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Abstract

The success of deep networks is crucially at-
tributed to their ability to capture latent features
within a representation space. In this work, we in-
vestigate whether the underlying learned features
of a model can be efficiently retrieved through
feedback from an agent, such as a large language
model (LLM), in the form of relative triplet com-
parisons. These features may represent various
constructs, including dictionaries in LLMs or a
covariance matrix of Mahalanobis distances. We
analyze the feedback complexity associated with
learning a feature matrix in sparse settings. Our
results establish tight bounds when the agent is
permitted to construct activations and demonstrate
strong upper bounds in sparse scenarios when
the agent’s feedback is limited to distributional
information. We validate our theoretical find-
ings through experiment{] on two distinct appli-
cations: feature recovery from Recursive Feature
Machines and dictionary extraction from sparse
autoencoders trained on Large Language Models.

1. Introduction

In recent years, neural network-based models have achieved
state-of-the-art performance across a wide array of tasks.
These models effectively capture relevant features or con-
cepts from samples, tailored to the specific prediction tasks
they address (Yang and Hu, |2021b; Bordelon and Pehlevan,
2022a;; Ba et al.| 2022b). A fundamental challenge lies in
understanding how these models learn such features and
determining whether these features can be interpreted or
even retrieved directly (Radhakrishnan et al.,[2024). Recent
advancements in mechanistic interpretability have opened
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multiple avenues for elucidating how transformer-based
models, including Large Language Models (LLMs), acquire
and represent features (Bricken et al., 2023} [Doshi-Velez
and Kim), [2017). These advances include uncovering neural
circuits that encode specific concepts (Marks et al., 2024b;
Olah et al.| 2020), understanding feature composition across
attention layers (Yang and Hu} |2021b), and revealing how
models develop structured representations (Elhage et al.|
2022). One line of research posits that features are encoded
linearly within the latent representation space through sparse
activations, a concept known as the linear representation
hypothesis (LRH) (Mikolov et al.|[2013} |Arora et al.;[2016).
However, this hypothesis faces challenges in explaining how
neural networks function, as models often need to represent
more distinct features than their layer dimensions would
theoretically allow under purely linear encoding. This phe-
nomenon has been studied extensively in the context of
large language models through the lens of superposition (EI4
hage et al.l 2022, where multiple features share the same
dimensional space in structured ways.

Recent efforts have addressed this challenge through sparse
coding or dictionary learning, proposing that any layer ¢ of
the model learns features linearly:

x ~ Dy ap(x) + (),

where € R4, D, € R¥*Pisa dictionar matrix, ay(x) €
RP is a sparse representation vector, and e;(xz) € RP
represents error terms. This approach enables retrieval of
interpretable features through sparse autoencoders (Bricken
et al [2023; [Marks et al., 2024b), allowing for targeted
monitoring and modification of network behavior. The
linear feature decomposition not only advances model
interpretation but also suggests the potential for developing
compact, interpretable models that maintain performance
by leveraging universal features from larger architectures.

In this work, we explore how complex features encoded
as a dictionary can be distilled through feedback from ei-
ther advanced language models (e.g., ChatGPT, Claude
3.0 Sonnet) or human agents. Let’s define a dictionary
D € R9*P where each column represents an atomic feature
vector. These atomic features, denoted as u1, ug, ..., u, C
R?, could correspond to semantic concepts like "tree",
"house", or "lawn" that are relevant to the task’s sample

2could be both overcomplete and undercomplete.
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space. The core mechanism involves an agent (either Al
or human) determining whether different sparse combi-
nations of these atomic features are similar or dissimilar.
Specifically, given sparse activation vectors o, ¢’ € RP,
the agent evaluates whether linear combinations such as
aqv("tree") + agu("car") + ... + aqv("house") are equiva-
lent to other combinations using different activation vectors.
Precisely, we formalize these feedback relationships using
relative triplet comparisons («, 3, () € V, where V C R? is
the activation or representation space. These comparisons
express that a linear combination of features using coeffi-
cients «v is more similar to a combination using coefficients
[ than to one using coefficients (.

The objective is to determine the extent to which an obliv-
ious learner—one who learns solely by satisfying the con-
straints of the feedback and randomly selecting valid fea-
tures—can identify the feature vectors of D up to normal
transformation. The fundamental protocol is as follows:

» The agent either constructs or selects (from a sampled
pool) sparse triplets of activations («, 3,¢) € R3P and
designs relative feedback of similarity £ € {+1,0,—1}
satisfying sgn (|[D(a — B)|| — [[D(a = ¢)[) = ¢, and
provides them to the learner.

* The learner solves for

{sen (ID(@ = B)I - IB(a - )} = ¢}
and outputs a solution If)Tlf)

Semantically, these relative distances provide the relative
information on how ground truth samples, e.g. images, text
among others, relate to each other. We term the normal
transformation DD for a given dictionary D as feature
matrices ® € RP*P, which is exactly a covariance matrix.
Alternatively, for the representation space V C RP, this
transformation defines a Mahalanobis distance function d :
VY x ¥V — R, characterized by the square symmetric linear
transformation @ = 0 such that for any pair of activations
(z,y) € V2, their distance is given by:

d(z,y) = (x —y) ®(x —y)

When ® embeds samples into R", it admits a decomposition
® = L"L for L € R™*P, where L serves as a dictionary for
this distance function—a formulation well-studied in metric
learning literature (Kulis, [2013). In this work, we study
the minimal number of interactions, termed as feedback
complexity of learning feature matrices—normal transfor-
mations to a dictionary—of the form ®* € Sym  (RP*?).
We consider two types of feedback: general activations and
sparse activations, examining both constructive and distri-
butional settings. Our primary contributions are:

I. We investigate feedback complexity in the construc-
tive setting, where agents select activations from RP,
establishing strong bounds for both general and sparse
scenarios. (see Section[d)

II. We analyze the distributional setting with sampled
activations, developing results for both general and
sparse representations. For sparse sampling, we ex-
tend the definition of a Lebesgue measure to accom-
modate sparsity constraints. (see Section[5)

III. We validate our theoretical bounds through experi-
ments with feature matrices from Recursive Feature
Machines and dictionaries trained for sparse autoen-
coders in Large Language Models, including Pythia-
70M (Biderman et al.,[2023) and Board Game mod-
els (Karvonen et al.,[2024). (see Section@

Table [T| summarizes our feedback complexity bounds.
2. Related Work

Dictionary learning Recent work has explored dictionary
learning to disentangle the semanticity (mono- or polysemy)
of neural network activations (Faruqui et al.| 2015} |/Arora
et al.||2018;|Zhang et al.;, 2019} Yun et al.,2021). Dictionary
learning (Mallat and Zhang, {1993 Olshausen and Field,
1997) (aka sparse coding) provides a systematic approach
to decompose task-specific samples into sparse signals. The
sample complexity of dictionary learning (or sparse coding)
has been extensively studied as an optimization problem,
typically involving non-convex objectives such as ¢; regular-
ization (see (Gribonval et al.,[2015))). While traditional meth-
ods work directly with ground-truth samples, our approach
differs fundamentally as the learner only receives feedback
on sparse signals or activations. Prior work in noiseless
settings has established probabilistic exact recovery up to
linear transformations (permutations and sign changes) un-
der mutual incoherence conditions (Gribonval and Schnass|,
2010; |Agarwal et al.| [2014). Our work extends these results
by proving exact recovery (both deterministic and proba-
bilistic) up to normal transformation, which generalizes to
rotational and sign changes under strong incoherence prop-
erties (see Lemmal(T). In the sampling regime, we analyze
k-sparse signals, building upon the noisy setting framework
developed in|Arora et al.| (2013);|Gribonval et al.[(2015)).

Feature learning in neural networks and Linear rep-
resentation hypothesis Neural networks demonstrate a
remarkable ability to discover and exploit task-specific fea-
tures from data (Yang and Hu, [2021b; [Bordelon and Pehle-
van, 2022b; |Shi et al., [2022). Recent theoretical advances
have significantly enhanced our understanding of feature
evolution and emergence during training (Abbe et al., 2022}
Ba et al.,[2022a); |Damian et al.| 2022} Yang and Hu, [2021a;
Zhu et al.| 2022). Particularly noteworthy is the finding
that the outer product of model weights correlates with
the gradient outer product of the classifier averaged over
layer preactivations (Radhakrishnan et al.| 2024), which
directly relates to the covariance matrices central to our
investigation. Building upon these insights, Elhage et al.
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Feedback type Standard Constructive Sparse Constructive Standard Sampling Sparse Sampling
T
Feedback Complexity @(@ +p—r+1) o %) *@(%) “c p2(p% log 2)#?
Prior Works SAE CRAFT Probing (Marks and Tegmark, 2024)
(Sharkey et al.,[2025) (Feletal.;,)2023) | LR  CCS (Burns et al.| 2023) LDA
Learning Complexity Tnpd npk Tnp Tnp O(np? + p%)

Table 1: Comparison of feedback complexity in this work against prior feature retrieval (learning) methods. 7": number of
iterations, n: number of samples, p: activation dimension, d: input space dimension, k: number of latent components, 7: the
rank of the feature matrix, ¢ > 0 is a constant, and pgs depends on activation distribution and sparsity s. We use * to denote
“almost surely” and * to denote “with high probability” guarantees.

(2022) proposed that features in large language models fol-
low a linear encoding principle, suggesting that the com-
plex feature representations learned during training can be
decomposed into interpretable linear components. This in-
terpretability, in turn, could facilitate the development of
simplified algorithms for complex tasks (Fawzi et al.,|2022;
Romera-Paredes et al.,[2024). Recent research has focused
on extracting these interpretable features in the form of dic-
tionary learning by training sparse autoencoder for various
language models including Board Games Models (Marks
et al., 2024b; Bricken et al., 2023). Our work extends this
line of inquiry by investigating whether such interpretable
dictionaries can be effectively transferred to a weak learner
using minimal comparative feedback.

