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Abstract

Compositional generalization—the ability to understand novel combinations of1

familiar components—remains a significant challenge for neural networks despite2

their success in many language tasks. Current evaluation methods focus on be-3

havioral measures that reveal when models fail to generalize compositionally, but4

provide limited insight into why these failures occur at the representational level.5

We introduce Homomorphism Error (HE), a structural metric that quantifies how6

well neural network representations preserve compositional operations by mea-7

suring deviations from approximate homomorphisms between expression spaces8

and their internal representations. Through controlled experiments on SCAN-style9

synthetic compositional tasks and small-scale Transformers, we demonstrate that10

HE serves as a strong predictor of out-of-distribution generalization performance,11

achieving R2 = 0.73 correlation with OOD compositional generalization accuracy.12

Furthermore, our analysis reveals that model size has minimal impact on composi-13

tional structure, training data coverage exhibits threshold effects, but noise injection14

systematically degrades compositional representations in predictable ways. These15

findings provide new mechanistic insights into compositional learning and estab-16

lish homomorphism error as a valuable diagnostic tool for developing more robust17

neural architectures and training methods.18

Code and data will be made publicaly available.19

1 Introduction20

Human language understanding is characterized by systematic compositionality—the ability to21

combine familiar components in novel ways to understand expressions never encountered before [5,22

15]. For instance, once a person learns the meaning of "jump twice" and "turn" they can immediately23

comprehend "turn twice" without explicit instruction. This compositional capacity enables humans to24

generalize from limited experience to an infinite space of possible expressions.25

Despite remarkable progress in natural language processing, modern neural networks struggle with26

systematic compositional generalization [3]. Empirical studies using benchmarks like SCAN [12],27

COGS [10], and CFQ [9] have repeatedly demonstrated that while models achieve high accuracy28

on training distributions, they fail catastrophically when tested on novel combinations of familiar29

components. This limitation poses fundamental questions about whether neural architectures can30

truly capture the algebraic nature of human language understanding.31

Current approaches to evaluating compositional generalization primarily rely on behavioral mea-32

sures—comparing model outputs against expected results on held-out test sets. While such measures33

reveal when models fail to generalize, they provide limited insight into why these failures occur.34

Understanding the internal mechanisms that support or hinder compositional reasoning requires35
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examining how models represent and manipulate compositional structure in their hidden layers,36

beyond surface-level performance metrics.37

In this work, we introduce Homomorphism Error (HE), a novel structural metric that quantifies38

how well neural network representations preserve compositional operations. Drawing inspiration39

from abstract algebra, we formalize compositionality as approximate homomorphisms between40

expression spaces and their representations. Low homomorphism error indicates that a model’s41

internal representations respect compositional structure—that is, the representation of a composed42

expression can be systematically derived from the representations of its components. High homomor-43

phism error suggests entangled or memorization-driven representations that fail to capture underlying44

compositional principles.45

We evaluate our approach on a customized SCAM-style synthetic dataset that allows systematic con-46

trol over compositional structure, training data coverage, and noise levels, as well as building held-out47

test sets to measure Out-Of-Distribution (OOD) compositional generalization accuracy. Our results48

show that homomorphism error successfully identifies when models learn genuinely compositional49

representations versus when they rely on spurious correlations or memorization strategies, as shown50

by comparing OOD generalization accuracies and HE measurements. This structural perspective51

opens new methods for developing more compositionally robust neural architectures and training52

procedures.53

Our key contributions are:54

• We formalize compositionality as approximate homomorphism between syntactic and semantic55

algebras, and introduce homomorphism error as a task-independent metric that assesses composi-56

tional structure directly from model representations, complementing existing behavioral evaluation57

methods.58

• Through controlled experiments on SCAM-style synthetic compositional tasks, we demonstrate that59

homomorphism error serves as a reliable predictor of out-of-distribution generalization performance,60

achieving R2 = 0.73 correlation in our noise injection studies.61

• Our analysis reveals that different aspects of compositionality (unary vs. binary operations)62

exhibit distinct sensitivities to distributional shifts in training data, providing new understanding of63

compositional learning mechanisms.64

2 Related Work65

Compositional Generalization Benchmarks. The systematic evaluation of compositional gener-66

alization in neural networks began with Lake and Baroni’s introduction of the SCAN dataset [12].67

