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Abstract

Advances in protein language models (pLMs) and their integration into closed-loop1

wet-lab experimental platforms is unlocking powerful new capabilities in protein2

design. This convergence, termed Intelligent Automated Biology (IAB), enables3

rapid, large-scale exploration of protein function, accelerating discovery in fields4

from medicine to synthetic biology. Yet when applied to pathogens, these same5

tools pose serious dual-use risks. IAB systems can efficiently optimize immune6

escape, viral fitness, and other dangerous traits, even in the absence of deep biolog-7

ical expertise. In this position paper, we argue that the AI community must take8

proactive steps to address this emerging AI safety and biosecurity challenge. We9

introduce a framework categorizing IAB capability levels to guide risk assessment,10

examine IAB’s unique governance challenges, and offer concrete recommendations11

for pLM-specific safeguard research.12

1 Introduction: The New Biosecurity Frontier in AI13

Artificial intelligence (AI) is rapidly reshaping biological discovery, with protein language models14

(pLMs)—large models trained on vast protein sequence—at the forefront[1]. These tools offer15

unprecedented speed and scope for understanding biological systems, predicting properties like16

protein fitness[2, 3, 4, 5], and even generating novel proteins entirely[6, 7]. In the recent fight17

against SARS-CoV-2 pandemic, pLMs help predicting viral fitness[8, 9, 10] and immune escape[11],18

accelerate the development of vaccines and therapeutics[12, 13, 14] and anticipate viral evolution[15].19

However, the true transformative power—and potential peril—emerges not from pLMs in isolation,20

but from their integration with active learning algorithms and wet lab platforms. This convergence,21

which we term Intelligent Automated Biology (IAB), creates a powerful, high-throughput loop22

from in silico design and prediction to (potentially automated) experimental validation. While23

IAB offers profound benefits for global health by accelerating biological engineering, it simul-24

taneously introduces new dual-use risks that current biosecurity and AI security frameworks are25

ill-equipped to manage. Specifically, this integration leads to:26

• Dramatically accelerated exploration of protein fitness landscapes: Active learning27

approaches enable efficient identification of functionally significant mutations with minimal28

experimental data[13, 15, 16]. In areas like pandemic research, this can reveal pathways to29

enhanced virulence, transmissibility, or immune evasion—mutational trajectories that might30

not arise through natural evolution.31

• Increased throughput and hit-rate: Automated and high throughput systems can test32

thousands of variants rapidly[17, 18], enabling the systematic exploration of mutational com-33

binations that would be prohibitively resource-intensive using manual laboratory method.34
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• Lowered expertise barriers: The combination of pLMs, active learning, and lab automa-35

tion reduces the specialized protein knowledge required to conduct sophisticated viral36

engineering, potentially expanding the set of actors capable of creating enhanced pathogens.37

Worryingly, the implications of this powerful IAB integration remain largely underexplored within38

the machine learning field driving these innovations. Our position is informed by three key facts:39

1. General-purpose pLM models are increasingly capable of supporting pandemic-scale biol-40

ogy. Tools developed for protein design or sequence modeling can be readily adapted for41

use in predicting immune escape, enhancing viral fitness, or predicting high-risk protein42

variants, as demonstrated in AI-enabled pandemic tools.43

2. There is currently a lack of dedicated research on safeguards for pLMs, particularly in the44

context of viral protein design and prediction, leaving dual-use risks from powerful pLMs45

underexplored.46

3. Leading AI venues currently lack dedicated biosecurity evaluation criteria, let alone mech-47

anisms to assess the specific dual-use risks emerging from the integration of models into48

automated wet-lab pipelines.49

Our position:
Oversight and safety research is needed for Intelligent Automated Biology (IAB) to mitigate
its dual-use risks, as demonstrated by AI’s capabilities shown in pandemic research.

50

This paper argues for immediate attention to the dual-use risks inherent in IAB systems. We outline51

the escalating AI capabilities demonstrated in pandemic research, present a tiered risk table, and52

propose specific safeguard strategies directed towards the AI-Bio research community.53

2 Pandemic Research Before Modern AI54

The central challenge in combating viral pandemics lies in understanding how viruses evolve. Tiny55

changes, known as mutations, in the amino acid sequences of viral proteins can dramatically alter56

their behavior. For instance, mutations in the SARS-CoV-2 Spike protein’s receptor-binding domain57

(RBD) can affect how strongly it binds to the human ACE2 receptor, influencing infectivity, or58

change how well antibodies recognize it, impacting immune evasion [19]. Predicting the effects of59

these mutations—specifically on protein stability and interactions with host cells or antibodies—is60

crucial for anticipating viral evolution and developing effective countermeasures. Before the advent61

of modern AI techniques like pLMs, researchers relied on two main computational approaches.62

Approach 1: Simulating Physics One approach involved simulating the fundamental physics63

governing protein behavior. These physics-based methods use computational models to calculate64

the energy and stability of proteins based on the forces acting between their constituent atoms.65

