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ABSTRACT

Constructing training data for symbolic reasoning domains is challenging: Exist-
ing instances are typically hand-crafted and too few to be trained on directly and
synthetically generated instances are often hard to evaluate in terms of their mean-
ingfulness. We study the capabilities of GANs and Wasserstein GANs equipped
with Transformer encoders to generate sensible and challenging training data for
symbolic reasoning domains. We conduct experiments on two problem domains
where Transformers have been successfully applied recently: symbolic mathemat-
ics and temporal specifications in verification. Even without autoregression, our
GAN models produce syntactically correct instances. We show that the generated
data can be used as a substitute for real training data when training a classifier,
and, especially, that training data can be generated from a real dataset that is too
small to be trained on directly. Using a GAN setting also allows us to alter the
target distribution: We show that by adding a classifier uncertainty part to the gen-
erator objective, we obtain a dataset that is even harder to solve for a classifier
than our original dataset.

1 INTRODUCTION

Deep learning is increasingly applied to more untraditional domains that involve complex symbolic
reasoning. Examples include the application of deep neural network architectures to SAT (Selsam
et al., 2019; Selsam & Bjørner, 2019; Ozolins et al., 2021), SMT (Balunovic et al., 2018), temporal
specifications in verification (Hahn et al., 2021; Schmitt et al., 2021), symbolic mathematics (Lample
& Charton, 2020), or theorem proving (Loos et al., 2017; Bansal et al., 2019; Huang et al., 2019;
Urban & Jakubuv, 2020).

The acquisition of training data for symbolic reasoning domains, however, is a challenge. Exist-
ing instances, such as benchmarks in competitions (Biere & Claessen, 2010; Froleyks et al., 2021;
Jacobs et al., 2017) are typically hand-crafted, for example, in a “bring your own benchmarks” set-
ting (Balyo et al., 2017). Since the instances are too few to be trained on, training data is, thus,
typically generated synthetically. For example by random sampling (Selsam et al., 2019; Lample &
Charton, 2020), or by randomly re-combining parts of existing instances (Schmitt et al., 2021). Al-
though these data generation methods already lead to good results, training on randomly generated
data carries the risk of training on meaningless data or the risk of introducing unwanted biases.

In this paper, we study the generation of symbolic reasoning problems with Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014) and show that they can be used to construct large
amounts of meaningful training data from a significantly smaller data source. GANs, however, can
not immediately be applied: Symbolic reasoning problems reside typically in a discontinuous do-
main and, additionally, training data is typically sequential and of variable length. We show that
training directly in the one-hot encoding space is possible when adding Gaussian noise to each posi-
tion. We, furthermore, use a Transformer (Vaswani et al., 2017) encoder to cope with the sequential
form of the data and the variable length of the problem instances.

We provide experiments to show the usefulness of a GAN approach for the generation of reasoning
problems. The experiments are based around two symbolic reasoning domains where recent studies
on the applicability of deep learning relied on large amounts of artificially generated data: symbolic
mathematics and linear-time temporal logic (LTL) specifications in verification. We report our ex-
perimental results in three sections. We first provide details on how to achieve a stable training of
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a standard GAN and a Wasserstein GAN (Arjovsky et al., 2017) both equipped with Transformer
encoders. We analyze the particularities of their training behavior, such as the effects of adding
different amounts of noise to the one hot embeddings. Secondly, we show for an LTL satisfiability
classifier that the generated data can be used as a substitute for real training data, and, especially, that
training data can be generated from a real dataset that is too small to be trained on directly. In par-
ticular, we show that out of 10K real training instances, a dataset consisting of 400K instances can
be generated, on which a classifier can successfully be trained on. Lastly, we show that generating
symbolic reasoning problems in a GAN setting has a specialty: We can alter the target distribution
by adding a classifier uncertainty part to the generator objective. By doing this, we show that we can
obtain a dataset that is even harder to solve than the original dataset which has been used to generate
the data from.

The remainder of this paper is structured as follows. In Section 2, we give a short introduction to
the problem domains considered in this paper and describe how the origin training data has been
constructed. In Section 3, we present our Transformer GAN architecture(s), before providing exper-
imental results in Section 4. We give an overview over related work in Section 5 before concluding
in Section 6.

2 PROBLEM DOMAIN AND BASE DATASETS

In this section, we introduce the two problem domains on which we base our experiments on: sat-
isfiability of temporal specifications for formal verification and function integration and ordinary
differential equations (ODEs) for symbolic mathematics. We furthermore give an overview over the
data generation processes of these base datasets.

2.1 HARDWARE SPECIFICATIONS IN LINEAR-TIME TEMPORAL LOGIC (LTL)

Linear-time Temporal Logic (LTL) (Pnueli, 1977) is the basis for industrial hardware specifica-
tion languages like the IEEE standard PSL (IEEE-Commission et al., 2005). It is an extension of
propositional logic with temporal modalities, such as the Next-operator ( ) and the Until-operator
(U). There also exist derived operators, such as “eventually” ϕ (≡ true U ϕ) and “globally”
ϕ (≡ ¬ ¬ϕ). For example, mutual exclusion can be expressed as the following specification:

(¬ (accessp0 ∧ accessp1), stating that processes p0 and p1 should have no access to a shared re-
source at the same time. The base problem of any logic is its satisfiability problem. It is the problem
to decide whether there exists a solution to a given formula. The satisfiability problem of LTL is
a hard problem, in fact, it is PSPACE-hard Sistla & Clarke (1982). The full syntax, semantics and
additional information on the satisfiability problem can be found in Appendix A.