Triplet learning a covariance matrix Learning a feature
matrix (for a dictionary) up to normal transformation can
be viewed through two established frameworks: covariance
estimation (Chen et al., 2013} |Li and Voroninskil, [2013)
and learning Mahalanobis distances (Kulis, 2013)). While
these frameworks traditionally rely on exact or noisy mea-
surements, our work introduces a distinct mechanism based
solely on relative feedback, aligning more closely with the
semantic structure of Mahalanobis distances. The study
of such distances has been central to metric learning re-
search (Bellet et al., [2015}; [Kulis, 2013)), encompassing both
supervised approaches (Weinberger and Saul, 2009 [Xing
et al.;2002) and unsupervised methods such as LDA (Fisher,
1936) and PCA (Jollifte, |1986). |Schultz and Joachims
(2003)) and [Kleindessner and von Luxburg| (2016) have ex-
tended this framework to incorporate relative comparisons
on distances. Particularly relevant to our work are studies
by [Schultz and Joachims| (2003) and Mason et al.| (2017)
that employ triplet comparisons, though these typically as-
sume i.i.d. triplets with potentially noisy measurements.
Our approach differs by incorporating an active learning
element: while signals are drawn i.i.d, an agent selectively
provides feedback on informative instances. This construc-
tive triplet framework for covariance estimation represents a
novel direction, drawing inspiration from machine teaching,
where a teaching agent provides carefully chosen examples
to facilitate learning (Zhu et al.| [2018}; [Kumar et al.| 2021)).

3. Problem Setup

We denote by V C RP the space of activations or repre-
sentations and by X C R? the space of samples. For
the space of feature matrices (for a dictionary or Maha-
lanobis distances), denoted as Mg, we consider the family
of symmetric positive semi-definite matrices in RP*?_ i.e.
Mg = {® € Sym_ (RP*?)}. We denote a feedback set as
JF which consists of triplets (z,y, z) € V3 with correspond-
ing signs £ € {+1,0,—1}.

We use the standard notations in linear algebra over a space
of matrices provided in Appendix [B]

Triplet feedback An agent provides feedback on activa-
tions in ) through relative triplet comparisons (z, y, z) € V.
Each comparison evaluates linear combinations of feature
vectors: p

Z x;u;("feature ¢") is more similar to

i=1

P P
Z y;u;("feature ¢") than to Z z;u; ("feature ")
i=1 i=1
We study both sparse and non-sparse activation feedbacks,
where sparsity is defined as:
Definition 1 (s-sparse activations). An activation o« € RP
is s-sparse if at most s many indices of o are non-zero.

Since triplet comparisons are invariant to positive scaling
of feature matrices, we define:
Definition 2 (Feature equivalence). For a feature family

MGE, feature matrices ®' and ®* are equivalent if there
exists A > 0 such that ®' = X\ - ®*.

We study a learning framework where the learner merely
satisfies the constraints provided by the agent’s feedback:

Definition 3 (Oblivious learner). A learner is oblivious if
it randomly selects a feature matrix from the set of valid
solutions to a given feedback set F, i.e., arbitrarily chooses
® € MEg(F), where Mg(F) represents the set of feature
matrices satisfying the constraints in F.

This framework aligns with version space learning, where
VS(F, M) denotes the set of feature matrices in Mg (F)
compatible with feedback set F.
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Ground Truth Feedback: Eigendecompositio Feedback: Sparse Constructiv Feedback: Random Sampli Feedback: Sparse Sampli

-84 -0-1-]

MsE 000183996 MsE 000152510 MSE 000132472 MSE 000152479 MSE: 358582607,
iints: 4000 Feedbacks: 55, Sparsity: 0.9

Figure 1: Features via Recursive Feature Machines. We perform monomial regression on z ~ N'(0,0.5710) with target
f*(2) = 2021 1(z5 > 0). An RFM kernel machine fg(z) = > yiepn.. @illa(yi, 2) is trained for 5 iterations on 4000
samples to produce the ground-truth feature matrix ®* of rank 4 (Radhakrishnan et al.||2024). We then query an agent for
feedback via: eigendecomposition (Theorem|[I)), sparse constructive (Theorem 2)), random Gaussian sampling (Theorem [3)),
and sparse sampling with 1 = 0.9 (Theoremd). Eigendecomposition, sparse constructive, and random sampling achieve the
ground-truth MSE with only 55 feedbacks, whereas high-sparsity sampling yields inferior features and larger MSE.

Prior work on dictionary learning has established recov-  Algorithm 1 Model of Feature learning with feedback

ery up to linear transformation under weak mutual incoher- Given: Representation space V C RP, Feature family Mg
ence (Gribonval and Schnass},2010). In our setting, with the
agent’s feature feedback corresponding to D (or L) € R?¥?,

In batch setting:

the learner recovers L up to normal transformation. More- 1. Teacher picks triplets F(V, ®*) =

over, when L has orthogonal rows (strong incoherence), 3 T T

we can recover L up to rotation and sign changes as stated {(x, y.2) €V [z —y) 'z —y) 2 (x—2) & (x - Z)}
below, with proof deferred to Appendix D} 2. Learner receives F, and obliviously picks a feature
Lemma 1 (Recovering orthogonal representations). Assume matrix ¢ € Me that satisfy the set of constraints in

® ¢ Sym (RP*P). Define the set of orthogonal Cholesky F(V, @)

decompositions of ® as 3. Learner outputs ®.

Wep = {U€RP*" | @ = UU & U'U = diag(\1,..., \)},

Lemma 2. Let ®* € Mg be a target feature matrix in

where 1 - rank((ID). and M, Ay, .-, Ar are the ezgen.val- representation space RP used for oblivious learning. Given
ues of ® in descending order. Then, for any two matrices a feedback set

U,U' € Wep, there exists an orthogonal matrix R € R™*"

such that U' = UR, where R is block diagonal with orthog- F={(z,y,2) € R*® ‘ (x—y) @ (z —y) >

onal blocks corresponding to any repeated diagonal entries (z — Z)T *(z—2)},

X inU'U. Additionally, each column of U’ can differ from

the corresponding column of U by a sign change. such that any ®' € VS(F, Mg) is feature equivalent to ®*,

there exists a pairwise feedback set
We note that the recovery of L is pertaining to the assump- ;. o 2 | sTamx 1 Tk
tion that all the rows are orthogonal, and t%lus rank of L is 7= {(y 7) €RP | yoey =2 et }
r = d. In cases where r < d, one needs additional infor- such that ®' € VS(F', Mg).
mation in the form of ground sample = L« for some
activation « to recover L up to a linear transformation. Fi- Proof. WLOG, assume x # z for all (x,y, z) € F. For any
nally, the interaction protocol is shown in Algorithm [T} triplet (z,y,z) € F: Case (i): If (z — y) " ®*(z — y) =

(x—2) T ®*(z —2), then (z —y, x — 2) satisfies the equality.

. ] . Case (ii): If (v — )" ®*(z —y) > (v — 2) T ®*(x — 2),
4. Sparse Feature Learning with Constructive .1, for some \ > 0:
Feedback
(z—y) @ (x—y) =1+ Nz -2 8 (x—2)

Here, we study the feedback complexity in the setting where

agent is allowed to pick/construct any activation from R?. implying (z — y, v'1 + A(z — 2)) satisfies the equality.
Thus, each triplet in F maps to a pair in F’, preserving

Reduction to Pairwise Comparisons The general triplet
feedbacks with potentially inequality constraints in Algo-
rithm [T] can be simplified to pairwise comparisons with ~ This implies that if triplet comparisons are used in Algo-
equality constraints with a simple manipulation as follows. rithm [I] equivalent pairwise comparisons exist satisfying:

feature equivalence under positive scaling. O
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' =\-®, A>0, (la)
P c{®ecMp|V(yz2)eF, y ®y=2"®z}. (Ib)

Now, we show a reformulation of the oblivious learning
problem for a feature matrix using pairwise comparisons
that provide a unique geometric interpretation. Consider a
pair (y, z) and a matrix ®. An equality constraint implies

yT<I>y =2 (P, ny - zzT> =0

where (-, -) denotes the Frobenius inner product. Now, given
a set of pairwise feedbacks

F(R?, M, ®*) = {(yi, 2:) } iy

corresponding to the target feature matrix ®*, the learning
problem defined by Eq. (Tb) can be formulated as:

V(y,z) € F(R?, Mg, @), (®,yy" —22")=0. (2)

Geometrically, the condition in Eq. (Z) implies that any
solution ® should annihilate the subspace of the orthogo-
nal complement that is spanned by the matrices {yy ' —
zzT}(yyz)G;. Formally, this complement is defined as:

Og~ = {S € Sym(RP*P) | (®*,5) = 0}.
4.1. Constructive feedbacks: Worst-case lower bound

To learn a symmetric PSD matrix, learner needs at most
p(p + 1)/2 constraints for linear programming correspond-
ing to the number of degrees of freedom. So, the first ques-
tion is are there pathological cases of feature matrices in
M which would require at least p(p + 1)/2 many triplet
feedbacks in Algorithm[I} This indeed is the case, if a target
matrix ®* € Sym  (RP*P) is full rank.

In the following proposition proven in Appendix [E] we show
a strong lower bound on the worst-case ®* that turns out to
be of order 2(p?).

Proposition 1. In the constructive setting, the worst-case
feedback complexity of the class M with general activa-
tions is at the least (p(p + 1)/2 — 1).

Proof Outline. As discussed in Eq. (I) and Eq. (2)), for a full-
rank feature matrix ®* € Mg, the span of any feedback
set F, ie., span({zz’ — ny}(z}y)e}.L must lie within
the orthogonal complement Og~ of ®* in the space of
symmetric matrices Sym(R?*?). Conversely, if ®* has full
rank, then Og~ is contained within this span. This necessary
condition requires the feedback set to have a size of at least
@ — 1, given that dim(Sym(RP*?)) = %. O

Since the worst-case bound is pessimistic for oblivious learn-
ing of Eq. (I)) a general question is how feedback complexity
varies over the feature model M. Now, we study the feed-
back complexity for feature model based on the rank of the
matrix, showing that the bounds can be drastically reduced.

4.2. Feature learning of low-rank matrices

As stated in Proposition |1} the learner requires at least
@ — 1 feedback pairs to annihilate the orthogonal com-
plement O&~. However, this requirement decreases with a
lower rank of ®*. We illustrate this in Fig.[I|for a feature
matrix @ € R0%10 of rank 4 trained via Recursive Feature
Machines (Radhakrishnan et al., [2024).

Consider an activation o« € RP in the nullspace of ®*.
Since ®*a = 0, it follows that o T ®*« = 0. Moreover, for
another activation 5 ¢ span{c) in the nullspace, any linear
combination ac + bg satisfies

(aa + bB) " ®* (aa + bB) = 0.
This suggests a strategy for designing effective feedback
based on the kernel Ker(®*) and the null space null($*) of
®* (see Appendix [B]for table of notations). This intuition is
formalized by the eigendecomposition of the feature matrix:

= Nuu )
i=1

where {)\;} are the eigenvalues and {u;} are the orthonor-
mal eigenvectors. Since ®* > 0 this decomposition is
unique with non-negative eigenvalues.

