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Abstract

Advances in protein language models (pLMs) and their integration into closed-loop
wet-lab experimental platforms is unlocking powerful new capabilities in protein
design. This convergence, termed Intelligent Automated Biology (IAB), enables
rapid, large-scale exploration of protein function, accelerating discovery in fields
from medicine to synthetic biology. Yet when applied to pathogens, these same
tools pose serious dual-use risks. IAB systems can efficiently optimize immune
escape, viral fitness, and other dangerous traits, even in the absence of deep biolog-
ical expertise. In this position paper, we argue that the Al community must take
proactive steps to address this emerging Al safety and biosecurity challenge. We
introduce a framework categorizing IAB capability levels to guide risk assessment,
examine IAB’s unique governance challenges, and offer concrete recommendations
for pLM-specific safeguard research.

1 Introduction: The New Biosecurity Frontier in Al

Artificial intelligence (Al) is rapidly reshaping biological discovery, with protein language models
(pLMs)—Ilarge models trained on vast protein sequence—at the forefront[l]. These tools offer
unprecedented speed and scope for understanding biological systems, predicting properties like
protein fitness[2} 13 4, |3]], and even generating novel proteins entirely[6} [7]. In the recent fight
against SARS-CoV-2 pandemic, pLMs help predicting viral fitness[8}, 9} [10] and immune escape[11]],
accelerate the development of vaccines and therapeutics[[12} |13} [14] and anticipate viral evolution[15]].

However, the true transformative power—and potential peril—emerges not from pLMs in isolation,
but from their integration with active learning algorithms and wet lab platforms. This convergence,
which we term Intelligent Automated Biology (IAB), creates a powerful, high-throughput loop
from in silico design and prediction to (potentially automated) experimental validation. While
IAB offers profound benefits for global health by accelerating biological engineering, it simul-
taneously introduces new dual-use risks that current biosecurity and Al security frameworks are
ill-equipped to manage. Specifically, this integration leads to:

* Dramatically accelerated exploration of protein fitness landscapes: Active learning
approaches enable efficient identification of functionally significant mutations with minimal
experimental data[[13}[15,/16]. In areas like pandemic research, this can reveal pathways to
enhanced virulence, transmissibility, or immune evasion—mutational trajectories that might
not arise through natural evolution.

¢ Increased throughput and hit-rate: Automated and high throughput systems can test
thousands of variants rapidly[17, 18], enabling the systematic exploration of mutational com-
binations that would be prohibitively resource-intensive using manual laboratory method.
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* Lowered expertise barriers: The combination of pLMs, active learning, and lab automa-
tion reduces the specialized protein knowledge required to conduct sophisticated viral
engineering, potentially expanding the set of actors capable of creating enhanced pathogens.

Worryingly, the implications of this powerful IAB integration remain largely underexplored within
the machine learning field driving these innovations. Our position is informed by three key facts:

1. General-purpose pLM models are increasingly capable of supporting pandemic-scale biol-
ogy. Tools developed for protein design or sequence modeling can be readily adapted for
use in predicting immune escape, enhancing viral fitness, or predicting high-risk protein
variants, as demonstrated in Al-enabled pandemic tools.

2. There is currently a lack of dedicated research on safeguards for pLMs, particularly in the
context of viral protein design and prediction, leaving dual-use risks from powerful pLMs
underexplored.

3. Leading Al venues currently lack dedicated biosecurity evaluation criteria, let alone mech-
anisms to assess the specific dual-use risks emerging from the integration of models into
automated wet-lab pipelines.

Our position:
Oversight and safety research is needed for Intelligent Automated Biology (IAB) to mitigate
its dual-use risks, as demonstrated by AI’s capabilities shown in pandemic research.

This paper argues for immediate attention to the dual-use risks inherent in IAB systems. We outline
the escalating Al capabilities demonstrated in pandemic research, present a tiered risk table, and
propose specific safeguard strategies directed towards the AI-Bio research community.

2 Pandemic Research Before Modern Al

The central challenge in combating viral pandemics lies in understanding how viruses evolve. Tiny
changes, known as mutations, in the amino acid sequences of viral proteins can dramatically alter
their behavior. For instance, mutations in the SARS-CoV-2 Spike protein’s receptor-binding domain
(RBD) can affect how strongly it binds to the human ACE2 receptor, influencing infectivity, or
change how well antibodies recognize it, impacting immune evasion [19]. Predicting the effects of
these mutations—specifically on protein stability and interactions with host cells or antibodies—is
crucial for anticipating viral evolution and developing effective countermeasures. Before the advent
of modern Al techniques like pLMs, researchers relied on two main computational approaches.

Approach 1: Simulating Physics One approach involved simulating the fundamental physics
governing protein behavior. These physics-based methods use computational models to calculate
the energy and stability of proteins based on the forces acting between their constituent atoms.
Conceptually, this is like creating a detailed molecular simulation to understand how a protein folds
and interacts. Tools employing force fields, such as FoldX and Rosetta [20, 21]], exemplify this
strategy. Some highly rigorous techniques, like Free Energy Perturbation, aim for thermodynamic
accuracy in predicting how mutations change binding energy [22].

