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ABSTRACT

Finetuning large language models with a variety of instruction-response pairs has
enhanced their capability to understand and follow instructions. Current instruc-
tion tuning primarily relies on teacher models or human intervention to gener-
ate and refine the instructions and responses for training, which are costly, non-
sustainable, and may lack diversity. In this paper, we introduce Mosaic Instruc-
tion Tuning (Mosaic-IT), a human/model-free compositional data augmentation
method that can efficiently create rich and diverse augmentations from existing
instruction tuning data to enhance the LLMs. Mosaic-IT randomly concatenates
multiple instruction data into one and trains the model to produce the corre-
sponding responses with predefined higher-level meta-instructions to strengthen
its multi-step instruction-following and format-following skills. Our extensive
evaluations demonstrate a superior performance and training efficiency of Mosaic-
IT, which achieves consistent performance improvements over various bench-
marks and a 80% reduction in training costs compared with original instruction
tuning. Our codes and data are available at https://anonymous.4open.
science/r/mosaic-955B.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) Brown et al. (2020); Scao et al. (2022); OpenAI
(2023); Touvron et al. (2023a;b); Jiang et al. (2023) along with their remarkable performance in
down-stream tasks Zhao et al. (2023); Xu et al. (2024a), has revolutionized the domains of Artificial
Intelligence and Natural Language Processing. A key component of the recipe to unlock the excep-
tional ability of LLMs in understanding and following instructions is the technique of Instruction
Tuning (IT) Mishra et al. (2021); Wei et al. (2022); Chung et al. (2022); Wang et al. (2023c); Zhang
et al. (2023); Xu et al. (2024a), which involves the fine-tuning of LLMs on datasets comprising
corresponding instruction-response pairs.

To ensure the quality of instruction tuning data, earlier efforts Brown et al. (2020); OpenAI (2023);
Touvron et al. (2023a); Jiang et al. (2023) carefully curate extensive, diverse, and high-quality
datasets manually. Although these datasets encompass a wide range of instructions to improve in-
struction tuning, they require the responses to be meticulously curated by human experts Khashabi
et al. (2020); Ye et al. (2021); Wei et al. (2022); Wang et al. (2022); Du et al. (2022). Alterna-
tively, some approaches Wang et al. (2023b); Taori et al. (2023); Xu et al. (2023); Li et al. (2023a)
leverage more capable teacher LLMs to reduce the labor-intensive process of data generation. For
example, the Alpaca Taori et al. (2023) utilizes self-instruct Wang et al. (2023b) to automatically
generate diverse instruction tuning datasets, and the WizardLM Xu et al. (2023) proposes to com-
plicate the existing instruction data by an evolution algorithm. Building on this trend and the widely
acknowledged notion that more complicated instructions are more beneficial for LLMs’ instruction-
following ability Xu et al. (2023); Zhao et al. (2024), numerous strategies Zhao et al. (2024); Wu
et al. (2024); Ding et al. (2023); Li et al. (2023a); Liu et al. (2023a); Li et al. (2024b;a); Guo et al.
(2024); Xu et al. (2024a) have been proposed to further diversify and complexify the instruction-
response pairs, utilizing teacher models like ChatGPT-3.5 and GPT-4 OpenAI (2023).

Despite the enhanced performance in instruction-following ability offered by these existing
methods, they face Two major issues: (1) They heavily rely on teacher models or human annotators
to rewrite instruction-response pairs, which highlights the resource-intensive nature and their
constraints on scalability; (2) They only increase the complexity within the scope of a single
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instruction, which limits the potential improvement in LLMs’ instruction-following capabilities.
Motivated by the Dense and Aligned Captions Doveh et al. (2023) proposed for vision language
(VL) models and the mosaic data augmentation proposed in Yolov4 Bochkovskiy et al. (2020),
we hypothesize that denser instructions benefit the LLM alignment, i.e. the process of instruction
tuning should not be constrained by one single instruction but be extended to follow several
instructions at a time, which represents a higher level of instruction-following ability that is
beneficial to the training process. A similar concept during the inference phase is proposed by
batch prompting Cheng et al. (2023); Lin et al. (2024), where multiple samples are grouped in one
batch allowing LLMs to generate multiple responses at one inference, while its performances are
sub-optimal. Moreover, our preliminary experiments on GPT-3.5-turbo and GPT-4-turbo show
that even for these strong proprietary LLMs, their performances degrade dramatically if required
to follow several instructions at one time, the experimental results are presented in the Section 5
Further Discussion. Thus, these performance degradation phenomenons indicate the complexity of
this setting and the necessity of further training for this higher-level capability.

Figure 1: The illustration of our Mosaic-
IT with different strategies. Given the orig-
inal dataset, our method randomly sam-
ples and concatenates them together into
more complex samples, simulating the multi-
instruction-following scenarios at no cost.

As orthogonal to the existing instruction tuning
methods, we introduce Mosaic Instruction Tuning
(Mosaic-IT), an innovative and model/human-free
compositional approach that augments existing
instruction tuning datasets, which concurrently im-
proves the LLM performances and lowers the train-
ing expenses. As shown in Figure 1, in our method,
multiple instructions and corresponding responses
from the original dataset are concatenated into a
single sample for fine-tuning, simulating the multi-
instruction-following scenarios at no cost. Without
applying any additional strategies, we term this sim-
ple process as the Primary Mosaic Strategy. We
posit that this mosaic strategy process significantly
improves the complexity and density of the original
instructions, learning from which directly benefits
LLMs in their instruction-following ability. Addi-
tionally, this method offers the advantage of directly
reducing the total count of instruction-response
pairs, thereby cutting down on training iterations,
and accelerating the training process significantly by approximately 80% reduction.

Though effective, the Primary Mosaic strategy constrains LLMs in responding to the instructions
in the original order and format, potentially limiting its further potential. Thus we further intro-
duce three Advanced Mosaic Strategies aimed at enhancing the diversity and complexity of the
mosaicked instruction-response pairs: Format, Permute, and Maskout, in which an additional
meta-instruction is provided as a higher-level guideline for LLMs to follow the given instructions.
Illustrative examples are presented in Figure 2. Specifically, in the Format strategy, some arbitrary
parsing formats will be defined in the meta-instruction thus forcing LLMs to follow these formats,
which notably enhances the LLMs’ capacity to follow formats. In the Permutation strategy, an
arbitrary permuted order is defined thus forcing LLMs to respond in a desired order. In the Mask-
out strategy, some arbitrary instructions are sampled which meta-instruction forces LLMs to ignore.
Moreover, the use of these Advanced strategies not only boosts the performance in several evaluation
metrics but also keeps our method free of additional costs.