SCAN demonstrated that sequence-to-sequence models, while achieving high training accuracy,68

failed catastrophically when tested on systematic recombinations of known components. This work69

established the empirical foundation for studying the systematicity challenge first articulated by Fodor70

and Pylyshyn [5].71

Building on SCAN’s foundation, subsequent benchmarks have explored different facets of compo-72

sitional generalization. COGS [10] introduced semantic parsing challenges with natural language,73

finding that Transformers achieved near-perfect in-distribution accuracy (96-99%) but much lower74

out-of-distribution performance (16-35%). The grounded SCAN (gSCAN) benchmark [17] extended75

compositional evaluation to situated language understanding, where meaning depends on visual76

context. CFQ [9] provided large-scale evaluation through systematically constructed train-test splits77

that maximize compound divergence while minimizing atom divergence.78

Theoretical Frameworks. Hupkes et al. [6] provided a comprehensive taxonomic framework, iden-79

tifying five key aspects of compositionality: systematicity, productivity, substitutivity, localism, and80

overgeneralization. This theoretical foundation has guided much subsequent work in evaluating and81

understanding compositional behavior. Recent surveys [19] have further connected compositionality82

to broader questions of generalization and human-like reasoning in AI systems.83

The field has developed several quantitative approaches to measuring compositional generalization.84

Keysers et al. [9] introduced compound divergence as a metric for assessing train-test split difficulty,85

finding strong negative correlations between compound divergence and model accuracy. Other work86
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has connected systematic generalization to information entropy [20], showing that generalization87

scales with the distributional properties of compositional components in training data.88

Architectural Solutions. Various architectural innovations have been proposed to improve com-89

positional generalization. Meta-learning approaches, particularly the MLC (Meta-Learning for90

Compositionality) framework [13], have shown that neural networks can achieve human-like sys-91

tematicity when optimized specifically for compositional skills. Neuro-symbolic approaches like the92

Compositional Program Generator [11] achieve perfect performance on compositional benchmarks93

with dramatically improved sample efficiency.94

For Transformer architectures, improvements have come through auxiliary training objectives [8],95

curriculum learning with dataset cartography [7], and architectural modifications such as increased96

depth [14]. Graph-based semantic parsing frameworks have shown particular promise for structural97

generalization tasks [16].98

Internal Representation Analysis. Understanding the internal mechanisms underlying composi-99

tional behavior has been addressed through various probing methodologies [1]. Work in mathematical100

reasoning has demonstrated that neural networks can learn compositionally structured representations101

that reflect sub-expression meanings [18]. Recent neuroscience-inspired work has shown evidence102

for compositional representations through algebraic operations on brain activity patterns [4].103

However, existing approaches to measuring compositionality have primarily focused on behavioral104

evaluation or task-specific probing. Our homomorphism error metric differs by providing a principled,105

architecture-agnostic measure of how well models preserve compositional structure in their internal106

representations, independent of surface-level task performance. This structural approach offers new107

insights into the mechanistic basis of compositional generalization failures and successes.108

3 Homomorphism Error as Structural Metric for Compositionality109

(E×E) (E , ◦)

(S, •)

(Rd×Rd) (Rd, ⋆)

◦

⋆

Φ × Φ Φ

J·K

I

Approx. commutativity:
Φ(e1◦e2) ≈ Φ(e1) ⋆ Φ(e2)

measured by HE

Figure 1: Compositionality as approxi-
mate homomorphism. Solid arrows form
the representation-level square; dashed
arrows show semantic interpretation J·K
and an evaluation/readout I . Homomor-
phism Error (HE) quantifies how well Φ
preserves composition.

We begin by formalizing compositionality in terms of110

homomorphisms between syntactic expressions and their111

semantic interpretations. Let P denote a finite set of112

primitives and ◦ a syntactic composition operator defined113

by a grammar G. Let E be the set of expressions gen-114

erated from P using ◦. Each expression e ∈ E has an115

associated semantic interpretation JeK ∈ S , where (S, •)116

is a semantic algebra with composition operator •.117

Compositionality as homomorphism. We say the118

mapping J·K : E → S is compositional if for all119

e1, e2 ∈ E ,120

Je1 ◦ e2K = Je1K • Je2K. (1)

That is, the meaning of a composed expression is given121

by the composition of the meanings of its parts.122

Approximate homomorphism in language models.123

Consider a language model Mθ with hidden represen-124

tation function Φℓ : E → Rd at layer ℓ. We introduce125

an auxiliary learnable operator ⋆ : Rd × Rd → Rd (e.g.126

linear map, bilinear map, or MLP) trained to approxi-127

mate compositionality at the representation level. The128

Homomorphism Error (HE) at layer ℓ is129

HEℓ = E(e1,e2)∼D

[
d
(
Φℓ(e1 ◦ e2), Φℓ(e1) ⋆ℓ Φℓ(e2)