The strength of these physics-based methods lies in their potential for high accuracy and their ability
to provide deep mechanistic insights—explaining why a specific mutation causes a particular effect at
the molecular level. However, their major limitation is computational time. Accurately simulating
the complex atomic interactions for large proteins requires immense processing power and time. A
typical protein has 3N degrees of freedom where N can be thousands of atoms. The number of
pairwise interactions scales as N2. Accurate sampling of this space requires extensive computational
power that scale poorly with system size.

Approach 2: Learning from Evolution A second approach leveraged evolutionary data. Known
as Multiple Sequence Alignment (MSA)-based methods, these techniques compare the sequences
of a specific protein collected from many different related organisms or viruses. By aligning these
sequences, researchers can identify patterns: amino acid positions that rarely change are likely
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crucial for function, while positions that vary widely might be less critical or involved in adaptation,
such as immune escape. Statistical models can then be built from these alignments to learn which
combinations of mutations are commonly observed in nature (and thus likely viable) and which
are rare (and likely detrimental). Models based on principles like maximum entropy or variational
autoencoders were applied to viruses like SARS-CoV-2 [23| 24]] and HIV [25} 26} 27, 128} [29],
predicting mutational effects and escape pathways.

MSA-based methods are generally faster than physics-based simulations for evaluating mutations
across a protein and directly capture constraints imposed by natural selection. However, their
effectiveness hinges entirely on the availability of a large and diverse set of related sequences—a
""deep' MSA. For newly emerging viruses, constructing a meaningful alignment is difficult. Further-
more, these methods typically require significant data curation and model retraining for each new
protein family being studied. This dependence on specific evolutionary data created a bottleneck,
particularly hindering rapid analysis and response efforts during the early stages of an outbreak when
sequence data for a novel pathogen is scarce. This limitation highlighted the need for models capable
of making predictions without relying on alignments.

3 Protein Language Models: A Leap in Prediction Capability

3.1 Backgrounds

Inspired by advances in natural language processing,
pLMs are trained on large databases of unaligned
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A key advantage of pLMs is that they operate directly on raw sequence data, eliminating the need
for the time-consuming and often difficult step of creating multiple sequence alignments required by
earlier methods. This makes pLMs far more flexible and significantly faster to deploy, especially for
novel proteins or viruses where alignment data is limited.

Furthermore, because pLMs are trained on such vast and diverse datasets, they learn highly general
principles of protein biology. This allows a single, large pre-trained pLM—such as those in the widely
used ESM family [32} 33]]—to make meaningful predictions about virtually any protein sequence,
even those belonging to protein families not seen during training. This capability is known as "zero-
shot" prediction. Recent advances have further improved the performance of pLMs by explicitly
incorporating structural information into the modeling process. For example, ESM-3 [37]] unifies
sequence and structure modeling by co-training across multiple modalities, including 3D coordinates,
sequence likelihood, and masked token recovery. This joint training enables improved accuracy in
predicting mutational effects and sequence plausibility within structural constraints.Additionally,
some inverse folding models, like ESM-IF [35]], and ProteinMPNN [38]] are structure-conditioned;
they can predict sequences likely to fold into a specific 3D shape, or assess how well a mutation fits
within a known structure.

3.2 Models for viral protein properties prediction

Hie et al. (2021) [39] demonstrated that pLMs, when trained solely on viral sequence data without
fine-tuning or structural supervision, can capture both the functional and antigenic consequences



128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143

144
145
146
147

148
149
150
151
152
153
154

156

157

158

159
160
161

162

163
164

166
167
168
169
170
171
172
173

of mutations. They trained separate BILSTM language models on corpora of aligned sequences
for influenza HA, HIV Env, and SARS-CoV-2 Spike, and introduced the Constrained Semantic
Change Search (CSCS) framework. In this framework, grammaticality (i.e., the model-assigned
likelihood of a sequence) was hypothesized to reflect viral fitness, while semantic change (i.e., the
shift in embedding space) served as a proxy for immune escape. Despite being trained only on viral
sequences and without escape labels, the models successfully predicted known escape mutations in
a zero-shot setting, highlighting the capacity of language models to learn biologically meaningful
patterns directly from sequence data.

Building on this, Allman et al. (2024) [40] systematically benchmarked grammaticality and semantic
change across multiple viral proteins using both the original LSTM-based model and newer pretrained
pLMs like ESM-2. Their analysis confirmed that grammaticality scores are consistently higher for
viable mutations and can serve as a practical proxy for fitness. This finding held across viral systems,
including HIV and influenza. In parallel, Wang et al. [8] used ESM embeddings to predict the fitness
of SARS-CoV-2 RBD variants by integrating them into a biophysical model. More broadly, other
pLMs and Al models have been developed to predict key viral propertiesto predict viral properties
such as binding affinity [41} 42| 43] 144} 45]], mutation spread [46], and fitness [10, 15].

