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ABSTRACT

Reinforcement Learning (RL) algorithms are often known for sample inefficiency
and difficult generalization. Recently, Unsupervised Environment Design (UED)
emerged as a new paradigm for zero-shot generalization by simultaneously learn-
ing a task distribution and agent policies on the sampled tasks. This is a non-
stationary process where the task distribution evolves along with agent policies;
creating an instability over time. While past works demonstrated the potential of
such approaches, sampling effectively from the task space remains an open chal-
lenge, bottlenecking these approaches. To this end, we introduce CLUTR: a novel
curriculum learning algorithm that decouples task representation and curriculum
learning into a two-stage optimization. It first trains a recurrent variational au-
toencoder on randomly generated tasks to learn a latent task manifold. Next, a
teacher agent creates a curriculum by maximizing a minimax REGRET-based ob-
jective on a set of latent tasks sampled from this manifold. By keeping the task
manifold fixed, we show that CLUTR successfully overcomes the non-stationarity
problem and improves stability. Our experimental results show CLUTR outper-
forms PAIRED, a principled and popular UED method, in terms of generalization
and sample efficiency in the challenging CarRacing and navigation environments:
showing an 18x improvement on the F1 CarRacing benchmark. CLUTR also per-
forms comparably to the non-UED state-of-the-art for CarRacing, outperforming
it in nine of the 20 tracks. CLUTR also achieves a 33% higher solved rate than
PAIRED on a set of 18 out-of-distribution navigation tasks.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has shown exciting progress in the past decade solving many
challenging domains including Atari (Mnih et al. (2015)), Dota (Berner et al. (2019)), Go (Silver
et al. (2016)). However, deep RL is sample-inefficient. Moreover, out-of-box deep RL agents are
often brittle: performing poorly on tasks that they have not encountered during training, or often
failing to solve them altogether even with the slightest change ( Cobbe et al. (2019), Azad et al.
(2022), Zhang et al. (2018)). Curriculum Learning (CL) algorithms showed promise to improve
(Portelas et al. (2020), Narvekar et al. (2020)) RL sample efficiency by employing a teacher al-
gorithm that attempts to train the agents on tasks falling at the boundary of their capabilities, i.e.,
tasks that are slightly harder than the agents can currently solve. Recently, a class of unsupervised
CL algorithms, called Unsupervised Environment Design (UED) [Dennis et al. (2020),Jiang et al.
(2021a)], has shown impressive generalization capabilities which require no training tasks as input.
UEDs automatically generate tasks by sampling from the free parameters of the environment (e.g.,
the start, goal, and obstacle locations for a navigation task) and attempt to improve sample efficiency
and generalization by adapting a diverse task distribution at the agent’s frontier of capabilities.

Protagonist Antagonist Induced Regret Environment Design (PAIRED) (Dennis et al. (2020)) is one
of the most principled UED algorithms. The PAIRED teacher is itself an RL agent with actions
denoting different task parameters. PAIRED aims at generating tasks that maximize the agent’s re-
gret, defined as the performance gap between an optimal policy and the student agent. Theoretically,
upon convergence, the agent learns to minimize the regret, i.e., will solve every solvable task. Such
a robustness guarantee makes regret-based teachers well suited for training robust agents.
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Despite the strong robustness guarantee, PAIRED is still sample inefficient in practice. Primarily be-
cause training a regret-based teacher is hard (Parker-Holder et al. (2022)). First, the teacher receives
a sparse reward only after specifying the full parameterization of a task; leading to a long-horizon
credit assignment problem. Additionally, the teacher agent faces a combinatorial explosion problem
if the parameter space is permutation invariant—e.g., for a navigation task, a set of obstacles corre-
sponds to factorially different permutations of the parameters1. More importantly, to generate tasks
at the frontier of agents’ capabilities, the teacher needs to simultaneously learn a task manifold and
navigate it to induce a curriculum. The teacher learns this task manifold implicitly based on regret.
However, as the student is continuously co-learning with the teacher, the task manifold is also evolv-
ing over time. Hence, the teacher needs to simultaneously learn the evolving task manifold, as well
as how to navigate it effectively—which is a difficult learning problem.

To address the above-mentioned challenges, we present Curriculum Learning via Unsupervised Task
Representation Learning (CLUTR). At the core of CLUTR, lies a hierarchical graphical model that
decouples task representation learning from curriculum learning. We develop a variational approx-
imation to this problem and train a Recurrent Variational AutoEncoder (VAE) to learn a latent task
manifold. Unlike PAIRED, which builds the tasks from scratch one parameter at a time, the CLUTR
teacher generates tasks in a single timestep by sampling points from the latent task manifold and
uses the generative model to translate them into complete tasks. The CLUTR teacher learns the
curriculum by navigating the pretrained and fixed task manifold via maximizing regret. By utilizing
a pretrained latent task-manifold, the CLUTR teacher can train as contextual bandit – overcoming
the long-horizon credit assignment problem – and create a curriculum much more efficiently – im-
proving stability at no cost to its effectiveness. Finally, by carefully introducing bias to the training
corpus (such as sorting each parameter vector), CLUTR solves the combinatorial explosion problem
of parameter space without using any costly environment interaction.

Our experimental results show that CLUTR outperforms PAIRED, both in terms of generalization
and sample efficiency, in the challenging pixel-based continuous CarRacing and partially observ-
able discrete navigation tasks. In CarRacing, CLUTR achieves 18x higher zero-shot generalization
returns than PAIRED, while being trained on 60% fewer environment interactions on the F1 bench-
mark, modeled on real-life F1 racing tracks. Furthermore, CLUTR performs comparably to the
non-UED attention-based SOTA(Tang et al. (2020)), outperforming it in nine of the 20 test tracks
while requiring fewer than 1% of its environment interactions. In navigation tasks, CLUTR achieves
higher zero-shot generalization in 14 out of the 18 test tasks, achieving a 33% higher solved rate
overall. Furthermore, we empirically validate our hypotheses to justify the algorithmic decisions
choices behind CLUTR.

In summary, we make the following contributions: i) we introduce CLUTR, a novel UED algorithm
by augmenting the PAIRED teacher with unsupervised task-representation learning that is derived
from a hierarchical graphical model for curriculum learning, ii) CLUTR, by decoupling task rep-
resentation learning from curriculum learning, solves the long-horizon credit assignment and the
combinatorial explosion problems faced by PAIRED. iii) Our experimental results show CLUTR
outperforms PAIRED, both in terms of generalization and sample efficiency, in two challenging sets
of tasks: CarRacing and navigation.

2 RELATED WORK

Unsupervised Curriculum Design: Dennis et al. (2020) was the first to formalize UED and in-
troduced the minimax regret-based UED teacher algorithm, PAIRED with a strong theoretical ro-
bustness guarantee. However, gradient-based multi-agent RL has no convergence guarantees and
often fails to converge in practice(Mazumdar et al. (2019)). Pre-existing techniques like Domain
Randomization (DR) (Jakobi (1997), Sadeghi & Levine (2016), Tobin et al. (2017)) and minimax
adversarial curriculum learning( Morimoto & Doya (2005), Pinto et al. (2017)) also fall under the
category of UEDs. DR teacher follows a uniform random strategy, while the minimax adversar-
ial teachers follow the maximin criteria, i.e., generate tasks that minimize the returns of the agent.