)]
, (2)

where D is a distribution over expressions and d is a distance metric such as mean squared error130

(MSE). In practice, we extract pairs of compossible expressions from the training dataset where ⋆ℓ131

learns to predict the representation of a composed expression from its components. We instantiate ⋆ℓ132
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with three operator families (linear, bilinear, MLP) and report the average error across them to avoid133

biasing the analysis toward a particular functional form of composition.134

Interpretation. Low HE indicates that internal representations are approximately homomorphic with135

respect to the task’s compositional structure, whereas high HE suggests entangled or memorization-136

driven representations. Thus, HE measures the extent to which compositional structure is linearly or137

non-linearly decodable from hidden states, independent of task accuracy.138

4 Experiment139

4.1 Dataset Construction140

We design a controlled synthetic dataset inspired by SCAN-style tasks in order to probe compositional141

generalization. Let P denote a finite set of primitives (e.g., walk, jump, look, turn) that each map142

to atomic output sequences over a target alphabet Σ. We further introduce a set M of modifiers (e.g.,143

twice, thrice) that act as unary operators on primitives, and a set C of connectors (e.g., then) that144

define binary composition.145

Formally, the grammar G for input expressions is defined as146

e ::= p | m(e) | e1 c e2, where p ∈ P,m ∈ M, c ∈ C.
The semantics JeK is an output sequence in Σ∗ defined compositionally by rules such as147

Jm(e)K = fm(JeK), Je1 c e2K = gc(Je1K, Je2K),
where fm and gc are deterministic rewriting functions. For example,148

Jjump twiceK = JjumpK JjumpK, Jlook then walkK = JlookK JwalkK.
To study the effect of different amount of noise in the training dataset, we introduce a finite set of149

noise tokens denoted by K (e.g. foo, bar, baz). When constructing noisy datasets, the noise tokens150

are inserted at random positions in the prompts, but not in the outputs. For example,151

foo jump bar thrice then look baz 7→ jump jump jump look

This dataset construction allows us to systematically control the number of primitives, modifiers,152

connectors, and noise tokens during training, and to evaluate generalization to held-out combinations153

(out-of-distribution expressions).154

4.2 Homomorphism Error Probe Design155

Building on the general definition of Homomorphism Error (HE) in Section 3, we distinguish two156

forms of compositionality present specifically in the above dataset:157

Modifier HE. Modifier homomorphism concerns unary composition m(e). For a representation158

function Φ at model layer ℓ, we define159

HEmod
ℓ = E(m,e)∼Dmod

[
d
(
Φℓ(m(e)), ⋆mℓ (Φℓ(e))

)]
, (3)

where ⋆mℓ : Rd → Rd is a learned operator specific to modifier m, and d is a distance metric such as160

MSE. Low HEmod indicates that modifiers are represented as structure-preserving transformations.161

Sequence HE. Sequence homomorphism concerns binary composition e1 c e2. For representation162

function Φℓ, we define163

HEseq
ℓ = E(e1,c,e2)∼Dseq

[
d
(
Φℓ(e1 c e2), ⋆

c
ℓ(Φℓ(e1),Φℓ(e2))

)]
, (4)

where ⋆cℓ : Rd × Rd → Rd is a learned binary operator associated with connector c. Low HEseq
164

indicates that connectors are represented as structure-preserving composition operators.165

When calculating Modifier HE, we extract (primitive, modifier, combined) triples from the training166

dataset, where the combined representation is the mean pooling of consecutive primitive and modifier167

token representations. For Sequence HE, we extract (part1, part2, combined) triples where parts are168

primitive-initiated segments and the combined representation is their average. Noise tokens are not169

compossible with any other tokens and are not included for HE calculation, thus only the HEs of170

meaningful compositions are measured.171
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4.3 Experiment Designs172

We conduct three families of controlled experiments to investigate how model architecture, training173

data composition, and noise affect both out-of-distribution (OOD) generalization and internal compo-174

sitional structure as measured by the homomorphism errors. All experiments used a fixed OOD test175

sets composed of held-out expressions containing 5 to 12 primitives. 200 unique expressions were176

sampled from the space of primitives with each number of primitives. Layer-wise HEmod and HEseq
177

are computed to determine whether deeper models learn more compositional internal representations.178

Model architecture and training. All models are decoder-only transformers trained with a causal179

language modeling objective. All experiments used a set of fixed hyperparameters: hidden dimension180

d = 128, number of attention heads h = 4, feedforward dimension 256. Inputs are tokenized and181

passed through learned embeddings with positional encodings. The final hidden states are projected182

to the vocabulary space via a linear output layer. Models are trained using cross-entropy loss with183

teacher forcing, optimized with Adam (β1 = 0.9, β2 = 0.98), learning rate 10−4, and batch size 64.184

