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Abstract

Brain encoding models aim to predict brain voxel-wise responses to stimuli images,1

replicating brain signals captured by neuroimaging techniques. There is a large2

volume of publicly available data, but training a comprehensive brain encoding3

model is challenging. The main difficulties stem from a) diversity within individual4

brain, with functional heterogeneous brain regions; b) diversity of brains from5

different subjects, due to genetic and developmental differences; c) diversity of6

imaging modalities and processing pipelines. We use this diversity to our advantage7

by introducing the All-for-One training recipe, which divides the challenging one-8

big-model problem into multiple small models, with the small models aggregating9

the knowledge while preserving the distinction between the different functional10

regions. Agnostic of the training recipe, we use biological knowledge of the brain,11

specifically retinotopy, to introduce inductive bias to learn a 3D brain-to-image12

mapping that ensures a) each neuron knows which image regions and semantic13

levels to gather information, and b) no neurons are left behind in the model.14

We pre-trained a brain encoding model using over one million data points from five15

public datasets spanning three imaging modalities. To the best of our knowledge,16

this is the most comprehensive brain encoding model to the date. We demonstrate17

the effectiveness of the pre-trained model as a drop-in replacement for commonly18

used vision backbone models. Furthermore, we demonstrate the application of the19

model to brain decoding. Code and the model checkpoint will be made available.20
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Figure 1: All-for-One recipe pre-trained backbone model evaluated by linear probing brain encoding.
All models remain frozen, the dimension of latent image features are reduced using PCA to a
consistent size. Subsequently, a linear regression is conducted for each voxel. The in-distribution
dataset comprises one subject from NSD, the holdout datasets consist of two subjects from BOLD5000
and ThingsfMRI1. Violin plot show distribution of score over voxels.
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Figure 2: The proposed brain encoding model consists of three main components: the backbone, the
TopyNeck, and the linear regression head. The backbone is trainable convolution blocks attached to a
frozen DiNOv2-ViT-B model. TopyNeck selects one-dimensional features for each voxel based on
its physical coordinates. TopyNeck composes of RetinaMapper that maps the voxel to a 2D image
grid (RetinaGrid), and LayerSelector that combine feature vectors obtained from backbone layers.
Each dot in RetinaMap is a voxel, and color corresponds to argmax of LayerSelector. Finally, a
no-weight-sharing linear regression is conducted for each voxel. Voxel-wise encoding ROI (veROI),
is a novel brain parcellation that unifies multi-modal subjects.

1 Introduction21

There is a growing body of research in neuroscience that utilizes brain encoding models. The model22

predicts voxel-wise brain response to visual stimuli, and it can be depicted as a multi-task regression23

problem where each voxel is a task. The brain encoding model serves as a computational counterpart24

to biological brains Wen et al. (2018). The common practice for building brain encoding models25

is to use pre-trained models from image classification Deng et al. (2009), text-to-image alignment26

Radford et al. (2021), or self-supervised tasks Oquab et al. (2023). These pre-trained models may27

excel at their benchmarked task; however, Schrimpf et al. (2018) show that the image-classification28

benchmark score does not align with prediction performance in brain encoding.29

Building a model from all data sources poses a significant challenge due to heterogeneity in data:30

a) diversity in functional sub-modules within each brain, b) genetic and developmental differences31

across subjects, c) inconsistent imaging techniques and pre-processing pipelines. The current best32

practice is to build Region-of-Interest (ROI)1 models over subjects from the same dataset Cichy et al.33

(2021) Willeke et al. (2022) Allen et al. (2022), where ROIs are predefined by well-studied anatomical34

and functional properties of the brain voxels. However, the ROI-model approach lacks the potential35

benefits for ROIs to aggregate knowledge and collaborate. This issue can be mitigated to some extent36

1ROI refers to brain atlas parcellations
2



by adjusting the granularity of ROIs. This work proposes a multi-stage All-for-One (AFO) training37

recipe that explicitly lets ROIs aggregate knowledge while keeping the main training objective less38

challenging than training for one all-ROI model. Borrowing the idea of ‘Dark knowledge’ distillation39

