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Abstract
Exploiting the deep image prior property of convolutional auto-encoder networks is especially
interesting for medical image processing as it avoids hallucinations by omitting supervised
learning. Its spectral bias towards lower frequencies makes it suitable for inverse image
problems such as denoising and super-resolution, but manual early stopping has to be
applied to act as a low-pass filter. In this paper, we present a novel Bayesian approach
to deep image prior using mean-field variational inference. This allows for uncertainty
quantification on a per-pixel level and, given the right prior distribution on the network
weights, omits the need for early stopping. We optimize the parameters of the weight
prior towards reconstruction accuracy using Bayesian optimization with Gaussian Process
regression. We evaluate our approach on different inverse tasks on a variety of modalities and
demonstrate that an optimized weight prior outperforms former state-of-the-art Bayesian
deep image prior approaches. We show that a badly selected prior leads to worse accuracy
and calibration and that it is sufficient to optimize the weight prior parameter per task
domain.
Keywords: Variational inference, Hallucination, Deep learning

1. Introduction

Automated methods for improving image quality have several applications in medical imaging,
as acquiring high-quality images is time-consuming, costly, or entails a considerable radiation
dose to the patient. Such use cases include denoising and artifact removal in low-dose CT
or PET (Yang et al., 2018; Ma et al., 2020; Wang et al., 2018), despeckling in ultrasound
or optical coherence tomography (Michailovich and Tannenbaum, 2006; Bernardes et al.,
2010), super-resolution of MRI (Tanno et al., 2017), or inpainting for hair removal in
dermoscopy images (Abbas et al., 2011). Enhancing medical images with poor quality is a
fundamental step for better diagnosis or subsequent image analysis. In this paper, we focus
on post-processing methods that are generally applicable to all aforementioned modalities.

Those methods involve solving an inverse imaging problem, which try to reconstruct a
high-quality image x̂ from a low-quality observation x̃ = c ◦ x of the true, but unknown
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Figure 1: Inpainting for hair removal on dermoscopy images. Our mean-field variational
inference approach to deep image prior is not prone to overfitting, outperforms
the non-Bayesian baseline and provides consistent pixel-wise uncertainty maps.

image x affected by some corruption process c. The reconstruction comprises minimization
of an objective function x̂ = arg min L(x̃, x̂) + λR(x̂), governed by a similarity measure L
and some regularizing image prior R, weighted by a factor λ (Sotiras et al., 2013). Common
priors for image quality enhancement are total variation or penalization of first and higher
order spatial derivatives (Rudin et al., 1992). The prior is of particular importance as it is
responsible for the properties of the enhanced image; its manual selection is a delicate task.

More recently, deep-learning-based convolutional autoencoders have been trained to
enhance images using sets of corrupted and uncorrupted data pairs (Jain and Seung, 2009).
Autoencoders extract important visual features from the corrupted input image and recon-
struct the input from the extracted features using learned image statistics. Through this,
the neural networks implicitly learn regularization priors from data.

However, deep-learning-based methods show insufficient robustness to input data that lay
outside their training domain. Antun et al. (2020) have demonstrated that state-of-the-art
deep learning methods for CT and MR image reconstruction, such as AUTOMAP (Zhu et al.,
2018), show severe instabilities to tiny perturbations in the input data, which causes the
reconstructions to contain considerable artifacts. Even worse, novel pathologies that were not
present in the training data can be made to disappear in the reconstruction (Bhadra et al.,
2020). This phenomenon is referred to as hallucination and is not limited to tomographic
reconstruction but also happens in other deep-learning-based inverse image tasks (Laves
et al., 2020b). Hallucinations can result in misdiagnosis and must be avoided at all costs in
medical imaging.

1.1. Related Work

Lempitsky et al. (2018) have shown that the excellent performance of deep convolutional
networks for inverse image tasks on in-domain data is not only due to their ability to learn
image priors from data, but also due to the structure of the networks themselves. The concept
of deep image prior (DIP) for inverse tasks does not require supervised training and thus,
it is not affected by the aforementioned instabilities and hallucinations. Besides empirical
evidence, the effectiveness of DIP can be explained by the spectral bias of deep networks
(Rahaman et al., 2019). An autoencoder network decouples the frequency components
of an image, comparable to a Fourier transform (Chakrabarty and Maji, 2019). During
optimization, the frequency components are learned at different rates. Lower frequencies are
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reconstructed first, which behaves like a low pass filter; image corruptions such as noise are
usually encoded in the high-frequency components. This makes early stopping in optimization
a crucial step in order to not overfit the corrupting features (see Fig. 1).