To teach ®*, the agent can employ a dual approach: teach-
ing the kernel associated with the eigenvectors in this de-
composition and the null space separately. Specifically, the
agent can provide feedbacks corresponding to the eigenvec-
tors of ®*’s kernel and extend the basis {u;} for the null
space. We first present the following useful result (see proof
in Appendix [F).

Lemma 3. Let {v;}]_; C RP be a set of orthogonal vectors.
Then, the set of rank-1 matrices

Bi={viw], (v +v))(wi+uv;)" [1<i<j<r}

is linearly independent in the space symmetric matrices
Sym(RP*P).

Using this construction, the agent can provide feedbacks
of the form (u;, \/c;y) for some y € RP with ®*y # 0
and v;'— ®*v; = c;y | B*y to teach the kernel of ®*. For an
orthogonal extension {u;}}_,, , where ®*u; = 0 for all
i =r+1,...,p, feedbacks of the form (u;,0) suffice to
teach the null space of ®*.

This is the key idea underlying our study on feedback com-
plexity in the general constructive setting that is stated below
with the full proof deferred to Appendix [Fand[G]

Theorem 1 (General Activations). Let ®* € Mg be
a target feature matrix with rank(®*) = r. Then, in
the setting of constructive feedbacks with general acti-
vations, the feedback complexity has a tight bound of

C) (T(TTH) +(p-—r)— 1>f0rEq. .
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Proof Outline. As discussed above we decompose the fea-
ture matrix ®* into its eigenspace and null space, leverag-
ing the linear independence of the constructed feedbacks to
ensure that the span covers the necessary orthogonal com-
plements. The upper bound is established with a simple
observation: 7(r + 1)/2 — 1 many pairs composed of B
are sufficient to teach ®* if the null space of ®* is known,
whereas the agent only needs to provide (p — r) many feed-
backs corresponding to a basis extension to cover the null
space, and hence the stated upper bound is achieved.

The lower bound requires showing that a valid feedback
set possesses two spanning properties of (zx ' — yy ") for
all (z,y) € F: (1) it must include any ® € Og+ whose
column vectors are within the span of eigenvectors of ®*,
and (2) it must include any vv ' for some subset U that
spans the null space of ®* and v € U. O

Learning with sparse activations In the discussion
above, we demonstrated a strategy for reducing the feed-
back complexity when general activations are allowed. Now,
we aim to understand how this complexity changes when
activations are s-sparse (see Definition[I)) for some s < p.
Notably, there exists a straightforward construction of rank-
1 matrices using a sparse set of activations.

Consider this sparse set of activations B consisting of

p(p72+1) items in RP (see (Kumar and Dasgupta, [2024)):

B={e;|1<i<piU{e;+e;|1<i<j<p}, 4

where {e;} forms the standard basis. Using a similar argu-
ment to Lemma[3] we note that the set of rank-1 matrices

Bsparse 1= {uuT | ue B}

is linearly independent in the space of symmetric matrices
Sym(RP*P) and forms a basis. Moreover, every activation
in Byt is at most 2-sparse (see Definition[T)). With this, we
state the main result on learning with sparse constructive
feedback here.

Theorem 2 (Sparse Activations). Let ®* € MFg be the
target feature matrix. If an agent can construct pairs of
activations from a representation space RP, then the feed-
back complexity of the feature model M with 2-sparse
activations is upper bounded by @.

Remark: While the lower bound from Theorem [I] applies
here, sparse settings may require even more feedbacks. Con-
sider a rank-1 matrix ®* = vv! with sparsity(v) = p.
By the Pigeonhole principle, representing this using s-
sparse activations requires at least (p/s)? rank-1 matrices.
Thus, for constant sparsity s = O(1), we need (p?) feed-
backs—implying sparse representation of dense features
might not exploit the low-rank structure to minimize feed-
backs.

Algorithm 2 Feature learning with sampled representations

Given: Representation space V C RP, Distribution over
representations Dy,, Feature family M.

In batch setting:

1. Teacher receives sampled representations V,, ~ Dy.
2. Teacher picks pairs F(V,, ®*) =

{(a:, \/)\T;y) | (z,y) € V2, T ® =\, ~yT¢*y}

3. Learner receives F; and obliviously picks a feature
matrix & € Mk that satisfy the set of constraints in
F(Vn, ®*)

4. Learner outputs ®.

5. Sparse Feature Learning with Sampled
Feedback

In general, the assumption of constructive feedback may
not hold in practice, as ground truth samples from nature or
induced representations of a model are typically indepen-
dently sampled from the representation space. The literature
on Mahalanobis distance learning/dictionary learning has
explored distributional assumptions on the sample/activation
space (cf (Gribonval et al., 2014)).

In this section, we consider a more realistic scenario where
the agent observes a set of representations/activations V,, :=
{a1,@g,...,a,} ~ Dy, with Dy, being an unknown mea-
sure over the continuous space VV C RP. With these observa-
tions, the agent designs pairs of activations to teach a target
feature matrix ®* € Sym  (RP*P).

As shown in Lemma[2] we can reduce inequality constraints
with triplet comparisons to equality constraints with pairs
in the constructive setting. However, when the agent is
restricted to selecting activations from the sampled set V,,
rather than arbitrarily from V), this reduction no longer holds.
Observe that if o, § ~ iid Dy and ®* # 0 a non-degenerate
feature matrix, then

T T
a PFa = B (I)*ﬁ —— Z(aiaj — Blﬁj)q):j =0.
,J
This equation represents a non-zero polynomial. According
to Sard’s Theorem, the zero set of a non-zero polynomial
has Lebesgue measure zero. Therefore,

Plas) ({a" @' =BT @"3}) =0.

Given this, the agent cannot reliably construct pairs that
satisfy the required equality constraints from independently
sampled activations. Since a general triplet feedback only
provides 3 bits of information, exact recovery up to feature
equivalence is impossible. To address these limitations, we
consider rescaling the sampled activations to enable the
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Figure 2: Sparse sampling. For the target f*(z) = 202125 1(z5 > 0), we apply sparse-sampling feedback with sparsity mu
(the probability an entry is zeroed). As mu decreases (denser samples), the canonical complexity p(p + 1)/2 = 55 suffices

to recover ®*. At high sparsity (mu = 0.97), more activations—55, 110, ...,

in agreement with TheoremE}

agent to design effective pairs for the target feature matrix
P* € Mg.

Rescaled Pairs For a given matrix ® # 0, a sampled
input z ~ Dy, is almost never orthogonal, i.e., almost surely
®x # 0. This property can be utilized to rescale an input
and construct pairs that satisfy equality constraints. Specif-
ically, there exist scalars v, A > 0 such that (assuming
without loss of generality 2 T ®z > y T ®v),

' ®r =Xy ®y+y Py=(V1+ Ny ®(HV1+ Ny
Thus, the pair (z, (v/1+ A)y) satisfies the equality con-
straints. With this understanding, we reformulate Algo-
rithm [T] into Algorithm 2] In this section, we analyze the
feedback complexity in terms of the minimum number of
sampled activations required for the agent to construct an
effective feedback set achieving feature equivalence which
is illustrated in Fig.[2] Our first result establishes complexity
bounds for general activations (without sparsity constraints)
sampled from a Lebesgue distribution, with the complete
proof provided in Appendix [H]

Theorem 3 (General Sampled Activations). Consider a rep-
resentation space V C RP. Assume that the agent receives
activations sampled i.i.d from a Lebesgue distribution Dy.
Then, for any target feature matrix ®* € Mg, with a tight

bound of n = © (%) on the feedback complexity, the

oblivious learner (almost surely) learns ®* up to feature
equivalence using the feedback set F(V,,, ®*), i.e

Py (V@ € F(V,, %), 3N >0, = \-&*) =1

Proof Outline. The key observation is that almost surely for
any n < p(p+1)/2 sampled activations on a unit sphere SP

1100—are required to approach ground truth,

under Lebesgue measure, the corresponding rank-1 matrices
are linearly independent. This is a direct application of
Sard’s theorem on the zero set of a non-zero polynomial
equation, yielding the upper bound. For the lower bound,
we use some key necessary properties of a feedback set as
elucidated in the proof of Theorem|[I} This result essentially
fixes activations that need to be spanned by a feedback set,
but under a Lebesgue measure on a continuous domain, the
probability of sampling a direction is zero. O

We consider a fairly general distribution over sparse activa-
tions similar to the signal model in (Gribonval et al., 2015]).

Assumption 1 (Sparse-Distribution). Each index of a sparse
activation vector o € RP is sampled i.i.d from a sparse
distribution defined as: for all i,

Pla; =0) =pi, o;|a; #0~ Lebesgue((0,1]).
With this we state the main theorem of the section with the
proof deferred to Appendix[I|

Theorem 4 (Sparse Sampled Activations). Consider a rep-
resentation space V C RP. Assume that the agent receives
representations sampled i.i.d from a sparse distribution Dy.
Fix a threshold § > 0, and sparsity parameter s < p. Then,
for any target feature matrix ®* € MF, with a bound of

n=20 (pQ(Z% log %)l/pz) on the feedback complexity us-
ing s-sparse feedbacks,the oblivious learner learns ®* up to

feature equivalence with high probability using the feedback
set F(V,, ®*), i.e

Py (V& € F(V,, &%), IA > 0,® = \-d*) > (1-9),

where pg depends on Dy, and sparasity parameter s.
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Ground Truth Feedback: Eigendecomposition

Feedback: Sparse Sampling

Feedback: Sparse Constructive Feedback: Sparse Sampling

Feedback: Sparse Sampling

e

6000

Feedback: Sparse Sampling

" pcc: 0.97a1,
Feedbacks: 10000000

5,
00000

(a) Visualization of 100 dimensions: Feature learning on a dictionary retrieved for an MLP layer of ChessGPT of dimension 4096 x 512.
From left-to-right, top-to-bottom: ground truth SAE, Eigendecomposition (PCC= .9427, 134912 feedbacks), Sparse Constructive
(PCC=.9773, 8390656 feedbacks), Sparse Sampling @200000, @ 1000000, @2000000, @4000000, @ 10000000 feedbacks.

Method Eigendecomp. Sparse Cons. Sparse Sampling
Feedbacks 134912 8390656 10M 4M 2M 1M
PCC 0.9427 0.9773 09741 09625 0.8256 0.7152

(b) Pearson correlation coefficient and total feedback count for each method on the same SAE dictionary.

Figure 3: Top: Feature-recovery quality as a function of feedback for a dictionary (of dimension 4096 x 512) from an SAE
trained for ChessGPT. Bottom: numeric PCC and feedback for each method. Sparse constructive achieves almost perfect
correlation (0.9773) in only = 8.4M queries; sampling with smaller feedback sizes struggle until 2 4M samples.