Hinton et al. (2015), we use denoising to ensure the aggregated knowledge is clean.40

Biological domain knowledge of the brain, specifically retinotopy, can be explored to design a41

better model Lurz et al. (2021). The retina cells are physically wired through the optic nerve to the42

lateral geniculate nucleus, which connects to the visual cortex. Thus, visual cortex cells preserve the43

topological structure of images projected to the retina. This study explicitly defines a RetinaMapper44

function that replicates retinotopic mapping. An obvious solution is learning a forward mapping that45

transforms 2D RetinaGrid into a neuron in a 3D brain location. However, such forward mapping46

can not guarantee to be surjective: every 3D neuron location is the mapped from at least one 2D47

RetinaGrid. Our solution is to model the RetinaMapper from the inverse perspective, mapping 3D48

neuron to 2D RetinaGrid. RetinaMapper is learned without ground-truth supervision, but still exhibits49

retinotopic behavior, as shown in our results.50

A well-reported phenomenon is that neuron voxels are mapped to shallow to deep layers of a feed-51

forward neuron network Takagi and Nishimoto (2022). This motivates the common practice of52

selecting the best layers for each voxel. But per-voxel hyper-parameter tuning is highly noisy and53

prone to overfitting; previous studies overcome this by choosing the same layers for each ROI. In this54

study, we propose a LayerSelector module that enforces spatial proximity, thus allowing a flexible55

and robust selection of layers.56

2 Related work57

The field of computational neuroscience has been actively exploring the task of brain encoding,58

highlighting from Kay et al. (2008) Naselaris et al. (2011), surveyed by Wen et al. (2018). There59

are several initiatives and benchmarks: The brain-score Schrimpf et al. (2018) initiative compares60

frozen image backbone models using a PCA and linear regression pipeline. The PCA approach61

allows for a fair comparison of vision models with different latent dimensions. Additionally, Conwell62

et al. (2022) utilized a similar frozen PCA pipeline to benchmark various vision models on the NSD63

dataset. The Algonauts challenge Cichy et al. (2021) benchmarks end-to-end trained model without64

the constraint of frozen model and PCA dimension reduction. The Sensorium benchmark Willeke65

et al. (2022) worked on invasive mouse V1 imaging data. The Things initiative Hebart et al. (2023)66

provides fine-grid image captions which can be used for hypotheses testing. These datasets and67

benchmarks cover a wide range of imaging modalities, and preprocessing and denoising pipelines68

Kay et al. (2013) Prince et al. (2022). The All-for-One training recipe aims to leverage all of these69

diverse data sources to pre-train a comprehensive brain encoding model.70

The neuroscience community has extensively applied brain encoding models to unravel the biological71

mechanisms underlying brain function. St-Yves et al. (2022) employed transfer learning techniques72

with brain encoding models to investigate the hierarchical organization of the brain. Franke et al.73

(2022) applied the model to study color coding in mouse neurons. The NeuroGen framework Gu et al.74

(2022) combined brain encoding models with image generation models, they utilize gradient-based75

methods to manipulate stimulus images. Bashivan et al. (2019) generated maximally excited images76

for populations of neurons and presented these images to subjects to validate the conclusions. On the77

other hand, there are fruitful studies of brain decoding2 without a brain encoding model Takagi and78

Nishimoto (2022) Gu et al. (2023) Lu et al. (2023) Gu et al. (2023). Their framework is to take a79

pre-trained text-conditioned image generation model Ho et al. (2020) Rombach et al. (2022), then80

train a mapping function that aligns brain patterns to the text-condition embeddings space. However,81

we argue that decoding without a pre-trained encoding model is less efficient: Firstly, this pipeline82

is tightly linked to the pre-trained image generation model. Also, this pipeline face challenges in83

effectively utilizing heterogeneous data from various imaging modalities. We argue that decoding84

with a frozen encoding model is more efficient as this approach is agnostic to the specific image85

generation model.86

Previous studies also explored incorporating retinotopy into the brain encoding model. Allen et al.87