1Consider a 13x13 grid for a navigation task, where the locations are numbered from 1 to 169. Also consider
a wall made of four obstacles spanning the locations: {21, 22, 23, 24}. This wall can be represented using any
permutation of this set, e.g., {22, 24, 23, 21}, {23, 21, 24, 22}, resulting in a combinatorial explosion.
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POET(Wang et al. (2019)) and Enhanced POET(Wang et al. (2020)) also approached UED, before
PAIRED, using an evolutionary approach using a co-evolving population of tasks and agents.

Recently, Jiang et al. (2021a) proposed Dual Curriculum Design (DCD): a novel class of UEDs
that augments UED generation methods (e.g., DR and PAIRED) with replay capabilities. DCD
involves two teachers: one that actively generates tasks with PAIRED or DR, while the other cu-
rates the curriculum to replay previously generated tasks with Prioritized Level Replay(PLR)(Jiang
et al. (2021b)). Jiang et al. (2021a) shows that, even with random generation (i.e., DR), updating
the students only on the replayed level (but not while they are first generated, i.e., no exploratory
student gradient updates as PLR) and with a regret-based scoring function, PLR can also learn
minimax-regret agents at Nash Equilibrium and call this variation Robust PLR. It also introduces
REPAIRED, combining PAIRED with Robust PLR. Parker-Holder et al. (2022) introduces ACCEL,
which improves on Robust PLR by allowing edit/mutation of the tasks with an evolutionary algo-
rithm. While CLUTR and PAIRED-variants actively adapt task generation to the performance of
agents, other algorithms such as PLR generates task from a fixed task distribution. Different from
PAIRED-variants, which are susceptible to instability due to evolving task-manifold, CLUTR intro-
duces a novel variational formulation with a VAE-style pretraining for task-manifold learning.

Representation Learning:Variational Auto Encoders (Kingma & Welling (2013), Rezende et al.
(2014), Higgins et al. (2016)) have widely been used for their ability to capture high-level semantic
information from low-level data and generative properties in a wide variety of complex domains
such as computer vision (Razavi et al. (2019), Gulrajani et al. (2016), Zhang et al. (2021), Zhang
et al. (2022)), natural language (Bowman et al. (2015), Jain et al. (2017)), speech (Chorowski et al.
(2019)), and music (Jiang et al. (2020)). VAE has been used in RL as well for representing image
observations (Kendall et al. (2019), Yarats et al. (2021)) and generating goals (Nair et al. (2018)).
While CLUTR also utilizes similar VAEs, different from prior work, it combines them in a new
curriculum learning algorithm to learn a latent task manifold. Florensa et al. (2018) proposed
a curriculum learning algorithm with latent-space goal generation using a Generative Adversarial
Network.

3 BACKGROUND

3.1 UNSUPERVISED ENVIRONMENT DESIGN (UED)

As introduced by Dennis et al. (2020) UED is the problem of inducing a curriculum by designing a
distribution of concrete, fully-specified environments, from an underspecified environment with free
parameters. The fully specified environments are represented using a Partially Observable Markov
Decision Process (POMDP) represented by (A,O, S, T , I,R, γ), where A, O, and S denote the
action, observation, and state spaces, respectively. I → O is the observation function, R : S → R
is the reward function, T : S×A → ∆(S) is the transition function and γ is the discount factor. The
underspecified environments are defined in terms of an Underspecified Partially Observable Markov
Decision Process (UPOMDP) represented by the tuple M = (A,O,Θ, SM, T M, IM,RM, γ). Θ
is a set representing the free parameters of the environment and is incorporated in the transition
function as T M : S × A × Θ → ∆(S). Assigning a value to θ⃗ results in a regular POMDP, i.e.,
UPOMDP + θ⃗ = POMDP. Traditionally (e.g., in Dennis et al. (2020) and Jiang et al. (2021a)) Θ is
considered as a trajectory of environment parameters θ⃗ or just θ—which we call task in this paper.
For example, θ can be a concrete navigation task represented by a sequence of obstacle locations.
We denote a concrete environment generated with the parameter θ⃗ ∈ Θ as Mθ⃗ or simply Mθ. The
value of a policy π in Mθ is defined as V θ(π) = E[

∑T
t=0 rtγ

t], where rt is the discounted reward
obtained by π in Mθ.

3.2 PAIRED

PAIRED Dennis et al. (2020) solves UED with an adversarial game involving three players 2: the
agent πP and an antagonist πA, are trained on tasks generated by the teacher θ̃. PAIRED objective

2In the original PAIRED paper, the primary student agent was named protagonist. Throughout this paper
we refer it simply as the agent.
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is: maxθ̃,πP
minπA

U(πP , πA, θ̃) = Eθ∼θ̃[REGRETθ(πP , πA)]. Regret is defined by the difference
of the discounted rewards obtained by the antagonist and the agent in the generated tasks, i.e.,
REGRETθ(πP , πA) = V θ(πA) − V θ(πP ). The PAIRED teacher agent is defined as Λ : Π →
∆(ΘT ), where Π is a set of possible agent policies and ΘT is the set of possible tasks. The teacher
is trained with an RL algorithm with U as the reward while, the protagonist and antagonist agents
are trained using the usual discounted rewards from the environments. Dennis et al. (2020) also
introduced the flexible regret objective, an alternate regret approximation that is less susceptible to
local optima. It is defined by the difference between the average score of the agent and antagonist
returns and the score of the policy that achieved the highest average return.

4 CURRICULUM LEARNING VIA UNSUPERVISED TASK REPRESENTATION
LEARNING

In this section, we formally present CLUTR as a latent UED and discuss it in details.

4.1 FORMULATION OF CLUTR

Figure 1: Hierarchi-
cal Graphical Model
for CLUTR

At the core of CLUTR is the latent generative model representing the latent
task manifold. Let’s assume that R is a random variable that denotes a
measure of success over the agent and antagonist agent and z be a latent
random variable that generates environments/tasks, denoted by the random
variable E. We use the graphical model shown in Figure-1 to formulate
CLUTR. Both E and R are observed variables while z is an unobserved
latent variable. R can cover a broad range of measures used in different
UED methods including PAIRED and DR (Domain Randomization). In
PAIRED, R represents the REGRET.

We use a variational formulation of UED by using the above graphical
model to derive the following ELBO for CLUTR, where V AE(z, E) de-
notes the VAE objective:

ELBO ≈ V AE(z, E)− REGRET(R,E) (1)

We share the details of this derivation in Section B.1 of the Appendix. The above ELBO (Eq.1)
defines the optimization objective for CLUTR, which can be seen as optimizing the VAE objective
with a regret-based regularization term and vice versa. As previously discussed, it is difficult to train
a UED teacher while jointly optimizing for both the curriculum and task representations. Hence we
propose a two-level optimization for CLUTR. First, we pretrain a VAE to learn unsupervised task
representations, and then in the curriculum learning phase, we optimize for regret to generate the
curriculum while keeping the VAE fixed. In Section 5.4, we empirically show that this two-level
optimization performs better than the joint optimization of Eq.1, i.e., finetuning the VAE decoder
with the regret loss during the curriculum learning phase.

