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ABSTRACT

Large Language Models (LLMs) have excelled as high-level semantic planners for
sequential decision-making tasks. However, harnessing them to learn complex low-
level manipulation tasks, such as dexterous pen spinning, remains an open problem.
We bridge this fundamental gap and present EUREKA, a human-level reward
design algorithm powered by LLMs. EUREKA exploits the remarkable zero-shot
generation, code-writing, and in-context improvement capabilities of state-of-the-
art LLMs, such as GPT-4, to perform evolutionary optimization over reward code.
The resulting rewards can then be used to acquire complex skills via reinforcement
learning. Without any task-specific prompting or pre-defined reward templates,
EUREKA generates reward functions that outperform expert human-engineered
rewards. In a diverse suite of 29 open-source RL environments that include 10
distinct robot morphologies, EUREKA outperforms human experts on 83% of the
tasks, leading to an average normalized improvement of 52%. The generality
of EUREKA also enables a new gradient-free in-context learning approach to
reinforcement learning from human feedback (RLHF), readily incorporating human
inputs to improve the quality and the safety of the generated rewards without model
updating. Finally, using EUREKA rewards in a curriculum learning setting, we
demonstrate for the first time, a simulated Shadow Hand capable of performing
pen spinning tricks, adeptly manipulating a pen in circles at rapid speed.

1 INTRODUCTION

Large Language Models (LLMs) have excelled as high-level semantic planners for robotics tasks (Ahn
et al., 2022; Singh et al., 2023), but whether they can be used to learn complex low-level manipulation
tasks, such as dexterous pen spinning, remains an open problem. Existing attempts require substantial
domain expertise to construct task prompts or learn only simple skills, leaving a substantial gap in
achieving human-level dexterity (Yu et al., 2023; Brohan et al., 2023).

Figure 1: EUREKA generates human-level reward functions across diverse robots and tasks. Combined with
curriculum learning, EUREKA for the first time, unlocks rapid pen-spinning capabilities on an anthropomorphic
five-finger hand.
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Figure 2: EUREKA takes unmodified environment source code and language task description as context to
zero-shot generate executable reward functions from a coding LLM. Then, it iterates between reward sampling,
GPU-accelerated reward evaluation, and reward reflection to progressively improve its reward outputs.

On the other hand, reinforcement learning (RL) has achieved impressive results in dexter-
ity (Andrychowicz et al., 2020; Handa et al., 2023) as well as many other domains-if the human
designers can carefully construct reward functions that accurately codify and provide learning signals
for the desired behavior; likewise, many real-world RL tasks admit sparse rewards that are difficult
for learning, necessitating reward shaping that provides incremental learning signals. Despite their
fundamental importance, reward functions are known to be notoriously difficult to design in prac-
tice (Russell & Norvig, 1995; Sutton & Barto, 2018); a recent survey conducted finds 92% of polled
reinforcement learning researchers and practitioners report manual trial-and-error reward design and
89% indicate that their designed rewards are sub-optimal (Booth et al., 2023) and lead to unintended
behavior (Hadfield-Menell et al., 2017).

Given the paramount importance of reward design, we ask whether it is possible to develop a universal
reward programming algorithm using state-of-the-art coding LLMs, such as GPT-4. Their remarkable
abilities in code writing, zero-shot generation, and in-context learning have previously enabled
effective programmatic agents (Shinn et al., 2023; Wang et al., 2023a). Ideally, this reward design
algorithm should achieve human-level reward generation capabilities that scale to a broad spectrum of
tasks, including dexterity, automate the tedious trial-and-error procedure without human supervision,
and yet be compatible with human oversight to assure safety and alignment.

We introduce Evolution-driven Universal REward Kit for Agent (EUREKA), a novel reward design
algorithm powered by coding LLMs with the following contributions:

1. Achieves human-level performance on reward design across a diverse suite of 29 open-sourced
RL environments that include 10 distinct robot morphologies, including quadruped, quadcopter,
biped, manipulator, as well as several dexterous hands; see Fig. 1. Without any task-specific
prompting or reward templates, EUREKA autonomously generates rewards that outperform expert
human rewards on 83% of the tasks and realizes an average normalized improvement of 52%.

2. Solves dexterous manipulation tasks that were previously not feasible by manual reward
engineering. We consider pen spinning, in which a five-finger hand needs to rapidly rotate a
pen in pre-defined spinning configurations for as many cycles as possible. Combining EUREKA
with curriculum learning, we demonstrate for the first time rapid pen spinning maneuvers on a
simulated anthropomorphic Shadow Hand (see Figure 1 bottom).

3. Enables a new gradient-free in-context learning approach to reinforcement learning from
human feedback (RLHF) that can generate more performant and human-aligned reward functions
based on various forms of human inputs without model updating. We demonstrate that EUREKA
can readily benefit from and improve upon existing human reward functions. Likewise, we
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showcase EUREKA’s capability in using purely textual feedback to generate progressively more
human-aligned reward functions.

Unlike prior work L2R on using LLMs to aid reward design (Yu et al., 2023), EUREKA is completely
free of task-specific prompts, reward templates, as well as few-shot examples. In our experiments,
EUREKA significantly outperforms L2R due to its ability to generate free-form, expressive reward
programs. EUREKA’s generality is made possible through three key algorithmic design choices:
environment as context, evolutionary search, and reward reflection. First, by taking the environment
source code as context, EUREKA can zero-shot generate executable reward functions from the
backbone coding LLM (GPT-4). Then, EUREKA substantially improves the quality of its rewards
by performing evolutionary search, iteratively proposing batches of reward candidates and refining
the most promising ones within the LLM context window. This in-context improvement is made
effective via reward reflection, a textual summary of the reward quality based on policy training
statistics that enables automated and targeted reward editing; see Fig. 13 for an example of EUREKA
zero-shot reward as well as various improvements accumulated during its optimization. To ensure
that EUREKA can scale up its reward search to maximum potential, EUREKA evaluates intermediate
rewards using GPU-accelerated distributed reinforcement learning on IsaacGym (Makoviychuk et al.,
2021), which offers up to three orders of magnitude in policy learning speed, making EUREKA an
extensive algorithm that scales naturally with more compute. See Fig. 2 for an overview. We are
committed to open-sourcing all prompts, environments, and generated reward functions to promote
further research on LLM-based reward design.

2 PROBLEM SETTING AND DEFINITIONS

The goal of reward design is to return a shaped reward function for a ground-truth reward function
that may be difficult to optimize directly (e.g., sparse rewards); this ground-truth reward function
may only be accessed via queries by the designer. We first introduce the formal definition from Singh
et al. (2010), which we then adapt to the program synthesis setting, which we call reward generation.

Definition 2.1. (Reward Design Problem (Singh et al., 2010)) A reward design problem (RDP) is
a tuple P = ⟨M,R, πM , F ⟩, where M = (S,A, T ) is the world model with state space S, action
space A, and transition function T . R is the space of reward functions; AM (·) : R → Π is a learning
algorithm that outputs a policy π : S → ∆(A) that optimizes reward R ∈ R in the resulting Markov
Decision Process (MDP), (M,R); F : Π → R is the fitness function that produces a scalar evaluation
of any policy, which may only be accessed via policy queries (i.e., evaluate the policy using the
ground truth reward function). In an RDP, the goal is to output a reward function R ∈ R such that
the policy π := AM (R) that optimizes R achieves the highest fitness score F (π).

Reward Generation Problem. In our problem setting, every component within a RDP is specified
via code. Then, given a string l that specifies the task, the objective of the reward generation problem
is to output a reward function code R such that F (AM (R)) is maximized.

3 METHOD

EUREKA consists of three algorithmic components: 1) environment as context that enables zero-shot
generation of executable rewards, 2) evolutionary search that iteratively proposes and refines reward
candidates, and 3) reward reflection that enables fine-grained reward improvement. See Alg. 1 for
pseudocode and App. G for EUREKA example outputs; all prompts are included in App. B.

3.1 ENVIRONMENT AS CONTEXT

Reward design requires the environment specification to be provided to the LLM. We propose directly
feeding the raw environment code (without the reward code, if exists) as context. That is, the LLM
will quite literally take M as context. This is intuitive for two reasons: First, coding LLMs are trained
on native code written in existing programming languages, so we should expect their code generation
capability to be stronger when we directly allow them to compose in the style and syntax they are
trained on. Second, and more fundamentally, the environment source code typically reveals what
the environment semantically entails and which variables can and should be used to compose
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a reward function for the specified task. Leveraging these insights, EUREKA instructs the coding
LLM to directly return executable Python code with only generic reward design and formatting tips,
such as exposing individual components in the reward as a dictionary output (for reasons that will
be apparent in Sec. 3.3). This procedure is maximally scalable as the environment source code, by
construction, must exist. see App. E for details.

Algorithm 1 EUREKA

1: Require: Task description l, environment code M ,
coding LLM LLM, fitness function F , initial prompt prompt

2: Hyperparameters: search iteration N , iteration batch size K
3: for N iterations do
4: // Sample K reward code from LLM
5: R1, ...,Rk ∼ LLM(l,M,prompt)
6: // Evaluate reward candidates
7: s1 = F (R1), ..., sK = F (RK)
8: // Reward reflection
9: prompt := prompt : Reflection(Rn

best, s
n
best),

where best = argmaxk s1, ..., sK
10: // Update Eureka reward
11: REureka, sEureka = (Rn

best, s
n
best), if snbest > sEureka

12: Output: REureka

Remarkably, with only these min-
imal instructions, EUREKA can al-
ready zero-shot generate plausibly-
looking rewards in diverse environ-
ments in its first attempts. An ex-
ample EUREKA output is shown in
Fig. 13. As seen, EUREKA adeptly
composes over existing observation
variables (e.g., fingertip pos) in
the provided environment code and
produces a competent reward code –
all without any environment-specific
prompt engineering or reward templat-
ing. On the first try, however, the gen-
erated reward may not always be ex-
ecutable, and even if it is, it can be
quite sub-optimal with respect to the
task fitness metric F . While we can
improve the prompt with task-specific formatting and reward design hints, doing so does not scale to
new tasks and hinders the overall generality of our system. How can we effectively overcome the
sub-optimality of single-sample reward generation?

