to validate this capability.

At present, our framework is primarily concentrated on
tabletop manipulation tasks. We aim to broaden the scope
of our framework to encompass a wider array of robotic
manipulation applications. Furthermore, while our system is
capable of correcting errors in low-level robotic actions, it
encounters limitations in mitigating certain high-level errors
that are less common in simulations. In the future, we intend
to explore methods for addressing and rectifying these high-
level discrepancies.

We also plan to enhance our method and utilize the Inter-
active Imitation Learning (IIL) paradigm [32] and actively
query the user when the agent’s prediction uncertainty is
high, similar to [33].
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