Training runs for 50 epochs with early stopping on validation loss. All experiments share the same185

optimization settings to isolate the effects of model depth, training sparsity, and noise.186

1. Model size ablation. We vary the number of transformer layers L ∈ {1, 2, . . . , 10}. For each187

configuration, we train models on a fixed dataset containing 2 primitives with no noise.188

2. Training data sparsity. To probe the effect of training data coverage, we construct datasets with the189

expressions containing increasing numbers of primitives: 1, 2, 3, 4, always keeping num_noise = 0.190

For each sparsity level, models are trained with a fixed architecture (L = 4 layers) and evaluated on191

the same OOD test sets as above. This experiment tests whether reduced training coverage leads to192

higher homomorphism error and worse generalization.193

3. Noise injection. We evaluate the robustness of learned compositional representations to spurious194

tokens by constructing training datasets with 2 primitives and varying numbers of randomly inserted195

noise tokens num_noise ∈ {0, 1, . . . , 15}. Models are trained with 4 layers and evaluated on OOD196

sequences without noise. Both accuracy and homomorphism error are tracked to determine whether197

noise disrupts compositional representations.198

Evaluation metrics. For each experiment, we report:199

• OOD accuracy: average fraction of correctly predicted output sequences on held-out test sets.200

• Modifier HE: layer-wise MSE between representations of m(e) and ⋆mℓ (Φℓ(e)) across all modifiers201

in the dataset. Values are final MSEs averaged across linear, bilinear, and MLP operators.202

• Sequence HE: layer-wise MSE between representations of e1 c e2 and ⋆cℓ(Φℓ(e1),Φℓ(e2)) across203

all connectors. Values are final MSEs averaged across linear, bilinear, and MLP operators.204

Seed averaging and error bars. Each experiment is repeated with 5 random seeds to control for205

stochasticity in dataset generation, model initialization, and training. Reported metrics include mean206

and standard deviation across seeds, which are visualized as error bars in all plots.207

Computing Resources. All experiments (including 5 random seeds per configuration across all208

ablations) were run on a single Apple M1 chip with 8GB of memory. The full experiment suite209

completed in approximately 30 minutes.210

4.4 Experiment Results211

Our experiments reveal three key findings about the relationship between model architecture, training212

data composition, compositional structure, and out-of-distribution generalization.213

Model size has minimal impact on compositional generalization. Figure 2 demonstrates that214

increasing model depth from 1 to 10 transformer layers yields negligible improvements in OOD215

accuracy, with all configurations achieving approximately 40–60% accuracy across different test216

complexities. More importantly, both modifier and sequence homomorphism errors remain remark-217

ably stable across model sizes, with variations on the order of 10−3. The modifier HE shows slight218

fluctuations between layers but no systematic trend, while sequence HE exhibits similarly minimal219

variation. This suggests that for our controlled compositional task, representational capacity beyond220

a single layer provides little benefit for learning compositional structure, and that the fundamental221
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Figure 2: Model size ablation results. Lines represent number of transformer layers L ∈
{1, 2, . . . , 10} in the language model.
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Figure 3: Training data sparsity results. Lines represent number of primitives in the expressions that
the trainig set contains up-to. 4 meaning the training set contains expressions with up-to 4 primitives.

challenge lies not in model expressivity but in the compositional inductive biases encoded during222

training.223

Training data coverage exhibits threshold effects on compositional learning. The training data224

sparsity results in Figure 3 reveal a sharp threshold effect in compositional generalization. Models225

trained with only 1 primitive achieve significantly lower OOD accuracy (35–47%) and substantially226

higher modifier HE (0.015–0.018 MSE) compared to models trained with 2 or more primitives227

(40–60% accuracy, 0.005–0.007 MSE modifier HE). This dramatic performance gap occurs because228

training sets with a single primitive cannot cover binary connectors, leaving models unable to learn229

compositional rules for sequence construction. However, once the training set includes sufficient230

coverage to span the full compositional domain (2+ primitives), the marginal benefit of additional231

primitives rapidly diminishes. Models trained with 2, 3, or 4 primitives show nearly identical OOD232

accuracy and homomorphism error profiles across layers, indicating that compositional generalization233

depends primarily on structural coverage rather than data volume.234
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Figure 4: Noise injection results. Lines represent number of noise tokens inserted in training data.
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Noise injection systematically degrades com-235