4.2 UNSUPERVISED LATENT TASK REPRESENTATION LEARNING

As discussed above, we use a Variational AutoEncoder(VAE) to model our generative latent task-
manifold. Aligning with Dennis et al. (2020) and Jiang et al. (2021a), we represent task θ, as a
sequence of integers. For example, in a navigation task, these integers denote obstacle, agent, and
goal locations. We use an LSTM-based Recurrent VAE (Bowman et al. (2015)) to learn task repre-
sentations from integer sequences. We learn an embedding for each integer and use cross-entropy
over the sequences to measure the reconstruction error. This design choice makes CLUTR applicable
to task parameterization beyond integer sequences, e.g., to sentences or images. To train our VAEs,
we generate random tasks by uniformly sampling from ΘT , the set of possible tasks. Thus, we do
not require any interaction with the environment to learn the task manifold. Such unsupervised train-
ing of the task manifold is practically very useful as interactions with the environment/simulator are
much more costly than sampling. Furthermore, we sort the input sequences, fully or partially, when
they are permutation invariant, i.e., essentially represent a set. By sorting the training sequences, we
thus avoid the combinatorial explosion faced by the PAIRED teacher.
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Algorithm Task Representation
Learning

Teacher
Model

UED
Method

Replay
Method

DR

- Random DR
-

PLR PLR
Robust PLR Robust PLRACCEL DR + Evolution
PAIRED Implicit via RL Learned PAIRED

-
REPAIRED Robust PLR

CLUTR Explicit via
Unsupervised Generative Model -

Table 1: A comparative characterization of contemporary UED methods

4.3 CLUTR

We define CLUTR following the objective given in Eq. 1. CLUTR uses the same curriculum ob-
jective as PAIRED, REGRET(R,E) = REGRETθ(πP , πA) where, θ denotes a task, i.e., a concrete
assignment to the free parameters of the environment E. Unlike PAIRED teacher, which generates θ
directly, the CLUTR teacher policy is defined as Λ : Π → ∆(Z), where Π is a set of possible agent
policies and Z is as the latent space. Thus, the CLUTR teacher is a latent environment designer,
which samples random z and θ is generated by the VAE decoder function G : Z → Θ. We present
the outline of the CLUTR in Algorithm 1. CLUTR outline is very similar to PAIRED, differing only
in the first two lines of the main loop to incorporate the latent space.

Algorithm 1 CLUTR
Pretrain VAE with randomly sampled tasks from Θ
Randomly initialize Agent πP , Antagonist πA, and Teacher Λ̃;
while not converged do

Generate latent task vector: z ∼ Z from the teacher
Create POMDP Mθ where θ = G(z) and G is the VAE decoder function
Collect Agent trajectory τP in Mθ. Compute: Uθ(πP ) =

∑T
i=0 rtγ

t

Collect Antagonist trajectory τA in Mθ. Compute: Uθ(πA) =
∑T

i=0 rtγ
t

Compute: REGRETθ(πP , πA) = Uθ(πA)− Uθ(πP )
Train Protagonist policy πP with RL update and reward R(τP ) = Uθ(πP )
Train Antagonist policy πA with RL update and reward R(τA) = Uθ(πA)

Train Teacher policy Λ̃ with RL update and reward R(τ Λ̃) = REGRET
end while

Now we discuss a couple of additional properties of CLUTR compared to PAIRED-variants.

1. CLUTR teacher samples from the latent space Z and thus generates a task in a single
timestep. Note that this is not possible for the PAIRED/REPAIRED teacher, as they gener-
ate one task parameter at a time, conditioned on the state of the partially-generated task so
far.

2. PAIRED-variants typically observe the state of the partially generated task to generate
the next parameter. Hence depending on the state space, they require designing different
teacher architectures for different environments. CLUTR teacher architecture, however, is
agnostic of the problem domain. Hence the same architecture can be used across different
problems.

4.4 COMPARISON OF CLUTR WITH CONTEMPORARY UED METHODS

As discussed in 2, contemporary UED methods can be characterized by their i) teacher type (ran-
dom/fixed or, learned/adaptive) and ii) the use of replay. To clearly place CLUTR in the context of
contemporary UEDs, we discuss another important aspect of curriculum learning algorithms: how
the task manifold is learned. The random UED teachers do not learn a task manifold. Regret-based
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teachers such as PAIRED and REPAIRED learn an implicit (e.g., the hidden state of the teacher
LSTM) task-manifold but it is not used explicitly. It is trained via RL based on regret estimates of
the tasks they generate. Hence, these task-manifolds depend on the quality of the estimates, which in
turn depends on the overall health of the multi-agent RL training. Furthermore, they do not take into
account the actual task structures. In contrast, CLUTR introduces an explicit task-manifold modeled
with VAE that presents a local neighborhood structure capturing the similarity of the tasks. Hence,
similar tasks (in terms of parameterization) would be placed nearby in the latent space. Intuitively
this local neighborhood structure should facilitate the teacher to navigate the manifold. The above
discussion illustrates that CLUTR along with PAIRED and REPAIRED form a category of UEDs
that generates tasks based on a learned task-manifold, orthogonal to the random generation-based
methods, while CLUTR being the only one utilizing an unsupervised generative task manifold. Ta-
ble 1 summarizes the differences.

5 EXPERIMENTS

In this section, we first evaluate CLUTR’s performance compared to the existing UEDs in Pixel-
Based Car Racing with continuous control and dense rewards. As discussed in Section 4.4, our
primary comparison is with PAIRED and REPAIRED—the only two existing UED methods that
learn task-manifolds to generate tasks. For completeness, we also compare CLUTR with UEDs
with random teachers. Furthermore, we compare with PAIRED on partially observable navigation
tasks with discrete control and sparse rewards.

We then empirically evaluate the following hypotheses:
H1: CLUTR generates a more efficient curriculum. (Section 5.3)
H2: Learning task representations and curriculum simultaneously degrades the performance (5.4)
H3: Training VAE on sorted data solves the combinatorial explosion problem. (Section 5.5)

At last, we analytically compare the CLUTR and PAIRED curricula. Full details of the environ-
ments, network architectures of the teacher and student agents, the VAE, the training hyperparame-
ters, and further analysis and evaluation are discussed in the Appendix.

5.1 CLUTR PERFORMANCE ON PIXEL-BASED CONTINUOUS CONTROL CARRACING
ENVIRONMENT

The CarRacing environment (Jiang et al. (2021a), Brockman et al. (2016)) requires the agent to drive
a full lap around a closed-loop racing track modeled with Bézier Curves (Mortenson (1999)) of up
to 12 control points. CLUTR was trained with the Flexible Regret Objective for 2M timesteps—
around which the agent’s training return converges to its maximum. We also experimented with
the standard regret objective and obtained better performance than PAIRED, which we discussed
in Section D.2 of the appendix. We train the VAE on 1 Million randomly generated tracks for 1
Million gradient updates. Note that only one VAE was trained and used for all the experiments (10
independent runs). We evaluate the agents on the F1 benchmark (Jiang et al. (2021a)) that contains
20 test tracks modeled on real-life F1 racing tracks. These tracks are significantly out of distribution
than any tracks that the UED teachers can generate with just 12 control points. Further details on
the environment, network architectures, and VAE training can be found in Section C.1,C.2, and C.4
of the appendix, respectively.