Proof Outline. Using the formulation of Eq. (2)), we need
to estimate the number of activations the agent needs to
receive/sample before an induced set of p(p + 1)/2 many
rank-1 linearly independent matrices are found. To estimate
this, first we generalize the construction of the set B from
the proof of Theorem 2] to

Uy = {2682 i € [p]} U {(\ijiei + Aijje)®2 i < j € [p]}

We then analyze a design matrix M of rank-1 matrices from
sampled activations and compute the probability of finding
columns with entries semantically similar to those in U,,
ensuring a non-trivial determinant. The quantity ps is the
probability that a pattern of these columns is sampled with
sparsity at most s. The final complexity bound is derived
using Hoeffding’s inequality and Sterling’s approximation.

O

6. Experimental Setup

We empirically validate our theoretical framework for
learning feature matrices. Our sexperiments examine
different feedback mechanisms and teaching strategies
across both synthetic tasks and large-scale neural networks.

Feedback Methods: We evaluate four feedback mecha-
nisms: (1) Eigendecomposition uses Lemma|[3|to construct
feedback based on ®’s low rank structure, (2) Sparse Con-
structive builds 2-sparse feedbacks using the basis in Eq. (@),
(3) Random Sampling generates feedbacks spanning Og«
from a Lebesgue distribution, and (4) Sparse Sampling cre-
ates feedbacks using s-sparse samples drawn from a sparse
distribution (see Definition [T)).

Teaching Agent: We implement a teaching agent with ac-
cess to the target feature matrix to enable numerical analysis.
The agent constructs either specific basis vectors or receives
activations from distributions (Lebesgue or Sparse) based
on the chosen feedback method. For problems with small di-
mensions, we utilize the cvxpy package to solve constraints
of the form {ozoz—r - ny}. When handling larger dimen-
sional features (5000 x 5000), where constraints scale to
millions (p(p + 1)/2 ~ 12.5M), we employ batch-wise
gradient descent for matrix regression.

Features via RFM: RFM (Radhakrishnan et al., [2024)
considers a trainable kernel K¢ : X x X — R cor-
responding to a symmetric, PSD matrix ®. At each




Learning Sparse Superposed Features with Feedback

Algorithm 3 Optimization via Gradient Descent

1. Given a dictionary U € RP*", minimize the loss L(U) :=
Lwmse(U) + Lieg(U) : where MSE loss and regularization
term are:

1
LaseU) = = S0 il =eil Ul Lon(0) = AU

i€B
where B represents the batch of samples, A = 10™* is the
regularization coefficient, and y = ey is the fixed unit vector.
2. For each batch containing indices ¢, values v, and targets c:

(a) Construct sparse vectors u; using (i, v) pairs
(b) Compute projections: U ' u; and U "y where y = e;
(c) Calculate residuals: r; = ||U " w;||? — ¢ ||U " y]|?

3. Update U using Adam optimizer with gradient clipping

4. Enforce fixed entries in U after each update (U[0,0] = 1
is enforced to be 1.)

iteration, the matrix ®; is updated for the classifier
fa(2) > yicDen Vi@ (Yi, 2) as follows: ®ypq =

e (F20) (22 )". We train target functions corre-
sponding to monomials over samples in R'° using 4000
training samples. The feature matrix ®, obtained after ¢
iterations is used as ground truth against learning with feed-

backs. Plots are shown in Fig.[T|and Fig.[2]

SAE features of Large-Scale Models: We analyze dictio-
naries from trained sparse autoencoders on Pythia-70M (Bi{
derman et al.l [2023) (see Appendix E]) and Board Game
Models (Karvonen et al.l [2024), with dictionary dimensions
of 32k x 512 and 4096 x 512, respectively. We use the
dictionaries corresponding to the SAEs trained for vari-
ous MLP layers of Board Games models: ChessGPT and
OthelloGPT considered in (Karvonen et al.l [2024), with
dimension 4096 x 512. Note that p(p + 1)/2 ~ 8.3M.
For the experiments, we use 3-sparsity on uniform sparse
distributions. We present the plots for ChessGPT in Fig.
for different feedback methods. Additionally, we provide a
table showing the Pearson Correlation Coefficient between
the learned feature matrix and the target @* in Table

Memory-efficient constraint storage The high dimen-
sionality of model dictionaries makes storing complete
activation indices for each feature prohibitively memory-
intensive. We address this by enforcing constant sparsity
constraints, limiting activations to a maximum sparsity
of 3. This constraint enables efficient storage of large-
dimensional arrays while preserving the essential character-
istics of the features.

Computational optimization To efficiently handle con-
straint satisfaction at scale, we reformulate the problem as
a matrix regression task, as detailed in Algorithm[3] The
learner maintains a low-rank decomposition of the feature

matrix ®, assuming & = UU ", where U represents the
learned dictionary. This formulation allows for efficient
batch-wise optimization over the constraint set while main-
taining feasible memory requirements.

Since there could be numerical issues in computation for
these large dictionaries, to compare the learnt dictionaries,
we compute the Pearson Correlation Coefficient (PCC) of
the trained feature matrix @’ with the target matrix ®* to
show their closeness.

>, (2L -2 (2], —2%)
q’/ @* — i,J 7,3 ij _ .
A, ) VORICHEL SEVAISIICHEL DL

Note the highest value of p is 1.

7. Discussion
7.1. Limitations and Future Work

The similarity—based feature-learning framework has
some major limitations: the learner observes features only
up to a normal transformation, so except under strong
coherence assumptions (Lemma [[)—full recovery of the
underlying dictionary remains open. A natural next step
is to relax exact feature equivalence and ask instead for
an c-accurate approximation in Frobenius norm. The
complexity bounds derived here already translate to the
classical statistical-learning setting, but an intriguing open
question is whether the gap between these bounds and
practical sample requirements can be tightened, perhaps
by exploiting the structural insights developed in this work.

7.2. Conclusion

Our theoretical bounds reveal that recovering the feature
dictionary of a network layer (or a trained SAE) demands
at least quadratic sample—complexity in the ambient dimen-
sion, which applies across standard settings, e.g., i.i.d. learn-
ing, active learning, or machine teaching. This establishes
an expressiveness-versus-recoverability trade-off: the more
complex or high-dimensional the dictionary, the more feed-
back/data is required. The quadratic scaling can, however,
be reduced under additional structure—e.g., low-rank as-
sumptions—suggesting that leveraging such structure is
essential for efficiency. Empirically, we observe that re-
covery indeed becomes harder in higher dimensions, while
incorporating dimensionality-reduction techniques substan-
tially improves performance, motivating future work along
these lines. Our results complement the Neural Feature
Ansatz (Radhakrishnan et al.[(2024)) by clarifying when effi-
cient feature recovery is possible: if task-relevant directions
lie in a low-dimensional subspace, the required feedback
can be sharply reduced. This insight also informs model-
distillation, suggesting that smaller students can inherit fea-
tures efficiently when such a low-rank structure is present.
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A. Table of Contents
Here, we provide the table of contents for the appendix of the supplementary.

- Appendix [C|provides supplementary experimental results validating our theoretical findings.

- Appendix |B| provides a comprehensive table of additional notations used throughout the paper and supplementary
material.

- Appendix D] contains the proof for Lemmal ] establishing conditions for recovering orthogonal representations.

- Appendix [E] completes the proof of Proposition|[I] establishing a worst-case lower bound on feedback complexity in the
constructive setting.

- Appendix [ presents the proof for the upper bound in Theorem [I] for low-rank feature matrices.
- Appendix [G|establishes the proof for the lower bound in Theorem [I] for low-rank feature matrices.

- Appendix [H] details the proof of Theorem 3| which asserts tight bounds on feedback complexity for general sampled
activations.

- Appendix [ demonstrates the proof of Theorem [] establishing an upper bound on the feedback complexity for sparse
sampled activations.
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B. Notations

Here we provide the glossary of notations followed in the supplementary material.

Symbol Description

o, fB,z,y, 2 Activations

col(®) Set of columns of matrix ®

D, Dsparse Distributions over activations

d Dimension of ground-truth sample space

D Dictionary matrix

Yy Ay Vi Ai Eigenvalues of a matrix

(D', P) Element-wise product (inner product) of matrices
Ker(®) Kernel of matrix ®

iy Uiy Vg Eigenvectors (orthogonal vectors)

null(P) Null set of matrix ®

Og~ Orthogonal complement of ®* in Sym(RP*?)
P Dimension of representation space

®,X Feature matrix

P, Entry at ith row and jth column of ®

H* Target feature matrix

T Rank of a feature matrix

Sym(RP*P) Space of symmetric matrices

Sym  (RP*P) Space of PSD, symmetric matrices

VS(F, Mg) Version space of Mg wrt feedback set F

Vir The set {vy,va,..., v}

Vip—r] The set {v,41,...,v,}

Vil Complete orthonormal basis {vy,vs,...,v,}
Y C RP Activation/Representation space

X Cc R4 Ground truth sample space
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C. Additional Experiments

In Section[6] we provided details of our experimental setup. In this appendix, we will show the results for some additional
experiments: 1) Large-scale SAEs trained on Pythia-70M (Biderman et al.,|2023)), and 2) extensive experimental results (in
Appendix[C.I)) on a synthetic task as considered in Fig. [T]and Fig. 2]

Dictionary features of Pythia-70M We use the publicly available repository for dictionary learning via sparse autoen-
coders on neural network activations (Marks et al.,[2024al). We consider the dictionaries trained for Pythia-70M (Biderman
et al.| 2023) (a general-purpose LLM trained on publicly available datasets). We retrieve the corresponding autoencoders
for the attention output layers, which have dimensions 32768 x 512. Note that p(p + 1)/2 =, 512M. For the experiments,
we use 3-sparsity on uniform sparse distributions. We present the plots for ChessGPT in two parts in Fig. [ and Fig. 3] for
different feedback methods.