In summary, our primary contributions can be illustrated as follows:

• We propose a novel human/model-free data augmentation method, Mosaic-IT, which extends
existing instruction tuning from handling one single instruction at a time to following multiple
instructions in diverse forms. This approach significantly enhances the potential utilization of
existing high-quality datasets.

• Mosaic-IT improves the instruction-following abilities of LLMs compared to training on original
data, as evidenced by consistent performance gains across a wide range of benchmarks, model
families, and datasets, demonstrating strong generalization capabilities.
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Figure 2: Illustrative examples of Mosaic-IT. Given 3 simple data points, our method can concate-
nate them into overall data samples with diverse forms. Texts in red represent the meta-instructions
that define the formats or orders for LLMs to respond. Texts in yellow are major response differences
of each strategy. The Primary Strategy only concatenates data together. The Format Strategy re-
quires LLMs to respond in predefined formats. The Permute Strategy requires LLMs to respond in
specific orders and the Maskout Strategy requires LLMs to ignore some of the instructions.

• Mosaic-IT substantially increases training efficiency by reducing the required number of training
iterations, resulting in an approximate 80% reduction in training time, as confirmed by experi-
mental results.

2 METHODOLOGY

2.1 PRELIMINARIES

The instruction tuning dataset, defined as D, consists of n data samples, each represented by a
triplet (Instruction, Input,Response). For simplicity, we define x = map(Instruction, Input) as
the unified instruction, and y as the corresponding response. Therefore, D can be represented as
(x1, y1), (x2, y2), . . . , (xn, yn), denoting a set of n instruction-response pairs. Let pθ(·) denote the
LLMs to be trained, with parameters θ. In the instruction tuning setting, pθ is typically fine-tuned by
maximizing the following objective on each data (xi, yi), yi,j represents the jth token of response
yi, yi,<j represents the tokens prior to yi,j , and li represents the token length of yi,j :

max
θ

li∑
j=1

log pθ (yi,j |xi, yi,<j) , (1)

2.2 MOSAIC-IT

Motivated by the success of the existing data-centric instruction tuning methods, a line of approaches
is proposed to further enhance the instruction-response pairs utilizing extra teacher LLMs Xu et al.
(2024a). Though effective, all existing methods for instruction tuning restrict training samples to
just one instruction, which severely limits the potential of the existing high-quality data and the
instruction-following ability of the models to be trained. Motivated by the Dense and Aligned Cap-
tions Doveh et al. (2023) for VL, we hypothesize that denser instructions benefit the LLM align-
ment, thus the process of instruction tuning should not be constrained by one single instruction but
be extended to follow several instructions at a time, which represents a higher level of instruction-
following ability that is beneficial to the training process. Thus, we propose Mosaic Instruction
Tuning (Mosaic-IT) as shown in Figure 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2.1 PRIMARY MOSAIC STRATEGY

Exploring the concept of concatenating random instruction-response pairs into a unified instruction-
response pair for training remains largely unexplored. The primary challenge lies in crafting a
coherent overall instruction and obtaining its corresponding response. Most existing methods utilize
a strong teacher model to rewrite and polish the instructions with prompting techniques and generate
corresponding responses, introducing more cost by actually re-generating new data samples. To
harness the full potential of existing data rather than directly discarding them, we introduce a simple
compositional approach as shown in Figure 2, in which instructions are randomly concatenated
with serial digits to form an overall instruction. The concatenated overall instruction is denoted as
[x1, ..., xk], with the corresponding overall response concatenated as [y1, ..., yk]. Here, k denotes
the number of original data samples integrated into each overall sample.

In this framework, the fundamental instruction-following capability is triggered by the existing
instruction-response pairs, and the mosaic strategy extends this capability to a higher level in which
LLMs are forced to follow multiple instructions. It represents a much more complicated scenario
that benefits LLMs compared with traditional single-task instructions. Consequently, the objective
function for each concatenated overall data sample can be formulated as follows:

max
θ

l∑
j=1

log pθ ([y1, ..., yk]j |[x1, ..., xk], [y1, ..., yk]<j) , (2)

Here, [y1, ..., yk]j denotes the jth token of the overall response, [y1, ..., yk]<j denotes the tokens
prior to jth token, and l represents the length of overall response. This formulation encapsulates
the essence of our approach, optimizing the model parameters θ to maximize the likelihood of
generating the correct sequence of responses for the given overall instruction.

2.2.2 ADVANCED MOSAIC STRATEGIES

Though effective, this simple primary mosaic strategy constrains LLMs in responding to the instruc-
tions with the original order and format, potentially limiting its generalization and practical usage.
In our method, the instructions and corresponding responses from the original dataset can be viewed
as atomic components and our method randomly combines these elements together to form new
instructions and responses. This nature allows us to further complicate this process with fancier
strategies thus forcing LLMs to follow more complicated overall instructions. Hence, we propose
three Advanced Mosaic Strategies to complicate and diversify the mosaicked samples as shown in
Figure 2, including Format, Permute, and Maskout, with meta-instructions guiding them.

Format In the Format strategy, some arbitrary formats are defined in the meta-instruction to force
LLMs to follow these formats in the response. The formats mainly contain two categories: 1)
Serial Digit Format and (2) Response Parsing Format. The serial digits establish the initial instruc-
tion order that guides LLMs to follow sequentially. We manually define 10 types of serial digit
format, which will be randomly sampled during each mosaic process. For response parsing, we
simulate the scenario where the users try to extract specific information from the responses. We
define 27 types of parsing brackets and 17 types of parsing text pairs, which will be randomly sam-
pled and assembled during each mosaic process. Examples can be found in Appendix D, which
can be easily extended for customized training settings. We denote responses with specific formats
as y′i = wrap(yi, sformat), and l as the token length of the overall response. An additional meta-
instruction sformat specifying the required format will be included in the overall instruction. Thus,
the objective function for each mosaic data point:

max
θ

l∑
j=1

log pθ ([y
′
1, ..., y

′
k]j |[x1, ..., xk, sformat], [y

′
1, ..., y

′
k]<j) (3)

Permute and Maskout Building upon the Format strategy, we further introduce two strategies for
our Mosaic-IT, Permutation and Maskout.