positional representations. The most striking236

results emerge from the noise injection experi-237

ment (Figure 4). Unlike model size and training238

data sparsity, the number of randomly inserted239

noise tokens exhibits a strong, monotonic rela-240

tionship with both generalization performance241

and internal compositional structure. Models242

trained with increasing noise levels (0–15 to-243

kens) show consistently degraded mean OOD244

accuracy, declining from approximately 47%245

with no noise to 42% with 15 noise tokens. This246

degradation is accompanied by a systematic in-247

crease in modifier HE from approximately 0.002248

MSE to 0.012 MSE, while sequence HE remains249

relatively stable across noise levels.250

The predictive power of our homomorphism er-251

ror metric is most clearly demonstrated in Figure252

5, which plots the relationship between mean253

modifier HE and mean OOD accuracy across254

all noise conditions. Polynomial regression analysis reveals a highly reliable relationship, with255

R2 = 0.73 for both quadratic and cubic fits. This strong correlation indicates that modifier HE serves256

as an effective predictor of out-of-distribution compositional generalization, capturing the degree to257

which models represent modifiers as structure-preserving transformations rather than memorized258

input-output mappings.259

These results collectively suggest that compositional generalization in language models depends less260

on raw model capacity or training set size, more on the structural integrity of learned representations.261

Noise injection appears to interfere specifically with the model’s ability to learn modifier operations as262

compositional functions, while preserving sequence-level compositional structure. This dissociation263

provides evidence that different aspects of compositionality (unary vs. binary operations) may be264

learned through distinct mechanisms and exhibit different sensitivities to distributional shifts in265

training data.266

5 Discussion and Future Work267

Our results provide several key insights into the mechanisms underlying compositional generalization268

in neural networks. The strong predictive relationship between homomorphism error and out-of-269

distribution performance (R2 = 0.73) suggests that compositional failures are fundamentally rooted270

in representational structure rather than surface-level pattern matching. This finding supports theories271

that emphasize the importance of algebraic structure in neural representations [5] and provides272

empirical evidence for the homomorphism perspective on compositionality.273

The dissociation between modifier and sequence homomorphism errors reveals that different aspects274

of compositional structure are learned through distinct mechanisms. Our noise injection experiments275

show that spurious tokens primarily disrupt the learning of modifier operations (unary functions)276

while leaving sequence composition (binary operations) relatively intact. This suggests that unary and277

binary compositional operations may rely on different neural circuits or learning dynamics, opening278

new avenues for targeted architectural interventions.279

Interestingly, our finding that model depth has minimal impact on compositional generalization chal-280

lenges common assumptions about the relationship between representational capacity and systematic281

generalization. Instead, our results point to the quality of compositional structure in representations282

as the critical factor, rather than raw model expressivity.283

5.1 Limitations284

Several limitations constrain the generalizability of our current findings. First, our experiments285

are conducted on synthetic data with precisely controlled compositional structure. While this286
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enables rigorous analysis of the homomorphism error metric, real-world language presents additional287

complexities including semantic ambiguity, context dependence, and irregular constructions that may288

not conform to strict compositional principles.289

Second, our evaluation focuses on relatively small Transformer models with controlled architectures290

and hyperparameters. The behavior of homomorphism error in large-scale pretrained language models291

remains an open question, particularly given evidence that scale can partially overcome compositional292

limitations [2].293

Third, our current framework assumes discrete, well-defined compositional operations. Extending294

the homomorphism error framework to capture more nuanced forms of compositionality—such as295

semantic composition in natural language where meaning is not strictly algebraic—presents both296

theoretical and computational challenges.297

5.2 Future Directions298

A natural next step is applying homomorphism error analysis to established compositional benchmarks299

using natural language, including SCAN, COGS, and CFQ. This would validate the metric’s utility300

beyond synthetic settings and potentially reveal why certain architectural innovations succeed where301

others fail. Investigating how homomorphism error scales with model size and pretraining data could302

provide insights into whether the compositional capabilities of large language models emerge from303

improved representational structure or alternative mechanisms.304

Furthermore, our predictive framework opens possibilities for compositionally-aware architecture305

search and training procedures. Future work could explore using homomorphism error as an optimiza-306

tion objective or regularization term, directly encouraging models to learn structured representations307

during training rather than discovering compositional failures post-hoc.308

6 Conclusion309

We introduced homomorphism error as a structural metric that formalizes compositionality as approx-310

imate homomorphisms between expression spaces and their representations. Our results demonstrate311

that homomorphism error reliably predicts out-of-distribution performance (R2 = 0.73), revealing312

that representational structure, not surface-level pattern matching, underlies compositional failures.313