However, early stopping requires expert human interaction. We seek to find a more
automated way to prevent DIP from overfitting in order to take advantage of its robustness
towards hallucinations. Cheng et al. (2019) presented a first Bayesian approach to DIP in
the context of natural images, where a prior distribution is placed over the weights of the
network and the posterior distribution is used to output the final image. They derived a
Monte Carlo (MC) sampler from DIP using stochastic gradient Langevin dynamics (SGLD)
as Bayesian approximation, which uses injection of Gaussian noise into the gradients during
each SGD step (Welling and Teh, 2011). The authors claim to have solved the problem
of overfitting and provide pixel-wise reconstruction uncertainty estimates. SGLD DIP has
already been applied to PET image reconstruction (Carrillo et al., 2021). Recently, Laves
et al. (2020b) have shown that DIP with SGLD shows almost unchanged overfitting behavior
in the case of medical images. As a solution, they proposed a variational inference (VI)
approach to DIP using Monte Carlo dropout (Gal and Ghahramani, 2016).

In this paper, we show that former Bayesian approaches to DIP show overfitting on
medical images at some point. We attribute this to the manual selection of the weight’s
prior distribution. It is important to distinguish between DIP, which imposes a spectral
bias towards lower frequencies, and the prior distribution over the weights of the network
in Bayesian inference. In SGLD and MC dropout, the prior is implicitly defined by weight
decay or the dropout rate. We hypothesize that the potential of DIP can be utilized in
medical image enhancement using a well-defined prior distribution in a Bayesian setting.

Contributions Our contribution is a novel approximate Bayesian approach to DIP by
employing mean-field VI (MFVI), where the weight prior can be defined more explicitly
than in SGLD or MC dropout. We further use Bayesian optimization (BO) to tune the
parameters of the weight prior on a per-task level and show its superiority to former
approaches on different medical image enhancement problems. Our code is available at
github.com/maltetoelle/mfvi-dip.

1.2. Background

Bayesian Deep Learning See Appendix F for background information about Bayesian
deep learning.

Deep Image Prior Convolutional networks have been extensively used to learn image
priors from data. Lempitsky et al. (2018) have shown that the structure of a CNN is
sufficient to capture a great amount of image statistics and impose a strong prior to restore
a high-quality image from a low-quality observation without having access to any data.
An image-generating network x̂ = fw(z) with randomly-initialized weights w is used as
a parameterization of the image. The input z is sampled from a uniform distribution
z ∈ RC×H×W ∼ U(0, 0.1) with channels C, width W and height H. Given a low-quality
target image x̃, the reconstructed image is obtained by minimizing the pixel-wise mean
squared error ‖x̃− fw(z)‖2 w.r.t. the weights w. Due to the spectral bias of DIP towards
lower frequencies, early stopping behaves like a low-pass filter (Chakrabarty and Maji, 2019),
making it suitable for many inverse image tasks.
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2. Methods

2.1. Mean-Field Variational Inference for Deep Image Prior

Given a low-quality medical image x̃ and an image-generator network fw(z) = x̂ with
randomly-initialized weights w, DIP aims at finding the optimal weight point estimate ŵ by
maximum likelihood estimation (MLE) with gradient descent. The input z has the same
spatial dimensions as x̂. Before we turn to a Bayesian approach, we model heteroscedastic
reconstruction uncertainty by assuming that x̃ is sampled from a spatial random process
and that each pixel i follows a Gaussian distribution N (x̃i; x̂i, σ̂

2
i ) with mean x̂i and variance

σ̂2i . We extend the last layer such that the network outputs these values for each pixel
fw(z) =

[
x̂, σ̂2

]
. Maximum posterior is performed by minimizing the negative log-likelihood,

which leads to the following optimization criterion (Kendall and Gal, 2017)

L(w) =
1

N

N∑
i=1

σ̂−2i
∥∥x̃i − x̂i∥∥2 + log σ̂2i , (1)

where N is the number of pixels per image. For numerical stability, Eq. (1) is implemented
such that the network directly outputs − log σ̂2.