3.2 EVOLUTIONARY SEARCH

In this section, we will demonstrate how evolutionary search presents a natural solution that addresses
the aforementioned execution error and sub-optimality challenges. In each iteration, EUREKA
samples several independent outputs from the LLM (Line 5 in Alg. 1). Since the generations are i.i.d,
the probability that all reward functions from an iteration are buggy exponentially decreases as the
number of samples increases. We find that for all environments we consider, even sampling just a
handful (16) of outputs contains at least one executable reward code in the first iteration.

Giving executable reward functions from an earlier iteration, EUREKA performs in-context reward
mutation, proposing a new improved reward function from an existing one based on textual feedback.
Given the instruction-following and in-context improvement capabilities of LLMs, EUREKA achieves
this by simply specifying the mutation operator as a text prompt that suggests a few general ways to
modify an existing reward code based on a textual summary of policy training (Sec. 3.3). Several
illustrative reward modifications are visualized in Fig. 13. Through mutation, a new EUREKA iteration
will take the best-performing reward from the previous iteration as context and generate K more
i.i.d reward outputs from the LLM. This iterative optimization continues until a specified number of
iterations has been reached. Finally, we perform multiple random restarts to find better maxima; this
is a standard strategy in global optimization. In all our experiments, EUREKA conducts 5 independent
runs per environment, and for each run, searches for 5 iterations with K = 16 samples per iteration.

3.3 REWARD REFLECTION

In order to ground the in-context reward mutation, we must be able to put into words the quality
of the generated rewards. As we can query the task fitness function F on the resulting policies, a
simple strategy is to just provide this numerical score as the reward evaluation. While serving as
the holistic ground-truth metric, the task fitness function itself lacks in credit assignment, providing
no useful information on why a reward function works or not. To provide a more intricate and
targeted diagnosis for the rewards, we propose to construct automated feedback that summarizes the
policy training dynamics in texts. Specifically, given that EUREKA reward functions are asked to
expose their individual components in the reward program (e.g., reward components in Fig. 13),
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Figure 3: EUREKA outperforms Human and L2R across all tasks. In particular, EUREKA realizes much greater
gains on high-dimensional dexterity environments.

we track the scalar values of all reward components at intermediate policy checkpoints throughout
training. For instance, consider the illustrative example in Fig. 2, where the snapshot values of
av penalty are provided as a list in the reward feedback.

This reward reflection procedure, though simple to construct, is important due to the algorithm-
dependent nature of reward optimization (Booth et al., 2023). That is, whether a reward function is
effective is influenced by the particular choice of RL algorithm, and the same reward may perform
very differently even under the same optimizer given hyperparameter differences (Henderson et al.,
2018; Agarwal et al., 2021). By providing detailed accounts on how well the RL algorithm optimizes
individual reward components, reward reflection enables EUREKA to produce more targeted reward
editing and reward functions that better synergize with the fixed RL algorithm.

4 EXPERIMENTS

We thoroughly evaluate EUREKA on a diverse suite of robot embodiments and tasks, testing its ability
to generate reward functions, solve new tasks, and incorporate various forms of human input. We
use GPT-4 (OpenAI, 2023), in particular the gpt-4-0314 variant, as the backbone LLM for all
LLM-based reward-design algorithms unless specified otherwise.

Environments. Our environments consist of 10 distinct robots and 29 tasks implemented using the
IsaacGym simulator (Makoviychuk et al., 2021). First, we include 9 original environments from
IsaacGym (Isaac), covering a diverse set of robot morphologies from quadruped, bipedal, quadrotor,
cobot arm, to dexterous hands. In addition to coverage over robot form factors, we ensure depth in our
evaluation by including all 20 tasks from the Bidexterous Manipulation (Dexterity) benchmark (Chen
et al., 2022). Dexterity contains 20 complex bi-manual tasks that require a pair of Shadow Hands to
solve a wide range of complex manipulation skills, ranging from object handover to rotating a cup by
180 degrees. For the task description input to EUREKA, we use the official description provided in
the environment repository when possible. See App. C for details on all environments. It is worth
noting that both benchmarks are publicly released concurrently, or after the GPT-4 knowledge cut-off
date (September 2021), so GPT-4 is unlikely to have accumulated extensive internet knowledge
about these tasks, making them ideal testbeds for assessing EUREKA’s reward generation capability
compared to measurable human-engineered reward functions.

4.1 BASELINES

L2R (Yu et al., 2023) proposes a two-stage LLM-prompting solution to generate templated rewards.
For an environment and task specified in natural language, a first LLM is asked to fill in a natural
language template describing the agent’s motion; then, a second LLM is asked to convert this “motion
description” into code that calls a manually defined set of reward API primitives to write a reward
program that sets their parameters. To make L2R competitive for our tasks, we define the motion
description template to mimic the original L2R templates, and we construct the API reward primitives
using the individual components of the original human rewards when possible. Note that this gives
L2R an advantage as it has access to the original reward functions. Consistent with EUREKA, we
conduct 5 independent L2R runs per environment, and for each run, we generate 16 reward samples.
See App. D for more details.

5



Human. These are the original shaped reward functions provided in our benchmark tasks. As these
reward functions are written by active reinforcement learning researchers who designed the tasks,
these reward functions represent the outcomes of expert-level human reward engineering.

Sparse. These are identical to the fitness functions F that we use to evaluate the quality of the
generated rewards. Like Human, these are also provided by the benchmark. On the dexterity tasks,
they are uniformly binary indicator functions that measure task success; on Isaac tasks, they vary in
functional forms depending on the nature of the task. See App. C for a description of the ground-truth
scoring metric for all tasks.

4.2 TRAINING DETAILS

Policy Learning. For each task, all final reward functions are optimized using the same RL algorithm
with the same set of hyperparameters. Isaac and Dexterity share a well-tuned PPO implementa-
tion (Schulman et al., 2017; Makoviichuk & Makoviychuk, 2021), and we use this implementation
and the task-specific PPO hyperparameters without any modification. Note that these task hyper-
parameters are tuned to make the official human-engineered rewards work well. For each reward,
we run 5 independent PPO training runs and report the average of the maximum task metric values
achieved by policy checkpoints as the reward’s performance.

Reward Evaluation Metrics. For Isaac tasks, since the task metric F for each task varies in semantic
meaning and scale, we report the human normalized score for EUREKA and L2R, Method−Sparse

|Human−Sparse| .
This metric provides a holistic measure of how EUREKA rewards fare against human-expert rewards
with respect to the ground-truth task metric. For Dexterity, since all tasks are evaluated using the
binary success function, we directly report success rates.

4.3 RESULTS

EUREKA outperforms human rewards. In Figure 3, we report the aggregate results on Dexterity
and Isaac. Notably, EUREKA exceeds or performs on par to human level on all Isaac tasks and 15 out
of 20 tasks on Dexterity (see App. F for a per-task breakdown). In contrast, L2R, while comparable
on low-dimensional tasks (e.g., CartPole, BallBalance), lags significantly behind on high-dimensional
tasks. Despite being provided access to some of the same reward components as Human, L2R still
underperforms EUREKA after its initial iteration, when both methods have had the same number of
reward queries. As expected, L2R’s lack of expressivity severely limits its performance. In contrast,
EUREKA generates free-form rewards from scratch without any domain-specific knowledge and
performs substantially better. In App. F, we ablate GPT-4 with GPT-3.5 and find EUREKA degrades
in performance but still matches or exceeds human-level on most Isaac tasks, indicating that its
general principles can be readily applied to coding LLMs of varying qualities.

Figure 4: EUREKA progressively produces better rewards via in-
context evolutionary reward search.

EUREKA consistently improves
over time. In Fig. 4, we visualize the
average performance of the cumula-
tive best EUREKA rewards after each
evolution iteration. Moreover, we
study an ablation, EUREKA w.o. Evo-
lution (32 Samples), which performs
only the initial reward generation
step, sampling the same number of
reward functions as two iterations in
the original EUREKA. This ablation
helps study, given a fixed number of
reward function budget, whether it
is more advantageous to perform the
EUREKA evolution or simply sample more first-attempt rewards without iterative improvement. As
seen, on both benchmarks, EUREKA rewards steadily improve and eventually surpass human rewards
in performance despite sub-par initial performances. This consistent improvement also cannot be
replaced by just sampling more in the first iteration as the ablation’s performances are lower than
EUREKA after 2 iterations on both benchmarks. Together, these results demonstrate that EUREKA’s
novel evolutionary optimization is indispensable for its final performance.
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Figure 5: Eureka generates novel rewards.

EUREKA generates novel rewards. We assess the nov-
elty of EUREKA rewards by computing the correlations
between EUREKA and human rewards on all the Isaac
tasks; see App. C for details on this procedure. Then, we
plot the correlations against the human normalized scores
on a scatter-plot in Figure 5, where each point represents
a single EUREKA reward on a single task. As shown,
EUREKA mostly generates weakly correlated reward func-
tions that outperform the human ones. In addition, by
examining the average correlation by task (App. F), we
observe that the harder the task is, the less correlated the
EUREKA rewards. We hypothesize that human rewards
are less likely to be near optimal for difficult tasks, leaving
more room for EUREKA rewards to be different and better.
In a few cases, EUREKA rewards are even negatively correlated with human rewards but perform
significantly better, demonstrating that EUREKA can discover novel reward design principles that
may run counter to human intuition; we illustrate these EUREKA rewards in App. G.2.