Ground Truth Feedback: Eigendecomposition

o ° 1,
o = -7
a - :

3 2 L6
2 . s
: M ‘
N 4 2

e 2 3
2
e 2 £

8 3 N
H o 03 6 5 121510 2120 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 7 90 33 96 9

0 3 6 9 121518 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 76 81 84 87 90 93 96 99 PCC: 0.9367,
SAE Dictionary Features:Pythia-70M Feedbacks: 135316

Figure 4: Feature learning on a subsampled dictionary of dimension 4500 x 512 of SAE trained for Pythia-70M. Theorem
states that Eigendecompostion method requires 135316 constructive feedback. After a few 100 iterations of gradient descent
as shown in Algorithm[3] a PCC of 93% is achieved on ground truth. For visualization, only the first 100 dimensions are
used.
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Ground Truth Feedback: Sparse Sampling
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SAE Dictionary Features: Pythia-70M Feedbacks: 200000
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PCC: 0.3815, PCC: 0.5759,
Feedbacks: 2000000 Feedbacks: 5000000

99,96 9390 87 84 8178 75 72 69 66 63 60 57 54 51 48 45 4239 36 33302724 21181512 9 6 3 0
9996 9390 87 84 8178 75 72 69 66 63 60 57 54 51 48 45 4239 36 33302724 21181512 9 6 3 0
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PCC: 0.657 PCC: 0.7
Feedbacks: 10000000 Feedbacks: 20000000

Figure 5: Sparse sampling for Pythia-70M: Dimension of feature matrix: 32768 x 512 and the rank is 215. Plots for
varying feedback complexity sizes. Note that p(p+ 1)/2 ~ 512M. We run experiments with 3-sparse activations for uniform
sparse distributions. The Pearson Correlation Coefficient (PCC) to feedback size (PCC, Feedback size) improves as follows:
(200k,.0242), (2M, .38), (5M, .54), (10M, .65), and (20M, .77).
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C.1. Verification of theoretical results on a synthetic task

To validate our theoretical results, we compare the upper bounds derived in Theorem [TH4] against empirical performance on
a controlled synthetic task. This experiment aims to assess how tightly the theoretical feedback complexity aligns with the
actual number of feedback queries required to achieve feature recovery up to linear scaling equivalence (Definition 2)).

We consider a monomial regression task defined by
y = ["(x) = zrzom32y - (25 > 0),

which induces a target feature matrix ®* (as constructed by the Recursive Feature Machine (Radhakrishnan et al.,|2024),
see Section [6].

Setup. Inputs x € R!? are sampled from a Gaussian distribution N(0,0.5[;0). We train an RFM classifier on 5000
training samples to obtain ®*, and the teaching agent has access to this feature matrix for generating feedback.

We evaluated the following four feedback mechanisms: Eigendecomposition, Sparse Constructive, Random Sampling, and
Sparse Sampling (Section ] and Section [5).

For each method, we report:

1. The number of feedbacks provided.
2. The empirical mean squared error (MSE) compared to the target MSE achieved using ®*.

3. The theoretical upper bound on the number of feedbacks.

Theoretical vs Empirical Observations. The target feature matrix ®* has rank » = 8, and the ambient input dimension
is p = 10, giving p(p + 1)/2 = 55 as the total number of degrees of freedom used in the stated bounds.

* Eigendecomposition: Theoretical bound (Theorem is w + p — r = 38. As shown in Figure@ this exact number
of feedbacks is sufficient to match the target MSE (mean squared error) empirically.

* Sparse Constructive: Using 2-sparse feedbacks (Theorem [2), the theoretical bound remains 55. As illustrated in
Figure[6] the empirical performance saturates at the target MSE within this bound.

* Random Sampling: Feedback is sampled uniformly at random. We evaluate empirical performance at 20%, 30%, 50%,
70%, and 100% of the theoretical bound: 55 (as computed using Theorem [3), as shown in Figure[] The gradual reduction
in MSE confirms that the learning curve aligns well with the theoretical complexity.

Remark: Given that these are sampled runs (not averaged), in some cases, the MSE might be higher even if the feedback
set is increased (implying that an increase in feedback didn’t lead to relevant independent directions). But, averaging
over runs, we note that the MSE gradually reduces in MSE with the stated theoretical bound.

* Sparse Sampling: Our first experiment is for 4-sparse activations in Figure 7] where each coordinate is nonzero with
probability 1 — = 0.2, and the nonzero values are drawn from 2/(0,1). Using a success threshold of 6 = 0.05,
Theorem 4| yields a bound of 117 feedbacks. Figure [/|shows MSE values at multiples (30% to 2000%) of the total
number of degrees of freedom (55). As expected, MSE converges to the target MSE once the feedback size reaches the
theoretical threshold.

We perform several experiments with different values of d, i, and sparsity level as shown in Figure [§]

Remark: Since the bounds are independent of the distribution of a coordinate being non-zero, the bounds don’t change
even if we use a distribution other than the uniform distribution.
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Figure 7: Empirical performance for the Sparse Sampling feedback mechanism.
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Figure 9: Empirical performance for the Sparse Sampling feedback mechanism.
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Figure 11: Empirical performance for the Sparse Sampling feedback mechanism.
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D. Proof of Lemma I

In this appendix we restate and provide the proof of Lemmal[T]

Lemma (Recovering orthogonal atoms). Let ® € RP*P be a symmetric positive semi-definite matrix. Define the set of
orthogonal Cholesky decompositions of ® as

Wep = {Ue RP*" | & =UU" andUTUdiag()\l,...,/\T)},

where v = rank(®) and A1, \a, ..., \. are the eigenvalues of ® in descending order. Then, for any two matrices
U,U' € Wep, there exists an orthogonal matrix R € R™™7 such that

U = UR,

where R is block diagonal with orthogonal blocks corresponding to any repeated diagonal entries d; in U'u. Additionally,
each column of U’ can differ from the corresponding column of U by a sign change.

Proof. Let U, U’ € Wegp be two orthogonal Cholesky decompositions of ®. Define R = U diag(1/Ay,...,1/\,)U’. We
will show that this matrix satisfies our requirements through the following steps:

First, we show that R is orthogonal. Note,

R'R = (UTdiag(1/Ay,...,1/A)U) T (U diag(1/Aq, ..., 1/1)U)

=U'"diag(1/A1,...,1/)\,)UU diag(1/Aq,...,1/A)U
=U'"diag(1/\1,...,1/\)®diag(1/A,...,1/A)U
=U'"diag(1/Ay,...,1/A)U'U Tdiag(1/Aq, ..., 1/A)U
=U'"diag(1/\y,...,1/2)U
=1,
Similarly,
RR' = U'diag(1/Ay,...,1/A)U(U) Tdiag(1/A,...,1/A)U
=U"diag(1/A,...,1/Ar )@dlag(l/)\l, L 1/A)U
= U'"diag(1/Ay,...,1/)\,)UUT
=U'"diag(1/A1,...,1/\, )Udlag()\l, A
=1,

Now we show that U’ = UR.
UR = UU "diag(1/\y, ..., 1/\)U
= ®diag(1/A1,...,1/\)U
=U'U"Udiag(1/A,...,1/\,)
= U'diag(\y, ..., A\ )diag(1/A1,. .., 1/)\,)
=U
To show that R is block diagonal with orthogonal blocks corresponding to repeated eigenvalues, consider the partitioning

based on distinct eigenvalues. Let Z, = {i | \; = i} be the set of indices corresponding to the k-th distinct eigenvalue
of ®,fork =1,..., K, where K is the number of distinct eigenvalues. Let mj, = |Z| denote the multiplicity of .

Define Uy, and Uj, as the submatrices of U and U’ consisting of columns indexed by Zy, respectively.
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Now, consider the block Ry, of R corresponding to eigenvalues vy and .. For k # ¢, Uy, and U}, correspond to different
eigenspaces (as v, 7 ¢), and thus their inner product is zero. Hence,

. 1 1
U/ diag ()\1, ey )\T) U; =0, xm, -
This implies Ry = Oy xm, for k #£.
But then R must be block diagonal:
R; O 0
0 Ry 0
R = . ,
0 0 - Ry

where each Ry, € R™**™* is an orthogonal matrix. For eigenvalues with multiplicity one (m; = 1), the corresponding
block Ry is a 1 x 1 orthogonal matrix. The only possibilities are:

R, =[] or Ry=I[-1],

representing a sign change in the corresponding column of U. For eigenvalues with multiplicity greater than one (my > 1),
each block Ry, can be any my, x my, orthogonal matrix. This allows for rotations within the eigenspace corresponding to the
repeated eigenvalue yy.

Combining all steps, we have shown that:
U’ = UR,

where R is an orthogonal, block-diagonal matrix. Each block Ry, corresponds to a distinct eigenvalue v of ® and is either
a 1 x 1 matrix with entry £1 (for unique eigenvalues) or an arbitrary orthogonal matrix of size equal to the multiplicity of
& (for repeated eigenvalues). This completes the proof of the lemma.

O

E. Worst-case bounds: Constructive case

In this Appendix, we provide the proof of the lower bound as stated in Proposition[I] Before we prove this lower bound, we
state a useful property of the sum of a symmetric, PSD matrix and a general symmetric matrix in Sym(RP*P).

Lemma 5. Let ® € Sym_ (RP*P) be a symmetric matrix with full rank, i.e., rank(®) = p. For any arbitrary symmetric
matrix ®' € Sym(RP*P), there exists a positive scalar X > 0 such that the matrix (® + A®’) is positive semidefinite.

Proof. Since ® is symmetric and has full rank, it admits an eigendecomposition:

14
P = E )\/dzu;r,
i=1

where {\;}7_, are the positive eigenvalues and {u; }?_, are the corresponding orthonormal eigenvectors of P.
Define the constant ~y as the maximum absolute value of the quadratic forms of ®’ with respect to the eigenvectors of ®:

v:= max |u] ®uyl.
1<i<p

Let A be chosen as: )
ming <;<p )\z

v

A=

21



Learning Sparse Superposed Features with Feedback

For each eigenvector u;, consider the quadratic form of (® + A®’):

-
ul (B + AD Yu; = i + Au) Dup > A — Ay = A —

¥ = A; —min\; > 0.

This shows that each eigenvector u; satisfies:

u] (@ + \®")u; > 0.

Since {u;}?_; forms an orthonormal basis for R?, for any vector € RP, we can express z as = »_-_; a;u;. Then:

P
2T (@ + A )z =Y alu] (®+ A8 )u; >0,
i=1
since each term in the sum is non-negative.
Therefore, (® + A®’) is positive semidefinite. O

Now, we provide the proof of Proposition I]in the following:

Proof of Proposition[l] Assume, for contradiction, that there exists a feedback set F(V, Mg, ®*) for Eq. with size
7] < (B2 - 1),

For each pair (y, z) € F, ®* is orthogonal to (yy " — 2z "), implying that (yy " — 22 ") € Og-, the orthogonal complement
of ®*. Therefore,

span ({yy' — 22" }(y2er) C O
This leads to

®* 1 span ({yy ' — ZZT}(y)z)ej:> .

Since | F| < % — 1, we have

1
dim (span <{ny — zzT}>) < p(pT-F) - 1.
Adding ®* to this span increases the dimension by at most one:
1
dim (Span <tI>* U{yy" — zzT}(y7Z)e}->) < % —1.