So far, the construction of datasets for LTL formulas has been done in two ways (Hahn et al.,
2021): Either by obtaining LTL formulas from a fully random generation process, which likely
results in unrealistic formulas, or by sampling conjunctions of LTL specification patterns (Dwyer
et al., 1999). To obtain a healthy amount of unsatisfiable and satisfiable instances in this artificial
generation process, we slightly refined the pattern-based generation method with two operations.
Details can be found in Appendix B. Since the formula length correlates to unsatisfiability, we filter
for equal proportions of classes per formula length. We restrict the tree size of the formulas to 50.
We call this dataset LTLbase.

2.2 SYMBOLIC MATHEMATICS

Lample & Charton (2020) showed that Transformer models perform surprisingly well on symbolic
mathematics. More precisely, they applied the models to function integration and ordinary differen-
tial equations (ODEs).

We consider the function integration problem and use the forward generated dataset (https:
//github.com/facebookresearch/SymbolicMathematics). Random functions with
up to n operators are generated and their integrals are calculated with computer algebra systems.
Functions that the system cannot integrate are discarded. Mathematical expressions are generated
randomly. The dataset is cleaned, with equation simplification, coefficients simplification, and fil-
tering out invalid expressions (Lample & Charton, 2020). We restrict the tree size to 50.

2

https://github.com/facebookresearch/SymbolicMathematics
https://github.com/facebookresearch/SymbolicMathematics


Under review as a conference paper at ICLR 2022

attn + FF

prediction

discriminator /
critic

generator

dataset

mask

generated
samples

real
samples

noise

+

attn + FF

attn + FF

project

z (random)

attn + FF

attn + FF

attn + FF

project + avg

Figure 1: TGAN-SR: Transformer GAN for generating symbolic reasoning problems with visual-
izations of the per-position one-hot space.

3 ARCHITECTURE

The Transformer GAN architecture for generating symbolic reasoning problems (TGAN-SR) is de-
picted in Figure 1. It consists of two Transformer encoders as discriminator/critic and generator,
respectively. The inner layers of the encoders are largely identical to standard transformers (Vaswani
et al., 2017), but their input and output processing is adjusted to the GAN setting. We use an em-
bedding dimension of demb = 128, nh = 8 attention heads, and a feed-forward network dimension
of dFF = 1024 for both encoders as default.

The generator’s input is a real scalar random value with uniform distribution [0, 1] for each position
in the sequence. It is mapped to demb by an affine transformation before being processed by the first
layer. The position-wise padding mask is copied from the real data during training, so the lengths of
real and generated formulas at the same position in a batch are always identical. During inference,
the lengths can either be sampled randomly or copied from an existing dataset similar to training.
Either way, the generator encoder’s padding mask is predetermined so it has to adequately populate
the unmasked positions. With V being the vocabulary, and |V | being the size of the vocabulary,
an affine transformation to dimensionality |V | and a softmax is applied after the last layer. The
generator’s output lies, thus, in the same space as one-hot encoded tokens. We use nlG = 6 layers
for our default model’s generator.

A GAN discriminator and WGAN critic are virtually identical in terms of their architecture. The
only difference is that a critic outputs a real scalar value where a discriminator is limited to the range
[0, 1], which we achieve by applying an additional logistic sigmoid in the end. To honor their differ-
ences regarding the training scheme, we use both terms when referring to exchangeable properties
and make no further distinctions between them. For input processing, their |V |-dimensional (per
position) input is mapped to demb by an affine transformation. After the last layer, the final embed-
dings are aggregated over the sequence by averaging and a linear projection to a scalar value (the
prediction logit) is applied. Our default model uses nlD = 4 layers. We achieved best results with
slightly more generator than discriminator/critic layers. A full hyperparameter study can be found
in AppendixC.2.

Working in the |V |-sized one-hot domain poses harsh constraints on the generator’s output. Contrary
to continuous domains were GANs are usually employed, each component of a real one-hot vector is,
by definition, either 0 or 1. If the generator were to identify this distribution and use it as criterion to
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Figure 2: Quality measures for the GAN and WGAN variant when generating temporal specifica-
tions.

tell real and generated instances apart, this would pose a serious difficulty for training. We therefore
sample a |V |-sized vector of Gaussian noise N(0, σ2

real) for each position (see Figure 1). We add
it to the real samples’ one-hot encoding and re-normalize it to sum 1 before handing them to the
discriminator/critic. By default, we use a value of σreal = 0.1 for all models to get comparable
results. We study the effect of different amounts of noise more closely in Section 4.1.2.