Conceptually, this is like creating a detailed molecular simulation to understand how a protein folds66

and interacts. Tools employing force fields, such as FoldX and Rosetta [20, 21], exemplify this67

strategy. Some highly rigorous techniques, like Free Energy Perturbation, aim for thermodynamic68

accuracy in predicting how mutations change binding energy [22].69

The strength of these physics-based methods lies in their potential for high accuracy and their ability70

to provide deep mechanistic insights—explaining why a specific mutation causes a particular effect at71

the molecular level. However, their major limitation is computational time. Accurately simulating72

the complex atomic interactions for large proteins requires immense processing power and time. A73

typical protein has 3N degrees of freedom where N can be thousands of atoms. The number of74

pairwise interactions scales as N2. Accurate sampling of this space requires extensive computational75

power that scale poorly with system size.76

Approach 2: Learning from Evolution A second approach leveraged evolutionary data. Known77

as Multiple Sequence Alignment (MSA)-based methods, these techniques compare the sequences78

of a specific protein collected from many different related organisms or viruses. By aligning these79

sequences, researchers can identify patterns: amino acid positions that rarely change are likely80
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crucial for function, while positions that vary widely might be less critical or involved in adaptation,81

such as immune escape. Statistical models can then be built from these alignments to learn which82

combinations of mutations are commonly observed in nature (and thus likely viable) and which83

are rare (and likely detrimental). Models based on principles like maximum entropy or variational84

autoencoders were applied to viruses like SARS-CoV-2 [23, 24] and HIV [25, 26, 27, 28, 29],85

predicting mutational effects and escape pathways.86

MSA-based methods are generally faster than physics-based simulations for evaluating mutations87

across a protein and directly capture constraints imposed by natural selection. However, their88

effectiveness hinges entirely on the availability of a large and diverse set of related sequences—a89

"deep" MSA. For newly emerging viruses, constructing a meaningful alignment is difficult. Further-90

more, these methods typically require significant data curation and model retraining for each new91

protein family being studied. This dependence on specific evolutionary data created a bottleneck,92

particularly hindering rapid analysis and response efforts during the early stages of an outbreak when93

sequence data for a novel pathogen is scarce. This limitation highlighted the need for models capable94

of making predictions without relying on alignments.95

3 Protein Language Models: A Leap in Prediction Capability96

3.1 Backgrounds97

Figure 1: Model performance improves
over time. Spearman correlation coefficients
between predicted mutational effects and
experimental ground truth on ProteinGym,
colored by input type: MSA-based (green)
[30, 31], sequence-based (blue) [32, 33], or
structure + sequence based (red) [34, 35, 36].

Inspired by advances in natural language processing,98

pLMs are trained on large databases of unaligned99

natural protein sequences using self-supervised ob-100

jectives. In the autoregressive setting, a pLM is101

trained to predict the next amino acid in a sequence,102

modeling the joint probability of a protein sequence103

x = (x1, x2, . . . , xL) as:104

P (x) =

L∏
i=1

P (xi | x1, . . . , xi−1), (1)

capturing sequential and context-dependent depen-105

dencies across residues. This setup is particularly106

suited for sequence generation and allows scoring of107

full sequences or specific mutations via log-likelihood comparisons.108

A key advantage of pLMs is that they operate directly on raw sequence data, eliminating the need109

for the time-consuming and often difficult step of creating multiple sequence alignments required by110

earlier methods. This makes pLMs far more flexible and significantly faster to deploy, especially for111

novel proteins or viruses where alignment data is limited.112

Furthermore, because pLMs are trained on such vast and diverse datasets, they learn highly general113

principles of protein biology. This allows a single, large pre-trained pLM—such as those in the widely114

used ESM family [32, 33]—to make meaningful predictions about virtually any protein sequence,115

even those belonging to protein families not seen during training. This capability is known as "zero-116

shot" prediction. Recent advances have further improved the performance of pLMs by explicitly117

incorporating structural information into the modeling process. For example, ESM-3 [37] unifies118

sequence and structure modeling by co-training across multiple modalities, including 3D coordinates,119

sequence likelihood, and masked token recovery. This joint training enables improved accuracy in120

predicting mutational effects and sequence plausibility within structural constraints.Additionally,121

some inverse folding models, like ESM-IF [35], and ProteinMPNN [38] are structure-conditioned;122

they can predict sequences likely to fold into a specific 3D shape, or assess how well a mutation fits123

within a known structure.124

3.2 Models for viral protein properties prediction125

Hie et al. (2021) [39] demonstrated that pLMs, when trained solely on viral sequence data without126

fine-tuning or structural supervision, can capture both the functional and antigenic consequences127
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of mutations. They trained separate BiLSTM language models on corpora of aligned sequences128

for influenza HA, HIV Env, and SARS-CoV-2 Spike, and introduced the Constrained Semantic129