Next, we employ a MFVI approach to DIP by assuming that the variational posterior
can be factorized as qφ(w) =

∏L
i=1N (wi |µi, σ2i ), with number of layers L. In each forward

pass, the weights are sampled using reparameterization w = µ+ σ � ε with ε ∼ N (0, I),
where � denoting element-wise multiplication. The variational parameters φ = {µ,σ} are
optimized by minimizing the negative log evidence lower bound (ELBO)

φ∗ = arg min
φ

KL[qφ(w) ‖ p(w)]− Ew∼qφ [log p(D |w)] (2)

using backpropagation without weight decay. This effectively doubles the number of trainable
parameters and is known as Bayes by backprop (Blundell et al., 2015). The first term in
Eq. (2) is usually approximated with MC integration by

KL[q‖p] ≈ 1

T

T∑
i=1

log qφ(wi)− log p(wi) , (3)

with T Monte Carlo samples wi drawn from the variational posterior qφ(w). In case of
a Gaussian prior, it can be implemented in closed form accelerating training by omitting
the need for drawing MC samples (cf. AppendixA). The second term in Eq. (2), the log
likelihood, is implemented using Eq. (1) in the same MC fashion:

− Ew∼qφ [log p(D |w)] ≈ 1

T

T∑
i=1

σ−2wi
‖x̃− x̂wi‖2 + logσ2

wi
. (4)

After convergence, we obtain the high-quality image E[x̂] and the accompanying pixel-wise
uncertainty Var[x̂] by MC sampling from the predictive posterior (Kendall and Gal, 2017):

Ew∼qφ [x̂] ≈ 1

T

T∑
i=1

x̂wi , Varw∼qφ [x̂] ≈ 1

T

T∑
i=1

(
x̂i −

1

T

T∑
i=1

x̂i

)2

+
1

T

T∑
i=1

σ̂2i . (5)
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2.2. Prior Selection with Bayesian Optimization

Instead of manually selecting the prior distribution over the weights of the DIP network
using heuristics or inefficient grid search, we employ derivative-free BO. BO allows us to
optimize black-box functions that are expensive to evaluate, such as the training of a deep
network (Snoek et al., 2015). It uses a computationally inexpensive surrogate model to
retrieve a distribution over functions. In this work, we maximize the peak signal-to-noise
ratio (PSNR) between the reconstruction x̂ and the high-quality image x as a function of
the prior standard deviation σp

max
σp∈A

f(σp) = max
σp∈A

PSNR(x̂φ(σp),x) (6)

using a Gaussian process (GP) as surrogate f ∼ GP. It is also possible to directly optimize
the shape parameters of the prior. In each step of the BO, we evaluate our objective function
f at the current candidate σ∗p to increase the set of observations DBO and update the
posterior of the surrogate model. Next, we maximize an acquisition function a(σp;µGP , σ

2
GP)

using the current GP posterior mean µGP and variance σ2GP . Its maximizing argument
σ∗p ← arg max a(σp;µGP , σ

2
GP) is used as candidate for the next iteration (Frazier, 2018).

We choose the commonly accepted expected improvement (EI) as acquisition function

aEI(σp;µGP , σ
2
GP)) = E

[
max(y − f∗), 0) | y ∼ N (µGP(σp), σ

2
GP(σp))

]
, (7)

where f∗ = f(σp,best) is the minimal value of the objective function observed so far. Eq. (7)
can be solved analytically as shown in (Jones et al., 1998). We utilize automatic differentiation
from modern deep learning frameworks to optimize the acquisition function in order to get
the next candidate σ∗p (Gardner et al., 2018).

3. Experiments

We evaluate the performance of our MFVI approach on the following three inverse post-
processing tasks and compare it to non-Bayesian DIP (Lempitsky et al., 2018), DIP with
SGLD (Cheng et al., 2019) and DIP with MC dropout (Laves et al., 2020b). We apply BO
to optimize the variance σp of a Gaussian prior per task. In the following experiments, we
use the same network architectures as proposed by (Lempitsky et al., 2018).