The dissociation between modifier and sequence homomorphism errors shows that different composi-314

tional aspects are learned through distinct mechanisms, with unary operations particularly vulnerable315

to spurious correlations. Crucially, our findings show that the quality of learned structure—rather than316

raw model capacity or architecture—determines systematic generalization capability. This framework317

provides both theoretical insights into the systematicity debate and practical diagnostic tools for318

developing more compositionally robust neural architectures.319
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1. Claims369

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s370

contributions and scope?371

Answer: [Yes]372

Justification: Yes.373

Guidelines:374

• The answer NA means that the abstract and introduction do not include the claims made in the375

paper.376

• The abstract and/or introduction should clearly state the claims made, including the contributions377

made in the paper and important assumptions and limitations. A No or NA answer to this378

question will not be perceived well by the reviewers.379

• The claims made should match theoretical and experimental results, and reflect how much the380

results can be expected to generalize to other settings.381

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not382

attained by the paper.383

2. Limitations384

Question: Does the paper discuss the limitations of the work performed by the authors?385

Answer: [Yes]386

Justification: Yes.387

Guidelines:388

• The answer NA means that the paper has no limitation while the answer No means that the paper389

has limitations, but those are not discussed in the paper.390

• The authors are encouraged to create a separate "Limitations" section in their paper.391

• The paper should point out any strong assumptions and how robust the results are to violations of392

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,393

asymptotic approximations only holding locally). The authors should reflect on how these394

assumptions might be violated in practice and what the implications would be.395

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested396

on a few datasets or with a few runs. In general, empirical results often depend on implicit397

assumptions, which should be articulated.398

• The authors should reflect on the factors that influence the performance of the approach. For399

example, a facial recognition algorithm may perform poorly when image resolution is low or400

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide401

closed captions for online lectures because it fails to handle technical jargon.402

• The authors should discuss the computational efficiency of the proposed algorithms and how403

they scale with dataset size.404

• If applicable, the authors should discuss possible limitations of their approach to address problems405

of privacy and fairness.406

• While the authors might fear that complete honesty about limitations might be used by reviewers407

as grounds for rejection, a worse outcome might be that reviewers discover limitations that408

aren’t acknowledged in the paper. The authors should use their best judgment and recognize409

that individual actions in favor of transparency play an important role in developing norms that410

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize411

honesty concerning limitations.412

3. Theory assumptions and proofs413

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete414

(and correct) proof?415

Answer: [NA]416

Justification: No theoretical contribution that requires proof.417

Guidelines:418

• The answer NA means that the paper does not include theoretical results.419

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.420

• All assumptions should be clearly stated or referenced in the statement of any theorems.421
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in422

the supplemental material, the authors are encouraged to provide a short proof sketch to provide423

intuition.424

• Inversely, any informal proof provided in the core of the paper should be complemented by425

formal proofs provided in appendix or supplemental material.426

• Theorems and Lemmas that the proof relies upon should be properly referenced.427

4. Experimental result reproducibility428

Question: Does the paper fully disclose all the information needed to reproduce the main experimental429

results of the paper to the extent that it affects the main claims and/or conclusions of the paper430

(regardless of whether the code and data are provided or not)?431

Answer: [Yes]432

Justification: Yes, will be fully opensourced.433

Guidelines:434

• The answer NA means that the paper does not include experiments.435

• If the paper includes experiments, a No answer to this question will not be perceived well by the436

reviewers: Making the paper reproducible is important, regardless of whether the code and data437

are provided or not.438

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make439

their results reproducible or verifiable.440

• Depending on the contribution, reproducibility can be accomplished in various ways. For441

example, if the contribution is a novel architecture, describing the architecture fully might suffice,442

or if the contribution is a specific model and empirical evaluation, it may be necessary to either443

make it possible for others to replicate the model with the same dataset, or provide access to444

the model. In general. releasing code and data is often one good way to accomplish this, but445

reproducibility can also be provided via detailed instructions for how to replicate the results,446

access to a hosted model (e.g., in the case of a large language model), releasing of a model447

checkpoint, or other means that are appropriate to the research performed.448

• While NeurIPS does not require releasing code, the conference does require all submissions449

to provide some reasonable avenue for reproducibility, which may depend on the nature of the450

contribution. For example451

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to452

reproduce that algorithm.453

(b) If the contribution is primarily a new model architecture, the paper should describe the454

architecture clearly and fully.455

(c) If the contribution is a new model (e.g., a large language model), then there should either be456

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,457

with an open-source dataset or instructions for how to construct the dataset).458