Change Search (CSCS) framework. In this framework, grammaticality (i.e., the model-assigned130

likelihood of a sequence) was hypothesized to reflect viral fitness, while semantic change (i.e., the131

shift in embedding space) served as a proxy for immune escape. Despite being trained only on viral132

sequences and without escape labels, the models successfully predicted known escape mutations in133

a zero-shot setting, highlighting the capacity of language models to learn biologically meaningful134

patterns directly from sequence data.135

Building on this, Allman et al. (2024) [40] systematically benchmarked grammaticality and semantic136

change across multiple viral proteins using both the original LSTM-based model and newer pretrained137

pLMs like ESM-2. Their analysis confirmed that grammaticality scores are consistently higher for138

viable mutations and can serve as a practical proxy for fitness. This finding held across viral systems,139

including HIV and influenza. In parallel, Wang et al. [8] used ESM embeddings to predict the fitness140

of SARS-CoV-2 RBD variants by integrating them into a biophysical model. More broadly, other141

pLMs and AI models have been developed to predict key viral propertiesto predict viral properties142

such as binding affinity [41, 42, 43, 44, 45], mutation spread [46], and fitness [10, 5].143

Collectively, these results underscore a crucial point: powerful pLMs, including those trained broadly144

rather than exclusively on viral data, encode meaningful information about viral protein function and145

evolution. This enables them to anticipate evolutionary trajectories and assess mutational effects in146

emerging pathogens, often with remarkable accuracy directly from sequence data.147

Importantly, while these models were developed to support beneficial applications like vaccine design148

or pandemic forecasting, their predictive capabilities could also be misused. For instance, a model that149

accurately identifies mutations increasing ACE2 binding or antibody escape can just as easily be used150

to propose unseen variants with those mutations intentionally. Their application to targeted protein151

design requires specific conditioning approaches detailed in the Technical Appendix. Moreover,152

because many pLMs are open-weight and require minimal fine-tuning, such capabilities may be153

accessible even without deep virological expertise. Notably, these tools have been used to design154

novel SARS-CoV-2 proteins that were experimentally shown to be infectious and capable of155

evading neutralization[47, 48].156

Our position: It is technically concerning that open weights pLMs can accurately predict
viral fitness and immune escape either zero shot or few-shot with fine-tuning. Capabilities
developed for pandemic response could, without safeguards, be repurposed for misuse.

157

4 The Accelerator Effect: Integrating AI with Lab Experiments158

pLMs are not just predictive tools; they are increasingly integrated into active protein engineering159

workflows, dramatically accelerating the pace and changing the nature of biological design. This160

integration manifests in several key applications.161

4.1 Smarter Directed Evolution162

Directed evolution is a laboratory technique that mimics natural selection to improve proteins163

for specific purposes, such as improving the efficiency of enzymes, increasing binding affinity of164

therapeutic antibodies [13]. Traditionally, this involves creating large libraries of protein variants165

and screening them for desired properties, often a laborious, inefficient, and expensive process.166

pLMs enables the direct evolution of novel proteins with significantly improved functional167

properties. By predicting the likely effects of mutations by either zero shot or few shot, pLMs can168

guide researchers to focus on variants with a higher probability of success, effectively narrowing down169

the search space and reducing the experimental burden. Recent studies have demonstrated that general170

and structure-informed pLMs can substantially improve the binding affinity and neutralization breadth171

of human antibodies against diverse viral targets, including SARS-CoV-2, Ebola, and influenza, while172

requiring only minimal rounds of experimental screening [12, 14, 49].173
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4.2 Laboratory Automation and Closed-Loop Experimentation174

The impact of pLMs is amplified when combined with laboratory automation, often referred to175

as "biofoundries"[50, 51]. This integration enables fully automated cycles of biological design,176

construction, testing, and learning, commonly known as the Design–Build–Test–Learn (DBTL) cycle.177

The DBTL cycle includes: (1) Design: AI/pLMs propose sequences with predicted properties; (2)178

Build: Robotic systems synthesize DNA and produce variants; (3) Test: Automated assays measure179

properties; (4) Learn: Results feed back to AI for improved designs in subsequent cycles.180

Figure 2: Schematic of the DBTL cycle
in AI-enabled bioengineering. pLMs pro-
pose novel sequences (Design), which are syn-
thesized and expressed by robotic platforms
(Build), evaluated through high-throughput
assays (Test), and iteratively improved based
on experimental feedback (Learn).

Platforms like PLMeAE[17] demonstrate the power181

of this approach, achieving multiple rounds of en-182

zyme optimization in just 10 days—a task that could183

take many months using traditional methods [17].184

This creates a powerful, high-speed, closed loop for185

biological engineering. While offering tremendous186

potential for accelerating therapeutic development,187

this automation also raises concerns. The speed and188

reduced human intervention inherent in these closed189

loops could potentially allow for the rapid optimiza-190

tion of harmful properties if misused, with fewer191

opportunities for oversight or ethical review during192

the process.193

4.3 Efficient Exploration with Active Learning194

The sheer number of possible mutations, even within195

a single protein, makes exhaustive experimental or196

computational testing infeasible. Active learning offers a solution by integrating model predictions197

with experimental design[16, 52]. Instead of testing randomly or relying solely on initial predictions,198

active learning uses the predictive models to select the most informative experiments to perform at199

each stage, based on certain acquisition function[53].200

The typical process starts with wet-lab testing a small, initial set of variants. The results are used201

to train or fine-tune a predictive model (like a pLM)[54]. The model then evaluates the vast pool of202

untested variants and identifies those whose experimental evaluation would maximally improve the203

model’s accuracy or are most likely to possess the desired properties (e.g., high fitness, activity, or204

strong binding). These selected variants are then synthesized and tested, and the new data is used205

to update the model, repeating the cycle. This iterative strategy dramatically reduces the number of206

experiments required to explore the mutational landscape and identify top-performing or high-risk207

variants. Active learning has already shown success in domains like drug discovery[55, 56, 57, 58].208