(2022) fits Gabor filters of various sizes and locations for each voxel. Lurz et al. (2021) also employed88

2We use the term encoding for mapping from stimuli image to brain voxels, decoding for the reverse.
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the RetinaMapper, but their work focuses on training with the same imaging modality and one single89

ROI. In contrast, our approach tries to model the whole visual brain with diverse data sources.90

3 Method91

The voxel-wise encoding model (Fig 2) comprises three main components: Firstly, the backbone92

processes the input image and extracts latent image features from its intermediate layers. Next, the93

neck component compresses the feature vector for each voxel. Finally, the head applies a linear94

regression model to fit a prediction for each voxel. Let M l ∈ RD×H
k ×W

k be the feature map output95

from the frozen backbone, where l is the layer index, k is the down-scale factor, we refer the H
k × W

k96

grid as RetinaGrid. The brain encoding model can be formulated as learning a mapping function F97

(Eq 1), where N depends on the imaging modality3. NMRI := (X ×Y ×Z)× 1, NEEG := C ×T ,98

NMEG := (X × Y × Z)× T99

F : R(L×D)×H
k ×W

k → RN (1)

3.1 TopyNeck100

RetinaMapper The biological retinotopy process is mapping f : RH
k ×W

k → RX×Y×Z . Riti-101

naMapper aims to replicate this mapping. However, f can not guarantee to be surjective: every 3D102

neuron location is the mapped from at least one 2D RetinaGrid. Instead of the forward mapping f ,103

we learn a reverse injective mapping f ′ : RX×Y×Z → RH
k ×W

k and use tanh activation function to104

guarantee the output 2D coordinates lies within the RetinaGrid. The RetinaMapper is formulated as105

u = tanh(MLP(PE(p))) (2)

where p ∈ RN×3 is the voxel’s spatial coordinate, PE is sinusoidal positional encoding function,106

u ∈ RN×2 is coordinates in the RetinaGrid. During training, a small non-trainable variance σ107

is introduced u′ ∼ N (u, σ). At inference time σ is set to 0. At each u′, linear interpolation is108

performed to obtain a 1-D feature vector ml ∈ RN×D for each layer l. Furthermore, Another 1-D109

feature vector ql = MLP(GlobalAvgPool(M l), GlobalMaxPool(M l)) is added to ml. Parameters110

of RetinaMapper is shared for all layers. Figure 2 and 4 show examples of such mapping. The color111

dots in RetinaGrid indicate which 3D neuron layers it is from. The blank area indicates image regions112

that are unused for prediction.113

LayerSelector Early visual to downstream regions have growing receptive field sizes and neurons’114

latent representation of the stimuli image grows abstract. This motivates matching voxels to layers in115

feed-forward neuron networks. But selecting the best or top layers for each voxel is suspected to be116

overfitting. LayerSelector enforce spatial proximity formulated as117

η = softmax(MLP(PE(p))) (3)
where η ∈ RN×L. The 1-D feature vectors sampled from various layers at RetinaGrid is reduced as118

m∗
i =

∑
L ηlim

l
i. Regularization loss lent =

∑
L ηl log ηl is applied to prevent converging to a local119

minimum that only selects one single layer.120

3.2 All-for-One training recipe121

Dividing neuron voxels into ROIs loses ROIs’ potential to aggregate knowledge and collaborate.122

Mixing can also negatively affect individual voxel performance, making learning more challenging.123

The AFO recipe aims to gather the benefits from both dividing and mixing. Multiple stages models124

are trained (Figure 3): In stage one, each ROI model is trained separately. In stage two, each ROI125

model is trained to distill the dark knowledge Hinton et al. (2015) from all other ROIs, but the126

ground truth loss is only applied on the target ROI, other ROIs are helpers, and their parameters were127

discarded after training. Model checkpointing and early stopping are conditioned only on the target128

ROI. In stage three, the final model is trained with all ROIs as outputs, with dark knowledge and129

ground truth loss. The final product is one comprehensive all-ROI model.130

3We use a unified term voxel to refer to a single smallest element in N .
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Figure 3: All-for-One training recipe involves training multiple stage of models using dark knowledge
distillation. In Stage1, a separate model is trained for each ROI. In Stage2, each model is an all-ROI
model that leverages the dark knowledge from all other models as helpers, the parameters of these
helper models are discarded after training. In Stage3, a single all-ROI model is trained.