In the Permute strategy, an arbitrary permuted order is defined in the meta-instructions, forcing
LLMs to follow. Moreover, several high-level rules are defined to ensure the complexity and di-
versity of meta-instructions, e.g., forcing LLMs to respond to each instruction in the randomly
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generated permutation list, forcing LLMs to respond in the alphabetical order of each instruction,
forcing LLMs to respond according to the length of instructions, etc. The detailed rule types and
descriptions are depicted in Appendix D. These various meta-instructions not only provide higher-
level guidelines for LLMs to follow multiple instructions but also inherently enhance the instruction
perception ability of LLMs. In our settings, LLMs are required to generate responses selectively
conditioned on some critical parts of the overall instruction, forcing them to first understand the for-
mats and other requirements, indicating a more comprehensive understanding of the context given.
The meta-instruction is denoted as spermute and is included in the overall instruction. The permuted
response list is denoted as [y′1′ , ..., y

′
k′ ] = Permute([y′1, ..., y

′
k], spermute). Thus the objective func-

tion can be formulated as below:

max
θ

l∑
j=1

log pθ ([y
′
1′ , ..., y

′
k′ ]j |[x1, ..., xk, sformat, spermute, [y

′
1′ , ..., y

′
k′ ]<j ]) , (4)

In the Maskout strategy, some arbitrary instructions are selected in the meta-instructions forcing
LLMs to ignore them. Several high-level rules are also defined similarly to the permute strategy,
including forcing LLMs to ignore the instructions with given random digits, forcing LLMs to ignore
the longest one/several instructions, forcing LLMs to ignore odd-numbered instructions, etc. The
details are provided in Appendix D. Similarly, the meta-instruction is denoted as smaskout and the
response list is denoted as [y′1, ..., y

′
m] = Maskout([y′1, ..., y

′
k], smaskout), where m is the count of

responses after masking out. Thus the objective function can be formulated as below:

max
θ

l∑
j=1

log pθ ([y
′
1, ..., y

′
m]j |[x1, ..., xk, sformat, smaskout], [y

′
1, ..., y

′
m]<j) (5)

It’s important to note that our mosaic strategies entail no supervision cost, and the predefined rules
are flexible and have the potential for further extension. We utilize the version with three Advanced
strategies as our default Mosaic-IT.

How to decide the Number of Instructions k: Number of Instructions denotes the number of
original data samples that are integrated into an overall sample. In addition to the detailed mosaic
strategies being used, this count also dramatically affects the effect of Mosaic-IT. Our experiments
reveal that larger and more diverse numbers of instructions will benefit LLM training. By default,
we set the maximum number of instructions as kmax = 10, and randomly sample an integer that is
smaller or equal to kmax under a uniform distribution. If the number causes the data sample to be
longer than the max length, it will be automatically reduced to the max number which remains the
sample length within the limits.

3 EXPERIMENTAL SETUP

3.1 IMPLEMENTATION DETAILS

The experiments are conducted on: Llama2-7B, Llama2-13B Touvron et al. (2023b), and Mistral-
7B Jiang et al. (2023), Llama-3-8B Dubey et al. (2024), Phi-3 Abdin et al. (2024), and Gemma2-2B
Team et al. (2024). The training datasets include Alpaca Taori et al. (2023), Alpaca-GPT4 Peng
et al. (2023), WizardLM Xu et al. (2023), Vicuna 1M Zheng et al. (2024a), and Magpie Xu
et al. (2024b) datasets. Due to the really large size of Vicuna 1M and Magpie, 300k instances
are randomly sampled for our experiments. The detailed description of datasets and the training
configurations are introduced in Appendix B.

3.2 EVALUATION METRICS

We utilize five automatic evaluation metrics, including (i) LLM-based Pair-wise Comparison, (ii)
Open LLM leaderboard, (iii) MT-Bench, (iv) Alpaca Eval, and (v) IF Eval, and (vi) Human eval-
uation to verify the effectiveness of our method. They are widely accepted evaluation metrics for
measuring LLMs’ instruction-following capabilities. The introductions of the five automatic evalu-
ation metrics are provided in Appendix B.
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Table 1: The performance comparison on the Pair-wise Comparison Winning Score and the Open
LLM Leaderboard, on 3 different base models and 3 different instruction tuning datasets.

Model Dataset Method Pair-wise ↑ Huggingface Open LLM Leaderboard ↑
Winning Score Average ARC HellaSwag MMLU TruthfulQA

Mistral-7B

Alpaca-GPT4 Baseline 1.000 59.70 55.03 78.87 56.01 48.88
Mosaic-IT 1.349 63.65 59.04 81.85 60.09 53.62

Alpaca Baseline 1.000 55.15 51.96 74.61 52.85 41.20
Mosaic-IT 1.390 58.86 56.23 79.57 57.06 42.58

Wizard-70k Baseline 1.000 57.86 51.88 77.93 53.76 47.89
Mosaic-IT 1.161 61.11 57.85 82.13 57.42 47.08

Llama2-7B

Alpaca-GPT4 Baseline 1.000 58.71 54.69 80.05 47.89 52.21
Mosaic-IT 1.073 58.84 54.18 80.54 47.92 52.70

Alpaca Baseline 1.000 55.25 54.35 78.65 47.02 40.98
Mosaic-IT 1.096 55.32 53.75 78.65 46.88 41.98

Wizard-70k Baseline 1.000 57.09 54.18 79.25 46.93 48.02
Mosaic-IT 1.197 57.41 54.69 79.69 48.11 47.13

Llama2-13B

Alpaca-GPT4 Baseline 1.000 61.47 58.70 83.12 54.13 49.92
Mosaic-IT 1.110 63.26 58.87 83.54 55.75 54.87

Alpaca Baseline 1.000 57.63 57.25 81.23 54.13 37.91
Mosaic-IT 1.046 58.80 56.57 81.79 54.28 52.55

Wizard-70k Baseline 1.000 61.24 57.04 83.39 55.76 48.78
Mosaic-IT 1.078 61.50 58.70 83.69 56.44 47.18

Table 2: The performance comparison on the MT-Bench, Alpaca Eval, and IF Eval Benchmarks.
Rate(LC) in Alpaca Eval represents the length-controlled win rates. In IF Eval, Prompt, and Inst
represent Prompt-level and Instruction-level accuracy; S and L represent Strict and Loose versions.

Model Dataset Method MT-Bench ↑ Alpaca Eval 2 ↑ IF Eval ↑
1-round 2-round Rate (LC) Rate Prompt (S) Inst (S) Prompt (L) Inst (L)

Mistral 7B
Alpaca-GPT4 Baseline 6.44 5.26 3.98 7.28 32.53 42.93 35.86 45.92

Mosaic-IT 7.11 4.69 5.00 7.81 37.15 48.56 38.08 50.23

Wizard-70k Baseline 6.21 4.70 4.13 6.46 39.56 49.88 41.96 53.00
Mosaic-IT 6.95 4.32 4.44 7.56 40.85 51.80 45.47 56.47

Human Evaluation is further implemented to substantiate the superiority of our approach based
on the WizardLM test set. The test set contains 100 samples randomly sampled from the original
WizardLM test set. Three human evaluators were tasked with comparing the outputs generated by
the models under consideration, using the same criteria as in the previous pairwise evaluation. Each
evaluator was presented with three response options: Win, Tie, and Loss. The final outcomes were
determined by a majority vote.