Figure 2a shows the mean return obtained by the CLUTR, PAIRED, and REPAIRED on the 20
F1 test tracks. CLUTR outperforms PAIRED and REPAIRED by a huge margin: showing an 18x
higher mean return than PAIRED and 1.6x than REPAIRED, outperforming both of them in all of
the 20 test tracks. Note that CLUTR was trained only for 2M timesteps, while both PAIRED and
REPAIRED were trained for 5M timesteps. Figure 2b tracks the agents’ generalization capabilities
by periodically evaluating them on four unseen tracks Vanilla, Singapore, Germany, and Italy. These
tracks were selected aligning with Jiang et al. (2021a). Based on these selected tracks, CLUTR
shows much better generalization and sample efficiency—achieving better performance and faster
improvement. Further experiment results are shared in Section D of the appendix.

We also compare CLUTR to other existing UEDs with random task generation on the F1 bench-
mark for completeness. CLUTR outperforms Domain Randomization and PLR, falling short only
to Robust PLR, which achieves an overall 1.13X higher returns. Nonetheless, CLUTR performs
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(a) Mean Performance on the F1
Benchmark. CLUTR achieves an
18x higher return than PAIRED and
1.6x than REPAIRED.

(b) Agent performance on selected
test tracks during training. CLUTR
shows significantly better general-
ization and sample efficiency.

(c) Mean Performance on the F1
benchmark, compared to other ex-
isting UEDs and the non-UED
SOTA.

Figure 2: CLUTR performance on the CarRacing Tasks compared to PAIRED and REPAIRED.
The results show mean and standard error of 10 independent runs. Further details can be found in
Section D in Appendix

comparably to Robust PLR on seven of the 20 tracks and outperforms in one. Furthermore, CLUTR
shows comparable performance to the non-UED attention-based state-of-the-art method for CarRac-
ing (Tang et al. (2020)), despite not using a self-attention policy and training on significantly fewer
environment timesteps (< 1%). Moreover, CLUTR outperforms it on nine of the 20 tracks. Detailed
results on individual tracks are presented in Table 4 of the Appendix.

5.2 CLUTR PERFORMANCE ON PARTIALLY OBSERVABLE NAVIGATION TASKS ON
MINIGRID

Figure 3: Agent solved rate on selected grids
during training. CLUTR shows better sample
efficiency and generalization than PAIRED. The
results show an average of 5 independent runs.

We also compare CLUTR with PAIRED on the
popular MiniGrid environment, originally intro-
duced by Chevalier-Boisvert et al. (2018) and
adopted by Dennis et al. (2020) for UEDs. In
these navigation tasks, an agent explores a grid
world to find the goal while avoiding obstacles
and receives a sparse reward upon reaching the
goal. To train CLUTR VAE, we generate 1 Mil-
lion random grids, with the obstacle locations
sorted, and the number of obstacles uniformly
varying from zero to 50, aligning with Dennis
et al. (2020). We used the standard regret objec-
tives. Note that the results reported in the orig-
inal PAIRED paper are obtained after 3 Billion
timesteps of training, while we run both PAIRED and CLUTR for 500M timesteps (5 indepen-
dent runs) due to the huge computational resource and time needed to run a training with 3 Billion
timesteps. For the same computational constraints, we compare only with PAIRED in this envi-
ronment. Figure 4 shows zero-shot generalization performance of CLUTR and PAIRED 18 unseen
navigation tasks from Dennis et al. (2020) based on the percent of environments the agent solved,
i.e., solved rate. CLUTR achieves superior generalization solving 64% of the unseen grids, while
PAIRED achieves 43%, which is 33% lower compared to CLUTR. From figure 4 it can be seen
CLUTR outperforms PAIRED achieving a higher mean solve rate on 14 out of the 18 test navi-
gation tasks. Figure 3 shows solved rates on four selected grids (Sixteen Rooms, Sixteen Rooms
with Fewer Doors, Labyrinth, and Large Corridor) during training. CLUTR shows better sample
efficiency, as well as generalization than PAIRED.

5.3 EFFICIENCY OF THE CURRICULUM: CLUTR VS PAIRED

Figure 5 shows the mean regret on the teacher-generated tasks for both CarRacing and navigation
tasks. CLUTR shows a lower regret than PAIRED, meaning the performance gap between the agent
and the antagonist is lower in CLUTR. From a curriculum learning perspective, we want to train
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Figure 4: Zero-shot generalization of CLUTR and PAIRED, in terms of percent of the environments
solved. CLUTR achieves a higher solved rate than PAIRED in 14 out of the 18 tasks. We evaluate
the agents with 100 independent episodes on each task. Error bars denote the standard error.

(a) Mean Regret - CarRacing (b) Mean Regret - Navigation

Figure 5: Mean regret values during training. CLUTR shows a smaller regret value indicating a less
performance gap between the agent and the antagonist. CLUTR also converges faster.

the agent on tasks that are slightly harder than it can already solve or, those tasks that it can solve
already but can obtain better returns. In practice, both the agent and the antagonist are trained in the
same training context e.g., the same hyper-parameters, model architecture, and tasks, differing only
by their random initial weights. Hence, a lower regret means that the teacher is generating tasks that
are either slightly harder than the tasks the agent can solve now (because the other agent is solving
them) or, tasks in which the antagonist is performing slightly better. Hence, the tasks are more
likely at the agent’s frontier of capability. The curves also show that CLUTR and PAIRED show
similar convergence patterns, while CLUTR converges sooner to a better local optimum. These
observations, in addition to the empirical performance, indicate that CLUTR is generating a more
efficient curriculum than PAIRED.

5.4 LEARNING TASK MANIFOLD AND CURRICULUM: JOINT VS TWO-STAGED OPTIMIZATION

etuned We hypothesize that learning the task representations and the curriculum simultaneously re-
sults in a difficult training problem due to the non-stationarity of the task manifold. To test this,
instead of keeping the task representations fixed, we continue finetuning our decoder on the regret
loss during the teacher-student curriculum learning phase. This experiment shows a 58% perfor-
mance drop in the F1 benchmark, labeled ‘Finetuned VAE’ in Figure 6. This empirically validates
our hypothesis that pretraining a latent task space and then learning to navigate it to induce curricu-
lum indeed is easier and can lend to better UED.

5.5 IMPACT OF SORTING VAE DATA ON SOLVING COMBINATORIAL EXPLOSION

We hypothesized that training a VAE on sorted sequences can solve the combinatorial ex-
plosion problem. To test this, we run CLUTR with an alternate VAE trained 5X longer
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Environment Interactions (2M) Environment Interactions (500M)

Figure 7: Example tracks(left) and grids(right) generated by CLUTR(top) and PAIRED(bottom)
uniformly sampled at different stages of training. The training progresses from left to right.

on a non-sorted and 10X bigger version of the original dataset. This experiment shows a
59% performance drop on the F1 benchmark, labeled ‘Shuffled VAE’ in Figure 6, empiri-
cally validating our hypothesis. Further details are discussed in Section D.3 of the Appendix.

Figure 6: Impact of i) Training VAE
on non-sorted data (Shuffled VAE) and
ii) Finetuning the task-manifold with re-
gret (Finetuned VAE) on F1 benchmark.

5.6 CURRICULUM COMPLEXITY

In this section, we compare the curriculum generated
by CLUTR and PAIRED, with snapshots of tasks gen-
erated by these methods during different stages of the
training (Figure 7). We illustrate one common mode of
failure/ineffectiveness shown by PAIRED: The curricu-
lum starts with arbitrarily complex tasks, which none of
the agents can solve at the initial stage of training. After
a while, PAIRED starts generating rudimentary degener-
ate tasks. If enough training budget is given, PAIRED
eventually gets out of the degenerative local minima, and
the curriculum complexity starts to emerge. On the other
hand, CLUTR does not show such degeneration and gen-
erates seemingly interesting tasks throughout. The exam-
ples shown Figure 7 illustrates this.