Recent studies have shown that active learning frameworks can optimize enzymes, antibodies, or other209

protein variants, antibody or protein variants significantly faster than random screening, using only a210

small fraction of what traditional method required[13, 16]. This efficiency can also enable researchers211

to proactively identify concerning viral mutations before they potentially emerge naturally[15].212

The synergy between pLMs (for design and prediction), active learning (for efficient experimen-213

tal guidance), and laboratory automation (for rapid build and test cycles) creates an engineering214

capability far greater than the sum of its parts. This integrated approach enables systematic bi-215

ological exploration and optimization at an unprecedented speed and scale. While this accelerates216

beneficial research, it simultaneously increases the risk of malicious biological engineering and217

potentially reduces human oversight within automated loops.218

Our position: pLMs, when integrated with active learning and laboratory automation, form
a closed-loop AI-bioengineering stack that introduces an unprecedented class of dual-use
biosecurity risks. These risks arise not from any one capability, but from their systemic
integration, which could accelerates viral evolution modeling.

219
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5 The Dual-Use Dilemma: Assessing Risks of IAB220

The core challenge presented by the convergence of AI and biotechnology lies in its inherent dual-use221

nature: technologies developed with beneficial intent, such as improving human health or combating222

pandemics, can often be repurposed to cause harm. pLM significantly amplifies this dilemma by223

accelerating design cycles, lowering knowledge barriers, and enabling automation at unprecedented224

scales. To effectively discuss and manage these risks, it is helpful to categorize the capabilities225

enabled by IAB and assess their associated risk levels.226

We propose a framework categorizing IAB capabilities into five levels, reflecting escalating potential227

for misuse as pLM integration deepens (Table 1). This framework builds upon initial concepts and228

incorporates insights from recent literature on AI capabilities and biosecurity risks.229

Table 1: IAB Capability Levels and Associated Biosecurity Risk

Capability Level Description Examples Base Risk Level
Level 1: Zero-shot
Prediction

basic pLM predictions (e.g., sequence
likelihood as fitness proxy).

ESM-1v zero-shot prediction
with grammaticality score [3,
40].

Low – Moder-
ate

Level 2: Advanced
Prediction & Analy-
sis

Accurate ML/pLM prediction of com-
plex molecular properties (e.g., bind-
ing affinity changes (∆∆G), immune
escape potential, stability).

Fine-tuned ESM3 to predict
viral fitness; UniBind[11]
predicting binding affinity;
EVEscape[59] and VIRAL[15]
predicting escape variants;
MMSite for active site
prediction[60]

Moderate

Level 3: Targeted
Sequence Genera-
tion

Generative AI/pLMs designing novel
sequences optimized for specific func-
tional properties (e.g., enhanced bind-
ing, stability, potentially virulence
factors or toxins).

ProteinMPNN[38] or ESM-IF1
[7] for generative enzyme/anti-
body design; Potential toxin/-
pathogen design.

High

Level 4: Integrated
Design & Active
Learning

Combining generative models with
active learning/Bayesian optimization
for efficient discovery and optimiza-
tion of desired (potentially harmful)
biological functions.

ProteinNPT[61] for Ac-
tive learning frameworks;
EVOLVEpro[13] and
ALDE[16] for direct evo-
lution;

Very High

Level 5: Full AI-Bio
Automation Integra-
tion

Closed-loop systems linking AI pro-
tein design, learning, synthesis, and
testing (DBTL cycle) with minimal
human oversight

PLMeAE[17] or iBioFAB [18]
where pLMs are embedded in
automated biofoundries

Extremely
High

This table illustrates that the most significant risks emerge not merely from individual AI capabilities230

but from the DBTL cycle coupled with physical automation. Level 5 enabling rapid, automated, and231

potentially remote execution of complex bioengineering tasks[62], maximizing both the potential for232

benefit and the potential for misuse. For each level we classified, concrete examples are provided—and233

concerningly, full AI-biology automation integration at Level 5 has already been observed in 2025.234

Figure 3: Functional protein “hits” per
day from AI vs non-AI methods un-
der low- and high-throughput settings.
Based on hit rate × throughput.