4 EXPERIMENTAL RESULTS

4.1 MAIN RESULTS

In this section, we present the evaluation results comparing our methods with the baseline meth-
ods on several baseline models (Mistral-7B Jiang et al. (2023), Llama2-7B Touvron et al. (2023b),
Llama2-13B) and instruction tuning datasets (Alpaca-GPT4 Peng et al. (2023), Alpaca Taori et al.
(2023), WizardLM-70k Xu et al. (2023)), on Two general evaluation settings (Pair-Wise Compar-
ison and Open LLM leaderboard) described above, as shown in the Table 1. Pair-wise Winning
Score indicates the result directly comparing our models with the corresponding baseline models,
which is calculated as (Num(Win)−Num(Lose))/Num(All) +1. These values that are greater than
1.0 represent better responses generated by our models. The performances on the Huggingface
Open LLM Leaderboard are also presented, and we bold the greater average values for each com-
parison. The consistent outperforming results on different base models and datasets represent the
effectiveness and robustness of our methods.

To better understand how our method improves the instruction-following abilities of LLMs, we fur-
ther compare the performance on other Three benchmarks for fine-grained analysis based on the
Mistral-7B base model with two datasets as shown in Table 2. On the MT-Bench, the 1-round
scores of our method are higher, indicating that our method mainly improves the response quality

6
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Table 3: The performance comparison on more model families and datasets on all five automatic
evaluation metrics. In IF Eval, P and I represent Prompt-level and Instruction-level accuracy.

Model Dataset Method Pair-wise ↑ Open LLM ↑ Alpaca Eval 2 ↑ MT-Bench ↑ IF Eval ↑
Score Average Rate (LC) Rate 1-round 2-round P(L) I(L)

Llama-3-8B
Vicuna Baseline 1.000 52.51 2.15 1.36 6.70 5.06 21.26 33.45

Mosaic-IT 1.234 55.62 3.09 2.05 6.85 5.40 31.42 45.56

Magpie Baseline 1.000 56.15 9.22 13.74 8.10 7.08 35.67 47.72
Mosaic-IT 1.133 60.13 12.23 16.05 8.36 7.49 40.67 52.76

Phi-3
Vicuna Baseline 1.000 62.06 4.20 2.74 5.34 4.18 30.50 43.17

Mosaic-IT 1.083 62.30 5.95 3.83 5.89 4.53 32.35 41.85

Magpie Baseline 1.000 62.90 13.82 17.68 7.78 6.42 44.36 55.52
Mosaic-IT 1.014 63.54 14.04 17.67 7.89 6.16 50.83 62.35

Gemma2-2B
Vicuna Baseline 1.000 48.90 1.72 1.31 6.69 5.25 23.66 35.61

Mosaic-IT 1.266 51.31 1.90 1.38 6.93 5.26 24.03 36.93

Magpie Baseline 1.000 46.37 5.35 7.77 4.57 3.23 21.81 32.49
Mosaic-IT 1.032 48.36 5.66 8.54 5.16 3.96 22.18 34.77

for single-round conversations, which is reasonable as the meta instructions only focus on single-
round formats. On the Alpaca Eval benchmark, our method has a consistent improvement with or
without the Length Control (LC), indicating that the improvement of response qualities does not
directly originate from the length of responses. On the IF Eval benchmark, our method consistently
improves the performances on all 4 different settings, both Prompt-level and Instruction-level, both
Strict version and Loose version. Compared with the previous benchmarks, IF Eval mainly focuses
on the constraint-following ability of LLMs. The consistent improvement in this benchmark repre-
sents that our method not only improves the response qualities of the LLMs but also improves their
controllability regarding formats. Given that our method is a cost-free augmentation technique that
does not rely on any additional models, the observed improvements are remarkable.

Moreover, to further verify the effectiveness of our method, more experiments on different model
families and data families are conducted, as shown in Table 3, including Llama-3-8B Dubey et al.
(2024), Phi-3 Abdin et al. (2024), and Gemma2-2B Team et al. (2024) models on Vicuna 1M Zheng
et al. (2024a), and Magpie Xu et al. (2024b) datasets. For these two datasets, 300k data are randomly
sampled to verify the scalability of our method when dealing with large amounts of instruction-
tuning data. The performances of our models consistently outperform the baseline models across
different model families and data sources, ranging from diverse data qualities.

Further Human Evaluations are conducted on Mistral-7B with Alpaca-GPT4 and WizardLM
dataset. For the comparison on (1) Alpaca-GPT4: the model using Mosaic-IT wins on 68 out of
100 instruction, ties on 3, and losses on 29 instructions; on (2) WizardLM: the model using Mosaic-
IT wins on 63 out of 100 instruction, ties on 6, and losses on 31 instructions. This human evaluation
also further verifies the effectiveness of our Mosaic-IT.

4.2 ABLATION STUDIES

In this section, extensive ablation experiments are conducted on Mistral-7B using with the Alpaca-
GPT4 dataset to verify our method. We utilize Pair-wise comparison for evaluation.

Table 4: Ablation on (a) Mosaic-IT strategies and (b) Max Number of Instructions.

(a) Ablation on Mosaic-IT strategies.

Winning Score Win Tie Lose

Primary 1.261 110 55 53
Format 1.284 109 62 47

Permute 1.334 118 55 45
Maskout 1.376 121 58 39
Permute/Maskout 1.349 123 48 47

(b) Ablation on the Max Number of Instructions.

Winning Score Win Tie Lose

Max Count = 2 0.989 70 75 73
Max Count = 4 1.142 92 65 61
Max Count = 6 1.303 111 62 45
Max Count = 8 1.294 112 58 48
Max Count = 10 1.349 123 48 47
Max Count = 12 1.376 124 52 42

Ablation on Mosaic Strategies is presented in Table 4a. “Primary” represents the Primary Mosaic
Strategy. The winning score of this setting is greater than 1.0, indicating a better performance
compared with the baseline method. This comparison directly verifies the effectiveness of the idea
of introducing multiple instructions during training, which complicates the instructions at no cost
and improves the instruction-following ability of LLMs. “Format” represents the Format Strategy.
Although the winning score is only slightly greater than the naive version, this version makes it
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possible for LLMs to follow the customized user-defined formats, indicating great potential for
the controllability of LLMs. Moreover, the format version can be easily used with other types of
meta instructions, showing great extensibility. “Permute” represents the Permute Strategy that
builds on the Format Strategy with a probability of 1/2, similar to “Maskout”. “Permute/Maskout”
represents our default setting, where the Permute or Maskout Strategies are utilized together with
the Format Strategie with a probability of 1/3. All these 3 settings show higher performance than
the format version, indicating the effectiveness of Advanced Mosaic Strategies which define more
complicated meta instructions.

Table 5: Ablation on the Distribution of Number of In-
structions. The distribution formula and data counts for
different settings are shown in Appendix A. “Mix ≤ 5” rep-
resents the percentage of samples with the number of in-
structions less or equal to 5.