6 CONCLUSION AND FUTURE WORK

In this work, we propose CLUTR, an unsupervised environment design method via unsupervised
task representation learning. CLUTR augments PAIRED with a latent task space, decoupling task
representation learning from curriculum learning. CLUTR poses several advantages over PAIRED-
variants, including solving the long-horizon credit assignment and the combinatorial explosion of
the parameter space. Our experiments show CLUTR outperforms PAIRED-variants in terms of
sample efficiency and generalization.

Even though CLUTR and other regret-based UEDs empirically show good generalization on human-
curated complex transfer tasks, they rarely can generate human-level task structures during training.
An interesting direction would be to enable UED algorithms to generate realistic tasks. Another
important direction would be to reduce the gap between the theoretical and practical aspects of
regret-based multi-agent UED algorithms, which are subject to the quality of regret estimates and
multi-agent RL training. At last, random generator algorithms like Robust PLR or even, DR have
been shown to perform better than learned generator approaches like CLUTR or PAIRED. An in-
teresting direction would be to investigate the conditions/environments under which a random gen-
erator performs better than an adaptive generator and vice versa. At last, we are excited about
latent-space curriculum design and hope our work will encourage further research in this domain.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Abdus Salam Azad, Edward Kim, Qiancheng Wu, Kimin Lee, Ion Stoica, Pieter Abbeel, Alberto
Sangiovanni-Vincentelli, and Sanjit A Seshia. Programmatic modeling and generation of real-
time strategic soccer environments for reinforcement learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pp. 6028–6036, 2022.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for gymnasium. https://github.com/Farama-Foundation/MiniGrid, 2018.

Jan Chorowski, Ron J. Weiss, Samy Bengio, and Aäron van den Oord. Unsupervised speech repre-
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A APPENDIX

B ADDITIONAL DETAILS OF CLUTR

B.1 CLUTR OBJECTIVE DERIVATION

Figure 8: Hierarchi-
cal Graphical Model
for CLUTR

We use a hierarchical graphical model to formulate the latent environment
design problem. Let’s assume that R is a random variable that denotes a
measure of success defined using the protagonist and antagonist agents and
z be a latent random variable. We use the graphical model in Figure-8 where
z generates an environment E and R is the success defined over E. Both E
and R are observed variables while z is an unobserved variable. R covers a
broad range of measures used in different UED methods including PAIRED
and DR (Domain Randomization). In PAIRED, R represents the REGRET
as the difference of returns between the antagonist and protagonist agents
and it depends on the environments that the agents are evaluated on.

We use a variational formulation of UED by using the above graphical
model. We first define the variational objective as the KL-divergence be-
tween an approximate posterior distribution and true posterior distribution
over latent variable z,

DKL(q(z)|p(z|R,E)) = Ez∼q(z)[logq(z)]− Ez∼q(z)[logp(z|R,E)]

= Ez∼q(z)[logq(z)]− Ez∼q(z)[logp(R,E, z)] + logp(R,E)

where both R and E are given.

Next, we write the ELBO,

ELBO = Ez∼q(z)[logq(z)]− Ez∼q(z)[logp(R,E, z)]

= Ez∼q(z)[logq(z)]− Ez∼q(z)[logp(R|E)p(E|z)p(z)]
= Ez∼q(z)[logq(z)]− Ez∼q(z)[logp(z)]− Ez∼q(z)[logp(E|z)]− Ez∼q(z)[logp(R|E)]

= Ez∼q(z)[log
q(z)

p(z)
]− Ez∼q(z)[logp(E|z)]− logp(R|E)

= DKL(q(z)|p(z))− Ez∼q(z)[logp(E|z)]− logp(R|E)

= V AE(z, E)− logp(R|E)

We can also induce an objective that includes minimax REGRET. Let R be distributed according to
an exponential distribution, p(R|E) ∝ exp(REGRET(πP , πA|E)),

we derive,

ELBO ≈ V AE(z, E)− REGRET(R,E)

where the normalizing factor is ignored.

B.2 ROBUSTNESS GUARANTEES

CLUTR essentially proposes including a pretrained latent space within the teacher/generator. From
the teacher’s perspective, the difference is while the PAIRED teacher starts from randomly initialized
weights, CLUTR starts from the pretrained weights. Thus, CLUTR does not impose new assump-
tions on possible teacher policies. Furthermore, CLUTR does not change any other specifics of the
underlying PAIRED algorithm. Hence, CLUTR holds the same theoretical robustness guarantees
provided by PAIRED.

In practice, both CLUTR and PAIRED deviate from these theoretical guarantees. For example,
both algorithms approximate the regret value, which is the case for other regret-based UEDs such
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as Robust PLR and REPAIRED (Jiang et al. (2021a)). Also, the robustness guarantee depends on
reaching the Nash equilibrium of the multiagent adversarial game. However, gradient-based multi-
agent RL has no convergence guarantees and often fails to converge in practice(Mazumdar et al.
(2019)). We also note that, by introducing the latent space, CLUTR VAE might not have access to
the full task space due to practical limitations on training, e.g., the training dataset not having all
possible tasks. However, when the decoder is allowed to be finetuned, CLUTR will have access to
the full task space, similar to PAIRED. Our empirical results (discussed in Section 5.4) suggest that
keeping the pretrained decoder fixed performs better than finetuning it, so we kept it fixed for our
main experiments. We also want to mention that we used the flexible regret objective for CarRacing
in Section 5.1. When the flexible objective is used, CLUTR (and PAIRED) might not hold the
robustness guarantee as it changes the dynamics of the underlying game between the teacher and
the agents. However, we also experimented with the standard regret objective and obtained better
performance than PAIRED as discussed in Section D.2.

C TRAINING DETAILS

C.1 ENVIRONMENT DETAILS

Car Racing: The CarRacing environment was originally proposed by OpenAI Gym Brockman
et al. (2016), and later has been reparameterized by Jiang et al. (2021a) with Bézier Curves( Morten-
son (1999)) for UED algorithms. This environment requires the agents to drive a full lap around
a closed-loop track. The track is defined by a Bézier Curve modeled with a sequence of upto 12
arbitrary control points, each spaced within a fixed radius B/2 of the center of the B × B field.
This sequence of control points can uniquely identify a track, subject to a set of predefined curvature
constraints Jiang et al. (2021a). The control points are encoded in a 10× 10 grid—a discrete down-
sampled version of the racing track field. Each control point hence is a integer denoting a cell of the
grid and the cell coordinates are upscaled to match the original scale of the field afterwards. This
ensures no two control points are too close together, preventing areas of excessive track overlapping.
The track consists of a sequence of L polygons and the agent receives a reward of 1000/L upon vis-
iting each unvisited polygon and a penalty of −0.1 at each time step to incentivize completing the
tracks faster. Episodes terminate if the agent drives too far off-track but is not given any additional
penalty. The agent controls a 3 dimensional continuous action space corresponding to the car’s steer:
torque ∈ [−1.0, 1.0], gas: acceleration ∈ [0, 0, 1.0], and brake: deceleration ∈ [0.0, 1.0]. Each ac-
tion is repeated 8 times. The agent receive a 96 × 96 × 3 RGB pixel observation. The top 84 × 96
portion of the frame contains a clipped, egocentric, bird’s eye view of the horizontally centered car.
The bottom 12× 96 segment simulates a dashboard visualizing the agent’s latest action and return.
Snapshots of the test track in the F1 benchmark are shown in Figure 9.