To better quantify the acceleration enabled by this inte-235

gration, we estimated the speed (see Appendix) to ob-236

tain a functional variant (“hit”) using wet-lab hit rates237

on an 85-amino-acid peptide [63]. Hit rate is defined as238

the fraction of tested sequences that exhibit the desired239

function. Combining these hit rates with representative240

experimental throughput values, we find that AI-guided,241

automated pipelines (Level 5) can yield thousands of hits242

per day—several orders of magnitude more than tradi-243

tional, manual, non-AI-guided approaches (Figure 3). This244

illustrates how full-stack automation not only increases245

capability but compresses timelines, potentially outpacing246

the safety checks traditionally used to govern wet-lab experimentation.247
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A critical factor contributing to this assessment difficulty is the "evaluation bottleneck". AI-Bio models248

at Capability Level 3 and above can generate novel protein sequences, but accurately predicting their249

real-world function—especially their potential harmfulness—remains an open challenge. Definitive250

functional validation often requires synthesizing the DNA and expressing the protein in a wet lab.251

However, if the AI-designed entity possesses hazardous properties, this evaluation step becomes252

inherently dangerous. This stands in contrast to evaluating text generated by large language models253

(LLMs) in the medical or virology domain, where outputs remain directly interpretable by humans254

and standardized benchmarks exist to assess risks [64, 65]. The inability to safely and reliably assess255

the biological function of IAB outputs poses a fundamental obstacle to timely risk detection and256

mitigation. Without robust, trustworthy pLM risk evaluation tools and benchmarks, we risk not257

knowing the true danger posed by a new IAB or a specific protein design until it has been physically258

instantiated—potentially too late to prevent harm.259

6 Safeguard the Frontier: IAB Needs Tailored Oversight260

On the biosecurity side, traditional biosecurity measures fall short in addressing AI-specific risks.261

Oversight frameworks like the U.S. Government Policy on Dual Use Research of Concern (DURC)262

[66] were designed to address a narrower class of threats: specific pathogens and well-defined263

experimental manipulations (e.g., increasing virulence or transmissibility). The DURC policy applies264

only to 15 listed agents and a fixed set of seven experimental categories, with no provisions for risks265

stemming from powerful general-purpose tools like pLMs. As such, it does not account for the266

dual-use potential of IAB[67].267

One of the most widely used approaches in biosecurity—DNA synthesis screening [68, 69] aims268

to prevent the acquisition of matches to regulated pathogens or known hazardous sequences[70].269

However, a recent MIT experiment revealed that it was alarmingly easy to purchase synthetic DNA270

fragments capable of reconstructing the deadly 1918 influenza virus—93% of U.S. providers and271

100% of international providers fulfilled the order [71]. Also, generative models can design entirely272

novel protein sequences [38] or potentially generate sequences designed to evade detection[72].273

On the training methodology side, no established safeguard frameworks exist for pLMs. To274

address this gap, we explore early-stage technical approaches—adapted from the LLM safety litera-275

ture—that may help reduce the risk of generating dangerous biological sequences. Broadly, these276

approaches can be categorized into training-time guardrails, which modify the model’s learning277

process to discourage the generation of harmful content; and inference-time guardrails, which278

filter or steer model outputs at the point of generation. One fundamental training-time strategy279

is likelihood suppression, which aims to discourage the model from assigning high probability to280

harmful sequences (Figure 4). This can be formalized by modifying the training objective to penalize281

the likelihood of pathogenic sequences:282

L = Loriginal − λ logP (pathogenic) (2)283

where L represents the likelihood of any sequence and λ controls the strength of the suppression284

[73]. A more adaptive approach to implementing such training-time penalization, or more broadly285

steering the model towards safer outputs during training, is Reinforcement Learning from Human286

Feedback (RLHF) [74, 75]. While no end-to-end implementation of RLHF for pLM safety has287

been empirically demonstrated, we sketch a conceptual mapping here as a foundation for crucial288

future research and development in this area. In this context, the pLM acts as a policy generating289

sequences, while a separate reward model (RM)—potentially trained on datasets of viral protein290

sequences, structures, and functions—evaluates their potential harmfulness. The pLM can then291

be fine-tuned using RL algorithms like Proximal Policy Optimization (PPO) [76] to minimize the292

generation of dangerous sequences. This approach represents an advanced method for instilling293

safety considerations during the model training phase. Recent work has demonstrated the feasibility294

of using RL techniques on pLMs for preference optimizations and fine-tuning [77, 78, 79, 80, 81],295

suggesting these methods could be adapted for safety purposes. Developing RM for pLM safety296

could face difficulties, including precisely defining the harmfulness score and obtaining sufficient297

labeled protein data for it. RLHF for pLMs can inherit issues from LLMs such as reward hacking298

(See Appendix). For a detailed comparison and further discussions between RLHF in LLMs and299

pLMs, see Table 5 in Appendix.300
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Figure 4: Illustration of examples of training-time
and inference-time guardrails for pLMs. Likelihood
suppression during training time [73] assigns low proba-
bility to pathogenic sequences, while an embedding-
space rejection radius [82] blocks generation of se-
quences too close to known harmful proteins in infer-
ence time.