Winning Score Win Tie Lose Mix ≤ 5

Fix 0.982 90 34 94 2.39%
Exponential 0.995 94 29 95 2.58%

Pareto 1.417 129 51 38 8.94%
Log-normal 1.431 136 40 42 6.83%
Logistic 1.417 123 49 46 15.84%

Uniform 1.349 123 48 47 51.45%

Ablation on the Max Number
of Instructions is presented in
Table 4b, including the pair-wise
comparison values. As shown in
the table, when the max number
is set as 2, i.e. at most 2 instruc-
tions/responses are concatenated
together, the performance is almost
the same as the baseline, indicating
the ineffectiveness. However, when
the max number grows, the corre-
sponding winning scores also grow
consistently. This trend shows that
the more instructions concatenated
together, the better the instruction-following ability. We hypothesize that, with the growth of the
number of instructions, the overall instruction becomes much harder to follow, especially for the
permute and maskout strategies, which benefits LLMs’ instruction-following capability.

Figure 3: Ablation on the Distribution of Number of
Instructions, the visualization of distribution comparisons.

Ablation on the Distribution of
Number of Instructions is pre-
sented, including the pair-wise
comparison values in Table 5 and
detailed number distribution com-
parisons in Figure 3, which aims at
identifying how this count distribu-
tion affects the performance of our
method. The detailed distribution
formula and data counts are provided
in the Appendix A. “Fix” represents
the setting where all the overall
instructions are concatenated with a
fixed number of instructions, which
we set as 10 unless the overall
instructions exceed the max length limit. “Exponential” represents the setting where the number
of instructions is sampled following the exponential distribution. Under these two settings, less
than 3% of the overall instructions are concatenated by less or equal to 5 original instructions. The
lack of few-instruction concatenated samples negatively affects the LLMs’ ability to follow the
single instruction, which is employed by most of the existing evaluation methods, leading to worse
performances. “Pareto”, “Log-normal”, and “Logistic” represents the corresponding distribution
that are utilized for sampling. Different from the above two settings, approximately 10% of the
overall instructions are composed of fewer original instructions, thus ensuring the LLMs are trained
with samples with sufficiently diverse lengths, resulting in optimal performances. “Uniform” is our
default setting, representing using the uniform distribution where different numbers are sampled
evenly. In this situation, the LLMs are trained with samples with the most diverse lengths, thus
avoiding the LLMs overfit to simple lengthy responses.

5 FURTHER DISCUSSION

5.1 PRELIMINARY EXPERIMENTS: PERFORMANCE DEGRADATION

The motivation of our Mosaic-IT is also rooted in the observation that when handling multiple
instructions simultaneously, a performance degradation will incurred for even strong LLMs like
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Figure 4: The training loss curve comparisons between the original instruction tuning process and
our Mosaic-IT with w datasets on (a) Mistral-7B, (b) Llama2-7B, and (c) Llama2-13B. The “stair-
like” loss curves for the original training process indicate potential memorizing effects, while
our loss curves are smoother. All the training settings are kept the same between the baseline mod-
els and Mosaic-IT models, including the Learning Rate, Warm-up Ratio, Learning Rate Schedule
(Cosine), Batch Size, etc.

GPT-4-turbo. While LLMs generally perform well when responding to single instructions, their
capability to follow multiple instructions at once tends to decline noticeably. BatchPrompt has
shown the uncertainty when LLMs are requested to answer multiple formatted questions at one
time. Moreover, in some cases, e.g for general open-domain instructions, LLMs might directly
ignore some of the instructions, especially when the LLMs are required to respond to the instructions
in a random pre-defined order, which is exactly simulating our Permute strategy.

To quantitatively analyze this phenomenon, experiments using GPT-3.5-turbo and GPT-4-turbo are
conducted on the WizardLM test set. Specifically, we compare the models’ performance when
responding to multiple instructions concurrently versus responding to a single instruction at each
time, by utilizing LLM-based Pair-Wise comparison, as shown in Table 6. All the win rates are lower
than 1.0, demonstrating a clear and significant reduction in response quality when these models
are required to respond to multiple instructions at one time. Moreover, the possibility of missing
instructions (Miss Rate) increases further when they are required to respond to the instructions in
a predefined random order rather than a sequential order. These results clearly demonstrate the
difficulties of following several instructions at a time and why it can be regarded as a higher level of
instruction-following capability.

Table 6: Pair-wise win rate of performances when responding to multiple instructions concurrently
versus responding to a single instruction each time, and miss rate when responding to multiple
instructions concurrently. “3 Instructions” represents the setting where 3 random instructions are
concatenated together for inference. “Sequential” and “Random” represents the setting where the
models are asked to respond to each instruction sequentially, or in a random pre-defined order.

Pair-Wise (Multi vs. Single) 3 Instructions 5 Instructions 7 Instructions
Win Rate ↑ Miss Rate ↓ Win Rate ↑ Miss Rate ↓ Win Rate ↑ Miss Rate ↓

GPT-3.5-turbo (Sequential) 0.357 0.014 0.336 0.055 0.303 0.064
GPT-3.5-turbo (Random) 0.315 0.124 0.330 0.156 0.198 0.312

GPT-4-turbo (Sequential) 0.176 0.000 0.137 0.000 0.140 0.000
GPT-4-turbo (Random) 0.139 0.000 0.153 0.014 0.101 0.005

5.2 MOSAIC: ALLEVIATING MEMORIZING

In the original instruction tuning process, each data sample will be trained several times for LLMs
without changes to the instructions and responses. This training process poses risks to the potential
memorizing effects on training samples, which can be partially indicated by the “stair-like” training
loss curves as shown in Figure 4. In the figure, all the training settings are kept the same between
the baseline models and Mosaic-IT models, including the Learning Rate, Warm-up Ratio, Learning
Rate Schedule (Cosine), Batch Size, etc. For the baseline methods, the training loss hardly decreases
within each epoch of training but drops dramatically when the LLMs meet the same training samples
again, which indicates a potential memorizing effect of training samples and potential overfitting.
However, when utilizing our method, the random mosaics of original instructions with diverse
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Table 7: The training time comparison of different settings, and the pair-wise winning scores are
also provided for better illustration. “Uni-2” represents uniform distribution with max count as 2.
Mosaic-IT reduces the training time to 16%− 25% while achieving better performance.