Minigrid: The environment is partially observable and based on Chevalier-Boisvert et al. (2018)
and adopted for UED by Dennis et al. (2020). Each navigation task is represented with a sequence
of integers denoting the locations of the obstacles, the goal, and the starting position of the agent:
on a 15 × 15 grid similar to Dennis et al. (2020). The grids are surrounded by walls on the sides,
making it essentially a 13× 13 grid. Dennis et al. (2020) parameterizes the locations using integers.
Each task is a sequence of 52 integers, while the first 50 numbers denote the location of obstacles
followed by the goal and the agent’s initial location. The sequences may contain duplicates to allow
the generation of navigation tasks with fewer than 50 obstacles. Snapshots of the test grids used in
our paper are shown in Figure 10.

C.2 NETWORK ARCHITECTURES

All the student and teacher agents are trained with PPO Schulman et al. (2017).

Student Architecture

For CarRacing, we use the same student architecture as Jiang et al. (2021a). The architecture consists
an image embedding module composed of 2D Convolutions with square kernels of sizes 2,2,2,2,3,3,
stride lengths 2,2,2,2,1,1 and channel outputs of 8, 16, 64, 128, 256 stacked together. The image
embedding is of size 256 and is passed through a Fully Connected (FC) layer of 100 hidden units
and then passed through ReLU activations. This embedding is then passed through two FC with 100
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Figure 9: Snapshots of the test tracks in F1 benchmark

Figure 10: Snapshots of the test grids for MiniGrid
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hidden neurons, and then a softplus layer, and finally added to 1 for the beta distribution used for the
continuous action space. Further details can be found in Jiang et al. (2021a).

For navigation tasks, we use the same student architecture as Dennis et al. (2020). The observation
is a tuple with a 5×5×3 grid observation and a direction integer in [0−3]. The grid view is fed to a
convolutional layer with kernels of size 3 with 16 filters and the direction integer is passed through a
FC with 5 units. This is followed by an LSTM of size 256, and then to two FC layers with 32 units,
which connect to the policy outputs. The value network uses the same architecture.

Teacher Architecture

For CarRacing, CLUTR teacher takes a random noise and generates a continuous vector, i.e., the
latent task vector. We pass the random noise through a feed-forward network with one hidden layer
of 8 neurons as the teacher. The output of this layer is fed through two separate fully-connected
layers, each with a hidden size of 100 and an output dimension equal to the latent space dimension,
followed by soft plus activations. We then add 1 to each component of these two output vectors,
which serve as the α and β parameters respectively for the Beta distributions used to sample each
latent dimension. In our experiments, we used a 64-dimensional latent task space. For Minigrid
experiments, we use a network architecture similar to Dennis et al. (2020) but take only the random
noise as input. The adversary network generates discrete actions, but we map them to real numbers
to feed into the VAE decoder.

VAE architecture

We use the architecture proposed in Bowman et al. (2015). We use a word-embedding layer of size
300 with random initialization. The encoder comprises a conditional ‘Highway’ network followed
by an LSTM. The Highway network is a two-staged network stacked on top of each other. Each
stage computes σ(x)⊙ f(G(x))+ (1− σ(x))⊙Q(x), where x is the inputs to each of the highway
network stages, G and Q is affine transformation, σ(x) is a sigmoid non-linearization, and ⊙ is
element-wise multiplication. G and Q are feed-forward networks with a single hidden layer with
equal input and output dimensions of 300, equal to the word-embedding output dimension. We use
ReLU activation as f . The highway network is followed by a bidirectional LSTM with a single layer
of 600 units. The LSTM outputs are passed through linear layer of dimension 64 to get the VAE
mean and log variance. The mean vectors are passed through a hyperbolic tangent activation and
for the navigation tasks linearly scaled in [−4, 4]. The decoder takes in latent vectors of dimension
64 and passes through a bidirectional LSTM with two hidden layers of size 800 and follows it by a
linear layer with size equaling the parameter vector dimension.

C.3 HYPERPARAMETERS

All our agents are trained with PPO (Schulman et al. (2017)). We did not perform any hyperparame-
ter search for our experiments. The CarRacing experiments used the same parameters used in Jiang
et al. (2021a), and the Minigrid experiments used the parameters from Dennis et al. (2020). VAE
was trained on the parameters from Bowman et al. (2015). The detailed parameters are listed in
Table 2 and Table 3.

Parameter Value
Batch Size 32
Number of Training Steps 1000000
Reconstruction Weight 79
Latent Variable Size 64
Word Embedding size 300
Maximum Sequence Length 52
Encoder Activation Hyperbolic Tangent
Learning Rate 0.00005
Dropout 0.3

Table 2: Hyperparameters for training the Task VAE
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Parameter CarRacing MiniGrid
γ 0.99 0.995
λGAE 0.9 0.95
PPO rollout length 125 256
PPO epochs 8 5
PPO minibatches per epoch 4 1
PPO clip range 0.2 0.2
PPO number of workers 16 32
Adam learning rate 3e-4 1e-4
Adam ϵ 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping no yes
Return normalization yes no
Value loss coefficient 0.5 0.5
Student entropy coefficient 0 0
Action Repeat 8 -

Table 3: Hyperparameters for PAIRED and CLUTR PPO training.

C.4 VAE TRAINING DATA

For CarRacing, we follow the same parameterization as Jiang et al. (2021a): each track is defined
with a sequence of up to 12 integers denoting control points of a Bézier Curve. . Each control point
is represented with an integer. We generate 1M random sorted integer sequences of fixed length
12 with duplicates—which enables generating tracks defined with less than 12 control points. For
navigation tasks we use the parameterization of Dennis et al. (2020), generating upto 50 obstacles
for each task for a 15× 15 grid, surrounded by walls, effectively an active area of 13× 13. Hence,
each location is numbered in 1 to 169. Every number except the last two of the sequence represent
obstacle locations, and the last two for the goal and agent location, respectively. The parameter
vector is thus partially permutation invariant. We uniformly generate 1M sequences of variable
length between 2 and 52 (inclusive). The obstacle locations are sorted.

D DETAILED RESULTS ON CARRACING

D.1 DETAILED COMPARISON ON FULL F1 DATASET

We used the flexible regret approximation for the results presented in the main paper. The flexible
regret objective is a more robust variant of the standard regret estimation (both introduced in Dennis
et al. (2020)). It is defined by the difference between the average score of the agent and antagonist
returns and the score of the policy that achieved the highest average return. Thus, the flexible
objective blurs the distinction between the agent and the antagonist. Hence we designate the agent
achieving the higher average training return during the last 10 steps as the agent.

Figure 11 compares how different UEDs perform during training by periodically evaluating them on
Four Selected Tracks: Vanilla, Singapore, Germany, and Italy. These tracks were selected aligning
with Jiang et al. (2021a). Based on these selected tracks, CLUTR performance plateaus around
2.5M timesteps. Robust PLR starts slowly but surpasses all the other methods after 5M timesteps.