Alternatively, safeguards can be imple-301

mented as inference-time guardrails. These302

methods typically do not alter the underly-303

ing model weights but instead apply checks,304

filters, or steering mechanisms during or305

after the generation process. This can in-306

volve pre-generation constraint condition-307

ing, where generation is guided away from308

risky regions of the sequence space using309

techniques like control tokens or latent vari-310

able manipulation . A specific example of311

an inference-time filter is the embedding-312

space rejection radius [82](Figure 4).This313

method blocks the output of generated se-314

quences whose embeddings are found to315

be too close to those of known harmful316

proteins. During inference, a generated se-317

quence’s embedding would be compared against a curated database of harmful protein embeddings318

(e.g., using cosine similarity or Euclidean distance). If a sequence falls within a predefined rejection319

radius of a known harmful protein, its output is blocked or flagged.320

7 Conclusion and Recommendations: A Call for Responsible Innovation321

Integrating AI, particularly pLMs, with automated experimental biology platforms marks a significant322

technological leap. However, the very power that makes IAB revolutionary also introduces dual-use323

AI safety and biosecurity risks. As detailed, IAB systems can rapidly explore complex biological324

landscapes, optimize functions like viral fitness or immune evasion, lower bioengineering expertise325

needs, and potentially operate with less oversight via closed-loop automation. While these capabilities326

are invaluable for tasks like pandemic preparedness, they could equally be misused to design or327

enhance dangerous pathogens, potentially accelerating the emergence of future pandemics.328

Current safety frameworks, whether drawn from AI safety or traditional biosecurity, falls short to329

manage the unique challenges posed by IAB. Key difficulties include the "evaluation bottleneck"—the330

inability to safely and reliably assess the real-world function and potential harm of AI-generated331

biological entities without risky wet-lab synthesis—and the capacity of AI to design entirely novel332

sequences that may evade existing detection methods. Therefore, proactive oversight and community333

engagement are essential. We outline targeted actions for different communities involved in the334

development and oversight of integrated IAB systems, grouped by stakeholder to enhance actionability335

1. For Researchers in Academia and Industry336

(a) Develop and Prioritize AI-Bio Capability Evaluation and Safeguards: Standard-337

ized benchmarks and metrics should be developed to assess the potential risks of338

AI-generated protein sequences and structures. This includes few-shot or zero-shot339

benchmarks evaluating properties such as enhanced virulence, as illustrated in Table 2.340

In parallel, the AI community could consider open-source safeguarded pLM variants341

with architectural constraints built in, reducing misuse risk.342

2. For Scientific Conferences and the Broader Research Community343

(a) Integrate Biosecurity into Peer Review and Evaluation: Conferences like NeurIPS344

should introduce a formal biosecurity checklist[83] for submissions describing poten-345

tially high-risk IAB capabilities (e.g., generative pLMs or automated design tools).346

Reviewer guidelines should include criteria for evaluating whether authors adequately347

assess and mitigate potential dual-use risks. Submissions flagged for significant biose-348

curity or AI–biology risks should undergo a dedicated ethics review by qualified AI-Bio349

security experts.350

Unlike LLMs, whose outputs are text, the outputs of pLMs and AI-Bio models can be synthesized351

into real biological agents. Thus, risk must be assessed holistically, accounting for how models are352

embedded in subsequent experimental platforms. This integration demands cross-disciplinary safety353

research efforts, oversight and the expansion of ML peer review norms to reflect their real-world354

effects.355
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A Technical Appendices and Supplementary Material656

Alternative views The "Traditional Methods Suffice" View: Traditional methods, like serial passage657

(repeatedly passing a pathogen through cell cultures or hosts) have long been known to potentially658

increase virulence or alter host adaptation. The fundamental capability for misuse existed before659

sophisticated AI.660

We acknowledge this point; however, IAB introduces distinct and potentially greater risks. Unlike661

traditional methods, IAB can facilitate the rapid design of novel viruses, potentially distant from the662

evolutionary tree and specifically optimized for traits like antibody escape. Furthermore, IAB systems663

are often far more efficient than serial passage and critically, they can lower the barrier to entry664

by reducing the depth of specialized biological or virological expertise required. This distinction is665

illustrated by serial passaging experiments from Baum et al. [84], which showed that SARS-CoV-2 can666

acquire antibody escape mutations—typically one or two steps from wild-type—when placed under667

immune pressure. While these studies reveal how targeted selection can exploit local evolutionary668

pathways, they remain limited in scope and pace. In contrast, IAB systems can traverse much larger669

regions of the mutational landscape, efficiently identifying escape variants that are far from natural670

sequences and doing so without iterative wet-lab experimentation or specialized virological expertise.671

The "Capability Gap / Overstated Risk" View: While pLMs and IAB show promise, their current672

ability to reliably design de novo pathogens with enhanced pandemic potential (e.g., increased673

virulence and transmissibility in humans) is significantly overstated.674

As discussed in Sections 2 and 3, pLMs and other AI models have already significantly accelerated675

pandemic prevention research. The same powerful capabilities developed for these beneficial purposes676

are inherently dual-use and could potentially be redirected towards designing novel or enhanced viral677

threats. While security considerations prevent authors from exhaustive detailing of potential misuse678

pathways and scenarios, the demonstrated predictive power [15, 46] and design potential[47, 48]679

lead the authors to assess that current capabilities present a tangible risk. Therefore, this paper680

addresses concrete, technically feasible dual-use capabilities that are demonstrably achievable with681

current technology. The threat model is explicit: AI-designed biological agents that can be physically682

synthesized and pose risks to public health.683

The "Existing Governance is Sufficient" View: Current biosecurity frameworks (e.g., US DURC684

policies, Select Agent Regulations, export controls, institutional biosafety committees) combined685

with improving DNA synthesis screening are largely sufficient to manage the risks686