Settings Baseline Fix Exponential Pareto Log-normal Logistic Uni-2 Uni-4 Uni-6 Uni-8 Uni-10 Uni-12

Time (min) 827 121 129 133 133 143 716 426 305 245 202 173
Time Ratio 100.0% 14.6% 15.6% 16.1% 16.1% 17.3% 86.6% 51.5% 36.9% 29.6% 24.4% 20.9%

Winning Score 1.000 0.982 0.995 1.417 1.431 1.417 0.989 1.142 1.303 1.294 1.349 1.376

and complex meta-instructions largely diversify the overall training instructions. Although each
original data sample will still be seen by LLMs several times during training, the overall context
varies dramatically as each original sample is only an atomic element of the overall mosaic sample,
indicating that there will be no identical overall instructions during the whole training process. Thus
this augmentation largely alleviates the potential memorizing and overfitting problems as shown in
the figure, where the training loss decreases smoothly, representing the gradual learning process.

5.3 MOSAIC: IMPROVING EFFICIENCY

One of the benefits of our method is the efficiency of the training process. Given an existing dataset,
our mosaic processes largely decrease the number of total overall instructions and the total number
of gradient descents, leading to a reduction in the training process. The detailed comparison is
shown in Table 7, which is based on the Mistral-7B model on the Alpaca-GPT4 dataset. The time is
calculated based on four NVIDIA A100 Graphic Cards. As shown, our method greatly decreases the
training time to approximately 16% to 25% while achieving better performances, especially when
there are mosaic samples with larger permutation counts.

5.4 MOSAIC: WHY IT WORKS?

The effect of our method is aligned with the Dense and Aligned Captions Doveh et al. (2023) used
in VL Models, which utilizes denser captions to promote the VL models. Different from all previous
methods which require LLMs to generate the whole response conditioned on the whole instruction,
our method forces LLMs to generate responses selectively conditioned on some critical parts of
the overall dense instruction. Especially in advanced strategies, LLMs are required to generate
responses conditioned not only on sequential parts of the instruction, but diverse and randomized
segments of it, which is defined by meta-instruction.

Compared to original settings, our setting requires LLMs to first understand the formats and orders
defined in the meta-instructions, then adapt to conditioning on different parts of the instructions
when generating responses. This process forces LLMs to develop a more comprehensive under-
standing of context, prioritize various pieces of information, and manage complex dependencies
between instructions, thus improving instruction-following performance. Moreover, the entire pro-
cess is data- and model-agnostic, ensuring the generalizability of our method.

5.5 LIMITATION AND FUTURE DIRECTIONS

The potential limitations of our work: (1) Currently, three Advanced Mosaic Strategies with
corresponding high-level rules are proposed and utilized in our method, however, we believe more
strategies and predefined rules can be further introduced. (2) The optimal distribution of the number
of instructions for the mosaic process still needs further justification in future studies. (3) It is
unknown whether the inclusion of extra models or careful curation/selection of instructions for
concatenation will further improve the performance of Mosaic-IT largely.

6 CONCLUSION

We introduce Mosaic Instruction Tuning (Mosaic-IT), a novel, human/model-free method to en-
hance instruction tuning for LLMs. By concatenating multiple instruction-response samples and
using higher-level meta-instructions, Mosaic-IT improves multi-step and format-following capabili-
ties. Our evaluations show superior performance and an 80% reduction in training costs compared to
the original methods. Mosaic-IT’s simplicity and efficiency make it a scalable solution for improv-
ing LLMs without extensive human intervention or resource-intensive teacher models. Our results
highlight the potential of innovative data augmentation techniques in advancing LLM capabilities.
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A DETAILED DISTRIBUTION FOR ABLATION ON MIXTURE DISTRIBUTION

A.1 DISTRIBUTION DESCRIPTION

The detailed distribution descriptions and formulas are provided below.

Exponential Distribution1: The exponential distribution is a continuous probability distribution
used to model the time or space between events in a Poisson process. The probability density
function (PDF) of the exponential distribution is:

f(x;λ) = λe−λx for x ≥ 0,

where λ = 1 by default in our setting. We will resample with this distribution if the sampled value
xsample is greater then kmax.

Log-normal Distribution2: The log-normal distribution is a continuous probability distribution of
a random variable whose logarithm is normally distributed. It is often used to model variables that
are positively skewed, such as income, stock prices, and other financial data. The probability density
function (PDF) for a log-normal distribution is given by:

f(x;µ, σ) =
1

xσ
√
2π

exp

(
− (lnx− µ)2

2σ2

)
for x > 0

where µ = 0 and σ = 0 by default in our setting. We will resample with this distribution if the
sampled value xsample is greater than kmax.

Logistic Distribution3: The logistic distribution is a continuous probability distribution used in
various fields, including logistic regression, modeling growth, and in some cases as an alternative
to the normal distribution due to its heavier tails. The probability density function (PDF) for the
logistic distribution is given by:

f(x;µ, s) =
e−(x−µ)/s

s
(
1 + e−(x−µ)/s

)2
where µ = 0 and s = 2 by default in our setting. We will resample with this distribution if the
sampled value xsample is greater than kmax.

Pareto Distribution4: The Pareto II or Lomax distribution is a shifted Pareto distribution. It can be
considered as a simplified version of the Generalized Pareto distribution, with the scale set to one
and the location set to zero. The probability density function (PDF) for the Pareto distribution is:

f(x;α) =
αmα

xα+1
for x ≥ m,

where m = 1 and α = 1 by default in our setting. We will resample with this distribution if the
sampled value xsample − 1 is greater than kmax.

After getting xsample, a floor function will be utilized to get the corresponding integer and the final
concatenation count k = kmax − floor(xsample).

A.2 DISTRIBUTION VISUALIZATION

The detailed data counts for different distributions are provided in Figure 5.

1https://numpy.org/doc/stable/reference/random/generated/numpy.random.exponential.html
2https://numpy.org/doc/stable/reference/random/generated/numpy.random.lognormal.html
3https://numpy.org/doc/stable/reference/random/generated/numpy.random.logistic.html
4https://numpy.org/doc/stable/reference/random/generated/numpy.random.pareto.html
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(a) Fix Max Number (b) Exponential Distribution

(c) Log-normal Distribution (d) Logistic Distribution

(e) Pareto Distribution (f) Uniform Distribution

Figure 5: Bar plots of detailed data counts for different distributions in the Ablation on the Numbers
of Instructions: (a) Fix Max Number, (b) Exponential Distribution, (c) Log-normal Distribution, (d)
Logistic Distribution, (e) Pareto Distribution, (f) Uniform Distribution.
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B EXPERIMENTAL SETUP

B.1 IMPLEMENTATION DETAILS

For the three base pre-trained models, Llama2-7B, Llama2-13B Touvron et al. (2023b), and Mistral-
7B Jiang et al. (2023), we utilize the prompt and code base from Vicuna Chiang et al. (2023) and
flash attention Dao et al. (2022). The overall training arguments are aligned with the common
training configuration. The Adam optimizer Kingma & Ba (2017) is utilized with the batch size
of 128 and with the max token length of 2048. When training the baseline models Llama2-7B
and Llama2-13B, the maximum learning rate is set to 2 × 10−5 with the warmup rate as 0.03 for
3 epochs. When training the baseline models on Mistral-7B, the maximum learning rate is set to
1× 10−5 with the warmup rate as 0.1 for 3 epochs. For the three models, Llama-3-8B Dubey et al.
(2024), Phi-3 Abdin et al. (2024), and Gemma2-2B Team et al. (2024), we utilize the code base from
LLaMA-Factory Zheng et al. (2024b). The max token length is set with 4096 following the modern
settings and we train the model for 2 epochs. Other parameters are kept the same as the above.