Denoising Optical coherence tomography and ultrasound are prone to speckle noise due
to interference phenomena, which can obscure small anatomical details and reduce image
contrast. Speckle noise can be modeled as additive white Gaussian noise on log-transformed
image intensities (Michailovich and Tannenbaum, 2006). Noise in low-dose X-ray originates
from irregular photon density and can be modeled with Poisson noise (Lee et al., 2018;
Žabić et al., 2013). We approximate the Poisson noise with Gaussian noise since Poisson(λ)
approaches a Normal distribution as λ → ∞. We first create a low-noise image x by
smoothing and downsampling the original image to 256×256 pixel. This averages over highly
correlated neighboring pixels affected by uncorrelated noise and decreases the observation
noise. The downsampled image acts as ground truth and is corrupted by x̃ = x+N (0, 0.12I)
using normal (X-ray) or log-transformed intensities (US and OCT). We use retinal OCT
scans and chest X-rays with native resolutions of 496× 496 and 1029× 1260 pixel from a
public data set (Kermany et al., 2018).

5



Tölle Laves Schlaefer

0.0 0.1 0.2 0.3 0.4
σp

27.00

27.25

27.50

27.75

28.00

28.25

P
S

N
R

(x
,x̂

)
Denoising

0.0

0.5

1.0

1.5

2.0

2.5

E
xp

ec
te

d
Im

pr
ov

em
en

t

×10−10

Surrogate mean

Cost samples

Acquisition fct

0.1 0.2 0.3 0.4
σp

28

30

32

P
S

N
R

(x
,x̂

)

Super-resolution

0.0

0.1

0.2

0.3

0.4

0.5

E
xp

ec
te

d
Im

pr
ov

em
en

t

0.0 0.1 0.2 0.3 0.4
σp

12.45

12.50

12.55

P
S

N
R

(x
,x̂

)

Inpainting

0.0

0.5

1.0

1.5

2.0

E
xp

ec
te

d
Im

pr
ov

em
en

t

×10−19

Figure 2: Results of Bayesian optimization. The acquisition function selects the next candi-
date for σp based on the maximum of the expected improvement.

Super-Resolution In CT and MRI, the sampling frequency is limited due to inherent
physical limitations of the imaging utility, i.e. the pitch or spacing of the detector (Greenspan,
2009). The resolution can be enhanced by reducing the size of detectors, but this comes at
the expense of increased noise. Since imaging devices are usually tuned towards low noise and
short acquisition time, part of the resolution is sacrificed. This motivates resolution-enhancing
post-processing methods using a single image. We use slices of T1-weighted in vivo whole
brain MRI with isotropic resolution of 250 µm (Lüsebrink et al., 2018) from public data sets.
The 512× 448 pixel full-resolution images act as ground truth x and are downsampled by a
factor of 4 to obtain low-resolution images x̃. The DIP network is optimized by applying a
downsampling operator d : R4H×4W → RH×W to its output x̂ and plugging d(x̂) into Eq. (4).
To use gradient-based optimization, the downsampling operator must be differentiable and
we opt for a Lanczos kernel (Duchon, 1979).

Inpainting Applications of inpainting in medical imaging are hair removal in dermoscopy
(Abbas et al., 2011), specular highlight removal in endoscopy (Arnold et al., 2010), or metal
artifact removal in CT sinograms (Peng et al., 2020) and MRI (Armanious et al., 2020). In
this paper, we focus on the former task and sample images from the HAM10000 data set
(Tschandl et al., 2018) showing different skin lesions with hair occlusions. We manually mask
the hair and optimize the ELBO with zero-weighting the masked pixels in the likelihood
term. The networks thus interpolate the masked areas.

3.1. Results

The results are presented as follows: First, we use BO to optimize the weight prior standard
deviation σp per task domain and use the optimal value in the subsequent experiments. Next,
we show that all competing methods overfit the low-quality image given enough iterations.
Our method outperforms the other methods by means of reconstruction accuracy on all
tasks and modalities after convergence when using an optimized weight prior and provides
well-calibrated predictive uncertainty maps.