Current biosecurity frameworks like the US DURC policy do not cover the dual-use potential of687

general-purpose AI tools like pLMs or the risks introduced by their integration into automated688

experimental platforms. Even safeguards like DNA synthesis screening have shown alarming gaps: a689

2024 MIT experiment demonstrated that synthetic DNA fragments reconstructing the 1918 influenza690

virus could be ordered from the majority of providers tested—despite existing screening protocols.691

Moreover, pLMs can generate novel sequences that fall outside known pathogen databases, potentially692

bypassing existing detection and oversight systems.693

The "Focus on Actors and Labs, Not Models" View: The primary risk comes from malicious actors694

with access to physical laboratory resources. Governing the AI models is a secondary, less effective695

control point compared to securing labs, vetting personnel, and controlling access to DNA synthesis696

and dangerous biological agents.697

We agree that securing physical laboratory and controlling access to DNA synthesis remain essential698

components of biosecurity. However, as discussed in the paper, the access to DNA synthesis is699

not secured. And this view underestimates the effect that powerful AI models are having on the700

accessibility and speed of biological design. These models lower the expertise and resource barriers701

required to engineer dangerous agents.702
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Figure 5: Schematic of a Liquid Handling
Machine

Automatic Liquid Handler Laboratory automa-703

tion utilizes automated systems to replace manual ex-704

perimental labor, offering benefits such as increased705

throughput, enhanced reproducibility, and reduced706

human error. Different lab architectures provide vary-707

ing degrees of automation and flexibility. In Fig-708

ure 5 we provide an illustration of a liquid handling709

machine. These systems can perform precise, high-710

throughput pipetting and sample preparation with711

minimal human intervention. For example, commer-712

cially available platforms offer programmable work-713

flows capable of operating across a wide range of714

volumes and plate formats, supporting applications715

from routine assays to complex protein engineering pipelines.[51] Their integration with AI-driven716

design tools enables rapid iteration across DBTL cycle.717

Protein Design Conditioning Methods Unlike text-based language models that use natural lan-718

guage prompts, protein language models employ several conditioning approaches:719

• Structure-conditioned generation: Models like ESM-IF and ProteinMPNN take 3D720

backbone coordinates as input and generate sequences likely to fold into that structure.721

• Function-based conditioning: Through fine-tuning on datasets with functional annotations,722

or using predictive heads that score sequences for desired properties.723

• Active learning loops: Experimental feedback guides the model toward sequences with724

desired functions through iterative Design-Build-Test-Learn cycles.725

Additional Policy Suggestions Due to space constraints in the main text, we highlight here726

additional policy proposals for the biosafety and machine learning communities to consider:727

• Strengthen DNA Order Screening for Direct Evolution: Biosafety researchers and728

DNA synthesis companies should develop algorithms capable of analyzing synthesis orders729

originating from the same customer or payment source, with the goal of detecting suspicious730

patterns—such as iterative mutations indicative of directed evolution experiments on viral731

proteins.732

• Promote Responsible Release Norms for High-Capability Models: The community733

should establish norms for the release of powerful pLMs capable of IAB, and consider734

their integration with wet-lab and bio-automation. This could involve considering tiered735

access models, staged releases contingent on safety evaluations for models exceeding defined736

capability thresholds (potentially frameworks like Table 1). However, as discussed in Section737

2, existing open-weight pLMs and generative models are already sufficiently capable to738

design novel viruses.739

• Advance AI-Enhanced DNA Screening Tools: The research community, in collaboration740

with DNA synthesis companies such as IDT[85] and Twist Bioscience[86], should invest741

in improving AI-assisted DNA synthesis screening. These efforts should extend recent742

advances [87, 69] to better detect functionally concerning sequences beyond simple string743

similarity.744
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Example of a viral fitness dataset for benchmarking Developing robust and generalizable745

safeguards, however, will also require standardized benchmarks to evaluate model capabilities in746

high-risk domains such as viral fitness prediction. To support this, we propose a zero-shot benchmark747

example (Table 2) built from publicly available viral mutational scanning datasets, which quantify748

fitness across thousands of viral protein variants. These could enable assessments of whether a pLM749

can predict viral properties, offering an empirical basis to evaluate dual-use risk, particularly for open-750

weight models. We acknowledge that the development of such benchmarks might be prone to being751

misused for designing new viruses; therefore, efforts are needed to widen the evaluation-genration752

gap–that is, making it harder to generate harmful viruses but easier to detect them. Furthermore,753

future work should expand on this foundation to develop a more comprehensive dataset.