4 EXPERIMENTS

In this section, we report our experimental findings. We structure our results in three sections. We
first report on the performance of the TGAN-SR architecture in constructing syntactically correct
instances of temporal specifications and mathematical expressions. Secondly, we show, exemplary
for LTL formulas, that the newly generated dataset can be used as a substitute for the origin dataset.
Lastly, we show, by altering the target distribution, that the network can generate a dataset that is
harder to solve for a classifier. We trained the models on an NVIDIA DGX A100 system for around
8 hours. We begin each subsection with a short preamble on the training setting.

4.1 PRODUCING SYNTACTICALLY CORRECT SYMBOLIC REASONING PROBLEMS

The goal of the experiments in this section is to asses the generator’s capability in creating valid
symbolic reasoning problems as objectively as possible. If not stated otherwise, in plots and ta-
bles, we report results from our default model averaged across three runs and with an exponential
smoothing (α = 0.95) applied. For temporal specifications, we use LTLbase as training set and
for symbolic math the dataset described in section 2.2.

4.1.1 TRAINING SETTING

For the GAN variant, we employ the standard GAN training algorithm (Goodfellow et al., 2014).
For our default model, we use nc = 2 discriminator training steps per generator training step and
a batch size of bs = 1024. Notably, we use the alternative generator loss −Ez∼pz [logD(G(z))]
instead of the theoretically more sound Ez∼pz [log (1−D(G(z)))]. The WGAN variant uses the
WGAN-GP training with gradient penalty as proposed by Gulrajani et al. (2017) with λGP = 10.
Standard WGAN losses are used and the training loop parameters nc and bs are identical to the GAN
variant. To calculate the gradient penalty of intermediate data points according to Gulrajani et al.
(2017), we make use of the fact that for each batch element, real and generated samples share the
padding mask. After the gradient with respect to an intermediate point is calculated, the gradient’s
squared components are masked out at padded positions before being summed up over the sequence
length. For both variants, both discriminator and generator are trained with the Adam (Kingma &
Ba, 2015) optimizer (β1 = 0, β2 = 0.9) and constant learning rate lr = 1e− 4, similar to Gulrajani
et al. (2017).
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Figure 3: GAN real/generated predictions and WGAN Wasserstein distance estimate when generat-
ing temporal specifications.

4.1.2 RESULTS

Generating valid symbolic reasoning problems. During training we periodically sample several
generated instances and convert them to their text representation, which involves taking the argmax
at every position. We then try to parse a prefix-encoded tree from the resulting tokens. If the parsing
of a problem is successful and no tokens remain in the sequence, we note this problem as fully
correct. The fraction over the course of training to generate temporal specifications is depicted
in Figure 2a. Both GAN and WGAN variants increase the measure relatively continuously, but
eventually reach their limit around 30K training steps. Still, both generators are able to produce a
large fraction of fully correct temporal specifications, despite the length of the instances (up to 50
tokens) and the non-autoregressive, fixed-step architecture. We list some examples below:

¬(h→ h)W (g ∨ h) ∧ (g ∧ g) ∧ ¬ j ∧¬ jW ¬b ∧ ( h ∧ j → j) ∧ j ,

(c ∨ i) ∧ ¬d ∧ ¬ cW ¬c ∧ ( d ∧ ¬((b↔ c) ←↩
↔ c)→ (c↔ d)) ∧ (b ∧ d→ d) ∧ c .

The network also produces correct symbolic mathematical expressions when training on the forward
generated mathematical dataset of Lample & Charton (2020). After 30K steps, on average 30% are
fully correct. We list some examples below:

x3 · ((−1) · (lnx)3 + 2 · x · (acosh (5) + 1 + (−1) · x · (2 + x)44)) ,

1÷ 2 · 81264÷ x · 1÷ 5 · x · ln 4 + 2 ,

x · (3 · (x3) + x · 2) + (2 + x) · 4 · x · (1÷ 201 + acos(44)) .

Differences in homogeneity. Comparing the valid generated formulas from the WGAN and GAN
variants, we find that often, the latter would produces formulas in the likes of

i ∧ i ∧ ¬ ¬¬ i ∧ ¬¬(g ∧ g ∧ i) or

tanh 1222555667667799655766669 · x ,

which contains repetitions (of the -operator) or easily stringed together sequences (for example of
numbers). In fact, some GAN runs achieved fully correct fractions above 30% (higher than WGAN),
but these exclusively produced formulas with such low internal variety. To quantify this, we calcu-
lated a sequence entropy which treats the number of occurrences of the same token in the sequence
relative to the sequences length as probability. Figure 2b shows that indeed this metric decreases
for the GAN variant during training but remains stable for WGANs. We therefore speculate that the
discriminator/critic indeed learns to check syntactic validity to some extend and some generators
“exploit” this fact by producing correct, but repetitive formulas. For further experiments that use
generated instances, we therefore exclusively stick to the WGAN variant.

Discriminator / critic predictions. We observe a quick identification of real and generated in-
stances by the GAN discriminator as depicted in Figure 3. Predictions reach values above 0.99 and
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Figure 4: GAN discriminator predictions for generated samples with different noise level σreal on
real samples when generating temporal specifications.

below 0.01, respectively, and never change directions. Similarly, the WGAN critic’s Wasserstein
distance estimate soon reaches a value of around 0.4 at which it remains for the rest of training. For
this behavior, one would expect the generator to not improve significantly, which is contrary to the
observed improvements in quality.