Collectively, these results underscore a crucial point: powerful pLMs, including those trained broadly
rather than exclusively on viral data, encode meaningful information about viral protein function and
evolution. This enables them to anticipate evolutionary trajectories and assess mutational effects in
emerging pathogens, often with remarkable accuracy directly from sequence data.

Importantly, while these models were developed to support beneficial applications like vaccine design
or pandemic forecasting, their predictive capabilities could also be misused. For instance, a model that
accurately identifies mutations increasing ACE2 binding or antibody escape can just as easily be used
to propose unseen variants with those mutations intentionally. Their application to targeted protein
design requires specific conditioning approaches detailed in the Technical Appendix. Moreover,
because many pLMs are open-weight and require minimal fine-tuning, such capabilities may be
accessible even without deep virological expertise. Notably, these tools have been used to design
novel SARS-CoV-2 proteins that were experimentally shown to be infectious and capable of
evading neutralization[47, 48]).

Our position: It is technically concerning that open weights pLMs can accurately predict
viral fitness and immune escape either zero shot or few-shot with fine-tuning. Capabilities
developed for pandemic response could, without safeguards, be repurposed for misuse.

4 The Accelerator Effect: Integrating AI with Lab Experiments

pLMs are not just predictive tools; they are increasingly integrated into active protein engineering
workflows, dramatically accelerating the pace and changing the nature of biological design. This
integration manifests in several key applications.

4.1 Smarter Directed Evolution

Directed evolution is a laboratory technique that mimics natural selection to improve proteins
for specific purposes, such as improving the efficiency of enzymes, increasing binding affinity of
therapeutic antibodies [13]. Traditionally, this involves creating large libraries of protein variants
and screening them for desired properties, often a laborious, inefficient, and expensive process.
pLMs enables the direct evolution of novel proteins with significantly improved functional
properties. By predicting the likely effects of mutations by either zero shot or few shot, pLMs can
guide researchers to focus on variants with a higher probability of success, effectively narrowing down
the search space and reducing the experimental burden. Recent studies have demonstrated that general
and structure-informed pLMs can substantially improve the binding affinity and neutralization breadth
of human antibodies against diverse viral targets, including SARS-CoV-2, Ebola, and influenza, while
requiring only minimal rounds of experimental screening [[12} 14} 49].
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4.2 Laboratory Automation and Closed-Loop Experimentation

The impact of pLMs is amplified when combined with laboratory automation, often referred to
as "biofoundries"[50, 51]. This integration enables fully automated cycles of biological design,
construction, testing, and learning, commonly known as the Design—Build-Test-Learn (DBTL) cycle.
The DBTL cycle includes: (1) Design: Al/pLMs propose sequences with predicted properties; (2)
Build: Robotic systems synthesize DNA and produce variants; (3) Test: Automated assays measure
properties; (4) Learn: Results feed back to Al for improved designs in subsequent cycles.

Platforms like PLMeAE[17] demonstrate the power
of this approach, achieving multiple rounds of en-
zyme optimization in just 10 days—a task that could e
take many months using traditional methods [17]]. ARS e/
This creates a powerful, high-speed, closed loop for
biological engineering. While offering tremendous

DESIGN

potential for accelerating therapeutic development, LS
. . . 00000000
this automation also raises concerns. The speed and — §§§§§§§§

reduced human intervention inherent in these closed
loops could potentially allow for the rapid optimiza-
tion of harmful properties if misused, with fewer
opportunities for oversight or ethical review during
the process.

\ J J

Figure 2: Schematic of the DBTL cycle
in Al-enabled bioengineering. pLMs pro-
pose novel sequences (Design), which are syn-
thesized and expressed by robotic platforms
(Build), evaluated through high-throughput
assays (Test), and iteratively improved based

4.3 Efficient Exploration with Active Learning :
on experimental feedback (Learn).

The sheer number of possible mutations, even within

a single protein, makes exhaustive experimental or

computational testing infeasible. Active learning offers a solution by integrating model predictions
with experimental design[16} 52]]. Instead of testing randomly or relying solely on initial predictions,
active learning uses the predictive models to select the most informative experiments to perform at
each stage, based on certain acquisition function[53].

The typical process starts with wet-lab testing a small, initial set of variants. The results are used
to train or fine-tune a predictive model (like a pPLM)[54]. The model then evaluates the vast pool of
untested variants and identifies those whose experimental evaluation would maximally improve the
model’s accuracy or are most likely to possess the desired properties (e.g., high fitness, activity, or
strong binding). These selected variants are then synthesized and tested, and the new data is used
to update the model, repeating the cycle. This iterative strategy dramatically reduces the number of
experiments required to explore the mutational landscape and identify top-performing or high-risk
variants. Active learning has already shown success in domains like drug discovery[|55} 156} 157, 58]

Recent studies have shown that active learning frameworks can optimize enzymes, antibodies, or other
protein variants, antibody or protein variants significantly faster than random screening, using only a
small fraction of what traditional method required[|13}[16]]. This efficiency can also enable researchers
to proactively identify concerning viral mutations before they potentially emerge naturally[[15]].