Table 1: Brain encoding datasets. The term Datapoints refers to the number of image stimulus
presentations, including repeated presentation of the same image.

Training Datasets Holdout Datasets
NSD HCP

MOVIE
Algonauts
2021

Things
MEG1

Things
EEG2

BOLD
5000

Things
fMRI1

Datapoints 240K 441K 30K 88K 640K 20K 24K
Subjects 8 184 10 4 10 4 3
Voxels 315K 29K 13K 60K 17K 9K 19K

Modality 7T fMRI 7T fMRI 3T fMRI MEG EEG 3T fMRI 3T fMRI

3.3 Voxel-wise encoding ROI131

We need a unified ROI parcellation that is defined for all subjects from various imaging modalities. To132

generate such a unified ROI, we utilize the final linear regression weight, which is extracted from an133

average of 10 all-ROI models. We start by performing Euclidean distance k-means clustering on the134

weights to reduce the dimension of voxel counts. Subsequently, Ward’s method applies hierarchical135

clustering to find the cluster centroids. This hierarchical clustering results in a dendrogram. We cut136

the dendrogram at a hand-picked threshold to identify the veROIs. By adjusting this threshold, we137

can control the granularity of the veROIs.138

4 Experiments139

4.1 Datasets140

We utilize 7 publicly available datasets for our experiments (Table 1). Details are provided in Allen141

et al. (2022) Van Essen et al. (2012) Cichy et al. (2021) Hebart et al. (2023) Gifford et al. (2022)142

Chang et al. (2019). We use only voxels from the visual brain. Each dataset was divided into training,143

validation, and test sets with a ratio around 90 : 6 : 4. For the Things datasets, we use repeatedly144

represented images as the test set. All the experiment results are reported from the test set unless145

specified. The HCP video was split into chunks of 20 seconds to ensure no data leak, and a time146

delay of 4 seconds between video frames and fMRI frames was applied Khosla et al. (2021), blank147

resting-state segments are not discarded. For video stimulus, we extracted frames at a rate of one148

frame per second. We only use one frame for the ALG dataset.149

Notably, except for the NSD dataset, all subjects from other datasets viewed the same set of images.150

As a compromise for computation intensity, we concatenated the voxels from ALG EEG MEG151

subjects into each single large brain, voxel’s spatial coordinates are placed in an evenly spaced grid.152

For the HCP dataset, a group average was performed due to the large number of subjects and the153

lower SNR in each individual subject. All datasets have spatial coordinates for voxels except the154

EEG dataset, EEG voxel’s spatial coordinates are generated from dummy sequential numbers.155
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4.2 TopyNeck probing156

RetinaMapper In Figure 4, for NSD subjects, early visual voxels were mapped to span most of the157

RetinaGrid, while downstream-region voxels remained concentrated in the center. The ablation study158

presented in Table 2 further demonstrates the outstanding importance of the RetinaMapper for early159

visual voxels in NSD subjects. This alignment with retinotopy design motivation. However, for other160

low SNR datasets, no clear retinotopic mapping was observed, suggesting that the RetinaMapper161

may not be necessary in such cases, and a constant mapping to the center could be sufficient.162

LayerSelector In Figure 5, for subject NSD_01, a smooth transition from shallow to deep layers163

was observed. This alignment with the design motivation. Ablation study in Table 2 also indicates164

significant improvement for NSD subjects compared to un-weighted averaging layers or selecting a165

single layer. However, for low SNR datasets, the trend was to select only the last layer (Figure 4),166

suggesting that the LayerSelector module may not be necessary in such cases.167

x
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RetinaGrid

Virtual
MapBack

NSD_01 NSD_02 NSD_03 NSD_04
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ALG HCP EEG MEG
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Figure 4: RetinaMapper maps voxels to RetinaGrid. Each dot on RetinaMap is a voxel colored by
argmax of the LayerSelector, colors indicate selection of layers.

layer2 layer5 layer8 layer11

Figure 5: LayerSelector re-weights backbone layers, outputs for all layers sum to 1. Results are
showed for subject NSD_01.