Effects of additive noise on one-hot representation. We also studied the effect of adding dif-
ferent amounts of noise to the one-hot representation of real temporal specification instances (see
Table 1). It strongly affects the performance of the GAN scheme, which is unable to work without
added noise. Stronger noise however improves this variants performance. WGAN models on the
other hand were not significantly influenced by added noise and are able to be trained without it.

Additionally, we compare how the GAN discriminator rates unmodified generated instances and
argmaxed versions thereof (see Figure 4). For this, we also evaluate argmaxed instances during
each step of training without changing the training regime. While the score for unmodified instances
immediately decreases at the start of the training, it initially rises for the argmaxed ones. After a
while of training, though, the scores of the argmaxed samples quickly deteriorate and, at least for
lower values of σreal, approach their soft-valued counterparts. A possible interpretation is that the
discriminator first identifies generated samples by their different distributions in the one-hot domain,
which, naturally, is eased with low noise on the real samples, before shifting its focus from this low-
level criterion to more global features.

4.2 SUBSTITUTING TRAINING DATA WITH GENERATED INSTANCES

In this subsection, we show that the origin training data can be substituted with generated training
data when training a classifier on the LTL satisfiability problem.

Table 1: Comparison on fully correct formulas (fc) and sequence entropy (se) of GAN and WGAN
with different σreal when generating temporal specifications. 3-run average, smoothed (α = 0.95),
standard deviations in Table 5.

architecture σreal fc se

GAN

0 0% -
0.05 15% 1.7
0.1 17% 1.8
0.2 41% 1.9
0.4 11% 2.2

architecture σreal fc se

WGAN

0 26% 2.2
0.05 25% 2.2
0.1 31% 2.2
0.2 25% 2.2
0.4 3% 2.4

6



Under review as a conference paper at ICLR 2022

4.2.1 TRAINING SETTING

Binary classifier. We use a classifier that is similar to the GAN discriminator, consisting of a
Transformer encoder followed by an averaging aggregation and linear transformation to a scalar
output value. Finally, a logistic sigmoid is applied to obtain a prediction for the formula’s satisfiabil-
ity. The classification loss is a standard cross-entropy between real labels and predictions. Similar
to the GAN discriminator, we use nl = 4 layers and a batch size of bs = 1024. Contrary to the
GAN training scheme, we use the default Transformer scheme Vaswani et al. (2017) with varying
learning rate and 4000 warmup steps as well as the Adam optimizer Kingma & Ba (2015) with pa-
rameters β1 = 0.9, β2 = 0.98. This training scheme resulted in a faster improvement and higher
final accuracy than adopting the settings from GAN training. We trained the classifier for 30K steps.

Generated dataset. To obtain a dataset of generated instances, we first train a WGAN with de-
fault parameters but smaller batch size of 512 on a set of 10K instances from the LTLbase dataset.
After training for 15K steps, we collect 800K generated formulas from it and call this dataset
Generated-raw. This set is processed similar to the original base dataset: Duplicates are re-
moved and satisfiable and unsatisfiable instances are balanced to equal amounts per formula size.
We randomly keep 400K instances and call the resulting dataset Generated.

4.2.2 RESULTS

We compare the performance of similar classifiers on different training sets in Table 2. The training
curves can be found in Appendix C.3. The validation accuracy is computed on the LTLbase dataset.
Training on differently-sized subsets of LTLbase shows that a reduced number of training samples
strongly decreases performance. 10K instances lead to immense overfitting and poor accuracy. We
were not able to train a classifier on this few formulas with significantly higher accuracy.

A classifier trained on the Generated set however achieves almost the identical validation accu-
racy on the base set as the classifier that was actually trained on it. Note that the GAN that created
this set was trained on only 10K instances. We therefore find that the data produced by the TGAN-
SR is highly valuable as it can serve as full substitute for the complete original training data even
when provided with much fewer examples.

Two instances of LTLbase (( ¬a) ∧ ( a) and ( e) ∧ ( ¬e)), i.e. only 0.02%, reappear in
the 800K large data set Generated-raw. Additionally, in Generated-raw, only 2.3K of the
800K (0.28%) generated formulas were duplicates, which displays an enormous degree of variety.

4.3 UNCERTAINTY OBJECTIVE FOR GENERATING HARDER-TO-CLASSIFY INSTANCES

In this experiment, we show that, by adding an uncertainty measure to a simultaneously trained
classifier, the model generates instances of temporal specifications in LTL that are harder to classify.
We train a model on the LTLbase dataset to jointly learn to imitate its formulas and classify them
as satisfiable or unsatisfiable.