The synergy between pLMs (for design and prediction), active learning (for efficient experimen-
tal guidance), and laboratory automation (for rapid build and test cycles) creates an engineering
capability far greater than the sum of its parts. This integrated approach enables systematic bi-
ological exploration and optimization at an unprecedented speed and scale. While this accelerates
beneficial research, it simultaneously increases the risk of malicious biological engineering and
potentially reduces human oversight within automated loops.

Our position: pLMs, when integrated with active learning and laboratory automation, form
a closed-loop Al-bioengineering stack that introduces an unprecedented class of dual-use
biosecurity risks. These risks arise not from any one capability, but from their systemic
integration, which could accelerates viral evolution modeling.
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S The Dual-Use Dilemma: Assessing Risks of IAB

The core challenge presented by the convergence of Al and biotechnology lies in its inherent dual-use
nature: technologies developed with beneficial intent, such as improving human health or combating
pandemics, can often be repurposed to cause harm. pLM significantly amplifies this dilemma by
accelerating design cycles, lowering knowledge barriers, and enabling automation at unprecedented
scales. To effectively discuss and manage these risks, it is helpful to categorize the capabilities
enabled by IAB and assess their associated risk levels.

We propose a framework categorizing IAB capabilities into five levels, reflecting escalating potential
for misuse as pLM integration deepens (Table[T). This framework builds upon initial concepts and
incorporates insights from recent literature on Al capabilities and biosecurity risks.

Table 1: IAB Capability Levels and Associated Biosecurity Risk

Capability Level Description Examples Base Risk Level
Level 1: Zero-shot basic pLM predictions (e.g., sequence ESM-1v zero-shot prediction Low — Moder-
Prediction likelihood as fitness proxy). with grammaticality score [3! ate
40].
Level 2: Advanced Accurate ML/pLM prediction of com- Fine-tuned ESM3 to predict Moderate
Prediction & Analy- plex molecular properties (e.g., bind- viral fitness; UniBind[11]
sis ing affinity changes (AAG), immune predicting binding affinity;
escape potential, stability). EVEscape[59] and VIRAL[15]
predicting escape variants;
MMSite for active site
prediction[60]
Level 3: Targeted Generative AI/pLMs designing novel ProteinMPNN[38] or ESM-IF1  High
Sequence Genera- sequences optimized for specific func-  [7] for generative enzyme/anti-
tion tional properties (e.g., enhanced bind- body design; Potential toxin/-
ing, stability, potentially virulence pathogen design.
factors or toxins).
Level 4: Integrated Combining generative models with  ProteinNPT[61] for  Ac- Very High
Design & Active active learning/Bayesian optimization tive learning frameworks;
Learning for efficient discovery and optimiza- EVOLVEpro[l13] and
tion of desired (potentially harmful) ALDE[16] for direct evo-
biological functions. lution;
Level 5: Full AI-Bio  Closed-loop systems linking Al pro- PLMeAE[17] or iBioFAB [18] Extremely
Automation Integra- tein design, learning, synthesis, and where pLMs are embedded in  High

tion

testing (DBTL cycle) with minimal
human oversight

automated biofoundries

This table illustrates that the most significant risks emerge not merely from individual Al capabilities
but from the DBTL cycle coupled with physical automation. Level 5 enabling rapid, automated, and
potentially remote execution of complex bioengineering tasks[62]], maximizing both the potential for
benefit and the potential for misuse. For each level we classified, concrete examples are provided—and
concerningly, full Al-biology automation integration at Level 5 has already been observed in 2025.

0(1000)
IAB Capability Level

mm Level3

. Level 5 50

— .

Non-Al, Al-Enhanced,
Low Throughput  Low Throughput

Figure 3: Functional protein “hits” per
day from Al vs non-Al methods un-

To better quantify the acceleration enabled by this inte- 1000

gration, we estimated the speed (see Appendix) to ob-
tain a functional variant (“hit”) using wet-lab hit rates
on an 85-amino-acid peptide [63]]. Hit rate is defined as
the fraction of tested sequences that exhibit the desired
function. Combining these hit rates with representative
experimental throughput values, we find that Al-guided, 0
automated pipelines (Level 5) can yield thousands of hits
per day—several orders of magnitude more than tradi-
tional, manual, non-Al-guided approaches (Figure[3)). This
illustrates how full-stack automation not only increases der low- and high-throughput settings.
capability but compresses timelines, potentially outpacing  Baced on hit rate x throughput.

the safety checks traditionally used to govern wet-lab experimentation.