Table 2: Example of a viral fitness dataset for benchmarking pLM viral capabilities

Virus Protein Fitness Proxy # Variants

SARS-CoV-2 Spike RBD Expression score via yeast display
[88]

∼3,800

Binding affinity to ACE2 [89] ∼33,000
Influenza A Hemagglutinin (HA) Replication efficiency [90] ∼10,000
HIV-1 Envelope glycoprotein

(Env)
Replication efficiency [91] ∼13,000

754

Time for sequence improvement Modern protein engineering pipelines increasingly rely on755

automation to accelerate the design-build-test-learn (DBTL) cycle. While traditional manual screening756

methods with hand pipetting—typically allow for the evaluation of fewer than 10 variants per757

day, automated high-throughput screening (HTS) platforms using robotic liquid handlers and flow758

cytometry can screen on the order of 10,000 variants daily (Table 3).759

Table 3: Comparison of Manual and Automated Screening Throughput

Method Variants/Day Example Technologies
Manual Screening ∼1 Standard 96-well plate assays, manual

pipetting
Automated HTS (Mi-
croplates)

∼10,000 Robotic liquid handlers (e.g., Agilent
Bravo, Tecan Fluent) as shown in Figure
5

Recent experimental work by Jawaid et al.[63] highlights the impact of model-guided design on760

protein engineering success rates. In a benchmark screen of over 34,000 synthetic proteins, a baseline761

hit rate of just 0.5% was observed using random designs. By contrast, sequences proposed by a762

pLM and refined using an Evolutionary Monte Carlo Search achieved hit rates as high as 20%,. This763

dramatic increase (more than 40-fold over random screening) illustrates the potential for AI systems764

to focus experimental resources on highly promising regions of sequence space (Table4).765

Table 4: Comparison of Approximate Hit Rates for Different Protein Engineering Methods [63]

Method Approximate Hit Rate
Random Screening ∼ 0.5%
pLM Guided Methods ∼ 20
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RLHF of LLM and pLM comparison We provide a table below for the mapping between RLHF766

of LLMs and that of pLM.767

Notation: Sharmful(protein) represents the fitness of harmful proteins.768

Table 5: Correspondence between RLHF of pLM and LLM for safety concerns

Elements of RLHF LLM pLM
Policy Model π Large Language Model (e.g., GPT-style[92])

generating text.
Protein Language Model (e.g., ESMIF-style[7])
generating amino acid sequences.

Action Space Sequence of tokens (words, sub-words). Sequence of amino acids.

Prompt / Input (for RL
fine-tuning)

Text prompts guiding text generation. Given a desired structure or function, generate a
compatible protein sequence (e.g.binding
affinity, or catalytic activity).

Dataset for Reward
Model (RM) Training

Human preference data on LLM outputs
(e.g., rankings of responses, labels of
helpfulness/harmfulness). Format: (prompt,
response, preference_label).

Curated viral datasets containing sequences,
structures, and annotated fitnes scores.
Examples include BFVD [93] and the fitness
datasets in Table 2. Format: (sequence,
harmfulness_score) pairs.

Reward Model Model trained on human preference data to
predict a scalar score reflecting the
desirability of LLM output.

A predictive model trained on viral protein data
to assign a scalar harmfulness score to a protein
sequence, eg. similarity to known viral
sequences

Reward Signal (for RL
fine-tuning)

Output of the RM (higher score indicates
output is more aligned with human
preferences).

Inversely related to the RM’s “harmfulness”
score (e.g., Reward = −Sharmful(protein)).

Fine-tuning Objective Maximize expected RM score, often with
KL penalty against original LLM:
maxπ Ex∼π[RMLLM(x)− βKL(π||π0)].

Maximize expected (negative) harmfulness
score: maxπ Ep∼π[−Sharmful(protein)−
βKL(π||π0)].

Goal of RLHF Align LLM with human preferences (e.g.,
make more helpful, harmless, honest).

Steer pLM away from generating harmful
biological sequences.

Reward Hacking of RLHF It is important to note that RLHF on pLMs also faces the challenge769

of reward hacking[94, 95, 96, 97, 98, 99], where the pLM might generate sequences that achieve770

low harmfulness scores from the RM while remaining biologically dangerous. This risk emerges771

when the RM serves as an imperfect proxy for true biological risk, particularly if the pLM generates772

novel viral sequences not represented in the RM’s training data. The effectiveness of this safeguard773

therefore depends critically on the RM’s comprehensiveness, which in turn depends on the quality774

and breadth of available experimental data, bringing us back to the fundamental bio-evaluation gap775

described earlier in Section 5.776

19


	Introduction: The New Biosecurity Frontier in AI
	Pandemic Research Before Modern AI
	Protein Language Models: A Leap in Prediction Capability
	Backgrounds
	Models for viral protein properties prediction

	The Accelerator Effect: Integrating AI with Lab Experiments
	Smarter Directed Evolution
	Laboratory Automation and Closed-Loop Experimentation
	Efficient Exploration with Active Learning

	The Dual-Use Dilemma: Assessing Risks of IAB
	Safeguard the Frontier: IAB Needs Tailored Oversight
	Conclusion and Recommendations: A Call for Responsible Innovation
	Technical Appendices and Supplementary Material