4.3 All-for-One recipe results168

In Table 3, a significant performance gap between the S1 and S2 models indicates the effectiveness169

of aggregating knowledge among ROIs. We also study a randROI that has the exact same number of170

ROIs and number of voxels inside each ROI. S1 and S2 gap is not observed in the randROI approach,171

as randROI already covers all types of voxels in every ROI. Furthermore, the model trained with172

ground truth (NoDK) as helpers shows little to no improvement over the S1 model. This suggests173

that the quality of the helper ROI is critical for the AFO recipe, as involving noisy helpers makes the174

training process unnecessarily challenging. In this context, dark knowledge plays a crucial role as175

denoising. However, solely dark knowledge distillation doesn’t have a great impact as can be inferred176

from the small gap between randROI S1 and S2 models.177
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Table 2: TopyNeck ablation study. The reported numbers are the average Pearson correlation
coefficient across all voxels. Results are averaged over three runs. FrozenRM maps every voxel to the
center, FrozenLS outputs uniform weight for each layer. NoRegLS selects a single layer.

Subject NSD_01 NSD_08 EEG

ROI all early late mid all early late mid all

FullTopyNeck 0.462 0.515 0.435 0.470 0.291 0.304 0.285 0.292 0.228
FrozenRM 0.441 0.476 0.422 0.452 0.274 0.261 0.280 0.272 0.226
w/o GlobalPool 0.457 0.513 0.428 0.467 0.293 0.303 0.289 0.295 0.230
FrozenLS 0.451 0.512 0.419 0.466 0.280 0.300 0.270 0.279 0.224
NoRegLS 0.447 0.505 0.417 0.464 0.287 0.299 0.282 0.284 0.229

Table 3: All-for-One training recipe ablation study. The reported numbers are the average Pearson
correlation coefficient across all voxels, NSD(NC) is the median of noise-normalized score. NaiveMix
train one all-ROI model. NoDK use ground truth as helpers. randROI and veROI has the exact same
size. S2+1 indicates one extra iteration of stage2. b is number of parameters in the convolution
blocks, n is number of voxels, d is feature dimension, r is number of ROIs.

Method # Params Dataset(s)
NSD EEG MEG HCP ALG ALL NSD

(NC)

NaiveMix b+ nd 0.422 0.212 0.180 0.340 0.256 0.367 0.560
veROIS1 rb+ nd 0.425 0.212 0.194 0.346 0.265 0.371 0.567
veROIS2 rb+ nd 0.433 0.222 0.209 0.365 0.266 0.380 0.588
veROIS3 b+ nd 0.435 0.225 0.210 0.366 0.267 0.382 0.593
veROIS2+1 rb+ nd 0.432 0.226 0.211 0.362 0.264 0.380 0.586
NoDK rb+ nd 0.426 0.216 0.186 0.349 0.256 0.371 0.569
randROIS1 rb+ nd 0.431 0.216 0.207 0.343 0.258 0.377 0.584
randROIS2 rb+ nd 0.432 0.220 0.207 0.348 0.259 0.378 0.586

4.4 veROI results178

Figure 6 shows veROI on cortex across all NSD subjects, early visual areas is centered around179

veROI_5 (blue) and downstream areas centered around veROI_9 (green), voxels that drop out from180

the field of view in early visual areas are centered around veROI_16 (red). The score for each veROI181

for subject NSD_01 can be found in Figure 8, where veROI_12 onward is mainly for the low SNR182

voxels. From the heatmap in Figure 2 we can also observe that veROI_12 onward is mainly HCP,183

EEG, and MEG subjects.184

4.5 Brain decoding185

Methods In this study, brain decoding refers to the task of ranking and retrieving candidate images186

from a candidate set, retrieved images are to match a given brain response pattern. The decoding187

pipeline involves forwarding each candidate image through the brain encoding model and measuring188