Hits per Day
. 3 8

o

Non-Al,
Automation

Al-Enhanced,
Automation
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A critical factor contributing to this assessment difficulty is the "evaluation bottleneck”. AI-Bio models
at Capability Level 3 and above can generate novel protein sequences, but accurately predicting their
real-world function—especially their potential harmfulness—remains an open challenge. Definitive
functional validation often requires synthesizing the DNA and expressing the protein in a wet lab.

However, if the Al-designed entity possesses hazardous properties, this evaluation step becomes
inherently dangerous. This stands in contrast to evaluating text generated by large language models
(LLMs) in the medical or virology domain, where outputs remain directly interpretable by humans
and standardized benchmarks exist to assess risks [64}165]. The inability to safely and reliably assess
the biological function of IAB outputs poses a fundamental obstacle to timely risk detection and
mitigation. Without robust, trustworthy pLM risk evaluation tools and benchmarks, we risk not
knowing the true danger posed by a new IAB or a specific protein design until it has been physically
instantiated—potentially too late to prevent harm.

6 Safeguard the Frontier: IAB Needs Tailored Oversight

On the biosecurity side, traditional biosecurity measures fall short in addressing Al-specific risks.
Oversight frameworks like the U.S. Government Policy on Dual Use Research of Concern (DURC)
[66] were designed to address a narrower class of threats: specific pathogens and well-defined
experimental manipulations (e.g., increasing virulence or transmissibility). The DURC policy applies
only to 15 listed agents and a fixed set of seven experimental categories, with no provisions for risks
stemming from powerful general-purpose tools like pLMs. As such, it does not account for the
dual-use potential of IAB[67]].

One of the most widely used approaches in biosecurity—DNA synthesis screening [68},[69]] aims
to prevent the acquisition of matches to regulated pathogens or known hazardous sequences[70].
However, a recent MIT experiment revealed that it was alarmingly easy to purchase synthetic DNA
fragments capable of reconstructing the deadly 1918 influenza virus—93% of U.S. providers and
100% of international providers fulfilled the order [71]. Also, generative models can design entirely
novel protein sequences [38] or potentially generate sequences designed to evade detection[72].

On the training methodology side, no established safeguard frameworks exist for pLMs. To
address this gap, we explore early-stage technical approaches—adapted from the LLM safety litera-
ture—that may help reduce the risk of generating dangerous biological sequences. Broadly, these
approaches can be categorized into training-time guardrails, which modify the model’s learning
process to discourage the generation of harmful content; and inference-time guardrails, which
filter or steer model outputs at the point of generation. One fundamental training-time strategy
is likelihood suppression, which aims to discourage the model from assigning high probability to
harmful sequences (Figured). This can be formalized by modifying the training objective to penalize
the likelihood of pathogenic sequences:

L = Lorigina — Alog P(pathogenic) (2)

where L represents the likelihood of any sequence and A controls the strength of the suppression
[73]. A more adaptive approach to implementing such training-time penalization, or more broadly
steering the model towards safer outputs during training, is Reinforcement Learning from Human
Feedback (RLHF) [74, [75]. While no end-to-end implementation of RLHF for pLM safety has
been empirically demonstrated, we sketch a conceptual mapping here as a foundation for crucial
future research and development in this area. In this context, the pLM acts as a policy generating
sequences, while a separate reward model (RM)—potentially trained on datasets of viral protein
sequences, structures, and functions—evaluates their potential harmfulness. The pLM can then
be fine-tuned using RL algorithms like Proximal Policy Optimization (PPO) [76] to minimize the
generation of dangerous sequences. This approach represents an advanced method for instilling
safety considerations during the model training phase. Recent work has demonstrated the feasibility
of using RL techniques on pLMs for preference optimizations and fine-tuning [[77, (78} 79, 180, 811,
suggesting these methods could be adapted for safety purposes. Developing RM for pLM safety
could face difficulties, including precisely defining the harmfulness score and obtaining sufficient
labeled protein data for it. RLHF for pLMs can inherit issues from LL.Ms such as reward hacking
(See Appendix). For a detailed comparison and further discussions between RLHF in LL.Ms and
pLMs, see Table[5]in Appendix.
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Likelihood Suppression Embedding Rejection Radius

Benign Protein

Alternatively, safeguards can be imple-

mented as inference-time guardrails. These Likelihood Score Embeddings Ko sl
methods typically do not alter the underly- °©% o0
ing model weights but instead apply checks, oo °©.%0 FERC RPN
filters, or steering mechanisms during or S0 0 °.0 ° !
after the generation process. This can in- 0°,°% \
volve pre-generation constraint condition- o ° TN
ing, where generation is guided away from . bdiug
risky regions of the sequence space using

; X : Pathogenic Benign
techniques like control tokens or latent vari-

able manipulation . A specific example of Figure 4: Illustration of examples of training-time
an inference-time filter is the embedding- and inference-time guardrails for pLMs. Likelihood
space rejection radius [82]|(Figure ). This  suppression during training time [[73] assigns low proba-
method blocks the output of generated se- bility to pathogenic sequences, while an embedding-
quences whose embeddings are found t0  gpace rejection radius [82] blocks generation of se-

be too close to those of known harmful  quences too close to known harmful proteins in infer-
proteins. During inference, a generated se- epce time.

quence’s embedding would be compared against a curated database of harmful protein embeddings
(e.g., using cosine similarity or Euclidean distance). If a sequence falls within a predefined rejection
radius of a known harmful protein, its output is blocked or flagged.