4.3.1 TRAINING SETTING

GAN with included classifier. For this experiment, we combine both critic and LTL satisfiability
classifier into one Transformer encoder with two outputs and train them simultaneously. Both parts

Table 2: Accuracies of Transformer classifiers trained on different datasets (5-run average with
standard deviations in parentheses); all are validated on the LTLbase dataset.

trained on bs train acc @ 30K val acc @ 30K train acc @ 50K val acc @ 50K

LTLbase
1024 96.6% (0.5) 95.5% (0.4) 98.1% (0.3) 96.1% (0.3)
512 92.4% (0.7) 93.0% (0.8) 95.4% (0.5) 95.0% (0.8)

LTLbase 100K 512 95.3% (0.7) 88.3% (0.9) 98.1% (0.3) 87.8% (1.0)
LTLbase 10K 512 100% (0.1) 76.4% (1.7) 100% (0.0) 75.5% (1.5)

Generated 1024 95.4% (0.2) 93.6% (1.0) 97.1% (0.1) 93.9% (0.3)
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share the three lower layers of the encoder but have separate fourth layers. We found this to improve
both classification accuracy and GAN performance slightly compared to sharing all layers (the linear
projection layer is never shared). A comparision can be found in Section C.1 in the appendix. We
stick to the WGAN training scheme from Section 4.1.1 including the optimizer settings, but add
an additional classification loss term similar to Section 4.2.1. The classification loss is added to
the GAN critic loss and scaled by coefficient αclass, which we set to 10 when training a WGAN.
The resulting model achieves similar generative performance to the pure WGAN but is limited to a
classification accuracy of around 92%.

Classifier uncertainty. We calculate the entropy of a class prediction s of the classifier asH(s) =
−s · log(s) − (1 − s) · log(1 − s), as a measure of uncertainty on a particular instance. We add
a term −αunctH(s) to the generator’s loss function, which leads to the uncertainty measure being
propagated back through the critic just like the standard GAN objective. H(s) is maximized at
s = 0.5 (with value log 2), so the generator is encouraged to produce instances which “confuse”
the classifier included in the critic. Naturally, this conflicts with the original GAN objective, so
they must be carefully balanced. As default, we chose αconf = 2. Since GAN training is hindered
by adding the uncertainty objective, we only apply it after pre-training for 30K steps with default
WGAN and classification objectives. We then train for additional 15K steps with the uncertainty
objective included. This decreases the fraction of fully correct formulas to around 10%; sequence
entropy as classification accuracy remain unaffected. From the fully trained model, we obtain a
dataset similar to Section 4.2.1 and call it Uncert-e. Additionally, we construct a dataset of 200K
formulas from this set and 200K from LTLbase and call it Mixed-e.

Alternative uncertainty objective. The entropy becomes unhandy to compute for values close to
0 and 1. We therefore explore a pragmatic alternative measure for (un)certainty: the absolute value
of the classification logit. Values close to zero lead to predictions around 0.5. We therefore add a
generator loss of the form αunct|l| for this variant (with l the classification logit; s = σ(l)) and use
a value of αconf = 0.5 in this case. The model is trained similar to the entropy variant and behaves
very similarly. We call the dataset obtained from this model Uncert-a and also construct a mixed
set Mixed-a.

4.3.2 RESULTS

We compare the accuracy of classifiers trained similar to Section 4.2 (pure classifiers with optimized
training schedule, not included GAN classifiers) on different (generated) datasets in Table 3. The
classifier trained on LTLbase serves as reference again with 94.5% accuracy. Training on the
Uncert sets however allows the classifier to achieve only 91% and 90.5% accuracy (for entropy
and absolute variants, respectively). Also when trained longer than 30K steps, there is no significant
improvement.

The datasets produced by WGANs with added uncertainty objective are indeed harder to classify
than the original dataset LTLbase. To validate this, we also trained classifiers on Mixed sets and
find that they also achieve 4.5 percent points higher accuracy when tested on the base set compared
to the generated sets. Additionally, the performance on the original dataset is never deteriorated and
even slightly higher when training on the mixed set. This approach is especially useful in the domain
of symbolic reasoning, because data can, in contrast to archetypal deep learning domains, often be
labeled automatically (e.g. with classical tools and algorithms). This underpins the usefulness of a
GAN setting when generating new training instances for symbolic reasoning problems.

Table 3: Performance of classifiers trained and tested on datasets generated with uncertainty objec-
tives; 30K steps, 5-run average with standard deviations, not smoothed.

trained on tested on accuracy
LTLbase LTLbase 94.8% (0.3)
Uncert-e Uncert-e 91.0% (0.5)
Mixed-e Uncert-e 90.2% (0.9)
Mixed-e LTLbase 95.3% (0.4)

trained on tested on accuracy

Uncert-a Uncert-a 90.5% (0.5)
Mixed-a Uncert-a 89.6% (0.4)
Mixed-a LTLbase 94.1% (0.4)
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5 RELATED WORK

GANs. Generative Adversarial Networks have been applied to discrete domains especially for text
generation in a reinforcement learning setting (Chen et al., 2018; Yu et al., 2017; Che et al., 2017;
Lin et al., 2017; Fedus et al., 2018; Guo et al., 2018) or by using a Gumbel softmax (Kusner &
Hernández-Lobato, 2016; Zhang et al.). Kumar & Tsvetkov (2020) use a continuous, pre-trained
embedding. Gulrajani et al. (2017) showed that it is possible to directly use a soft one-hot repre-
sentation without any sampling. Close related work is Huang et al. (2020) and Zeng et al. (2020)
for adversarial text generation. They also combine Transformers and in an adversarial learning
setting, where the former rely on Gumbel softmax tricks and the latter extract a style code from
reference examples. Transformers and GANs have also been combined in the domain of computer
vision (Vondrick & Torralba, 2017; Jiang et al., 2021; Hudson & Zitnick, 2021). GANs have been
used for data augmentation, especially for images, e.g., (Antoniou et al., 2018; Bowles et al., 2018).