Table 4 shows the comparison between the final agents trained with CLUTR and other UED algo-
rithms. It is to be noted that, all the UED methods except CLUTR was trained for 5M timesteps
where CLUTR was run for 2M timesteps. CLUTR outperforms PAIRED by a big margin with 18x
bigger mean return on the entire F1 Dataset. CLUTR also outperforms Domain Randomization,
PLR, and REPAIRED and only falls short to Robust PLR. Nonetheless, CLUTR shows competitive
results compared to Robust PLR, showing comparable results in seven out of the 20 test tracks and
outperforming in the Netherlands track. CLUTR also outperforms the non-UED SOTA on the full F1
dataset. CLUTR outperforms the Attention Agent on 9 out of the 20 tracks and shows comparable
performance in one.
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Figure 11: Comparison of mean agent returns on Four Selected Tracks: Vanilla, Singapore, Ger-
many, and Italy. Based on these selected tracks, CLUTR improves a bit after 2M timesteps later
the performance plateaus. Robust PLR starts slowly but surpasses all the other methods after 5M
timesteps.

D.2 CLUTR WITH STANDARD REGRET LOSS

We also train CLUTR with the standard regret loss for 5M timesteps. Figure 12 compares the impact
of standard/flexible regret loss on the regret and agent returns during training. With standard regret
loss, CLUTR shows a lower regret value, but shows similar pattern. The CLUTR agent achieves
better returns with flexible loss throughout the training.

Figure 13 compares the mean regret and agent training returns with PAIRED. CLUTR with standard
loss shows much lower regret than PAIRED (Figure 13a). Figure 13b shows that the CLUTR agents
compete closely, while PAIRED antagonist achieves much higher returns than the PAIRED agent
which leads to higher regret returns for the teacher agent but results in a weak student agent. To test
the Zero-shot generalization, we evaluate CLUTR with the standard loss on the full F1 benchmark.
Figure 14 shows CLUTR with standard regret loss outperforms PAIRED in all the 20 test tracks.
This implies that CLUTR outperforms PAIRED irrespective of the choice of the loss function (stan-
dard/flexible). Figure 15 compares the sample efficiency of CLUTR with the standard regret loss
with PAIRED by evaluating the agents on four selected tracks (Vanilla, Singapore, Germany, Italy)
during training. It can be seen that CLUTR, even without the regret loss, outperforms PAIRED
significantly. We note that these test environments were not used in any way, neither during training
CLUTR (and PAIRED) nor while designing it.

As mentioned in Jiang et al. (2021a) PAIRED overexploits the relative strengths of the antagonist
over the protagonist and generates a curriculum that gradually reduces the task complexity. How-
ever, CLUTR overcomes this and generates a curriculum where the agent and the antagonist closely
compete (Figure 13b) and shows a robust generalization on the unseen F1 benchmark.

D.3 EXTENDED ANALYSIS ON IMPACT OF SORTING TRAINING DATA FOR VAE TRAINING

The non-sorted dataset was generated by shuffling each track of the original VAE training dataset
10 different times, resulting in a 10X bigger dataset (10M tracks). It was trained for 5X longer
for 5M training steps. We planned on training for 10M gradient steps (10X than the original VAE)
but stopped at 5M as it converged much sooner. We ran both CLUTR and CLUTR-shuffled, i.e.,
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Track DR PLR Robust PLR PAIRED REPAIRED CLUTR (2M) Attention Agent
Australia 484 ± 29 545 ± 23 692 ± 15 100 ± 22 414 ± 27 683 ± 20 826
Austria 409 ± 21 442 ± 18 615 ± 13 92 ± 24 345 ± 19 507 ± 19 511
Bahrain 298 ± 27 411 ± 22 590 ± 15 -35 ± 19 295 ± 23 414 ± 20 372
Belgium 328 ± 16 327 ± 15 474 ± 12 72 ± 20 293 ± 19 429 ± 15 668
Brazil 309 ± 23 387 ± 17 455 ± 13 76 ± 18 256 ± 19 363 ± 18 145
China 115 ± 24 84 ± 20 228 ± 24 -101 ± 9 7 ± 18 254 ± 28 344
France 279 ± 32 290 ± 35 478 ± 22 -81 ± 13 240 ± 29 498 ± 31 153
Germany 274 ± 23 388 ± 20 499 ± 18 -33 ± 16 272 ± 22 404 ± 20 214
Hungary 465 ± 32 533 ± 26 708 ± 17 98 ± 29 414 ± 29 630 ± 24 769
Italy 461 ± 27 588 ± 20 625 ± 12 132 ± 24 371 ± 25 639 ± 16 798
Malaysia 236 ± 25 283 ± 20 400 ± 18 -26 ± 17 200 ± 17 426 ± 22 300
Mexico 458 ± 33 561 ± 21 712 ± 12 67 ± 31 415 ± 30 627 ± 19 580
Monaco 268 ± 28 360 ± 32 486 ± 19 -28 ± 18 256 ± 26 460 ± 29 835
Netherlands 328 ± 26 418 ± 21 419 ± 25 70 ± 20 307 ± 21 488 ± 21 131
Portugal 324 ± 27 407 ± 15 483 ± 13 -49 ± 13 265 ± 21 462 ± 20 606
Russia 382 ± 30 479 ± 24 649 ± 14 51 ± 21 419 ± 25 497 ± 23 732
Singapore 336 ± 29 386 ± 22 566 ± 15 -35 ± 14 274 ± 21 382 ± 19 276
Spain 433 ± 24 482 ± 17 622 ± 14 134 ± 24 358 ± 24 496 ± 15 759
UK 393 ± 28 456 ± 16 538 ± 17 138 ± 25 380 ± 22 471 ± 19 729
USA 263 ± 31 243 ± 28 381 ± 33 -119 ± 11 120 ± 25 238 ± 31 -192
Mean 342 ± 27 404 ± 22 531 ± 17 26 ± 19 295 ± 23 468 ± 21 478

Table 4: Comparison between CLUTR and other UED algorithms. Boldface denotes SOTA
among UED algorithms, while italic in the Attention Agent colum means, CLUTR is compara-
ble/outperforms the attention agent on that track. CLUTR outperforms PAIRED by a big margin
with 18x bigger mean return on the entire F1 Dataset. CLUTR also outperforms Domain Random-
ization, PLR, and REPAIRED and only falls short to Robust PLR. Nonetheless, CLUTR shows
competitive results compared to Robust PLR, showing comparable results in seven out of the 20 test
tracks and outperforming in the Netherlands track. CLUTR also outperforms the non-UED SOTA
on the full F1 dataset. CLUTR outperforms the Attention Agent on 9 out of the 20 tracks and shows
comparableperformance in one. It must be noted, all the UED methods except CLUTR was trained
for 5M timesteps where CLUTR was run for 2M timesteps.

(a) Mean Regret - Car Racing - with vs without flexible
regret loss

(b) Returns on UED generated Car Racing tracks -
with vs without flexible regret loss

Figure 12: Mean Regret and agent returns during training CLUTR (with flexible regret) vs CLUTR
with standard PAIRED regret approximation.

CLUTR with a VAE trained on non-sorted data up to 5M timesteps. CLUTR-shuffled shows inferior
performance and also signs of unlearning compared to CLUTR. Figure 16 shows detailed experiment
results.
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(a) Mean Regret - Car Racing (b) Returns on UED generated Car Racing tracks

Figure 13: Mean Regret and agent returns during training CLUTR with standard PAIRED regret
loss (i.e., without the flexible regret). CLUTR shows a smaller regret value(i.e., closely competing
agent and antagonist), indicating a better UED curriculum.