Fig. 2 shows that the optimal σp for denoising and super-resolution imposes a narrow prior
with σ∗p,den = 0.05 and σ∗p,sr = 0.1, respectively. In inpainting, the optimal value σ∗p,inp = 0.36
is slightly higher. A narrow prior prevents weights from growing large, effectively avoiding
overfitting of the corrupted image (note that we fixed µp = 0).
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This is empirically shown in Fig. 3, where DIP and DIP with SGLD strongly overfit the
corrupted patterns, making manually applied early stopping essential to obtain the highest
reconstruction accuracy (indicated by the narrow peaks). Additionally, MC dropout overfits
at some point, although the peak is wider and overfitting starts later in optimization. While
the PSNR between reconstruction x̂ and ground truth x approaches the PSNR between noisy
image x̃ and ground truth, for DIP and SGLD, MFVI safely converges to the optimal value
in all modalities. In super-resolution, overfitting is less severe. MCDIP and MFVI do not
overfit the low resolution image. DIP and SGLD do not show a sharp peak but rather decline
slowly as shown in Fig. 3 (right) and Fig. 5. MFVI consistently provides well-calibrated
pixel-wise uncertainty in denoising and super-resolution (see Tab. 1 in appendix).

For inpainting we restrict ourselves to a qualitative view onto the reconstruction results as
all approaches converge to similar PSNR in the non-masked regions. While the reconstruction
of the DIP and SGLD contain artifacts, MC dropout and MFVI produce very smooth
reconstruction results. In inpainting tasks, the uncertainty maps are especially interesting,
which we expect to show high uncertainty in masked regions as the model does not receive
information from these areas. It can be seen in Fig. 4 that the reconstruction of MFVI
exhibit high uncertainty in regions with hair, while showing lower uncertainty in the higher
frequency regions of the chloasma. In the region of the lesion, the uncertainty should be as
low as possible, as it is important for the downstream task of classifying the skin lesion.

4. Conclusion

We presented a mean-field variational inference approach to deep image prior and optimized
the weight prior using Bayesian optimization. Bayesian methods are in general more robust to
overfitting due to their inbuilt regularization from the weight prior. However, a badly selected
prior can still cause overfitting (as shown empirically for SGLD and MC dropout). MFVI
allows for a more detailed prior selection, which we exploit to optimize the prior using Bayesian
optimization. Selecting a suitable prior fixes the overfitting behavior of DIP-based approaches,
which are generally interesting for medical imaging, as no supervised training is required.
Different inverse post-processing tasks in medical imaging were performed to show the benefits
of the proposed method. BO was used to optimize the prior towards reconstruction accuracy.
Even if early stopping is applied to the other methods, our approach performs on-par with
respect to reconstruction accuracy and yields well-calibrated uncertainties. It is further
possible to additionally optimize the prior with respect to a calibration metric to ensure
well-calibrated uncertainty maps. The presented approach is not limited to post-processing
tasks and can also be used for CT or MRI reconstruction from sinograms.
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Appendix A. KL Divergence Between Two Gaussians

If a Gaussian prior is chosen for convenience, the KL divergence is analytically tractable (cf.
Eq. (3)). Let p(x) = N (µp, σ

2
p) and q(x) = N (µq, σ

2
q ). It is known that

KL[q(x) ‖ p(x)] =

∫
q(x) log

q(x)

p(x)
dx =

∫
q(x) log q(x) dx−

∫
q(x) log p(x) dx

= −1

2

(
1 + log 2πσ2q

)
+

1

2
log 2πσ2p +

σ2q + (µq − µp)2
2σ2p

= log
σp
σq

+
σ2q + (µq − µp)2

2σ2p
− 1

2
.

Appendix B. Computational Complexity of MFVI

Prior selection using Bayesian optimization is performed offline and does not have to be
repeated for each image at hand. Therefore, increased complexity can be attributed to the
parameter sampling of MFVI. In each forward pass, the additional steps are (1) drawing n
samples from a univariate Gaussian, where n is the number of parameters of the convolutional
autoencoder and (2) reparameterization of the actual parameters by wi = µi + σiεi, which
results in n additional multiplications and additions. In our experiments, this results in
≈ 2× slower forward pass times and 2× increased memory footprint. Relative wall times for
the denoising task were 1.0 for non-Bayesian DIP, 1.13 for MC dropout, 2.20 for MFVI and
2.76 for SGLD.