Temporal logics. Temporal logics have been studied in computer science since their introduc-
tion by Pnueli (1977). Since then, many extensions have been developed: e.g., computation tree
logic CTL and CTL∗ (Clarke & Emerson, 1981; Emerson & Halpern, 1986), signal temporal logic
STL (Maler & Nickovic, 2004), or temporal logics for hyperproperties, e.g., HyperLTL, (Clarkson
et al., 2014). Verification methods for temporal logics have been studied extensively over the years,
e.g., LTL satisfiability (Li et al., 2013; Rozier & Vardi, 2007; Schuppan & Darmawan, 2011; Li
et al., 2013; 2014; Schwendimann, 1998), LTL synthesis (Finkbeiner & Schewe, 2005; 2013; Bohy
et al., 2012; Faymonville et al., 2017; Meyer et al., 2018), model checking (Clarke et al., 1986), or
monitoring (Clarke et al., 2001; Bauer et al., 2011; Finkbeiner & Sipma, 2004; Donzé et al., 2013).

Mathematical reasoning in machine learning. Other works have studied datasets derived from
automated theorem provers (Blanchette et al., 2016; Loos et al., 2017; Gauthier et al., 2021), inter-
active theorem provers (Irving et al., 2016; Kaliszyk et al., 2017; Bansal et al., 2019; Huang et al.,
2019; Yang & Deng, 2019; Polu & Sutskever, 2020; Wu et al., 2021b; Li et al., 2020; Lee et al.,
2020; Urban & Jakubuv, 2020; Rabe et al., 2021; Paliwal et al., 2020; Rabe & Szegedy, 2021),
symbolic mathematics (Lample & Charton, 2020; Zaremba et al., 2014; Allamanis et al., 2017;
Arabshahi et al., 2018), and mathematical problems in natural language (Saxton et al., 2019; Schlag
et al., 2019). Learning has been applied to mathematics long before the rise of deep learning. Earlier
works focused on ranking premises or clauses (Cairns, 2004; Urban, 2004; 2007; Urban et al., 2008;
Meng & Paulson, 2009; Schulz, 2013; Kaliszyk & Urban, 2014).

Neural architectures for logical reasoning. Wu et al. (2021a) present a reinforcement learning
approach for interactive theorem proving. NeuroSAT (Selsam et al., 2019) is a graph neural net-
work (Scarselli et al., 2009; Li et al., 2018; Gilmer et al., 2017; Wu et al., 2021c) for solving the
propositional satisfiability problem. A simplified NeuroSAT architecture was trained for unsat-core
predictions (Selsam & Bjørner, 2019). Neural networks have been applied to 2QBF (Lederman
et al., 2020), logical entailment (Evans et al., 2018), SMT (Balunovic et al., 2018), and temporal
logics (Hahn et al., 2021; Schmitt et al., 2021).

6 CONCLUSION

We studied the capabilities of (Wasserstein) GANs equipped with two Transformer encoders to gen-
erate sensible training data for symbolic reasoning problems. We showed that both can be trained
directly on the one-hot encoding space when adding Gaussian noise. We exemplary conducted ex-
periments in the domain of symbolic mathematics and hardware specifications in temporal logics.
We showed that training data can indeed be generated and that the data can be used as a meaningful
substitute when training a classifier. Furthermore, we showed that a GAN setting has a speciality: by
adding an uncertainty measure to the generator’s output, the models generated instances on which
a classifier was harder to train on. In general, logical and mathematical reasoning with neural net-
works requires large amounts of sensible training data. Better datasets will lead to powerful neural
heuristics and end-to-end approaches for many symbolic application domains, such as mathemat-
ics, search, verification, synthesis and computer-aided design. This novel, neural perspective on the
generation of symbolic reasoning instances is also of interest to generate data for tool competitions,
such as SAT, SMT, or model checking competitions.
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A SYNTAX AND SEMANTICS OF LINEAR-TIME TEMPORAL LOGIC (LTL)

In this section, we provide the formal syntax and semantics of Linear-time Temporal Logic (LTL).
The formal syntax of LTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ,
where p ∈ AP is an atomic proposition. Let AP be a set of atomic propositions. A (explicit)
trace t is an infinite sequence over subsets of the atomic propositions. We define the set of traces
TR := (2AP )ω . We use the following notation to manipulate traces: Let t ∈ TR be a trace
and i ∈ N be a natural number. With t[i] we denote the set of propositions at i-th position of t.
Therefore, t[0] represents the starting element of the trace. Let j ∈ N and j ≥ i. Then t[i, j]
denotes the sequence t[i] t[i + 1] . . . t[j − 1] t[j] and t[i,∞] denotes the infinite suffix of t starting
at position i.