Reward reflection enables targeted improvement. To assess the importance of constructing reward
reflection in the reward feedback, we evaluate an ablation, EUREKA (No Reward Reflection), which
reduces the reward feedback prompt to include only snapshot values of the task metric F . Averaged
over all Isaac tasks, EUREKA without reward reflection reduces the average normalized score by
28.6%; in App. F, we provide detailed per-task breakdown and observe much greater performance
deterioration on higher dimensional tasks. To provide qualitative analysis, in App. G.1, we include
several examples in which EUREKA utilizes the reward reflection to perform targeted reward editing.

Figure 6: EUREKA can be flexibly combined
with curriculum learning to acquire complex
dexterous skills.

EUREKA with curriculum learning enables dexterous
pen spinning. Finally, we investigate whether EUREKA
can be used to solve a truly novel and challenging dexter-
ous task. To this end, we propose pen spinning as a test
bed. This task is highly dynamic and requires a Shadow
Hand to continuously rotate a pen to achieve some pre-
defined spinning patterns for as many cycles as possible.
We consider a curriculum learning (Bengio et al., 2009)
approach to break down the task into manageable com-
ponents that can be independently solved by EUREKA;
similar approaches have been found successful for other
coding LLM applications to decision making (Wang et al.,
2023a). Specifically, we first instruct EUREKA to generate
a reward for re-orienting the pen to random target configu-
rations. Then, using this pre-trained policy (Pre-Trained), we fine-tune it using the EUREKA reward
to reach the sequence of pen-spinning configurations (Fine-Tuned). To demonstrate the importance
of curriculum learning, we also train a baseline policy from scratch using EUREKA reward without the
first-stage pre-training (Scratch). The RL training curves are shown in Figure 6. Eureka fine-tuning
quickly adapts the policy to successfully spin the pen for many cycles in a row; see Figure 1 and the
supplementary video. In contrast, neither pre-trained or learning-from-scratch policies can complete
even a single cycle of pen spinning. This result demonstrates EUREKA’s applicability to advanced
policy learning approaches that are often necessary for learning very complex skills. Using EUREKA
to specify the low-level rewards, humans can simply focus on the high-level curriculum design and
deliver a successful co-pilot solution to a challenging problem for the first time.

4.4 EUREKA FROM HUMAN FEEDBACK

In addition to automated reward design, EUREKA enables a new gradient-free in-context learning
approach to RL from Human Feedback (RLHF) that can readily incorporate various types of human
inputs to generate more performant and human-aligned reward functions.

EUREKA can improve and benefit from human reward functions. We study whether starting with
a human reward function initialization, a common scenario in real-world RL applications, is advan-
tageous for EUREKA. Importantly, incorporating human initialization requires no modification to
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EUREKA – we can simply substitute the raw human reward function as the output of the first EUREKA
iteration. To investigate this, we select several tasks from Dexterity that differ in the relative perfor-
mances between the original EUREKA and human rewards. The full results are shown in Figure 7. As
shown, regardless of the quality of the human rewards, EUREKA improves and benefits from human
rewards as EUREKA (Human Init.) is uniformly better than both EUREKA and Human on all tasks.

Figure 7: EUREKA effectively improves and benefits
from human reward initialization.

This suggests that EUREKA’s in-context reward
improvement capability is largely independent
of the quality of the base reward. Furthermore,
the fact that EUREKA can significantly improve
over human rewards even when they are highly
sub-optimal hints towards an interesting hypoth-
esis: human designers are generally knowledge-
able about relevant state variables but are less
proficient at designing rewards using them. This
makes intuitive sense as identifying relevant
state variables that should be included in the
reward function involves mostly common sense
reasoning, but reward design requires special-
ized knowledge and experience in RL. Together,
these results demonstrate EUREKA’s reward as-
sistant capability, perfectly complementing human designers’ knowledge about useful state variables
and making up for their less proficiency on how to design rewards using them. In App. G.3, we
provide several examples of EUREKA (Human Init.) steps.

Method Forward Velocity Human Preference

EUREKA 7.53 5/20
EUREKA-HF 5.58 15/20

Figure 8: EUREKA can incorporate human reward re-
flection to modify rewards that induce safer and more
human-aligned behavior.

Reward reflection via human feedback in-
duces aligned behavior. So far, all EUREKA
rewards are optimized against a fixed, black-
box task fitness function F . This task metric,
however, may not fully align with human intent.
Moreover, in many open-ended tasks, F may not
be available in the first place (Fan et al., 2022).
In these challenging scenarios, we propose to
augment EUREKA by having humans step in and
put into words the reward reflection in terms of
the desired behavior and correction. We inves-
tigate this capability in EUREKA by teaching a
Humanoid agent how to run purely from textual
reward reflection; in App. G.4, we show the ex-
act sequence of human feedback and EUREKA
rewards. Then, we conduct a user study asking 20 unfamiliar users to indicate their preferences
between two policy rollout videos shown in random order, one trained with human reward reflection
(EUREKA-HF) and the other one trained with the original best EUREKA reward; the details are in
App. E.2. As shown in Fig. 8, despite running a bit slower, the EUREKA-HF agent is preferred by a
large majority of our users. Qualitative, we indeed see that the EUREKA-HF agent acquires safer and
more stable gait, as instructed by the human. See the supplementary videos for a comparison.

5 CONCLUSION

We have presented EUREKA, a universal reward design algorithm powered by coding large language
models and in-context evolutionary search. Without any task-specific prompt engineering or human
intervention, EUREKA achieves human-level reward generation on a wide range of robots and tasks.
EUREKA’s particular strength in learning dexterity solves dexterous pen spinning for the first time with
a curriculum learning approach. Finally, EUREKA enables a gradient-free approach to reinforcement
learning from human feedback that readily incorporates human reward initialization and textual
feedback to better steer its reward generation. The versatility and substantial performance gains of
EUREKA suggest that the simple principle of combining large language models with evolutionary
algorithms are a general and scalable approach to reward design, an insight that may be generally
applicable to difficult, open-ended search problems.
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A RELATED WORK

Reward Design. Reward engineering is a long-standing challenge in reinforcement learning (Singh
et al., 2010; Sutton & Barto, 2018). The most common reward design method is manual trial-and-
error (Knox et al., 2023; Booth et al., 2023). Inverse reinforcement learning (IRL) infers reward
functions from demonstrations (Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Ermon, 2016), but it
requires expensive expert data collection, which may not be available, and outputs non-interpretable
black-box reward functions. Several prior works have studied automated reward search through
evolutionary algorithms (Niekum et al., 2010; Chiang et al., 2019; Faust et al., 2019). These early
attempts are limited to task-specific implementations of evolutionary algorithms that search over only
parameters within provided reward templates. Recent works have also proposed using pretrained
foundation models that can produce reward functions for new tasks (Ma et al., 2022; 2023; Fan et al.,
2022; Du et al., 2023a; Karamcheti et al., 2023; Du et al., 2023b; Kwon et al., 2023). Most of these
approaches output scalar rewards that lack interpretability and do not naturally admit the capability
to improve or adapt rewards on-the-fly. In contrast, EUREKA adeptly generates free-form, white-box
reward code and effectively in-context improves.

Code Large Language Models for Decision Making. Recent works have considered using coding
LLMs (Austin et al., 2021; Chen et al., 2021; Rozière et al., 2023) to generate grounded and structured
programmatic output for decision making and robotics problems (Liang et al., 2023; Singh et al.,
2023; Wang et al., 2023b; Huang et al., 2023; Wang et al., 2023a; Liu et al., 2023; Silver et al.,
2023; Ding et al., 2023; Lin et al., 2023; Xie et al., 2023). However, most of these works rely on
known motion primitives to carry out robot actions and do not apply to robot tasks that require
low-level skill learning, such as dexterous manipulation. The closest to our work is a recent work (Yu
et al., 2023) that also explores using LLMs to aid reward design. Their approach, however, requires
domain-specific task descriptions and reward templates, which demand substantial domain knowledge
and limit the expressivity of the generated reward functions.

Evolution with LLMs. Implementing evolutionary algorithms with LLMs has been explored in
recent works in the context of neural architecture search (Chen et al., 2023; Nasir et al., 2023), prompt
engineering (Guo et al., 2023), as well as morphology design (Lehman et al., 2022). Ours is the first
to apply this principle to reward design. Unlike prior approaches, EUREKA does not need humans to
provide the initial candidates or few-shot prompting. Furthermore, EUREKA introduces novel reward
reflection mechanism that enables more targeted and effective reward mutation.

B FULL PROMPTS

In this section, we provide all EUREKA prompts.

Prompt 1: Initial system prompt
You are a reward engineer trying to write reward functions to solve reinforcement learning

tasks as effective as possible.
Your goal is to write a reward function for the environment that will help the agent learn the

task described in text.
Your reward function should use useful variables from the environment as inputs. As an example

,
the reward function signature can be:
@torch.jit.script
def compute_reward(object_pos: torch.Tensor, goal_pos: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
...
return reward, {}

Since the reward function will be decorated with @torch.jit.script,
please make sure that the code is compatible with TorchScript (e.g., use torch tensor instead

of numpy array).
Make sure any new tensor or variable you introduce is on the same device as the input tensors.

Prompt 2: Reward reflection and feedback
We trained a RL policy using the provided reward function code and tracked the values of the

individual components in the reward function as well as global policy metrics such as
success rates and episode lengths after every {epoch_freq} epochs and the maximum, mean,
minimum values encountered:

<REWARD REFLECTION HERE>
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Please carefully analyze the policy feedback and provide a new, improved reward function that
can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward
function
(2) If the values for a certain reward component are near identical throughout, then this
means RL is not able to optimize this component as it is written. You may consider

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component

(3) If some reward components’ magnitude is significantly larger, then you must re-scale
its value to a proper range

Please analyze each existing reward component in the suggested manner above first, and then
write the reward function code.