7 Conclusion and Recommendations: A Call for Responsible Innovation
Integrating Al particularly pLMs, with automated experimental biology platforms marks a significant
technological leap. However, the very power that makes IAB revolutionary also introduces dual-use
Al safety and biosecurity risks. As detailed, IAB systems can rapidly explore complex biological
landscapes, optimize functions like viral fitness or immune evasion, lower bioengineering expertise
needs, and potentially operate with less oversight via closed-loop automation. While these capabilities
are invaluable for tasks like pandemic preparedness, they could equally be misused to design or
enhance dangerous pathogens, potentially accelerating the emergence of future pandemics.

Current safety frameworks, whether drawn from Al safety or traditional biosecurity, falls short to
manage the unique challenges posed by IAB. Key difficulties include the "evaluation bottleneck"—the
inability to safely and reliably assess the real-world function and potential harm of Al-generated
biological entities without risky wet-lab synthesis—and the capacity of Al to design entirely novel
sequences that may evade existing detection methods. Therefore, proactive oversight and community
engagement are essential. We outline targeted actions for different communities involved in the
development and oversight of integrated IAB systems, grouped by stakeholder to enhance actionability

1. For Researchers in Academia and Industry

(a) Develop and Prioritize AI-Bio Capability Evaluation and Safeguards: Standard-
ized benchmarks and metrics should be developed to assess the potential risks of
Al-generated protein sequences and structures. This includes few-shot or zero-shot
benchmarks evaluating properties such as enhanced virulence, as illustrated in Table 2]
In parallel, the Al community could consider open-source safeguarded pLM variants
with architectural constraints built in, reducing misuse risk.

2. For Scientific Conferences and the Broader Research Community

(a) Integrate Biosecurity into Peer Review and Evaluation: Conferences like NeurIPS
should introduce a formal biosecurity checklist[83]] for submissions describing poten-
tially high-risk IAB capabilities (e.g., generative pLMs or automated design tools).
Reviewer guidelines should include criteria for evaluating whether authors adequately
assess and mitigate potential dual-use risks. Submissions flagged for significant biose-
curity or Al-biology risks should undergo a dedicated ethics review by qualified AI-Bio
security experts.

Unlike LLMs, whose outputs are text, the outputs of pLMs and AI-Bio models can be synthesized
into real biological agents. Thus, risk must be assessed holistically, accounting for how models are
embedded in subsequent experimental platforms. This integration demands cross-disciplinary safety
research efforts, oversight and the expansion of ML peer review norms to reflect their real-world
effects.
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A Technical Appendices and Supplementary Material

Alternative views The "Traditional Methods Suffice” View: Traditional methods, like serial passage
(repeatedly passing a pathogen through cell cultures or hosts) have long been known to potentially
increase virulence or alter host adaptation. The fundamental capability for misuse existed before
sophisticated Al

We acknowledge this point; however, IAB introduces distinct and potentially greater risks. Unlike
traditional methods, IAB can facilitate the rapid design of novel viruses, potentially distant from the
evolutionary tree and specifically optimized for traits like antibody escape. Furthermore, IAB systems
are often far more efficient than serial passage and critically, they can lower the barrier to entry
by reducing the depth of specialized biological or virological expertise required. This distinction is
illustrated by serial passaging experiments from Baum et al. [|84l], which showed that SARS-CoV-2 can
acquire antibody escape mutations—typically one or two steps from wild-type—when placed under
immune pressure. While these studies reveal how targeted selection can exploit local evolutionary
pathways, they remain limited in scope and pace. In contrast, IAB systems can traverse much larger
regions of the mutational landscape, efficiently identifying escape variants that are far from natural
sequences and doing so without iterative wet-lab experimentation or specialized virological expertise.

The "Capability Gap / Overstated Risk" View: While pLMs and IAB show promise, their current
ability to reliably design de novo pathogens with enhanced pandemic potential (e.g., increased
virulence and transmissibility in humans) is significantly overstated.

As discussed in Sections 2 and 3, pLMs and other AI models have already significantly accelerated
pandemic prevention research. The same powerful capabilities developed for these beneficial purposes
are inherently dual-use and could potentially be redirected towards designing novel or enhanced viral
threats. While security considerations prevent authors from exhaustive detailing of potential misuse
pathways and scenarios, the demonstrated predictive power [15| 46]] and design potential[47| 48]
lead the authors to assess that current capabilities present a tangible risk. Therefore, this paper
addresses concrete, technically feasible dual-use capabilities that are demonstrably achievable with
current technology. The threat model is explicit: Al-designed biological agents that can be physically
synthesized and pose risks to public health.