Since Sym(RP*P) is a vector space with dim(Sym(RP*?)) = @, there exists a symmetric matrix ®' € Qg+ such that
@ 1 (yy —22") V(y,z2)€F.

By Lemma|[5] there exists A\ > 0 such that ®* + \®’ is PSD and symmetric. Since ®' € Og- and @’ is not a scalar multiple
of ®*, the matrix ®* + A®’ is not related to ®* via linear scaling. However, it still satisfies Eq. (1), contradicting the
minimality of F.

Thus, any feedback set must satisfy

1
7| > plp+1)
2
This establishes the stated lower bound on the feedback complexity of the feedback set. O
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F. Proof of Theorem[I; Upper bound

Below we provide proof of the upper bound stated in Theorem [I]

Consider the eigendecomposition of the matrix ®*. There exists a set of orthonormal vectors {vy,vs,...,v,} with
corresponding eigenvalues {71, 2, ..., ¥} such that
T
-
=y, )
i=1

Denote the set of orthogonal vectors {v1,va, ..., v, } as V).
Let {vy41,...,vp}, denoted as Vlp—r1> be an orthogonal extension to the vectors in V7,1 such that

‘/[r] U ‘/[p—'r'] = {Ulv V2, ... 7Up}
forms an orthonormal basis for RP. Denote the complete basis {v1, v, ..., v,} as Vil-

Note that {v, 41, ..., v, } precisely defines the null space of ®*, i.e.,

null(®*) = span ({vy41,...,0p}) .

The key idea of the proof is to manipulate this null space to satisfy the feedback set condition in Eq. (2)) for the target matrix

®*. Since ®* has rank r < p, the number of degrees of freedom is exactly @ Alternatively, the span of the null space

of ®*, which has dimension exactly p — r, fixes the remaining entries in ®*.
Using this intuition, the teacher can provide pairs (y, z) € V? to teach the null space and the eigenvectors {v1, va, ..., v, }
separately. However, it is necessary to ensure that this strategy is optimal in terms of sample efficiency. We confirm the
optimality of this strategy in the next two lemmas.
F.1. Feedback set for the null space of ®*
Our first result is on nullifying the null set of ®* in the Eq. (2). Consider a partial feedback set

Foun = {(0, Ui>}f:r+1

Lemma 6. If the teacher provides the set Fpyy, then the null space of any PSD symmetric matrix ®' that satisfies Eq.
contains the span of {v,41,...,vp}, ie.,
{1, -, vp} C null(®).

Proof. Let ® < Sym_ (RP*P) be a matrix that satisfies Eq. (2) (note that ®* satisfies Eq. ). Thus, we have the following
equality constraints:
v(0,v) € Fnun, v @y =0.

Since {v,41,...,vp} is a set of linearly independent vectors, it suffices to show that

Yo e Vg, v ®v=0= ®v=0. (6)

To prove Eq. (6), we utilize general properties of the eigendecomposition of a symmetric, positive semi-definite matrix. We
express @’ in its eigendecomposition as
S
@ =3 A
i=1

where {u;};_, are the eigenvectors and {,};_, are the corresponding eigenvalues of ®’. Assume that z # 0 € RP satisfies
z @z =0.
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Consider the decomposition x = Zle a;u; + v’ for scalars a; and v’ L{u;}{_; . Now, expanding the equation above, we
get

S T S
Td'y = (Z a;u; + v'> P’ (Z a;u; + v')
i=1

i=1

E. T S
(i: aiui> P’ (i: aiui> +/ TP (i: aiui> + (Z aiui) &' + 0T B
i=1 ; i=1

i=1

(Zl u> (Z s ) (za u> 2T (Zw ) <Za u> - (Z s )

=0asv'L{u;}

= Z a;u 'yjuj j )akuk

.4,k
S
— E 2.0
- a;%Y; =
=1

Since v, > 0forall i = 1,...,s (because ®' is PSD), it follows that each a; = 0. Therefore,
®'x =V =0.
This implies that z € null(®’), thereby proving Eq. (6).

Hence, if the teacher provides JFny, any solution ®’ to Eq. (2) must satisfy
{415, vp} C null(®).
O

With this we will argue that the feedback setup in Eq. (Z)) can be decomposed in two parts: first is teaching the null set
null(®*) := span ({v;}7_,, ), and second is teaching Sg~ = span ({v;}/_,) in the form of ®* = 37| yv;v; .

Lemma@implies that using a feedback set of the form Fyy any solution " € Sym, (RP*?) to Eq. (2) satisfies the property
Vig—r) C null(®’). Furthermore, |Foui| = p — 7.

F.2. Feedback set for the kernel of ®*

Next, we discuss how to teach V), i.e. V},] span the rows of any solution &’ 6 Sym  (RP*?) to Eq. (2) with the
corresponding eigenvalues {~; };_,. We show that if the search space of metrics in Eq. (2) is the version space VS(/\/lF7 Frull)

r(r4+1)
2

which is a restriction of the space MF to feedback set Fn, then a feedback set of size at most — 1 1s sufficient to

teach ®* up to feature equivalence. Thus, we consider the reformation of the problem in Eq. (2) as
v(yv Z) € ]:(Xa VS(MFv]:nUH)a ‘P*)a ®- (ny - ZZT) =0 @)

where the feedback set F(X,VS(Mp, Foui), ®*) is devised to solve a smaller space VS(Mp, Foui) =
{® € Mg | ®Pv=0,V(0,v) € Fnui}. With this state the following useful lemma on the size of the restricted feedback set
F(X,VS(MEg, Faun), D).

Lemma 7. Consider the problem as formulated in Eq. ([7]) in which the null set null(®*) of the target matrix ®* is known.

Then, the teacher sufficiently and necessarily finds a set F (X, VS(Fnun), ®*) of size T(TH) — 1 for oblivious learning up
to feature equivalence.

Proof. Note that any solution &’ of Eq. has its columns spanned exactly by V},j. Alternatively, if we consider the
eigendecompostion of @’ then the corresponding eigenvectors exists in span <V[T] > Furthermore, note that ®* is of rank r
which implies there are only 7(7”27"’1) degrees of freedom, i.e. entries in the matrix ®*, that need to be fixed.
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Thus, there are exactly r linearly independent columns of ®*, indexed as {1, jo, - - - , j- }- Now, consider the set of matrices

{@(i’j)lz'e[d],jE{j1,j27...,jr} ‘I’/' = 1" € {i,j},7 € {3, j}\{z}]}

This forms a basis to generate any matrix with independent columns along the indexed set. Hence, the span of Sg~ induces

r(rt1) H) in the vector space symm(RRP), i.e. the column vectors along the
r(r+1)

a subspace of symmetric matrices of dimension -

indexed set is spanned by elements of Sg~. Thus, it is clear that picking a feedback set of size — 1 in the orthogonal
complement of ®*, i.e. Og+ restricted by this span sufficiently teaches ®* if null(®*) is known. One exact form of this
set is proven in Lemma Since any solution ®’ is agnostic to the scaling of the target matrix ®’, we have shown that the
sufficiency on the feedback complexity for ®* up to feature equivalence.

Now, we show that the stated feedback set size is necessary. The argument is similar to the proof of Lemma 5]

For the sake of contradiction assume that there is a smaller sized feedback set Fgmgi. This implies that there is some matrix
in VS(ME, Fnun), a subspace induced by span Sg+, orthogonal to (®*) is not in the span of Fgmay, denoted as ®’. If ®’ is
PSD then it is a solution to Eq. (7) and ®’ is not a scalar multiple of ®*. Now, if ®’ is not PSD we show that there exists
scalar A > 0 such that

&+ \®' € Sym, (RP*),

i.e. the sum is PSD. Consider the eigendecompostion of ®’ (assume rank(®’) = )

P = TZ Sittipi
=1

for orthogonal eigenvectors {y; };_, and the corresponding eigenvalues {;},_,. Since (assume) 79 < r’ of the eigenvalues
are negative we can rewrite ®’ as

Zézuzm - Z St

j=ro+1

Thus, if we can regulate the values of ;ﬁ@*,ui, forallt = 1,2,...,ry, noting they are positive, then we can find an
appropriate scalar A > 0. Let m™ := min;g[y,] u ®*p; and £* = max;ey] |0;|. Now, setting A < 7% achieves the
desired property of ®* + A®’ as shown in the proof of Lemma

Consider that both @’ and ®* are orthogonal to every element in the feedback set Fgmay. This orthogonality implies that ®*
is not a unique solution to equation Eq. (7)) up to a positive scaling factor.

Therefore, we have demonstrated that when the null set null(®*) of the target matrix ®* is known, a feedback set of size

r(r+l)

exactly — 1 is both necessary and sufficient. O

F.3. Proof of Lemma and construction of feedback set for Ker(®*)

r(r+1)
2

Up until this point we haven’s shown how to construct this — 1 sized feedback set. Consider the following union:

{vlvl } U {v2v2 , (V2 +v1)(vg + 1) } u...u {vrv;r7 (v1 + o) (v +v) ", (Ve + ve) (U1 + UT)T}

We can show that this union is a set of linearly independent matrices of rank 1 as stated in Lemma [3] below.

Lemmal Let {v;}7_; C RP be a set of orthogonal vectors. Then, the set of rank-1 matrices

B —{ o, (v +v3) (v + v)) T

1<i<j< r}
is linearly independent in the space of symmetric matrices Sym(RP*P).
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Proof. We prove the claim by considering two separate cases. For the sake of contradiction, suppose that the set 53 is linearly
dependent. This implies that there exists at least one matrix of the form v;v; or (v; +v;)(v; +v;) T that can be expressed

as a linear combination of the other matrices in 5. We now examine these two cases individually.