Prompt 3: Code formatting tip
The output of the reward function should consist of two items:

(1) the total reward,
(2) a dictionary of each individual reward component.

The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a
temperature parameter inside the transformation function; this parameter must be a named
variable in the reward function and it must not be an input variable. Each transformed
reward component should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor
(4) Most importantly, the reward code’s input variables must contain only attributes of
the provided environment class definition (namely, variables that have prefix self.).
Under no circumstance can you introduce new input variables.

C ENVIRONMENT DETAILS

In this section, we provide environment details. For each environment, we list its observation and
action dimensions, the verbatim task description, and the task fitness function F . F is evaluated
per-environment, and our policy feedback uses the mean across environment instances.

For the functions below, || denotes the L2 norm, and 1[] denotes the indicator function.

IsaacGym Environments
Environment (obs dim, action dim)
Task description
Task fitness function F

Cartpole (4, 1)
To balance a pole on a cart so that the pole stays upright
duration

Quadcopter (21, 12)
To make the quadcopter reach and hover near a fixed position
-cur_dist

FrankaCabinet (23, 9)
To open the cabinet door
1[cabinet_pos > 0.39]

Anymal (48, 12)
To make the quadruped follow randomly chosen x, y, and yaw target velocities
-(linvel_error + angvel_error)

BallBalance (48, 12)
To keep the ball on the table top without falling
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duration

Ant (60, 8)
To make the ant run forward as fast as possible
cur_dist - prev_dist

AllegroHand (88, 16)
To make the hand spin the object to a target orientation
number of consecutive successes where
current success is 1[rot_dist < 0.1]

Humanoid (108, 21)
To make the humanoid run as fast as possible
cur_dist - prev_dist

ShadowHand (211, 20)
To make the shadow hand spin the object to a target orientation
number of consecutive successes where
current success is 1[rot_dist < 0.1]

Dexterity Environments
Environment (obs dim, action dim)
Task description
Task fitness function F

Over (398, 40)
This class corresponds to the HandOver task. This environment consists of two shadow hands
with palms facing up, opposite each other, and an object that needs to be passed. In the beginning,
the object will fall randomly in the area of the shadow hand on the right side. Then the hand holds
the object and passes the object to the other hand. Note that the base of the hand is fixed. More
importantly, the hand which holds the object initially can not directly touch the target, nor can it
directly roll the object to the other hand, so the object must be thrown up and stays in the air in the
process
1[dist < 0.03]

DoorCloseInward (417, 52)
This class corresponds to the DoorCloseInward task. This environment require a closed door to
be opened and the door can only be pushed outward or initially open inward. Both these two
environments only need to do the push behavior, so it is relatively simple
1[door_handle_dist < 0.5]

DoorCloseOutward (417, 52)
This class corresponds to the DoorCloseOutward task. This environment also require a closed
door to be opened and the door can only be pushed inward or initially open outward, but because
they can’t complete the task by simply pushing, which need to catch the handle by hand and then
open or close it, so it is relatively difficult
1[door_handle_dist < 0.5]

DoorOpenInward (417, 52)
This class corresponds to the DoorOpenInward task. This environment also require a opened door
to be closed and the door can only be pushed inward or initially open outward, but because they
can’t complete the task by simply pushing, which need to catch the handle by hand and then open
or close it, so it is relatively difficult
1[door_handle_dist > 0.5]

DoorOpenOutward (417, 52)
This class corresponds to the DoorOpenOutward task. This environment require a opened door
to be closed and the door can only be pushed outward or initially open inward. Both these two
environments only need to do the push behavior, so it is relatively simple
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1[door_handle_dist < 0.5]

Scissors (417, 52)
This class corresponds to the Scissors task. This environment involves two hands and scissors, we
need to use two hands to open the scissors
1[dof_pos > -0.3]

SwingCup (417, 52)
This class corresponds to the SwingCup task. This environment involves two hands and a dual
handle cup, we need to use two hands to hold and swing the cup together
1[rot_dist < 0.785]

Switch (417, 52)
This class corresponds to the Switch task. This environment involves dual hands and a bottle, we
need to use dual hand fingers to press the desired button
1[1.4 - (left_switch_z + right_switch_z) > 0.05]

Kettle (417, 52)
This class corresponds to the PourWater task. This environment involves two hands, a kettle, and
a bucket, we need to hold the kettle with one hand and the bucket with the other hand, and pour
the water from the kettle into the bucket. In the practice task in Isaac Gym, we use many small
balls to simulate the water
1[|bucket - kettle_spout| < 0.05]

LiftUnderarm (417, 52)
This class corresponds to the LiftUnderarm task. This environment requires grasping the pot
handle with two hands and lifting the pot to the designated position. This environment is designed
to simulate the scene of lift in daily life and is a practical skill
1[dist < 0.05]

Pen (417, 52)
This class corresponds to the Open Pen Cap task. This environment involves two hands and a pen,
we need to use two hands to open the pen cap
1[5 * |pen_cap - pen_body| > 1.5]

BottleCap (420, 52)
This class corresponds to the Bottle Cap task. This environment involves two hands and a bottle,
we need to hold the bottle with one hand and open the bottle cap with the other hand. This skill
requires the cooperation of two hands to ensure that the cap does not fall
1[dist > 0.03]

CatchAbreast (422, 52)
This class corresponds to the Catch Abreast task. This environment consists of two shadow hands
placed side by side in the same direction and an object that needs to be passed. Compared with the
previous environment which is more like passing objects between the hands of two people, this
environment is designed to simulate the two hands of the same person passing objects, so different
catch techniques are also required and require more hand translation and rotation techniques
1[dist] < 0.03

CatchOver2Underarm (422, 52)
This class corresponds to the Over2Underarm task. This environment is similar to Catch Underarm,
but with an object in each hand and the corresponding goal on the other hand. Therefore, the
environment requires two objects to be thrown into the other hand at the same time, which requires
a higher manipulation technique than the environment of a single object
1[dist < 0.03]

CatchUnderarm (422, 52)
This class corresponds to the Catch Underarm task. In this task, two shadow hands with palms
facing upwards are controlled to pass an object from one palm to the other. What makes it more
difficult than the Hand over task is that the hands’ translation and rotation degrees of freedom are
no longer frozen but are added into the action space
1[dist < 0.03]
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ReOrientation (422, 40)
This class corresponds to the ReOrientation task. This environment involves two hands and two
objects. Each hand holds an object and we need to reorient the object to the target orientation
1[rot_dist < 0.1]

GraspAndPlace (425, 52)
This class corresponds to the GraspAndPlace task. This environment consists of dual-hands, an
object and a bucket that requires us to pick up the object and put it into the bucket
1[|block - bucket| < 0.2]

BlockStack (428, 52)
This class corresponds to the Block Stack task. This environment involves dual hands and two
blocks, and we need to stack the block as a tower
1[goal_dist_1 < 0.07 and goal_dist_2 < 0.07 and
50 * (0.05 - z_dist_1) > 1]

PushBlock (428, 52)
This class corresponds to the PushBlock task. This environment involves two hands and two
blocks, we need to use both hands to reach and push the block to the desired goal separately. This
is a relatively simple task
1[left_dist <= 0.1 and right_dist <= 0.1] +
0.5 * 1[left_dist <= 0.1 and right_dist > 0.1]

TwoCatchUnderarm (446, 52)
This class corresponds to the TwoCatchUnderarm task. This environment is similar to Catch
Underarm, but with an object in each hand and the corresponding goal on the other hand. Therefore,
the environment requires two objects to be thrown into the other hand at the same time, which
requires a higher manipulation technique than the environment of a single object
1[goal_dist_1 + goal_dist_2 < 0.06]

D BASELINE DETAILS

Language-to-Rewards (L2R) uses an LLM to generate a motion description from a natural language
instruction and a set of reward API calls from the motion description. The reward is computed as
the sum of outputs from the reward API calls. While the LLM automates the process of breaking
down the task into basic low-level instructions, manual effort is still required to specify the motion
description template, low-level reward API, and the API’s function implementations.

All three parts require significant design considerations and can drastically affect L2R’s performance
and capabilities. Unfortunately, this makes comparison difficult since L2R requires manual engineer-
ing whereas Eureka is fully automatic—ambiguity thus arises from how much human-tuning should
be done with L2R’s components. Nonetheless, we seek to provide a fair comparison and base our
implementation off two factors:

• To create our motion description template, we reference L2R’s quadruped and dexterous manipula-
tor templates. Specifically, our templates consist of statements that set parameters to quantitative
values and statements that relate two parameters. We also aim to mimic the style of L2R’s template
statements in general.

• The reward API is designed so that each template statement can be faithfully written in terms
of an API function. The functions are implemented to resemble their respective human reward
terms from their environment; thus, L2R is given an advantage in that its components resemble the
manually-tuned human reward. In a few exceptions where the human reward differs significantly
from the L2R template style, we base our API implementation on the formulas provided in the L2R
appendix.

L2R was designed to allow for an agent in a single environment to perform multiple tasks. Thus,
each environment has its own motion description template and reward API. Since our experiments
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range over many agents and environments, we have one template and API for each Isaac task, and we
generalize all Dexterity tasks into one environment with all necessary objects.

For illustration, our descriptor and coder prompts for the Dexterity experiments are below.