The "Existing Governance is Sufficient" View: Current biosecurity frameworks (e.g., US DURC
policies, Select Agent Regulations, export controls, institutional biosafety committees) combined
with improving DNA synthesis screening are largely sufficient to manage the risks

Current biosecurity frameworks like the US DURC policy do not cover the dual-use potential of
general-purpose Al tools like pLMs or the risks introduced by their integration into automated
experimental platforms. Even safeguards like DNA synthesis screening have shown alarming gaps: a
2024 MIT experiment demonstrated that synthetic DNA fragments reconstructing the 1918 influenza
virus could be ordered from the majority of providers tested—despite existing screening protocols.
Moreover, pLMs can generate novel sequences that fall outside known pathogen databases, potentially
bypassing existing detection and oversight systems.

The "Focus on Actors and Labs, Not Models" View: The primary risk comes from malicious actors
with access to physical laboratory resources. Governing the Al models is a secondary, less effective
control point compared to securing labs, vetting personnel, and controlling access to DNA synthesis
and dangerous biological agents.

We agree that securing physical laboratory and controlling access to DNA synthesis remain essential
components of biosecurity. However, as discussed in the paper, the access to DNA synthesis is
not secured. And this view underestimates the effect that powerful Al models are having on the
accessibility and speed of biological design. These models lower the expertise and resource barriers
required to engineer dangerous agents.
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Automatic Liquid Handler Laboratory automa-

tion utilizes automated systems to replace manual ex-
perimental labor, offering benefits such as increased
throughput, enhanced reproducibility, and reduced
human error. Different lab architectures provide vary-
ing degrees of automation and flexibility. In Fig-
ure 5 we provide an illustration of a liquid handling

throughput pipetting and sample preparation with
minimal human intervention. For example, commer-

machine. These systems can perform precise, high- H
cially available platforms offer programmable work-

T

flows capable of operating across a wide range of Figure 5: Schematic of a Liquid Handling
volumes and plate formats, supporting applications Machine

from routine assays to complex protein engineering pipelines.[S1] Their integration with Al-driven
design tools enables rapid iteration across DBTL cycle.

Protein Design Conditioning Methods Unlike text-based language models that use natural lan-

guage prompts, protein language models employ several conditioning approaches:

* Structure-conditioned generation: Models like ESM-IF and ProteinMPNN take 3D
backbone coordinates as input and generate sequences likely to fold into that structure.

* Function-based conditioning: Through fine-tuning on datasets with functional annotations,

or using predictive heads that score sequences for desired properties.

* Active learning loops: Experimental feedback guides the model toward sequences with

desired functions through iterative Design-Build-Test-Learn cycles.

Additional Policy Suggestions Due to space constraints in the main text, we highlight here

additional policy proposals for the biosafety and machine learning communities to consider:

* Strengthen DNA Order Screening for Direct Evolution: Biosafety researchers and
DNA synthesis companies should develop algorithms capable of analyzing synthesis orders
originating from the same customer or payment source, with the goal of detecting suspicious
patterns—such as iterative mutations indicative of directed evolution experiments on viral
proteins.

* Promote Responsible Release Norms for High-Capability Models: The community
should establish norms for the release of powerful pLMs capable of IAB, and consider
their integration with wet-lab and bio-automation. This could involve considering tiered
access models, staged releases contingent on safety evaluations for models exceeding defined
capability thresholds (potentially frameworks like Table[I)). However, as discussed in Section
2, existing open-weight pLMs and generative models are already sufficiently capable to
design novel viruses.

* Advance AI-Enhanced DNA Screening Tools: The research community, in collaboration
with DNA synthesis companies such as IDT[85] and Twist Bioscience[86], should invest
in improving Al-assisted DNA synthesis screening. These efforts should extend recent
advances [87,169] to better detect functionally concerning sequences beyond simple string
similarity.
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Example of a viral fitness dataset for benchmarking Developing robust and generalizable
safeguards, however, will also require standardized benchmarks to evaluate model capabilities in
high-risk domains such as viral fitness prediction. To support this, we propose a zero-shot benchmark
example (Table[2) built from publicly available viral mutational scanning datasets, which quantify
fitness across thousands of viral protein variants. These could enable assessments of whether a pLM
can predict viral properties, offering an empirical basis to evaluate dual-use risk, particularly for open-
weight models. We acknowledge that the development of such benchmarks might be prone to being
misused for designing new viruses; therefore, efforts are needed to widen the evaluation-genration
gap—that is, making it harder to generate harmful viruses but easier to detect them. Furthermore,
future work should expand on this foundation to develop a more comprehensive dataset.