Let p ∈ AP and t ∈ TR. The semantics of an LTL formula is defined as the smallest relation |=
that satisfies the following conditions:

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ

t |= ϕ1 ∧ ϕ2 iff t |= ϕ1 and t |= ϕ2

t |= ϕ iff t[1,∞] |= ϕ

t |= ϕ1 U ϕ2 iff there exists i ≥ 0 : t[i,∞] |= ϕ2

and for all 0 ≤ j < i we have t[j,∞] |= ϕ1

There are several derived operators, such as ϕ ≡ true U ϕ and ϕ ≡ ¬ ¬ϕ. ϕ states that
ϕ will eventually hold in the future and ϕ states that ϕ holds globally. Operators can be nested:

ϕ, for example, states that ϕ has to occur infinitely often.

In contrast to propositional logic (SAT), where a solution is a variable assignment, the solution to
the satisfiability problem of an LTL formula is a computation trace. Traces are finitely represented
in the form of a “lasso” uvω , where u, called prefix, and v, called period, are finite sequences of
propositional formulas. For example the mutual exclusion formula above is satisfied by a trace
({accessp0}{accessp1})ω that alternates indefinitely between granting process 0 (p0) and process
1 (p1) access. There are, however, infinite solutions to an LTL formula. The empty trace {}ω , where
no access is granted at all, is also a solution. In our data representation, both, the LTL formula and
the solution trace are represented as a finite sequence.

B DATA GENERATION DETAILS

B.1 RICH LTL PATTERN CONCATENATION

Previously, LTL formula generation based on patterns worked by concatenating random instanti-
ations of a fixed set of typical specification patterns (Hahn et al., 2021). The instantiations were
single variables, i.e. the response pattern S → T could be used like d → a. We keep the
concept of concatenating such patterns, but extend the process by mainly two concepts: rich pattern
instantiations and groundings.

Dwyer et al. (1999) analyzed typical specifications constructed a system of frequently occurring
patterns. They are grouped into different types such as absence (¬S, something does not occur)
or response (S → T , if S occurred, T must eventually respond). These patterns can again
appear in different scopes such as globally, before or between some events. The global absence
pattern is then ¬S; the absence before Q pattern reads QR¬S. When generating a new pattern
for concatenation, we sample both a type and a scope and assign different probabilities to account
for more common and exotic combinations. Additionally, we instantiate patterns not with single
variables, but full subformulas, which results in much more reasonable and interesting patterns
such as ¬(a∧ b) or ((¬d ∨ b)→ (c ∧ f))U e. These subformulas may still contain temporal
operators, but are strongly biased towards pure boolean operators.

During concatenating the different parts of a formula, we also distinguish between adding instanti-
ated patterns and groundings. The problem with complex patterns and especially complex scopes
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is that they must be “activated” to have some effect: If some constraint must only hold between
Q and R but these events never happen, the whole pattern is effectively useless. A grounding is a
term that is likely to activate scopes, such as a ∧ ¬b or c. The variables used here are also
biased to coincide with the ones already used in previous patterns to further increase the change for
dependencies. Groundings are added with 45% probability instead of a specification pattern.

We observe that these changes indeed lead to a much higher chance of unsatisfiability. Consider the
code in data generation/spec patterns.py for exact reference of the individual steps in
the generation process.

B.2 TEMPORAL RELAXATION FOR FORMULA INSPECTION

We inspect the unsatisfiable formulas obtained by our generation process more closely. Concretely,
we want to make sure that unsatisfiabilities do not stem from simple boolean contradictions, but
actually require temporal reasoning to some extend. For example, the formula (a ∨ b) ∧ ¬b ∧ ¬a
can be found to be unsatisfiable without considering multiple time steps. In contrast, this would be
required for a formula like ¬aU b ∧ ¬b ∧ a.

We therefore introduce a temporal relaxation that transforms a LTL formula into a purely boolean
formula. This allows us to check whether the relaxed version is already unsatisfiable (so, no temporal
reasoning is required) or if it is only temporally unsatisfiable, which is the desired outcome. The
relaxation is defined as follows:

Rel(ϕ ∗ ψ) = Rel(ϕ) ∗Rel(ψ) for ∗ ∈ {∧,∨,→,↔,⊕}
Rel(ϕ ∗ ψ) = Rel(ϕ) ∨Rel(ψ) for ∗ ∈ {U ,W}
Rel(ϕRψ) = Rel(ψ)

Rel( ϕ) = >
Rel( ϕ) = ϕ

Rel( ϕ) = >
Rel(α) = α for α ∈ AP ∪ {>,⊥}

Rel(¬α) = ¬α for α ∈ AP ∪ {>,⊥}

(1)

Notably, negation is only allowed at the level of atoms. Each LTL formula can be rewritten in
a negation normal form (NNF), where only operators ∧,∨,U ,R, occur anywhere and negations
only before atoms. Consequently, the relaxation can be applied to each LTL formula by first bringing
it to NNF.