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are459

welcome to describe the particular way they provide for reproducibility. In the case of460

closed-source models, it may be that access to the model is limited in some way (e.g.,461

to registered users), but it should be possible for other researchers to have some path to462

reproducing or verifying the results.463

5. Open access to data and code464

Question: Does the paper provide open access to the data and code, with sufficient instructions to465

faithfully reproduce the main experimental results, as described in supplemental material?466

Answer: [Yes]467

Justification: Yes, will be fully opensourced.468

Guidelines:469

• The answer NA means that paper does not include experiments requiring code.470

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/471

guides/CodeSubmissionPolicy) for more details.472

• While we encourage the release of code and data, we understand that this might not be possible,473

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless474

this is central to the contribution (e.g., for a new open-source benchmark).475

• The instructions should contain the exact command and environment needed to run to reproduce476

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/477

guides/CodeSubmissionPolicy) for more details.478
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• The authors should provide instructions on data access and preparation, including how to access479

the raw data, preprocessed data, intermediate data, and generated data, etc.480

• The authors should provide scripts to reproduce all experimental results for the new proposed481

method and baselines. If only a subset of experiments are reproducible, they should state which482

ones are omitted from the script and why.483

• At submission time, to preserve anonymity, the authors should release anonymized versions (if484

applicable).485

• Providing as much information as possible in supplemental material (appended to the paper) is486

recommended, but including URLs to data and code is permitted.487

6. Experimental setting/details488

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,489

how they were chosen, type of optimizer, etc.) necessary to understand the results?490

Answer: [Yes]491

Justification: Yes, will be fully opensourced.492

Guidelines:493

• The answer NA means that the paper does not include experiments.494

• The experimental setting should be presented in the core of the paper to a level of detail that is495

necessary to appreciate the results and make sense of them.496

• The full details can be provided either with the code, in appendix, or as supplemental material.497

7. Experiment statistical significance498

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-499

tion about the statistical significance of the experiments?500

Answer: [Yes]501

Justification: Yes.502

Guidelines:503

• The answer NA means that the paper does not include experiments.504

• The authors should answer "Yes" if the results are accompanied by error bars, confidence505

intervals, or statistical significance tests, at least for the experiments that support the main claims506

of the paper.507

• The factors of variability that the error bars are capturing should be clearly stated (for example,508

train/test split, initialization, random drawing of some parameter, or overall run with given509

experimental conditions).510

• The method for calculating the error bars should be explained (closed form formula, call to a511

library function, bootstrap, etc.)512

• The assumptions made should be given (e.g., Normally distributed errors).513

• It should be clear whether the error bar is the standard deviation or the standard error of the514

mean.515

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report516

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is517

not verified.518

• For asymmetric distributions, the authors should be careful not to show in tables or figures519

symmetric error bars that would yield results that are out of range (e.g. negative error rates).520

• If error bars are reported in tables or plots, The authors should explain in the text how they were521

calculated and reference the corresponding figures or tables in the text.522

8. Experiments compute resources523

Question: For each experiment, does the paper provide sufficient information on the computer524

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?525

Answer: [Yes]526

Justification: Yes, compute resources are reported.527

Guidelines:528

• The answer NA means that the paper does not include experiments.529

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud530

provider, including relevant memory and storage.531

• The paper should provide the amount of compute required for each of the individual experimental532

runs as well as estimate the total compute.533
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• The paper should disclose whether the full research project required more compute than the534

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into535

the paper).536

9. Code of ethics537

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code538

of Ethics https://neurips.cc/public/EthicsGuidelines?539

Answer: [Yes]540

Justification: Yes.541

Guidelines:542

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.543

• If the authors answer No, they should explain the special circumstances that require a deviation544

from the Code of Ethics.545

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due546

to laws or regulations in their jurisdiction).547

10. Broader impacts548

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts549

of the work performed?550

Answer: [NA]551

Justification: No societal impact is expected.552

Guidelines:553

• The answer NA means that there is no societal impact of the work performed.554

• If the authors answer NA or No, they should explain why their work has no societal impact or555

why the paper does not address societal impact.556

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,557

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-558

ment of technologies that could make decisions that unfairly impact specific groups), privacy559

considerations, and security considerations.560

• The conference expects that many papers will be foundational research and not tied to particular561

applications, let alone deployments. However, if there is a direct path to any negative applications,562

the authors should point it out. For example, it is legitimate to point out that an improvement in563

the quality of generative models could be used to generate deepfakes for disinformation. On the564