Appendix C. Additional Figures
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Figure 6: Additional qualitative results for US denoising and hair inpainting after convergence.
The reconstructions from MC dropout and MFVI look most valid, while MC
dropout overly smoothes important details (cf. texture of skin lesion).
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input ground truth non-DIP MFVI (ours)
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Figure 7: Non-DIP method comparison. The non-DIP algorithms are biharmonic functions
for inpainting (Damelin and Hoang, 2018), anisotropic diffusion for denoising
(Perona and Malik, 1990) and bilinear interpolation for super-resolution.
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Figure 8: (Left) Additional PSNR curve for denoising on US. (Right) Results for super-
resolution measured using structural similarity index measure (SSIM).

Appendix D. Uncertainty Calibration

Table 1: Uncertainty calibration error (UCE) (Laves et al., 2020a) for denoising and super-
resolution experiments. The UCE describes the expected discrepancy between
pixel-wise error and uncertainty of the reconstructions.

SGLD MCDIP MFVI (ours)

denoising (X-ray) 0.915 0.258 0.093
denoising (OCT) 0.815 0.144 0.073
denoising (US) 0.799 0.309 0.134
super-res. (MRI) 0.012 0.349 0.069

Appendix E. Illustration of Mathematical Concept

randomly-initialized
generator network

reconstruction low-quality
input

resample

random input

Figure 9: Illustration of the mathematical concept behind MFVI DIP.
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Pseudocode of MFVI DIP

1. Sample input z′ = U(0, 0.1)

2. While i < imax do

(a) Permute input z = z′ +N (0, 0.01)

(b) Sample ε ∼ N (0, I)

(c) Let w = µ+ σ � ε with variational parameters φ = {µ,σ}
(d) Compute loss ELBO (fw(z)) = log qφ(w)− log p(w)− log p(D |w)

(e) Compute the gradient w.r.t. the mean and standard deviation

∆µ =
∂ELBO (fw(z))

∂w
+
∂ELBO (fw(z))

∂µ

∆σ =
∂ELBO (fw(z))

∂w
+
∂ELBO (fw(z))

∂σ

(f) Update the variational parameters φ

µ← µ− η∆µ

σ ← σ − η∆σ

(g) i← i+ 1

Appendix F. Background on Bayesian Deep Learning

In Bayesian deep learning, a prior distribution p(w |α) is placed over the weights w of a neural
network, governed by a hyperparameter α. After observing the data D, we are interested
in the posterior p(w | D, α) = p(D |w, α)p(w |α)/p(D). However, this distribution is not
tractable in general. This gives rise to different approximate Bayesian inference techniques
that rely on either sampling or VI. SGLD is a framework that derives a Markov chain Monte
Carlo (MCMC) sampler from SGD by injecting Gaussian noise into the gradients after each
learning step (Welling and Teh, 2011). Under suitable conditions SGLD eventually converges
to the posterior distribution. VI uses optimization instead of sampling to find the member
qφ(w) of a family of distributions (e.g. a multivariate Gaussian) that is close to the exact
posterior, defined by the variational parameters φ. We optimize qφ w.r.t. φ, such that the
Kullback-Leibler divergence is minimized with regard to the true posterior (Blei et al., 2017).
Two practical implementations are MC dropout (Gal and Ghahramani, 2015) and Bayes
by backprop (Blundell et al., 2015). The former uses dropout before every weight layer
during training and at inference time, which allows sampling from the approximate posterior.
The latter assumes a fully factorized Gaussian distribution wij ∼ N (µij , σ

2
ij), also known

as mean-field distribution, which treats the mean and variance of each weight as learnable
parameter. In contrast to SGLD and MC dropout, MFVI allows us to directly compute the
KL divergence between the variational posterior and the prior, which enables us to select
other (non-Gaussian) prior distributions, where no closed form exists.
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