B.3 BASE DATASET

We generated a raw dataset of 1.6M instances (see reproducibility section for details) up to size
50. To determine satisfiability, we use the tool aalta (Li et al., 2014). Its length distribution and
satisfiability distribution is shown in Figures 5 and 6.
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Figure 5: Raw dataset size distribution
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Figure 6: Raw dataset satisfiability proportions

We filter out duplicates and balance satisfiable and unsatisfiable instances per size (Figure 7). Ad-
ditionally, we apply the temporal relaxation and determine the satisfiability of relaxed unsatisfiable
instances. This distinction is included in Figure 8. Finally, the dataset is split into a training set
(80%) and validation set (10%). The resulting training set contains around 380K instances.
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Figure 7: Final dataset size distribution (average size 34.6)
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B.4 WGAN-GENERATED DATASETS
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Figure 9: Generated dataset size distribution (average size 33.6)
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Figure 10: Uncert-e dataset size distribution (average size 38.0)

C ADDITIONAL EXPERIMENTS AND INFORMATION

C.1 SHARED LAYERS FOR CLASSIFIER INCLUDED IN CRITIC

Table 4: Different number of shared layers for WGAN with included classifier, 2 runs each, 30K
steps

shared layers se fc val acc
0 / 4 2.2 31.8% (0.2) 89.9% (2.3)
2 / 4 2.2 26.6% (1.7) 92.5% (0.1)
3 / 4 2.2 24.9% (0.3) 92.1% (0.6)
4 / 4 2.2 24.0% (1.2) 90.5% (0.5)

Table 4 shows classification benefits for sharing only some layers between classifier and critic. Also
note that not sharing any layers, while yielding the highest fraction of fully correct formulas in the
joint GAN and classification objective, degrades performance in the uncertainty setting, where a loss
is backpropagated through the classifier part.

C.2 HYPER-PARAMETER COMPARISON

A hyper-parameter comparison with a 2-run average at 15K training steps.
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nlG nlD nc bs variant fully correct
2 2 1 1024 GAN 6%
2 2 1 1024 WGAN 4%
2 2 2 512 GAN 6%
2 2 2 512 WGAN 4%
2 2 2 1024 GAN 7%
2 2 2 1024 WGAN 5%
2 2 2 2048 GAN 5%
2 2 2 2048 WGAN 6%
2 2 3 1024 WGAN 5%
2 4 2 1024 GAN 8%
2 4 2 1024 WGAN 9%
3 3 2 1024 GAN 8%
3 3 2 1024 WGAN 13%
4 2 2 1024 GAN 7%
4 2 2 1024 WGAN 14%
4 4 2 1024 GAN 10%
4 4 2 1024 WGAN 16%
6 4 2 1024 GAN 17%
6 4 2 1024 WGAN 20%
6 6 2 1024 WGAN 15%
8 6 2 1024 WGAN 18%

C.3 TRAINING CURVES FOR DATA SUBSTITUTION EXPERIMENTS
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·104

0.6

0.8

1

training steps

Generated
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Figure 11: Validation accuracy during training of Transformer classifiers on different datasets. 5-run
average, smoothed (α = 0.9). Complements Table 2.

We provide the training curves for the data substition experiment (see Figure 11).

C.4 STANDARD DEVIATIONS FOR TABLE 1

Table 5: Standard deviations for Table 1, 3-run average, smoothed (α = 0.95)

architecture σreal fc sd se sd

GAN

0.00 0.00 -
0.05 4.10 0.04
0.1 6.50 0.03
0.2 3.92 0.04
0.4 0.14 0.02

architecture σreal fc sd se sd

WGAN

0 1.51 0.00
0.05 2.52 0.00
0.1 1.08 0.01
0.2 0.47 0.00
0.4 0.14 0.03

We provide the standard deviations for Table 1 across 3 runs (see Table 5).
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C.5 GAN WITH UNIFORM NOISE

Table 6: GAN variant with uniform instead of Gaussian noise. 2-run average with standard devia-
tions, smoothed (α = 0.99)

min max fc se
0 0.1 19.2% (2.94) 1.6 (0.19)
0 0.2 33.3% (1.04) 1.8 (0.01)
0 0.4 11.2% (3.32) 2.0 (0.07)

As evident from Table 6 in comparison with Table 1, a uniform noise has no benefit over Gaussian
noise.

C.6 OUT-OF-DISTRIBUTION CLASSIFICATION EXPERIMENTS

Table 7: Classifiers trained on different datasets tested out-of-distribution. 5-run average, not
smoothed

trained on training steps tested on accuracy
LTLbase 30K Benchmarks 85.2% (2.2)
Uncert-e 30K Benchmarks 85.9% (2.9)
Uncert-e 30K LTLbase 87.5% (0.9)
Mixed-e 30K Mixed-e 92.7% (0.6)
LTLbase 50K Benchmarks 86.0% (5.0)

Generated 50K Benchmarks 94.1% (1.2)

A synthetic dataset that is designed to bring classical solvers to their limits is a portfolio
dataset (Schuppan & Darmawan, 2011), of which around 750 formulas fit into our encoder token and
size restrictions. We conducted an out-of-distribution test on these scalable benchmarks (Table 7).
Note that almost all of the instances are satisfiable.
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