Prompt 1: Dexterity descriptor prompt
We have two dexterous manipulators (shadow hands) and we want you to help plan how it should

move to perform tasks using the following template:

[start of description]
object1={CHOICE: <INSERT OBJECTS HERE>} should be {CHOICE: close to, far from} object2={CHOICE

: <INSERT OBJECTS HERE>, nothing}.
[optional] object3={CHOICE: <INSERT OBJECTS HERE>} should be {CHOICE: close to, far from}

object4={CHOICE: <INSERT OBJECTS HERE>, nothing}.
[optional] object1 needs to have a rotation orientation similar to object2.
[optional] object3 needs to have a rotation orientation similar to object4.
<INSERT OPTIONAL HAND DESCRIPTIONS HERE>
[optional] doors needs to be {CHOICE: open, closed} {CHOICE: inward, outward}.
[optional] scissor needs to be opened to [NUM: 0.0] radians.
[optional] block2 needs to be stacked on top of block1.
[end of description]

Rules:
1. If you see phrases like [NUM: default_value], replace the entire phrase with a numerical

value.
2. If you see phrases like {CHOICE: choice1, choice2, ...}, it means you should replace the

entire
phrase with one of the choices listed.
3. If you see [optional], it means you only add that line if necessary for the task, otherwise

remove that line.
4. The environment contains <INSERT OBJECTS HERE>. Do not invent new objects not listed here.
5. I will tell you a behavior/skill/task that I want the manipulator to perform and you will

provide the full plan, even if you may only need to change a few lines. Always start the
description with [start of plan] and end it with [end of plan].

6. You can assume that the hands are capable of doing anything, even for the most challenging
task.

7. Your plan should be as close to the provided template as possible. Do not include
additional details.

Prompt 2: Dexterity coder prompt
We have a plan of a robot arm with palm to manipulate objects and we want you to turn that

into the corresponding program with following functions:

‘‘‘
def set_min_l2_distance_reward(name_obj_A, name_obj_B)
‘‘‘
This term sets a reward for minimizing l2 distance between name_obj_A and name_obj_B so they

get closer to each other.
name_obj_A and name_obj_B are selected from [<INSERT FIELDS HERE>].

‘‘‘
def set_max_l2_distance_reward(name_obj_A, name_obj_B)
‘‘‘
This term sets a reward for maximizing l2 distance between name_obj_A and name_obj_B so they

get closer to each other.
name_obj_A and name_obj_B are selected from [<INSERT FIELDS HERE>].

‘‘‘
def set_obj_orientation_reward(name_obj_A, name_obj_B)
‘‘‘
This term encourages the orientation of name_obj_A to be close to the orientation of

name_obj_B. name_obj_A and name_obj_B are selected from [<INSERT ORIENTATION FIELDS HERE
>].

Example plan:
object1=object1 should be close to object2=object1_goal.
object1 needs to have a rotation orientation similar to object2.
To perform this task, the left manipulator’s palm should move close to object1.

Example answer code:
‘‘‘
set_min_l2_distance_reward("object1", "object1_goal")
set_min_l2_distance_reward("object1", "left_palm")
set_obj_orientation_reward("object1", "object1_goal")
‘‘‘

Remember:
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1. Always format the code in code blocks.
2. Do not wrap your code in a function. Your output should only consist of function calls like

the example above.
3. Do not invent new functions or classes. The only allowed functions you can call are the

ones listed above, and do not implement them. Do not leave unimplemented code blocks in
your response.

4. The only allowed library is numpy. Do not import or use any other library.
5. If you are not sure what value to use, just use your best judge. Do not use None for

anything.
6. Do not calculate the position or direction of any object (except for the ones provided

above). Just use a number directly based on your best guess.
7. You do not need to make the robot do extra things not mentioned in the plan such as

stopping the robot.

For the sections surrounded by angle brackets <>, we specify a list of valid objects for each Dexterity
task. For example, ShadowHandPen’s list of objects is defined as follows:

"shadow_hand_pen": ["left_palm", "right_palm", "left_forefinger", "left_middlefinger", "
left_ringfinger", "left_littlefinger", "left_thumb", "right_forefinger", "
right_middlefinger", "right_ringfinger", "right_littlefinger", "right_thumb", "pen_cap",
"pen"]

A summary of terms and their implementations for each experiment is in Table 3. Note that many
environments automatically randomize their target parameters during training after a reset or success
criteria is met, which L2R cannot account for during the reward generation stage. Thus, while L2R’s
experiments define targets in terms of quantitative values, it’s incompatible with our environments,
and we define targets instead as relations between two parameters (usually the object and the object’s
target).

D.1 L2R REWARD EXAMPLES

Example 1: L2R reward function on Humanoid, Human Normalized Score: 0.0
set_torso_height_reward(1.1)
set_torso_velocity_reward(3.6)
set_angle_to_target_reward(0.0)

Example 2: L2R reward function on ShadowHandKettle, Success Rate: 0.07
set_min_l2_distance_reward("kettle_handle", "bucket_handle")
set_min_l2_distance_reward("kettle_spout", "bucket_handle")
set_min_l2_distance_reward("left_palm", "bucket_handle")
set_min_l2_distance_reward("right_palm", "kettle_handle")
set_min_l2_distance_reward("left_thumb", "bucket_handle")
set_min_l2_distance_reward("right_thumb", "kettle_handle")

E EUREKA DETAILS

Environment as Context. In Isaac Gym, the simulator adopts a environment design pattern in
which the environment observation code is typically written inside a compute observations()
function within the environment object class; this applies to all our environments. Therefore, we have
written an automatic script to extract just the observation portion of the environment source code.
This is done largely to reduce our experiment cost as longer context induces higher cost. Furthermore,
given that current LLMs have context length limit, this task agnostic way of trimming the environment
code before feeing it to the context allows us to fit every environment source code into context.

Example 1: Humanoid environment observation given to EUREKA.
class Humanoid(VecTask):

"""Rest of the environment definition omitted."""
def compute_observations(self):

self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)

self.gym.refresh_force_sensor_tensor(self.sim)
self.gym.refresh_dof_force_tensor(self.sim)
self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.

heading_vec[:] = compute_humanoid_observations(
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Reward Term Formulation
Dexterity

Minimize distance −∥p1 − p2∥2
Maximize distance ∥p1 − p2∥2

Minimize orientation 2 arcsin(min(∥v(q1q̄2)∥2, 1))
AllegroHand

Minimize distance −∥p1 − p2∥2
Maximize distance ∥p1 − p2∥2

Minimize orientation difference 1/(|2 arcsin(min(∥v(q1q̄2)∥2, 1))|+ ϵ)

Maximize orientation difference −1/(|2 arcsin(min(∥v(q1q̄2)∥2, 1))|+ ϵ)

Ant
Torso height −|h− ht|

Torso velocity −|∥vxy∥2 − vt|
Angle to target −|θ − θt|

Anymal
Minimize difference exp−(x− xt)

2

BallBalance
Ball position 1/(1 + ∥p− pt∥2)
Ball velocity 1/(1 + ∥v − vt∥2)

Cartpole
Pole angle −(θ − θt)

2

Pole velocity −|v − vt|
Cart velocity −|v − vt|

FrankaCabinet
Minimize hand distance −∥p1 − p2∥2
Maximize hand distance ∥p1 − p2∥2

Drawer extension −|p− pt|
Humanoid
Torso height −|h− ht|

Torso velocity −|∥vxy∥2 − vt|
Angle to target −|θ − θt|
Quadcopter

Quadcopter position 1/(1 + ∥p− pt∥22)
Upright alignment 1/(1 + |1− nz|2)
Positional velocity 1/(1 + ∥v − vt∥22)
Angular velocity 1/(1 + ∥ω − ωt∥22)
ShadowHand

Minimize distance −∥p1 − p2∥2
Maximize distance ∥p1 − p2∥2

Minimize orientation difference 1/(|2 arcsin(min(∥v(q1q̄2)∥2, 1))|+ ϵ)

Maximize orientation difference −1/(|2 arcsin(min(∥v(q1q̄2)∥2, 1))|+ ϵ)

Table 3: L2R reward primitives and their implementations. v(q) denotes the vector part of quaternion q, subscript
t denotes target value, and n denotes the normal vector (orientation). All components are weighed equally.

self.obs_buf, self.root_states, self.targets, self.potentials,
self.inv_start_rot, self.dof_pos, self.dof_vel, self.dof_force_tensor,
self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale,
self.vec_sensor_tensor, self.actions, self.dt, self.contact_force_scale, self.

angular_velocity_scale,
self.basis_vec0, self.basis_vec1)
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def compute_humanoid_observations(obs_buf, root_states, targets, potentials, inv_start_rot,
dof_pos, dof_vel,

dof_force, dof_limits_lower, dof_limits_upper, dof_vel_scale
,

sensor_force_torques, actions, dt, contact_force_scale,
angular_velocity_scale,

basis_vec0, basis_vec1):
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor,
float, Tensor, Tensor, float, float, float, Tensor, Tensor) -> Tuple[Tensor, Tensor,
Tensor, Tensor, Tensor]

torso_position = root_states[:, 0:3]
torso_rotation = root_states[:, 3:7]
velocity = root_states[:, 7:10]
ang_velocity = root_states[:, 10:13]

to_target = targets - torso_position
to_target[:, 2] = 0

prev_potentials_new = potentials.clone()
potentials = -torch.norm(to_target, p=2, dim=-1) / dt

torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up(
torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2)

vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot(
torso_quat, velocity, ang_velocity, targets, torso_position)

roll = normalize_angle(roll).unsqueeze(-1)
yaw = normalize_angle(yaw).unsqueeze(-1)
angle_to_target = normalize_angle(angle_to_target).unsqueeze(-1)
dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper)

obs = torch.cat((torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc *
angular_velocity_scale,

yaw, roll, angle_to_target, up_proj.unsqueeze(-1), heading_proj.unsqueeze
(-1),

dof_pos_scaled, dof_vel * dof_vel_scale, dof_force * contact_force_scale,
sensor_force_torques.view(-1, 12) * contact_force_scale, actions), dim

=-1)

return obs, potentials, prev_potentials_new, up_vec, heading_vec

EUREKA Reward History. Given that LLMs have limited context, we also trim the EUREKA
dialogue such that only the last reward and its reward reflection (in addition to initial system prompt)
is kept in the context for the generation of the next reward. In other word, the reward improvement is
Markovian. This is standard in gradient-free optimization, and we find this simplification to work
well in practice.