Figure 14: Zero-shot generalization of both PAIRED and CLUTR (with the standard regret loss)
agents after 5M timesteps on the full F1 benchmark. CLUTR with the standard regret loss outper-
forms PAIRED on every track. For each track, we test the agents on 10 different episodes and the
error bar denotes the standard error.

Figure 15: Test Returns on Selected Tracks (Vanilla, Singapore, Germany, and Italy) of CLUTR
with standard PAIRED regret loss alongside PAIRED performance.
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(a) During training CLUTR agent achieves higher re-
turns while, CLUTR-shuffled agent shows lower re-
turns. CLUTR-Shuffled agent’s return is also less sta-
ble showing a decrease and increase.

(b) CLUTR achieves higher and more stable mean re-
turns on the selected tracks. CLUTR-Shuffle shows
signs of unlearning.

Figure 16: Analysis of sorting training data for VAE. Trained on shuffled data, CLUTR-Shuffled
performs inferior compared to CLUTR and shows signs of unlearning.

D.4 IMPACT OF TASK REPRESENTATION LEARNING

Figure 17: Impact of pretrained decoder weights
on performance. The red curve plots the devia-
tion of the decoder from its pretrained weights as
it is finetuned. The green curve shows the perfor-
mance drop from CLUTR with the standard loss.
These curves suggest that pretrained weights are
crucial for performance.

In this section, we discuss the impact of the
learned task representation on performance. In
Section 5.4, we showed that if we finetune the
VAE decoder during curriculum learning, the
overall performance drops significantly (Fig-
ure 6). To get a better understanding, in Fig-
ure 17, we plot how much the performance
deviates as the VAE decoder changes during
the training process. The curve in red shows
the deviation of the decoder from its pretrained
weights as it is fine-tuned during the training.
We estimate the deviation as the L2 distance be-
tween the finetuned and the pretrained decoder
weights. The green curve shows the perfor-
mance drop from CLUTR (with standard loss).
To estimate the performance drop, we period-
ically evaluate both CLUTR and CLUTR with
Finetuned VAE, on the selected test tracks dur-
ing training. From the figure, we observe that,
as the decoder weights are finetuned, they become increasingly different from the initial pretrained
weights. At the same time, the overall performance gap from CLUTR also increases. This suggests
that the pretrained VAE weights are crucial for better performance.

Furthermore, the quality of the learned representation depends on the quality of the data they are
trained on. In section 5.5, we showed that a VAE trained on a non-sorted dataset significantly de-
teriorates the performance (Figure 6). This further suggests that the learned representation has a
significant impact on performance. We also want to note that both of these variations (CLUTR with
Finetuned VAE and the CLUTR with Shuffled VAE) perform much better than PAIRED, which
suggests that, though CLUTR’s performance depends on the representation, with a reasonable rep-
resentation, it can still perform better than PAIRED.
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E DETAILED RESULTS ON MINIGRID

E.1 CURRICULUM ANALYSIS

Figure 19 shows 3D Histograms showing the frequency of the generated grids against the total num-
ber of obstacles they contain. PAIRED starts with a high number of obstacles and then degenerates
quickly into grids with very few numbers of obstacles and stays similar for a significant number
of steps. Eventually, the number of obstacles increases sharply, converging into a band of around
20 to 40 obstacles on average. On the other hand, in CLUTR, the number of obstacles starts flat,
centers around a peak around the middle but still with a wide interval for some number of steps, and
the peak drops slightly while the interval stays almost the same. After the ‘convergence’, PAIRED
rarely generates grids with fewer or more obstacles than the band it converges to. On the contrary,
CLUTR still generates grids with few or many blocks, which might help to address unlearning or
improve the agents on grids with more obstacles, respectively. The above observations illustrate that
we can achieve a more efficient curriculum learning without making the problem too easy early or
without focusing on a narrow interval with a flat distribution later. Instead, we can start with a wide
interval and gradually focus on a peak around the middle without making the interval very narrow.

(a) CLUTR (b) PAIRED

Figure 18: 3D Histograms showing the frequency of the generated grids against the total number
of blocks they contain. Both PAIRED and CLUTR converge to a similar band of grids. However,
CLUTR converges much faster.

Figure 19a shows the average episode lengths of both CLUTR and PAIRED. The curves show both
methods start with long episodes—indicating at the beginning, the agents do not solve the training
grids consistently, and many of the episodes end due to timeout. As the agents learn, the episodes
become shorter for both methods until they converge to a small value. However, CLUTR converges
sooner than PAIRED.

We also compare the average solution length of the solved training grids. Both PAIRED and CLUTR
show a similar pattern. However, PAIRED converges to a larger value than CLUTR. This might in-
dicate that CLUTR is solving the environments more efficiently. This might also mean that CLUTR
is solving some easier tasks (e.g., fewer obstacles, as we noticed from Figure 19) even after conver-
gence lowering its average solved path length slightly.

E.2 CLUTR CURRICULUM VS. DOMAIN RANDOMIZED CURRICULUM ON THE LATENT
SPACE: DOES CLUTR TEACHER DEGENERATES INTO A RANDOMIZED POLICY?

To answer whether CLUTR teacher actually learns something or degenerates into a randomized
policy, we compare the curriculum generated by CLUTR with a random uniform (i.e., Domain
Randomization) curriculum. We generate the DR curriculum by repeatedly sampling the trained
VAE (the same VAE used by CLUTR) with a uniform random distribution. Figure 20 shows the
comparison characterizing the grids by the number of obstacles they contain similarly as the previous
section. As expected, we can see that the DR curriculum generates grids with obstacles ranging from
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(a) Average length of the training episodes. CLUTR
converges sooner than PAIRED to a shorter episode
length.

(b) Average solution length of the solved training
tasks.

Figure 19: Comparison of CLUTR and PAIRED curriculum based on properties of the generated
grids.

0 to 50. The histograms clearly visualize the significant differences in the curricula, implying the
CLUTR teacher indeed learns a useful curriculum as suggested by the empirical result.

(a) CLUTR (b) Domain Randomization of the Latent Space

Figure 20: 3D Histograms showing the frequency of the CLUTR generated grids against the total
number of blocks they contain vs. randomly generated grids.

E.3 ANALYSIS OF THE LATENT TASK MANIFOLD

Figure 21: 15X15 Four-
Rooms

To grow a sense of the latent task manifold, we linearly interpolate in the
latent space between an empty grid and a 15x15 version of the FourRoom
grid (shown in Figure 21). Figure 22 visualizes the interpolation results.
We first get the latent vectors of the empty grid and the target FourRoom
task using the VAE encoder. We then linearly interpolate 23 equidistant
points between them. At last, we reconstruct the grids from these vectors
using our decoder. From Figure 22 we see that, as we interpolate in the
latent space, the reconstructed grid incrementally adds more obstacles
and the grids start to look more like the FourRoom target grid. We note
that the reconstruction is not perfect. We also note that the increase in
the number of obstacles is not uniform, e.g., the first 5 reconstructed
grids are all empty grids, and more obstacles are added near the target
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Figure 22: A linear interpolation between an empty grid and 15x15 version of the Four-Room grid
(Figure 21) in the latent space. The grids are organized from top-left to bottom-right in row-major
order.

point. Overall, this experiment provides an insight that the latent space
holds a useful structure, which CLUTR teacher utilizes to generate the
curriculum.
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