When training with Mosaic-IT, we run the mosaic process n times for each experiment to simulate
n epochs of training, n represents the number of epochs trained on baseline models, to ensure the
alignment of overall data sample counts. Then these augmented data are mixed together and used
for training 1 epoch while all other configurations are kept the same as baselines.

B.2 TRAINING DATASET

The Alpaca dataset Taori et al. (2023) comprises 52, 000 instruction-following samples and is con-
structed utilizing the self-instruct paradigm Wang et al. (2023b). This dataset was produced by em-
ploying OpenAI’s text-davinci-003 model. Characterized as a classical dataset with moderate quality
attributes, the Alpaca dataset serves as an initial platform to validate our methodology. To further
substantiate our approach using a dataset of inherently high quality, we also applied our method
to the Alpaca-GPT4 dataset Peng et al. (2023), which features responses generated by GPT4. The
WizardLM dataset Xu et al. (2023) is also utilized in our method, which contains 70, 000 samples
created by the evolution algorithm proposed by them. With ChatGPT-3.5 utilized, the data quality
on WizardLM is largely guaranteed. The Vicuna 1M dataset Zheng et al. (2024a) is a large-scale
dataset containing one million real-world conversations with 25 state-of-the-art LLMs, due to the
computation budget, 300k instances are randomly sampled for our experiments. Magpie dataset Xu
et al. (2024b) is a most recent SOTA synthetic dataset with 300k samples.

B.3 EVALUATION METRICS

Pair-wise Comparison by using powerful LLMs like GPT-4 is recently widely accepted and becom-
ing a common practice Touvron et al. (2023b); Chiang et al. (2023); Dettmers et al. (2023); Liu et al.
(2023b); Chiang & Lee (2023). The evaluation of responses from LLMs, especially in open-domain
contexts where definitive ground truth is hard to establish, continues to be an intricate and evolving
research domain. Recent studies, however, have indicated a notable alignment between GPT-4’s
performance evaluations and human assessments Zheng et al. (2023); Li et al. (2023c); Sottana et al.
(2023), thereby establishing a credible foundation for this evaluative methodology. We adopted test
instruction sets from WizardLM Xu et al. (2023), comprising 218 diverse, human-curated instruc-
tions for pair-wise comparison. We directly follow the evaluation framework proposed by Chen
et al. (2023); Li et al. (2024d), which evaluates responses on a scale spanning from 1 to 10 across
multiple dimensions. To further address positional bias, as discussed by Ko et al. (2020); Wang
et al. (2023a), the comparison is conducted in two distinct sequences, LLM1’s response first and
then LLM2’s response first, ensuring a fair assessment of model performance. Evaluation outcomes
are categorized into ’win-tie-loss’ for each instruction. The detailed evaluation prompt is provided
in Appendix E.

Open LLM Leaderboard, employing the evaluation framework from Eval Harness Gao et al.
(2021), offers a detailed and systematic approach to assessing the capabilities of generative lan-
guage models through a set of diverse evaluation tasks. This methodology zeroes in on four pivotal
benchmarks: ARC Clark et al. (2018), HellaSwag Zellers et al. (2019), MMLU Hendrycks et al.
(2021), and TruthfulQA Lin et al. (2022). These benchmarks collectively provide a comprehensive
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evaluation of the models’ reasoning abilities, their grasp of common-sense knowledge, and their ac-
curacy in presenting factual information. Consequently, the leaderboard presents valuable insights.

Alpaca-Eval Leaderboard, leveraging the AlpacaFarm evaluation dataset, presents a dependable
and efficient automated evaluation tool for LLMs Li et al. (2023c); Dubois et al. (2023). This
tool benchmarks the responses generated by LLMs against those from Davinci003, focusing on the
models’ ability to adhere to generic user instructions.

MT-Bench (Multi-turn Benchmark) Zheng et al. (2023) is a benchmark tool designed for automated
evaluating LLMs in multi-turn dialogue settings. It focuses on analyzing conversation flow and the
model’s ability to follow instructions with 80 high-quality, multi-turn questions.

IFEval (Instruction-Following Eval) Zeng et al. (2024) is a straightforward and easy-to-produce
evaluation benchmark focusing on a set of “verifiable instructions”. It contains 25 types of verifiable
instructions and 541 prompts, with each prompt containing one or multiple verifiable instructions.
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C RELATED WORK

Earlier research in instruction tuning primarily centered on constructing expansive, high-quality
datasets through intensive curation by human experts, a process both time-consuming and labor-
intensive Khashabi et al. (2020); Ye et al. (2021); Wei et al. (2022); Wang et al. (2022); Du et al.
(2022). Motivated by the success of Alpaca Taori et al. (2023), recent studies have explored auto-
mated approaches for developing instruction-tuning datasets.

Instruction Data Improvement: WizardLM Xu et al. (2023) first proposes an Evol Algorithm to
complicate the existing data and reach supreme performance. LaMini-LM Wu et al. (2024) inno-
vatively generates ”Topic-Guided” instructions utilizing Wiki data. Tree-Instruct Zhao et al. (2024)
preliminarily explores the relationship between instruction complexity and Alignment and proposes
adding nodes to complicate the instruction. UltraChat Ding et al. (2023) establishes broad thematic
scopes, systematically generating numerous instructions within each. Reflection-Tuning Li et al.
(2023a) sequentially refines both instructions and responses by focusing on specific evaluative cri-
teria. DEITA Liu et al. (2023a) utilizes ChatGPT to diversify and then select the data. Selective
Reflection-Tuning Li et al. (2024b) proposes a teacher-student collaborative pipeline to improve
and select the data. Instruction Fusion Guo et al. (2024) proposes to utilize ChatGPT4 to merge
two distinct instructions for further complexity enhancement. These advancements showcase a shift
towards automating the generation and refinement of datasets, reducing reliance on human labor.