EUREKA Reward Evaluation. All intermediate EUREKA reward functions are evaluated using 1
PPO run with the default task parameters. The final EUREKA reward, like all other baseline reward
functions, are evaluated using 5 PPO runs with the average performance on the task fitness function
F as the reward performance.

Human Normalized Score Reporting. Given that there are several significant outliers in human
normalized score when EUREKA is substantially better both Human and Sparse on a task, when
reporting the average normalized improvement in our abstract, we adjust the score so that the
normalized score must lie between [0, 3] per task before computing the average over all 29 tasks.

E.1 EUREKA FROM HUMAN INITIALIZATION

In our human initialization experiments, we use Eureka to improve human-written reward functions.
This can be done by modifying the first EUREKA iteration to use the human reward in place of the
LLM-generated one, thereby ”assuming” that Eureka’s first proposed reward is the human reward. To
complete this iteration, we use the human reward in IsaacGym, compute feedback, and query the
LLM to generate new reward functions based on the human reward and the reward reflections. Future
iterations are identical to the default EUREKA setting.

To provide the human reward in the first iteration, we refactor the code slightly to be consistent
with the EUREKA reward format, which exposes the individual reward components in a dictionary.
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Furthermore, as human reward functions are often written in less interpretable fashion than EUREKA
rewards (see App. G.5 for an example) , we also strip away excess variables and parameters besides
those needed for the actual reward computation.

E.2 EUREKA FROM HUMAN FEEDBACK

In our human reward reflection experiment, we investigate whether humans can provide reward
reflection for desideratum such as “running with natural gait” that may be difficult to express via a
task fitness function. We repeat the EUREKA procedure with the following modifications: (1) We
only sample 1 reward per iteration, and (2) a human textual input will replace the automatically
constructed reward reflection as in the main experiment. To ensure that the human textual input
do not require domain expertise, we have used feedback that is as colloquial as possible; the full
conversation is shown in App. G.4.

After the EUREKA-HF agent is trained, we have asked 20 unfamiliar users to indicate their preferences
between two videos shown in random order, one depicting the EUREKA-HF Humanoid agent and
the other one depicting the original best EUREKA agent. These 20 users are other graduate and
undergraduate students that have a wide range of familiarity in reinforcement learning, but are not
involved with this research.

F ADDITIONAL RESULTS

Dexterity Performance Breakdown. We present the raw success rates of EUREKA, L2R, Human,
and Sparse in Fig. 9.

Figure 9: EUREKA rewards are less correlated with human rewards when the tasks are more high-dimensional
and less common in the reinforcement learning literature.

Reward Reflection Ablations. In Fig. 10, we provide a detailed per-task breakdown on the impact
of removing reward reflection in the EUREKA feedback. In this ablation, we are interested in the
average human normalized score over independent EUREKA restarts because the average is more
informative than the max (the metric used in all other experiments) in revealing LLM behavior change
on aggregate. As shown, removing reward reflection generally has a negative impact on the reward
performance. The deterioration is more pronounced for high-dimensional tasks, demonstrating that
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reward reflection indeed can provide targeted reward editing that is more instrumental for difficult
tasks that require many state components to interact in the reward functions.

Figure 10: EUREKA rewards are less correlated with human rewards when the tasks are more high-dimensional
and less common in the reinforcement learning literature.

EUREKA with GPT-3.5. In Fig. 11, we compare the performance of EUREKA with GPT-
4 (the original one reported in the paper) and EUREKA with GPT-3.5; specifically, we use
gpt-3.5-turbo-16k-0613 in the OpenAI API. While the absolute performance goes down,
we see that EUREKA (GPT-3.5) still performs comparably and exceeds human-engineered rewards
on the dexterous manipulation tasks. These results suggest that the EUREKA principles are general
and can be also applied to less performant base coding LLMs.

Figure 11: Using GPT3.5 observes performance degradation in EUREKA but still remains comparable to GPT-4
on a majority of the tasks.

Reward Correlation Experiments. To provide a more bird-eye view comparison against human
rewards, we assess the novelty of EUREKA rewards. Given that programs that syntactically differ
may functionally be identical, we propose to evaluate the Pearson correlation between EUREKA
and human rewards on all the Isaac task. These tasks are ideal for this test because many of them
have been widely used in RL research, even if the IsaacGym implementation may not have been
seen in GPT-4 training, so it is possible that EUREKA produces rewards that are merely cosmetically
different. To do this, for a given policy training run using a EUREKA reward, we gather all training
transitions and compute their respectively EUREKA and human reward values, which can then be
used to compute their correlation. Then, we plot the correlation against the human normalized score
on a scatter-plot. The resulting scatter-plot is displayed in Fig. 5. In Fig. 12, we also provide the
average correlation per task. As shown, as the tasks become more high-dimensional and harder to
solve, the correlations exhibit a downward trend. This validates our hypothesis that the harder the
task is, the less optimal the human rewards are, and consequently more room for EUREKA to generate
truly novel and different rewards.

Figure 12: EUREKA rewards are less correlated with human rewards when the tasks are more high-dimensional
and less common in the reinforcement learning literature.
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Figure 13: EUREKA can zero-shot generate executable rewards and then flexibly improve them with many
distinct types of free-form modification, such as (1) changing the hyperparameter of existing reward components,
(2) changing the functional form of existing reward components, and (3) introducing new reward components.

G EUREKA REWARD EXAMPLES

In this section, we provide several unmodified EUREKA reward examples from various experiments
we detailed in the main paper.

G.1 REWARD REFLECTION EXAMPLES.

We illustrate EUREKA reward reflection step by displaying the sequence of previous EUREKA reward,
EUREKA reward reflection, and then the subsequent EUREKA reward.

Example 1: EUREKA Reward Reflection on ShadowHand. Iteration 1 Score: 9.29, Iteration 2 Score: 10.43
Iteration 1: Eureka Output:
‘‘‘python
import torch
from typing import Tuple, Dict

@torch.jit.script
def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor) -> Tuple[torch.Tensor,

Dict[str, torch.Tensor]]:
rot_diff = torch.abs(torch.sum(object_rot * goal_rot, dim=1) - 1) / 2
rotation_reward = torch.exp(-20 * rot_diff)

# Scaling factor for the rotation reward
rotation_temp = 20.0

total_reward = rotation_reward

reward_components = {
"rotation_reward": rotation_reward

}

return total_reward, reward_components
‘‘‘
This reward function computes the difference between the current object rotation and the

target rotation. It calculates a rotation_reward based on the absolute difference, scaled
by a temperature parameter (rotation_temp). The total reward is the rotation_reward.

#########################################################################
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Iteration 1: Reward Reflection:
We trained a RL policy using the provided reward function code and tracked the values of the

individual components in the reward function as well as global policy metrics such as
success rates and episode lengths after every 300 epochs and the maximum, mean, minimum
values encountered:

rotation_reward: [’0.03’, ’0.31’, ’0.30’, ’0.32’, ’0.34’, ’0.34’, ’0.34’, ’0.34’, ’0.34’, ’
0.32’], Max: 0.36, Mean: 0.32, Min: 0.03

success_rate: [’0.00’, ’0.83’, ’1.85’, ’2.89’, ’3.72’, ’4.94’, ’5.99’, ’6.90’, ’7.71’, ’8.83’
], Max: 9.29, Mean: 4.81, Min: 0.00

episode_lengths: [’7.07’, ’384.30’, ’378.22’, ’378.06’, ’406.11’, ’415.43’, ’402.64’, ’412.50’
, ’384.10’, ’434.24’], Max: 482.35, Mean: 396.02, Min: 7.07

Please carefully analyze the policy feedback and provide a new, improved reward function that
can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward
function
(2) If the values for a certain reward component are near identical throughout, then this
means RL is not able to optimize this component as it is written. You may consider

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component

(3) If some reward component magnitude is significantly larger, then you must re-scale its
value to a proper range

Please analyze each existing reward component in the suggested manner above first, and then
write the reward function code. The output of the reward function should consist of two
items:
(1) the total reward,
(2) a dictionary of each individual reward component.

The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a
temperature parameter inside the transformation function; this parameter must be a named
variable in the reward function and it must not be an input variable. Each transformed
reward component should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor
(4) Most importantly, the reward code input variables must contain only attributes of the
provided environment class definition (namely, variables that have prefix self.). Under
no circumstance can you introduce new input variables.

...

#########################################################################

Iteration 2: Eureka Output:
Based on the analysis of the policy feedback, the rotation_reward component has minimum,

maximum, and mean values within a fairly close range and seems stable. The success_rate
has increased gradually, indicating that the agent is learning to some degree. However,
the episode_lengths have quite some variance, which could indicate that the agent does
not consistently perform well during training.

Since the rotation_reward component seems mostly adequate, I would recommend introducing
another component, such as a penalty for large angular velocities, to reinforce stable
spinning behavior. Here is a new reward function that incorporates an
angular_velocity_penalty:

‘‘‘python
import torch
from typing import Tuple, Dict

@torch.jit.script
def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, object_angvel: torch.

Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
# Rotation reward
rot_diff = torch.abs(torch.sum(object_rot * goal_rot, dim=1) - 1) / 2
rotation_reward = torch.exp(-20 * rot_diff)
rotation_temp = 20.0

# Angular velocity penalty
angvel_norm = torch.norm(object_angvel, dim=1)
angvel_threshold = 5.0
angvel_penalty_temp = 10.0
angular_velocity_penalty = torch.where(angvel_norm > angvel_threshold, torch.exp(-
angvel_penalty_temp * (angvel_norm - angvel_threshold)), torch.zeros_like(angvel_norm))

total_reward = rotation_reward - angular_velocity_penalty
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reward_components = {
"rotation_reward": rotation_reward,
"angular_velocity_penalty": angular_velocity_penalty

}

return total_reward, reward_components
‘‘‘

The new reward function applies a penalty for large angular velocities (larger than the
angvel_threshold) using a temperature parameter (angvel_penalty_temp) to scale the
penalty. The total reward now combines the rotation_reward with the
angular_velocity_penalty.

Example 2: EUREKA Reward Reflection on Humanoid. Iteration 2 Score: 3.79, Iteration 3 Score: 4.37
Iteration 2: Eureka Output:
Based on the provided feedback, it seems like the ‘track_reward‘ component is not contributing

to the learning process as all its values are 0. Therefore, I will discard the ‘
track_reward‘ and write a new reward function that emphasizes the ‘velocity_reward‘
component. I will also add a new component to the reward function to encourage the agent
to maintain upright posture.

Below is the updated reward function:

‘‘‘python
import torch
from typing import Tuple, Dict

@torch.jit.script
def compute_reward(root_states: torch.Tensor, dt: float) -> Tuple[torch.Tensor, Dict[str,

torch.Tensor]]:
# Calculate the forward velocity
forward_velocity = root_states[:, 7]

# Reward for forward velocity
velocity_temperature = 1.0 # You can tune this temperature parameter to adjust how much
weight the forward velocity gets
velocity_reward = torch.exp(forward_velocity / velocity_temperature)

# Calculate the height of the humanoid torso
torso_height = root_states[:, 2]

# Reward for maintaining upright posture
posture_temperature = 1.0 # Tune this temperature parameter to adjust the weight of the
posture reward component
posture_reward = torch.exp(torso_height / posture_temperature)

# Combine rewards
total_reward = velocity_reward + posture_reward

reward_components = {’velocity_reward’: velocity_reward, ’posture_reward’: posture_reward}

return total_reward, reward_components
‘‘‘

I have removed the ‘track_reward‘ component and added a new component, ‘posture_reward‘, to
encourage the humanoid to maintain an upright posture. The posture reward is computed as
the exponential of the humanoid’s torso height divided by a temperature parameter. Adjust
the temperature parameters of both components to fine-tune the model’s learning process.

#########################################################################

Iteration 2: Reward Reflection:
We trained a RL policy using the provided reward function code and track the values of the

individual components in the reward function as well as global policy metrics such as
success rates and episode lengths after every 100 epochs and the maximum, mean, minimum
values encountered:

velocity_reward: [’1.05’, ’6.33’, ’30.09’, ’66.72’, ’101.08’, ’133.44’, ’148.37’, ’175.90’, ’
188.68’, ’204.21’], Max: 235.50, Mean: 116.81, Min: 1.05

posture_reward: [’3.26’, ’3.31’, ’3.28’, ’3.27’, ’3.27’, ’3.25’, ’3.28’, ’3.28’, ’3.28’, ’3.27
’], Max: 3.33, Mean: 3.27, Min: 3.02

consecutive_successes: [’-0.05’, ’1.18’, ’2.31’, ’2.95’, ’3.20’, ’3.45’, ’3.52’, ’3.61’, ’3.66
’, ’3.67’], Max: 3.79, Mean: 2.95, Min: -0.05

episode_lengths: [’31.94’, ’85.50’, ’104.58’, ’123.72’, ’128.38’, ’130.28’, ’135.18’, ’138.20’
, ’134.81’, ’136.41’], Max: 142.11, Mean: 120.44, Min: 25.89

Please carefully analyze the policy feedback and provide a new, improved reward function that
can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward
function
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(2) If the values for a certain reward component are near identical throughout, then this
means RL is not able to optimize this component as it is written. You may consider

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component

(3) If some reward component magnitude is significantly larger, then you must re-scale its
value to a proper range

Please analyze each existing reward component in the suggested manner above first, and then
write the reward function code. The output of the reward function should consist of two
items:
(1) the total reward,
(2) a dictionary of each individual reward component.

The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalized the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a
temeperature parameter inside the transformation function; this parameter must be a named
variable in the reward function and it must not be an input variable. Each transformed

reward component should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor
(4) most importantly, the reward code input variables must contain only attributes of the
provided environment class definition (namely, variables that have prefix self.). Under
no circumstance can you introduce new input variables.

#########################################################################

Iteration 3: Eureka Output:
Based on the provided feedback, it seems that the ‘posture_reward‘ component has little impact

on the learning process, as its values are near identical throughout the training. I
will modify the reward function to better balance the ‘velocity_reward‘ and ‘
posture_reward‘ components, and also add a new reward component to encourage the agent to
minimize the energy consumption of its action (i.e., ‘action_energy‘).

Here is the updated reward function:

‘‘‘python
import torch
from typing import Tuple, Dict

@torch.jit.script
def compute_reward(root_states: torch.Tensor, actions: torch.Tensor, dt: float) -> Tuple[torch

.Tensor, Dict[str, torch.Tensor]]:
# Calculate the forward velocity
forward_velocity = root_states[:, 7]

# Reward for forward velocity
velocity_temperature = 5.0 # I increased the value from 1.0 to 5.0 to balance the impact
of the velocity reward.
velocity_reward = torch.exp(forward_velocity / velocity_temperature)

# Calculate the height of the humanoid torso
torso_height = root_states[:, 2]

# Reward for maintaining upright posture
posture_temperature = 10.0 # Increased the value from 1.0 to 10.0 to balance the impact
of the posture reward.
posture_reward = torch.exp(torso_height / posture_temperature)

# Reward for minimizing energy consumption in actions
action_energy = torch.norm(actions, p=2, dim=-1)
energy_temperature = 5.0
energy_reward = -torch.exp(action_energy / energy_temperature) # Subtract this component
to minimize energy consumption.

# Combine rewards
total_reward = velocity_reward + posture_reward + energy_reward

reward_components = {’velocity_reward’: velocity_reward, ’posture_reward’: posture_reward,
’energy_reward’: energy_reward}

return total_reward, reward_components
‘‘‘

I increased the temperature parameters for both the ‘velocity_reward‘ and ‘posture_reward‘
components to balance their impact on the learning process. Additionally, I added a new
reward component, ‘energy_reward‘, to encourage the agent to minimize the energy
consumption in its actions. Experiment with different temperature parameter values if
necessary to fine-tune the policy further.
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G.2 NEGATIVELY CORRELATED EUREKA REWARD EXAMPLES

We display several negatively correlated but superior rewards that EUREKA discovers in our experi-
ments.

Example 1: Task: ShadowHand, Human Normalized Score: 1.45, Correlation:−0.26

@torch.jit.script
def compute_reward(object_rot: torch.Tensor, goal_rot: torch.Tensor, fingertip_pos: torch.

Tensor, object_pos: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
# Compute the quaternion distance between the object’s current orientation and the goal
orientation
q_dist = torch.sum((object_rot * goal_rot), dim=-1)
q_dist = torch.min(q_dist, 1 - q_dist) # Make sure the q_dist is in the range [0, 1]

# Normalize the quaternion distance using a temperature parameter
temp_rot = 0.5
rot_reward = torch.exp(-temp_rot * q_dist)

# Compute the distance between the fingertips and the object center
fingertips_object_dist = torch.norm(fingertip_pos - object_pos[:, None], dim=-1)

# Apply a threshold for the distance
distance_threshold = 0.1
close_enough = (fingertips_object_dist < distance_threshold).to(torch.float32)

# Normalize the distance between fingertips and object center using an updated temperature
parameter

temp_dist = 10.0
distance_reward = torch.mean(torch.exp(-temp_dist * fingertips_object_dist * close_enough)
, dim=-1)

# Apply a penalty if the agent is not close enough to the object
distance_penalty = 0.5 * (1 - torch.prod(close_enough, dim=-1))

# Combine the reward components
total_reward = rot_reward * distance_reward - distance_penalty

# Store the reward components in a dictionary
reward_components = {

"rot_reward": rot_reward,
"distance_reward": distance_reward,
"distance_penalty": distance_penalty,
"total_reward": total_reward,

}

return total_reward, reward_components

Example 2: Task: FrankaCabinet, Human Normalized Score: 11.98, Correlation:−0.30

@torch.jit.script
def compute_reward(franka_grasp_pos: torch.Tensor, drawer_grasp_pos: torch.Tensor,

cabinet_dof_pos: torch.Tensor,
franka_lfinger_pos: torch.Tensor, franka_rfinger_pos: torch.Tensor) ->

Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

# Calculate the distance between the Franka grasping position and the cabinet grasping
position
grasp_distance = torch.norm(franka_grasp_pos - drawer_grasp_pos, dim=-1)

# Calculate the distances between franke_lfinger_pos, franka_rfinger_pos and
drawer_grasp_pos
lfinger_distance = torch.norm(franka_lfinger_pos - drawer_grasp_pos, dim=-1)
rfinger_distance = torch.norm(franka_rfinger_pos - drawer_grasp_pos, dim=-1)

# Calculate the drawer opening distance
drawer_opening = cabinet_dof_pos[:, 3]

# Define temperature parameters for transforming the reward components
grasp_distance_scaling = torch.tensor(20.0)
handle_grasping_temperature = torch.tensor(20.0)
drawer_opening_temperature = torch.tensor(20.0)

# Transform the reward components
grasp_distance_reward = 1.0 / (1.0 + grasp_distance_scaling * grasp_distance)
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handle_grasping_reward = torch.exp(-handle_grasping_temperature * (lfinger_distance +
rfinger_distance))
drawer_opening_reward = torch.exp(drawer_opening_temperature * drawer_opening)

# Compute the total reward
reward = grasp_distance_reward + handle_grasping_reward + drawer_opening_reward

# Create a dictionary of individual reward components
reward_components = {

"grasp_distance_reward": grasp_distance_reward,
"handle_grasping_reward": handle_grasping_reward,
"drawer_opening_reward": drawer_opening_reward

}

return reward, reward_components

G.3 EUREKA FROM HUMAN INITIALIZATION EXAMPLES

We display several examples of a single step in the EUREKA from Human Initialization setting. In
these examples, the first reward (Iteration 0) is the original human-written task reward, and Iteration 1
is the best reward after one step of EUREKA improvement.