Case 1: First, we assume that for some i € [r], vivi—r can be written as a linear combination. Thus, there exists scalars that
satisfy the following property

T/ 'I",/
v, = Zajvijv;: + Zﬁk(vlk + Oy, ) (vr,, + umk)—r ®)
j=1 k=1
Vik, By > 0,05 # il < myg )
Now, note that we can write
,r,// T// ’I”” T‘”
> B+ vm) o +vm) T = Belo Fvm vl + Y Be(v, + vm ol + D Be(vr, + Uy o,
k=1 k=1,l,=i k=11, %% k=1

But the following sum

r/ Tll T”

T T T
Y o]+ D> Broy, 4 vm vl Y Be(vn, + vy o,
j=1 k=1,lp i k=1

T
1=

doesn’t span (as column vectors) a subspace that contains the column vector v; because {v; }
vectors. Thus, we can write

1 is a set of orthogonal

"

vl = > Belo +vmul = | Y Broe+ D Brvm, | vl (10)
k=1,lp=i k=1,l=i k=1,l;,=i
This implies that
> Brvm, =0 = ifly=14,8 =0 (11)
k=1,lp=i

Since not all 5, = 0 corresponding to [, = i (otherwise Zzzuk:i Brur, = 0) we have shown that viv;r can not be written
as a linear combination of elements in 5 \ {viv; }

Case 2: Now, we consider the second case where there exists some indices 4, j such that (v; 4+ v;)(v; +v;) " is a sum of

linear combination of elements in B. Note that this linear combination can’t have an element of type vkv,j as it contradicts
the first case. So, there are scalars such that

"
r

(vi+03) (05 +03) " =D Bilvn, + v ) (01 + 0my) (12)
k=1

Vk, L < my (13)

But we rewrite this as

(vi +v5)v + (vi + v;)v]

" "

T T T‘”
= > Bitom)v + D Belon +v)v] + D Belvn, + vm) (v +vm,) T
k):].,lk:i }C:lﬂ’nk:j kzl,lk¢i7
mE#j
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Note that if [;, = i then the corresponding my, # j and vice versa. Since {vi};l are orthogonal, the decomposition above
implies

"
r

(v; + ;) = Z Bre(vi + vy, ;- (14)
k=1,ly=i
i+o)v) = > Brlvy, +vy)v] (15)
k=1mp=j
> Bulon + vm) (o, +vm)T =0 (16)
k=1,lx i,
mE#j

But using the arguments in Eq. (I0) and Eq. (TT), we can achieve Eq. (T4) or Eq. (I5).

Thus, we have shown that the set of rank-1 matrices as described in B are linearly independent. [

In Lemma we discussed that in order to teach ®* sufficiently agent needs a feedback set of size w — 1 if the null set

of @* is known. We can establish this feedback set using the basis shown in Lemma[3] We state this result in the following
lemma.

Lemma 9. For a given target matrix * =3, %viv;r and basis set of matrices B as shown in Lemma the following

. . 1 .
set spans a subspace of dimension w — 1in Sym(RP*P),

v1v] — A1yy | vavs — Asayy |, (V1 +va)(v1 +v2) | — Aayy L.,
Op = Ur'U;r - )‘rrnya (Ul + 'Ur)(vl + UT)T - Alryy—r’ e
(Ur—l + ’UT)(’UT—I + UT)T - )‘(rfl)ryy—r

y®*y' £0

. v; ®* v (v; +v))®*(v; +v;) T
Vi, g, i = =, Ay = ’ ’ ]
y@ry' Y y@ry’ 079

Proof. Since ®* has at least 7 positive eigenvalues there exists a vector y € RP such that y®*y " # 0. It is straightforward
to note that Op is orthogonal to ®*. As Op C span({5) and ®* L Op, dim(span{Op)) = w —1. O

Now, we will complete the proof of the main result of the appendix here.

Proof of Theorem[I} Combining the results from Lemma|6] Lemma([7, and Lemma[d] we conclude that the feedback setup in
Eq. (2) can be effectively decomposed into teaching the null space and the span of the eigenvectors of ®*. The constructed
feedback sets ensure that @* is uniquely identified up to a linear scaling factor with optimal sample efficiency. O
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G. Proof of Theorem [1: Lower bound

In this appendix, we provide the proof of the lower bound as stated in Theorem [l We proceed by first showing some
useful properties on a valid feedback set F(RP, Mg, ®*) for a target feature matrix ®*. They are stated in Lemma and
Lemma[I1l

First, we consider a basic spanning property of matrices (zx' — yy ') for any pair (z,y) € F in the space of symmetric
matrices Sym(RP*P).

Lemma 10. If ® € Og- such that span (Col(®)) C span (V},}) then ® € span (F).

Proof. Consider an ® € Og-~ such that span (col(®)) C span <V[T]>. Note that the eigendecompostion of ® (assume
rank(®) =" <)

&= 3 un
i=1
for orthogonal eigenvectors { ,ui}z;l and the corresponding eigenvalues {61};1 has the property that span <{ ui};'/:1> -

span <V[r] > Using the arguments exactly as shown in the second half of the proof of Lemma we can show there exists
A > 0 such that ®* + A\® € VS(F, MF). But then ® is not feature equivalent to ®*. But this contradicts the assumption
of F being a valid feedback set. O

Lemma 11. There exists vectors Up,_,; C null(®*) (of size p — r) such that span <U [p_,.]> = null(®*) and for any vector
v € Upp_y), vv' € span (F).
Proof. Assuming the contrary, there exists v € span (null(®*)) such that vo " ¢ span (F).

Now if vv T L F, then for any scalar A > 0, ®* + Avv ' is both symmetric and positive semi-definite and satisfies all the
conditions in Eq. (1)) wrt F a contradiction as ®* 4 Avv " is not feature equivalent to ®*.

So, consider the case whenvo " [ F. Let {v,11,...,v,_1} be an orthogonal extensiorﬂofv such that {v,41,...,vp_1,v}
forms a basis of null(®*), i.e., in other words

vl{vpq1,.. . vp-1} & span ({vry1,...,vp—1,v}) = null(P").

We will first show that there exists some ®’ (# A®*, for some A > 0) € Sym(RP*P) orthogonal to F and furthermore
{vr41, .., vp—1} C null(P') .

Consider the intersection (in the space Sym(RP*P)) of the orthogonal complement of the matrices
{vrgav]y 1, vp1v) 1}, denote it as Ores, i.e.,

p—1
Orest = m OU“);F
i=r+1
Note that
dim(Orest) =p(p+1)/2 —p+7r
Since vv " is in Oyest and dim(Oyegt) > 1 there exists some @ such that ' | &*, and also orthogonal to elements in the

feedback set F. Thus, ®’ has a null set which includes the subset {v;, 11, ... , Up—1}-

Now, the rest of the proof involves showing existence of some scalar A > 0 such that ®* + A®’ satisfies the conditions of
Eq. (1) for the feedback set F. Note that if v®'v " = 0 then the proof is straightforward as span ({v,.11,...,vp_1,v}) C
null(®’), which implies span (col(®’)) C span (V). But this is precisely the condition for Lemmato hold.

3the set is not trivially empty in which case the proof follows easily
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Without loss of generality assume that v®'v" > 0. First note that the eigendecomposition of ®’ has eigenvectors that
are contained in V},) U {v}. Consider some arbitrary choice of A > 0, we will fix a value later. It is straightforward that
®* + AP’ is symmetric for ®* and P’ are symmetric. In order to show it is positive semi-definite, it suffices to show that

Vu € RP u' (®* + A\ )u >0 (17)
Since {vyy1,...,vp—1} C (null(®*) N null($’)) we can simplify Eq. to
Yu € span (Vi) U {v}),u (@ + A®')u > 0 (18)

Consider the decomposition of any arbitrary vector u € span <V[T] U {v}> as follows:

u = ufy) + ', such that up,) € span (V},1) ,v" € span ({v}) (19)
= Z U5, Vi o; € R (20)
i=1

From here on we assume that [, # 0. The alternate case is trivial as v'" ®'v" > 0.

Now, we write the vectors as scalar multiples of their corresponding unit vectors

. &
u[’l‘] - 57‘ uT‘a u?" = ||U[T ||%/[T]7 ||V[ 1" Za (21)

v =08, -0, 0:= 5 (22)
2
Remark: Although we have computed the norm of u(,; as ||ug,| |%/[T] in the orthonormal basis V[, note that the norm remains
unchanged (same as the ¢5). {5 is used for ease of analysis later on.
Using the decomposition in Eq. (T9)-(20), we can write Eq. (8] as
u' (®* + N\ )u = (up) +v NT(®* + 2@/ ) (upr) + v")
= uf B up + Aug) + )" ¥ () +0)
=024, ®* 0, + A(02 - 4, B0y + 20,6, - 0, B0+ 62 -0 ®'D) (23)

Since we want u | (®* + A®’)u > 0 we can further simplify Eq. as

» 82,
i, i, + A ( ¢ Ry 2 B+ -@Tqﬂ@) >0 (24)
v o ?
= 0, ® 0, AN | 4 B, +26 - a, RO+ 70 R0 | >0 (25)
—— N—— ?

1) (3) (2)

where we have used ¢ = 5 . The next part of the proof we show that (1) is lower bounded by a positive constant whereas
(2) is upper bounded by a positive constant and there is a choice of A so that (3) is always smaller than (1).

Considering (1) we note that . is a unit vector wrt the orthonormal set of basis V/,). Expanding using the eigendecomposition
of Eq. (3)

ﬂj@’“ ZZ o2 %>m1n’yl>0

The last inequality follows as all the eigenvalues in the eigendecompostion are (strictly) positive. Denote this minimum
eigenvalue as Vi := min; ;.

Considering (2) note that only terms that are variable (i.e. could change value) is & as 4, ®'0 is
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Note that © is a fixed vector and 4, has a fixed norm (using Eq. -), so |,' ®'9| < C for some bounded constant
C > 0 whereas 9" ®'4 is already a constant. Now, |2¢ - 4,] ®'0| exceeds £* - 4T &0 only if

0l B0 c

|,
2> = =
oTdH — T P'Y

126 -4, @0 > |70 B = >¢
Rightmost inequality implies that 2¢ - 4, ®'0 + ¢% - © T ®'0 is negative only for an ¢ bounded from above by a positive
constant. But since £ is non-negative

|2¢ -4, @04 <7 - 9T @] < C’(bounded constant)

Now using an argument similar to the second half of the proof of Lemmal[7] it is straight forward to show that there is a
choice of A’ > 0 so that (3) is always smaller than (1).

Now, for A = W where \” is chosen so that A, > ;‘—,l,, we note that

, N X
T %0 T &/ STl 1 2. AT T &l
a, @, + X (4, B0, + 264, o+ 0 B'D) ZAmin—&-WuT@ur—W > 0.
Using the equivalence in Eq. , Eq. and Eq. , we have a choice of A > 0 such that u " (®* + A®')u > 0 for any
arbitrary vector v € span <V[r} U {v}> Hence, we have achieved the conditions in Eq. , which is the simplification of

Eq. . This implies that ®* + A®’ is positive semi-definite.

This implies that there doesn’t exist a v € span (null(®*)) such that vv " ¢ span (F) otherwise the assumption on F to be
an oblivious feedback set for ®* is violated. Thus, the statement of Lemma|[TT]has to hold. O

G.1. Proof of lower bound in Theorem[I]

In the following, we provide proof of the main statement on the lower bound of the size of a feedback set.

If any of the two lemmas (10[{11)) are violated, we can show there exists A > 0 and ® such that @* + A® € VS(F, Mg).