Instruction Data Selection: It is widely accepted that ”quality is all you need” Touvron et al.
(2023b); Zhou et al. (2023) for instruction tuning. LIMA Zhou et al. (2023) demonstrates that
merely 1,000 human-carefully-curated, high-quality training instances can substantially enhance the
instruction-following performance. InsTag Lu et al. (2023) employs the proprietary model, Chat-
GPT, to tag instruction data and select data with complex tags. Alpagasus Chen et al. (2023) utilizes
proprietary LLMs chatGPT and Claude2 to directly assess the quality of instruction tuning data.
Cherry LLM Li et al. (2024d) proposes the Instruction-Following Difficulty (IFD) scores to as-
sess the difficulty of the instructions, which is a self-guided method in which no extra LLMs are
utilized. Motivated by Humpback Li et al. (2023b), Selective Reflection-Tuning Li et al. (2024b)
extends the IFD score to a reverse version, focusing on the feasibility of responses. Du et al. (2023)
and Bukharin & Zhao (2023) utilize reward models as the base scores for measuring data quality.
DEITA Liu et al. (2023a) experiments on several different data selection metrics and builds a dataset
with high quality. Superfiltering Li et al. (2024c) reveals the consistency between weak and strong
language models in perceiving instruction difficulty, making the filtering process much more effi-
cient. All these works are devoted to distinguishing and selecting good data samples from bad ones
for instruction tuning.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D PREDEFINED RULES

Examples of predefined formats can be found in Table 8 and detailed predefined rule descriptions
can be found in Table 9.

Table 8: Examples of predefined formats, including the Serial Digit formats and Response Parsing
formats. “i” represents the real number serial number, “text” represents the replaceable parsing text,
and “response” represents the real response of the concatenated overall instructions/responses. The
response parsing formats are composed of the parsing bracket and text. In each mosaic process,
random formats will be sampled simulating the real-world user-defined formats. The last column
represents the assembled examples using the formats in the same row.

Serial Digit Parsing Bracket Parsing Text Assembled Examples
i (text) BEGIN, END 1. (BEGIN)response(END)

(i) [text] START, END (1). [START]response[END]
[i] ⟨text⟩ RESPONSE, END [1]. ⟨RESPONSE⟩response⟨END⟩
⟨i⟩ ≪text≫ RESPONSE, END OF RESPONSE ⟨1⟩. ≪RESPONSE≫response≪END OF RESPONSE≫

≪i≫ |text| OPEN, CLOSE ≪1≫. |OPEN|response|CLOSE|
###i [|text|] OPEN RESPONSE, CLOSE ###1. [|OPEN RESPONSE|]response[|CLOSE|]
##i ⟨|text⟩ INITIATE, TERMINATE ##1. ⟨|INITIATE|⟩response⟨|TERMINATE|⟩

##i## #text# START POINT, END POINT ##1##. #START POINT#response#END POINT#
|i| *text* RES START, RES END |1|. *RES START*response*RES END*
||i|| @text@ RES, /RES ||1||. @RES@response@/RES@

Table 9: Predefined rules for the Permute and Maskout strategy. A random rule will be sampled for
each mosaic process, which largely complicates and diversifies the mosaicked instructions.

Strategy Rule Name Rule Description
Permute FIX Respond in the order of a provided list.
Permute REVERSE Respond in reverse of the original order.
Permute ALPHA Respond in the alphabetical order of the first letter of tasks.
Permute REVERSE ALPHA Respond in the reverse alphabetical order of the first letter of tasks.
Permute LENGTH WORD Respond according to the length (words) of tasks, respond to short ones first.
Permute REVERSE LENGTH WORD Respond according to the length (words) of tasks, respond to long ones first.
Permute LENGTH CHAR Respond according to the length (characters) of tasks, respond to short ones first.
Permute REVERSE CHAR WORD Respond according to the length (characters) of tasks, respond to long ones first.
Permute ODD EVEN First respond to the odd-numbered tasks, then the even-numbered ones.
Permute EVEN ODD First respond to the even-numbered tasks, then the odd-numbered ones.

Maskout FIX Ignore the tasks provided in the list.
Maskout WORD LONG Ignore the longest one/several task(s) according to the word count.
Maskout WORD SHORT Ignore the shortest one/several task(s) according to the word count.
Maskout ODD Ignore the odd-numbered tasks.
Maskout EVEN Ignore the even-numbered tasks.
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E PROMPT FOR EVALUATION

The detailed pair-wise comparison prompt for the pair-wise comparison is in Figure 6.

Prompt for Performance Evaluation

System Prompt
You are a helpful and precise assistant for checking the quality of the answer.

User Prompt
[Question]
Question
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]

We would like to request your feedback on the performance of two AI assistants in response to the
user question displayed above.
Please rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant
receives an overall score on a scale of 1 to 10, where a higher score indicates better overall perfor-
mance.
Please first output a single line containing only two values indicating the scores for Assistant 1 and
2, respectively. The two scores are separated by a space. In the subsequent line, please provide a
comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the
order in which the responses were presented does not affect your judgment.

Figure 6: The prompt we used to request GPT4-Turbo to evaluate the responses.
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F DETAILED PERFORMANCE SCORES ON LLAMA3, PHI3 AND GEMMA2

The detailed performance scores on the Open LLM Leaderboard and IFEval, for Llama-3-8B, Phi-3,
and Gemma2-2B.

Table 10: The performance comparison on more model families and datasets on all five automatic
evaluation metrics. In IF Eval, P and I represent Prompt-level and Instruction-level accuracy.

Model Dataset Method Open LLM Leaderboard ↑ IF Eval ↑
Average ARC HellaSwag MMLU TruthfulQA Prompt (S) Inst (S) Prompt (L) Inst (L)

Llama-3-8B
Vicuna Baseline 52.51 44.54 70.66 49.68 45.18 19.04 30.70 21.26 33.45

Mosaic-IT 55.62 47.78 73.77 56.11 44.83 29.76 43.17 31.42 45.56

Magpie Baseline 56.15 50.09 71.29 54.40 48.84 29.39 40.76 35.67 47.72
Mosaic-IT 60.13 53.58 76.62 60.82 49.52 38.08 49.64 40.67 52.76

Phi-3
Vicuna Baseline 62.06 58.96 76.48 64.89 47.89 28.47 40.29 30.50 43.17

Mosaic-IT 62.30 58.45 77.66 65.24 47.87 30.13 39.57 32.35 41.85

Magpie Baseline 62.90 59.30 75.07 65.89 51.35 39.56 50.84 44.36 55.25
Mosaic-IT 63.54 60.23 76.30 66.14 51.50 42.33 53.60 50.83 62.35

Gemma2-2B
Vicuna Baseline 48.90 43.43 64.20 41.50 46.46 20.51 32.61 23.66 35.61

Mosaic-IT 51.31 46.33 69.32 44.29 45.31 21.44 33.57 24.03 36.93

Magpie Baseline 46.37 39.59 60.71 35.46 49.75 19.78 29.74 21.81 32.49
Mosaic-IT 48.36 39.33 64.10 39.87 50.16 19.78 31.65 22.18 34.77
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