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks565

could enable people to train models that generate Deepfakes faster.566

• The authors should consider possible harms that could arise when the technology is being used567

as intended and functioning correctly, harms that could arise when the technology is being used568

as intended but gives incorrect results, and harms following from (intentional or unintentional)569

misuse of the technology.570

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies571

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-572

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the573

efficiency and accessibility of ML).574

11. Safeguards575

Question: Does the paper describe safeguards that have been put in place for responsible release of576

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or577

scraped datasets)?578

Answer: [NA]579

Justification: No data or model with high risk of misuse.580

Guidelines:581

• The answer NA means that the paper poses no such risks.582

• Released models that have a high risk for misuse or dual-use should be released with necessary583

safeguards to allow for controlled use of the model, for example by requiring that users adhere to584

usage guidelines or restrictions to access the model or implementing safety filters.585

• Datasets that have been scraped from the Internet could pose safety risks. The authors should586

describe how they avoided releasing unsafe images.587

• We recognize that providing effective safeguards is challenging, and many papers do not require588

this, but we encourage authors to take this into account and make a best faith effort.589
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12. Licenses for existing assets590

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,591

properly credited and are the license and terms of use explicitly mentioned and properly respected?592

Answer: [Yes]593

Justification: Yes, creators and original owners of assets are properly credited, license and terms of use594

are properly respected.595

Guidelines:596

• The answer NA means that the paper does not use existing assets.597

• The authors should cite the original paper that produced the code package or dataset.598

• The authors should state which version of the asset is used and, if possible, include a URL.599

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.600

• For scraped data from a particular source (e.g., website), the copyright and terms of service of601

that source should be provided.602

• If assets are released, the license, copyright information, and terms of use in the package should603

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for604

some datasets. Their licensing guide can help determine the license of a dataset.605

• For existing datasets that are re-packaged, both the original license and the license of the derived606

asset (if it has changed) should be provided.607

• If this information is not available online, the authors are encouraged to reach out to the asset’s608

creators.609

13. New assets610

Question: Are new assets introduced in the paper well documented and is the documentation provided611

alongside the assets?612

Answer: [Yes]613

Justification: Yes, well-documented and provided alongside the assets.614

Guidelines:615

• The answer NA means that the paper does not release new assets.616

• Researchers should communicate the details of the dataset/code/model as part of their sub-617

missions via structured templates. This includes details about training, license, limitations,618

etc.619

• The paper should discuss whether and how consent was obtained from people whose asset is620

used.621

• At submission time, remember to anonymize your assets (if applicable). You can either create an622

anonymized URL or include an anonymized zip file.623

14. Crowdsourcing and research with human subjects624

Question: For crowdsourcing experiments and research with human subjects, does the paper include625

the full text of instructions given to participants and screenshots, if applicable, as well as details about626

compensation (if any)?627

Answer: [NA]628

Justification: No crowdsourcing.629

Guidelines:630

• The answer NA means that the paper does not involve crowdsourcing nor research with human631

subjects.632

• Including this information in the supplemental material is fine, but if the main contribution of the633

paper involves human subjects, then as much detail as possible should be included in the main634

paper.635

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other636

labor should be paid at least the minimum wage in the country of the data collector.637

15. Institutional review board (IRB) approvals or equivalent for research with human subjects638

Question: Does the paper describe potential risks incurred by study participants, whether such639

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an640

equivalent approval/review based on the requirements of your country or institution) were obtained?641

Answer: [NA]642

Justification: No human subject is involved.643
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Guidelines:644

• The answer NA means that the paper does not involve crowdsourcing nor research with human645

subjects.646

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be647

required for any human subjects research. If you obtained IRB approval, you should clearly state648

this in the paper.649

• We recognize that the procedures for this may vary significantly between institutions and650

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for651

their institution.652

• For initial submissions, do not include any information that would break anonymity (if applica-653

ble), such as the institution conducting the review.654

16. Declaration of LLM usage655

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard656

component of the core methods in this research? Note that if the LLM is used only for writing,657

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or658

originality of the research, declaration is not required.659

Answer: [NA]660

Justification: LLM is used only for writing, editing, or formatting purposes and does not impact the661

core methodology, scientific rigorousness, or originality of the research.662

Guidelines:663

• The answer NA means that the core method development in this research does not involve LLMs664

as any important, original, or non-standard components.665

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what666

should or should not be described.667

15

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Homomorphism Error as Structural Metric for Compositionality
	Experiment
	Dataset Construction
	Homomorphism Error Probe Design
	Experiment Designs
	Experiment Results

	Discussion and Future Work
	Limitations
	Future Directions

	Conclusion