In order to ensure these statements, the feedback set should have (LQH) +(d-r)— 1) many elements which proves the

lower bound on F.

But using Lemma[7|and Lemmal9 we know that the dimension of the span of matrices that satisfy the condition in Lemma [T0]
is at the least @ — 1. We can use Lemma@where y = > :_, v, (note ®*v # 0). Thus, any basis matrix in Op satisfy

the conditions in Lemma [0l

Since the dimension of null($*) is at least (d — r) thus there are at least (d — r) directions or linearly independent matrices
(in Sym(RP*?)) that need to be spanned by F.

Thus, Lemma (10 implies there are w — 1 linearly independent matrices (in Og~) that need to be spanned by F.
Similarly, Lemma [IT|implies there are p — r linearly independent matrices (in Og-) that need to be spanned by F. Note
that the column vectors of these matrices from the two statements are spanned by orthogonal set of vectors, i.e. one by V/,;

and the other by null(®*) respectively. Thus, these w — 1+ (p — r) are linearly independent in Sym(R?*P), but this

forces a lower bound on the size of F (a lower dimensional span can’t contain a set of vectors spanning higher dimensional
space). This completes the proof of the lower bound in Theorem [I]
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H. Proof of Theorem 3 General Activations Sampling

We aim to establish both upper and lower bounds on the feedback complexity for oblivious learning in Algorithm [2| The
proof revolves around the linear independence of certain symmetric matrices derived from random representations and the
dimensionality required to span a target feature matrix.

Let us define a positive index P = p(pTH). The agent receives P representations:

Vn = {’Ul,vg, ce ,’Up} ~ Dv.

T

For each 7, we define the symmetric matrix V; = v;v; .
Consider the matrix M formed by concatenating the vectorized V;:
M = [vec(V1) vec(Va) -+ vec(Vp)],

where each vec(V;) is treated as a column vector in R, The vectorization operation for a symmetric matrix A € Sym(RP*?)
is defined as:
Aii if k corresponds to (i, 1),

vec(A)y = {

A;; + Aj;  if k corresponds to (4, j), i < j.

The determinant det(M) is a non-zero polynomial in the entries of vy, va, ..., vp. Since the vectors v; are drawn from a
continuous distribution Dy, using Sard’s theorem the probability that det(M) = 0 is zero, i.e.,
Py, (det(M) = 0) = 0.
This implies that, with probability 1, the set {V;, V5, ..., Vp} is linearly independent in Sym(RP*P):
Py, ({v;v] } is linearly independent in Sym(RP*?)) = 1. (26)

Next, let 3* # 0 be an arbitrary target feature matrix for learning with feedback in Algorithm [2} Without loss of generality,
assume v := v # 0. Define the set F of rescaled pairs as:

F = {(v, VYivi) ‘Z* . (’U’UT — %viv;r) =0, V7 > 0} ,
noting that | F| = P — 1.

Assume, for contradiction, that the elements of F are linearly dependent in Sym(IRP*?). Then, there exist scalars {a;} (not
all zero) such that:

P P P
Zai (’UUT - ’}/i’l)i’l)iT) =0 = (Z G,i> UUT = Z aﬂiviv;.
i=2 i=2 i=2

However, since {v;v; } are linearly independent with probability 1, it must be that:

P
Zai =0 and a;v,=0 Vi
i=2

Given that v; > 0, this implies a; = 0 for all 7, contradicting the assumption of linear dependence. Therefore, matrices
induced by F are linearly independent.

This implies that F induces a set of linearly independent matrices, i.e., {U’UT — yivgv, } in the orthogonal complement

Os-, and since ©* has at most P degrees of freedom, any matrix ¥/ € Sym(RP*?) satisfying:
Y (vo! =y ) =0 Vi
must be a positive scalar multiple of X*.
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Thus, using Eq. (26), with probability 1, the feedback set F is valid:
Py, (F is a valid feedback set) = 1.

Since ¥* was arbitrary, the worst-case feedback complexity is almost surely upper bounded by P — 1 for achieving feature
equivalence.

For the lower bound, consider the proof of the lower bound in Theorem[I] specifically Lemma[T0} which asserts that for
any feedback set F in Algorithm |I} given any target matrix £* € Sym(RP*?), if ¥ € Ogx+ such that span (col(X)) C
span <Z [T]> then ¥ € span (F) where Z[,1 (r < d) is defined as the set of eigenvectors in the eigendecompostion of X* (see
Eq. @)).

This implies that any feedback set F(V,,, ¥*) must span certain matrices ¥’ € Sym(RP*?). Suppose the agent receives £
representations v, vs, . . ., V¢ ~ Dy and constructs:

M = [vec(X) vec(Vy) --- vec(Vp)].

Now, consider the polynomial equation det(M) = 0. Since every entry of M is semantically different, the determinant

det (M) is a non-zero polynomial. Note that there are % many degrees of freedom for the rows. Thus, it is clear that the

zero set {det(M) = 0} has Lebesgue measure zero if £ < @, i.e. M requires at least @ columns for det(M) to be
identically zero. But this implies that set { viv }le can’t span ¥’ (almost surely) if £ < % — 1. Hence, (almost surely)

the agent can’t devise a feedback set for oblivious learning in Algorithm In other words, if £/ < @ -1,

Py, (agent devises a feedback set F up to feature equivalence) = 0

Hence, to span Y/, it almost surely requires at least % representations. Therefore, the feedback complexity cannot be
lower than €2 (%).

Combining the upper and lower bounds, we conclude that the feedback complexity for oblivious learning in Algorithm 2]is
tightly bounded by © (%)

I. Proof of Theorem d: Sparse Activations Sampling

Here we consider the analysis for the case when the activations V are sampled from the sparse distribution as stated in
Definition[Il

In Theorem 4] we assume that the activations are sampled from a Lebesgue distribution. This, sufficiently, ensures that
(almost surely) any random sampling of P activations induces a set of linearly independent rank-1 matrices. Since the
distribution in Assumption [I|is not a Lebesgue distribution over the entire support [0, 1], requiring an understanding of
certain events of the sampling of activations which could lead to linearly independent rank-1 matrices.

In the proof of Theorem [2] we used a set of sparse activations using the standard basis of the vector space R”. We note that
the idea could be generalized to arbitrary choice of scalars as well, i.e.,

Ug = {)\161 . )\Z 7é 0, 1 § 7 S p} U {()\13161 + )\ijjej) . )\ijia>\ijj 7é 0,1 S 7 <j S p}
Here e; is the ith standard basis vector. Note that the corresponding set of rank-1 matrices, denoted as ﬁg

ﬁg = {/\%676? 01 S ) S p} U {()\Zﬂ& + )\ijjej)()\ijie,; + )\ijjej)T 01 S 1< j S p}
is linearly independent in the space of symmetric matrices on R?, i.e., Sym(RP*P).

Assume that activations are sampled P times, denoted as Vp. Now, consider the design matrix M = [V} V5 ... Vp]as
shown in the proof of Theorem|3| We know that if det (M) is non-zero then {V;}' s are linearly independent in Sym(RP*?).
To show if a sampled set Vp exhibits this property we need to show that det(M) is not identically zero, which could be
possible for activations sampled from sparse distributions as stated in Assumption |1} i.e. Py~pg,e (vi 7 0) > 0.
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Note that det(M) = > p_ [[; Mis(;). Consider the diagonal of M. Consider the situation where all the entries are
non-zero. This corresponds to sampling a set of activations of the form U 4. Consider the following random design matrix M.

A2 . e A2,
2o A2,
A2 . . A ar—1)
_ : 2 2
M= |1 - e A2 YA
)\121)\122
L Ap—1)p(p—1) A(p—1)pp ]

Now, a random design matrix M is not identically zero for any set of P randomly sampled activations that satisfy the
following indexing property:

Ri={v:v; #0,1 <i<ptU{v:v;,v; #0,1 <i<j<p} 27

This is so because for identity permutation, we have [ [, M;; # 0. Now, we will compute the probability that R is sampled
from Dgparse. Using the independence of sampling of each index of an activation, the probabilities for the two subsets of R
can be computed as follows:

* pactivations {a1, a9, -+ ,ap} ~ Dé’parse such that «;;; # 0. Using independence, we have
s—1 D 1
P = Z ( i )p:{;l(l _pnz)p_l_zz
i=0

* Rest of p(p — 1)/2 activations of R in Eq. require at least two indices to be non-zero. This could be computed as
52
P, = Z (p ; 2)]?:;2(1 - pnz)p—2—i.
i=0
Now, note that these P activations can be permuted in P! ways and thus

s—1 P ss_9 (P-p)
_ (P—p) _ Z P—1\ i1 —1— Z P—2\ o —2—4
,PVP(VP :R) ZP'P{),PQ =P <'0 ( i )pnz (lfpnz)p ) ( Z < i )pnz (17pnz)p )

=0

DPs
(28)
Now, we will complete the proof of the theorem using Hoeffding’s inequality. Assume that the agent samples /N activations,
we will compute the probability that R C V. Consider all possible P-subsets of [V items, enumerated as {1, 2,0, (]I\;) }
Now, define random variables X; as

X, = {1 if ith subset equals R,

0o.w.

N
Now, define sum random variable X = Z(P ) X;. We want to understand the probability Py, (X > 1). Now note that,

i

VN NDsparse

B [X]=Y E[X]= (ﬂf) Py (Vp=R)

Now, using Hoeffding’s inequality

N\2 2

Pyy(X >0)>1-— Qexp_Q]E[X]2 >1- 2exp_2(P) Ps
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2
Now, for a given choice of of § > 0, we want § > 2 eprz(ﬁ) = Using Sterling’s approximation

MYV oL g o (B oL S d sy P (L )
P) ~ ps 852 P ~ ps 852 T e \p? & 52

34



	Introduction
	Related Work
	Problem Setup
	Sparse Feature Learning with Constructive Feedback
	Constructive feedbacks: Worst-case lower bound
	Feature learning of low-rank matrices

	Sparse Feature Learning with Sampled Feedback
	Experimental Setup
	Discussion
	Limitations and Future Work
	Conclusion

	Table of Contents
	Notations
	Additional Experiments
	Verification of theoretical results on a synthetic task

	Proof of Lemma 1
	Worst-case bounds: Constructive case
	Proof of Theorem 1: Upper bound
	Feedback set for the null space of phi*
	Feedback set for the kernel of phi*
	Proof of Lemma 3 and construction of feedback set for phi*

	Proof of Theorem 1: Lower bound
	Proof of lower bound in Theorem 1

	Proof of Theorem 3: General Activations Sampling
	Proof of Theorem 4: Sparse Activations Sampling