Pearson’s correlation coefficient between the model’s prediction and the ground truth.189

Results The experiments are conducted on 500 validation images as candidate images. As a190

qualitative analysis, Figure 7 and Figure 9 demonstrate that when conditioning on the early visual191

area or veROI_5, texture and orientation are more preserved in the decoded images. Conversely,192

when conditioning on downstream ROIs, semantic concepts are more preserved. Additionally, Figure193

8 shows that image retrieval achieves high accuracy when conditioned on early ROIs. Quantitative194

exploration of the functional roles of ROIs is beyond the scope of this study. Future work may involve195
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Figure 6: veROI cluster voxels into ROIs by hierarchical clustering. ROIs are identified by cutting
the linkage at a manually selected threshold value(dashed line). The feature used for clustering is the
linear regression weight associated with each voxel.

investigating semantic concepts with image generation models. Furthermore, the gradient of the196

encoding model can be utilized to facilitate image generation and manipulation.197
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Figure 7: Image retrieval to match brain response pattern. Images are ranked by Pearson’s r of
captured biological brain pattern and model output. Results are for subject NSD_01.
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Figure 8: Performance of image retrieval(blue and orange) conditioned on ROIs. The integer numbers
are the indices of the veROIs. Performance scores of brain encoding(green) are the average value of
the voxels within each ROI, standard error is in black. Results are for subject NSD_01.

4.6 Implementation details198

We use smooth L1 loss with β = 0.01, regulirazation loss lent is scaled down by λ = 0.00003.199

AdaBelief optimizer Zhuang et al. (2020) is employed with lr = 0.003, batchsize = 128,200

weight_decay = 0.0001, (β1, β2) = (0.9, 0.999). Notably, we mix subjects in one mini-batch,201

and the effective batch size for each subject is less than the total. Due to memory constrain, we202
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GT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 9: Image retrieval conditioned on veROIs. The numerical numbers are the indices of veROIs.
The top four images are placed from the top left to the bottom right.

randomly sample up to 8000 voxels for each training datapoint, there is 436,715 voxels totaling203

all subjects. Early stopping is configured with patience = 20 epochs, we define one epoch as204

10% of the total training data. Greedy Model Soup Wortsman et al. (2022) is applied at the top 10205

validation checkpoints. Backbone is kept frozen except LayerNorm running statistics is updated.206

Input resolution is 224× 224 and the feature from backbone layers are all of the size 768× 16× 16.207

The attached trainable convolution block is three zero-padded 5x5 convolutions with skip connection208

and LayerNorm, C = 768. The last convolution layer reduces the dimension to D = 256. We trained209

all models on single NVIDIA RTX 2080 Ti 12GB GPUs at a reduced clock speed of 1140Mhz,210

single-subject all-ROI models consume half to 1 GPU hour, all-subject single-ROI models consume211

3 to 5 GPU hours, all-subject all-ROI models consume 10 GPU hours. The complete AFO recipe212

total around 300 GPU hours. Models are trained Pytorch Lightning Falcon (2019) mixed precision213

FP16. To boost training speed, MLPs in RetinaMapper and LayerSelector are pre-optimized by a214

single-subject all-ROI model, they are loaded and kept frozen in the AFO recipe, this gives 2 times215

faster convergence speed.216

5 Conclusion and Limitations217

We proposed the AFO recipe alongside veROI to address the issue of heterogeneity in publicly218

available datasets. To the best of our knowledge, our pre-trained model constructed with over 1219

million data points is the most comprehensive brain encoding model to date. The model shows220

superior performance when transferred to small hold-out datasets. As demonstrated by our brain221

decoding experiments, the pre-trained model could facilitate further neuroscience research.222

We also designed TopyNeck inspired by retinotopy, which showed retinotopic behavior despite having223

no ground truth supervision for the retinotopic mapping function. However, the retinotopic behavior224

diminishes when the target dataset SNR is low, e.g. EEG, MEG. This suggests a simple alternative225

approach is sufficient in such a case.226
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