Table 2: Example of a viral fitness dataset for benchmarking pLM viral capabilities

Virus Protein Fitness Proxy # Variants
SARS-CoV-2 Spike RBD ]{%};ﬁressmn score via yeast display ~3,800
Binding affinity to ACE2 [89] ~33,000
Influenza A Hemagglutinin (HA) Replication efficiency [90] ~10,000
HIV-1 Envelope glycoprotein  Replication efficiency [91] ~13,000

(Env)

Time for sequence improvement Modern protein engineering pipelines increasingly rely on
automation to accelerate the design-build-test-learn (DBTL) cycle. While traditional manual screening
methods with hand pipetting—typically allow for the evaluation of fewer than 10 variants per
day, automated high-throughput screening (HTS) platforms using robotic liquid handlers and flow
cytometry can screen on the order of 10,000 variants daily (Table [3).

Table 3: Comparison of Manual and Automated Screening Throughput

Method Variants/Day Example Technologies

Manual Screening ~1 Standard 96-well plate assays, manual
pipetting

Automated HTS (Mi- ~10,000 Robotic liquid handlers (e.g., Agilent

croplates) Bravo, Tecan Fluent) as shown in Figure

B

Recent experimental work by Jawaid et al.[63] highlights the impact of model-guided design on
protein engineering success rates. In a benchmark screen of over 34,000 synthetic proteins, a baseline
hit rate of just 0.5% was observed using random designs. By contrast, sequences proposed by a
pLM and refined using an Evolutionary Monte Carlo Search achieved hit rates as high as 20%,. This
dramatic increase (more than 40-fold over random screening) illustrates the potential for Al systems
to focus experimental resources on highly promising regions of sequence space (Table4).

Table 4: Comparison of Approximate Hit Rates for Different Protein Engineering Methods [63]]

Method Approximate Hit Rate
Random Screening ~ 0.5%
pLM Guided Methods ~ 20
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RLHF of LLM and pLM comparison We provide a table below for the mapping between RLHF
of LLMs and that of pLM.

Notation: Sharmsu1 (protein) represents the fitness of harmful proteins.

Table 5: Correspondence between RLHF of pLM and LLM for safety concerns

Elements of RLHF

LLM

pLM

Policy Model 7
Action Space
Prompt / Input (for RL

fine-tuning)

Dataset for Reward
Model (RM) Training

Reward Model

Reward Signal (for RL
fine-tuning)

Fine-tuning Objective

Goal of RLHF

Large Language Model (e.g., GPT-style[92])
generating text.

Sequence of tokens (words, sub-words).

Text prompts guiding text generation.

Human preference data on LLM outputs
(e.g., rankings of responses, labels of
helpfulness/harmfulness). Format: (prompt,
response, preference_label).

Model trained on human preference data to
predict a scalar score reflecting the
desirability of LLM output.

Output of the RM (higher score indicates
output is more aligned with human
preferences).

Maximize expected RM score, often with
KL penalty against original LLM:

maxy Eyr[RMpom(z) — BKL(7||70)].
Align LLM with human preferences (e.g.,
make more helpful, harmless, honest).

Protein Language Model (e.g., ESMIF-style[7])
generating amino acid sequences.

Sequence of amino acids.

Given a desired structure or function, generate a
compatible protein sequence (e.g.binding
affinity, or catalytic activity).

Curated viral datasets containing sequences,
structures, and annotated fitnes scores.
Examples include BFVD [93] and the fitness
datasets in Table@ Format: (sequence,
harmfulness_score) pairs.

A predictive model trained on viral protein data
to assign a scalar harmfulness score to a protein
sequence, eg. similarity to known viral
sequences

Inversely related to the RM’s “harmfulness”
score (e.g., Reward = —Sharntu (protein)).

Maximize expected (negative) harmfulness
score: maXy Epr [—Sharmtu1 (Protein) —
BKL(r|mo))

Steer pLM away from generating harmful
biological sequences.

769 Reward Hacking of RLHF It is important to note that RLHF on pLMs also faces the challenge
770 of reward hacking[94, 95| 196, [97, 98, 99]], where the pLM might generate sequences that achieve
771 low harmfulness scores from the RM while remaining biologically dangerous. This risk emerges
772 when the RM serves as an imperfect proxy for true biological risk, particularly if the pLM generates
773 novel viral sequences not represented in the RM’s training data. The effectiveness of this safeguard
774 therefore depends critically on the RM’s comprehensiveness, which in turn depends on the quality
775 and breadth of available experimental data, bringing us back to the fundamental bio-evaluation gap
776 described earlier in Section 5.

19



	Introduction: The New Biosecurity Frontier in AI
	Pandemic Research Before Modern AI
	Protein Language Models: A Leap in Prediction Capability
	Backgrounds
	Models for viral protein properties prediction

	The Accelerator Effect: Integrating AI with Lab Experiments
	Smarter Directed Evolution
	Laboratory Automation and Closed-Loop Experimentation
	Efficient Exploration with Active Learning

	The Dual-Use Dilemma: Assessing Risks of IAB
	Safeguard the Frontier: IAB Needs Tailored Oversight
	Conclusion and Recommendations: A Call for Responsible Innovation
	Technical Appendices and Supplementary Material