Example 1: EUREKA Human Initialization on Kettle. Human Success Rate: 0.11, EUREKA Success Rate: 0.91
Iteration 1: Human Initialization:
‘‘‘python
import torch

@torch.jit.script
def compute_reward(

kettle_handle_pos, bucket_handle_pos, kettle_spout_pos,
right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos, right_hand_lf_pos,
right_hand_th_pos,
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,

):
right_hand_finger_dist = (torch.norm(kettle_handle_pos - right_hand_ff_pos, p=2, dim=-1) +
torch.norm(kettle_handle_pos - right_hand_mf_pos, p=2, dim=-1)

+ torch.norm(kettle_handle_pos - right_hand_rf_pos, p=2, dim=-1) +
torch.norm(kettle_handle_pos - right_hand_lf_pos, p=2, dim=-1)

+ torch.norm(kettle_handle_pos - right_hand_th_pos, p=2, dim=-1))
left_hand_finger_dist = (torch.norm(bucket_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(bucket_handle_pos - left_hand_mf_pos, p=2, dim=-1)

+ torch.norm(bucket_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(bucket_handle_pos - left_hand_lf_pos, p=2, dim=-1)

+ torch.norm(bucket_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.7,

torch.where(left_hand_finger_dist < 0.7,
0.5 - torch.norm(bucket_handle_pos - kettle_spout_pos, p

=2, dim=-1) * 2, up_rew), up_rew)

reward = 1 + up_rew - right_hand_dist_rew - left_hand_dist_rew
reward_components = {

’up_reward’: up_rew,
’right_hand_dist_reward’: right_hand_dist_rew,
’left_hand_dist_reward’: left_hand_dist_rew,

}

return reward, reward_components
‘‘‘

#########################################################################

Iteration 1: Reward Reflection:
We trained a RL policy using the provided reward function code and tracked the values of the

individual components in the reward function as well as global policy metrics such as
success rates and episode lengths after every 300 epochs and the maximum, mean, minimum
values encountered:

up_reward: [’0.00’, ’0.00’, ’0.02’, ’-0.01’, ’0.04’, ’-0.02’, ’0.03’, ’-0.01’, ’0.02’, ’0.04’
], Max: 0.12, Mean: 0.03, Min: -0.06

right_hand_dist_reward: [’0.93’, ’0.34’, ’0.40’, ’0.38’, ’0.36’, ’0.44’, ’0.43’, ’0.42’, ’0.38
’, ’0.42’], Max: 0.96, Mean: 0.41, Min: 0.27

left_hand_dist_reward: [’1.47’, ’0.87’, ’0.69’, ’0.89’, ’0.83’, ’0.81’, ’0.83’, ’1.02’, ’0.84’
, ’0.85’], Max: 3.57, Mean: 0.88, Min: 0.39
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consecutive_successes: [’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’
, ’0.00’], Max: 0.01, Mean: 0.00, Min: 0.00

episode_lengths: [’125.00’, ’122.45’, ’123.92’, ’124.24’, ’124.22’, ’124.83’, ’124.86’, ’
124.42’, ’124.89’, ’124.18’], Max: 125.00, Mean: 123.81, Min: 111.56

Please carefully analyze the policy feedback and provide a new, improved reward function that
can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward
function
(2) If the values for a certain reward component are near identical throughout, then this
means RL is not able to optimize this component as it is written. You may consider

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component

(3) If some reward component magnitude is significantly larger, then you must re-scale its
value to a proper range

Please analyze each existing reward component in the suggested manner above first, and then
write the reward function code. The output of the reward function should consist of two
items:
(1) the total reward,
(2) a dictionary of each individual reward component.

The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a
temperature parameter inside the transformation function; this parameter must be a named
variable in the reward function and it must not be an input variable. Each transformed
reward component should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor
(4) Most importantly, the reward code input variables must contain only attributes of the
provided environment class definition (namely, variables that have prefix self.). Under
no circumstance can you introduce new input variables.

#########################################################################

Iteration 2: Eureka Output:
From the feedback data you provided, it is evident that up_reward has a rather small value and

success rate is always near zero. We can try some modifications to improve the reward
function. First, we can update the distance rewards by adjusting their scale and applying
an exponential transformation with an associated temperature. This will make their

values range between 0 and 1. We will also slightly adjust the up_reward to get more
value when the kettle and bucket are closer. Finally, we will add some weights to the
reward components to balance their contribution to the total reward.

Here is the updated reward function:

‘‘‘python
import torch

@torch.jit.script
def compute_reward(

kettle_handle_pos, bucket_handle_pos, kettle_spout_pos,
right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos, right_hand_lf_pos,
right_hand_th_pos,
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,

):
dist_temp = torch.tensor(0.1)

right_hand_finger_dist = (torch.norm(kettle_handle_pos - right_hand_ff_pos, p=2, dim=-1) +
torch.norm(kettle_handle_pos - right_hand_mf_pos, p=2, dim=-1)

+ torch.norm(kettle_handle_pos - right_hand_rf_pos, p=2, dim=-1) +
torch.norm(kettle_handle_pos - right_hand_lf_pos, p=2, dim=-1)

+ torch.norm(kettle_handle_pos - right_hand_th_pos, p=2, dim=-1))
left_hand_finger_dist = (torch.norm(bucket_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(bucket_handle_pos - left_hand_mf_pos, p=2, dim=-1)

+ torch.norm(bucket_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(bucket_handle_pos - left_hand_lf_pos, p=2, dim=-1)

+ torch.norm(bucket_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = 1 - torch.exp(-dist_temp * right_hand_finger_dist)
left_hand_dist_rew = 1 - torch.exp(-dist_temp * left_hand_finger_dist)

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.7,

torch.where(left_hand_finger_dist < 0.7,
1 - torch.norm(bucket_handle_pos - kettle_spout_pos, p=2,

dim=-1) * 2, up_rew), up_rew)

reward = 5 * up_rew - 3 * right_hand_dist_rew - 2 * left_hand_dist_rew
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reward_components = {
’up_reward’: up_rew,
’right_hand_dist_reward’: right_hand_dist_rew,
’left_hand_dist_reward’: left_hand_dist_rew,

}

return reward, reward_components
‘‘‘

Please test this updated reward function and provide new policy feedback data for further
analysis if needed.

Example 2: EUREKA Human Initialization on CatchUnderarm. Human Success Rate: 0.33, EUREKA Success
Rate: 0.64
Iteration 1: Human Initialization:
‘‘‘python
import torch
from isaacgym.torch_utils import quat_mul, quat_conjugate

@torch.jit.script
def compute_reward(

object_pos, object_rot, goal_pos, goal_rot,
):

goal_dist = torch.norm(goal_pos - object_pos, p=2, dim=-1)

quat_diff = quat_mul(object_rot, quat_conjugate(goal_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max
=1.0))

dist_rew = goal_dist
reward = torch.exp(-0.2*(dist_rew * 50 + rot_dist))
reward_components = {

"dist_reward": dist_rew,
"rot_reward": rot_dist,

}

return reward, reward_components
‘‘‘

#########################################################################

Iteration 1: Reward Reflection:
We trained a RL policy using the provided reward function code and tracked the values of the

individual components in the reward function as well as global policy metrics such as
success rates and episode lengths after every 300 epochs and the maximum, mean, minimum
values encountered:

dist_reward: [’0.41’, ’0.34’, ’0.34’, ’0.29’, ’0.26’, ’0.25’, ’0.23’, ’0.21’, ’0.21’, ’0.21’],
Max: 0.42, Mean: 0.26, Min: 0.19

rot_reward: [’2.21’, ’2.21’, ’2.19’, ’2.22’, ’2.20’, ’2.21’, ’2.22’, ’2.21’, ’2.20’, ’2.20’],
Max: 2.27, Mean: 2.21, Min: 2.16

consecutive_successes: [’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.04’, ’0.14’, ’0.25’, ’0.17’, ’0.14’
, ’0.03’], Max: 0.33, Mean: 0.08, Min: 0.00

episode_lengths: [’28.00’, ’59.83’, ’56.22’, ’51.10’, ’56.34’, ’57.48’, ’61.40’, ’64.13’, ’
66.47’, ’67.11’], Max: 75.00, Mean: 60.98, Min: 28.00

Please carefully analyze the policy feedback and provide a new, improved reward function that
can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward
function
(2) If the values for a certain reward component are near identical throughout, then this
means RL is not able to optimize this component as it is written. You may consider

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component

(3) If some reward component magnitude is significantly larger, then you must re-scale its
value to a proper range

Please analyze each existing reward component in the suggested manner above first, and then
write the reward function code. The output of the reward function should consist of two
items:
(1) the total reward,
(2) a dictionary of each individual reward component.

The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a
temperature parameter inside the transformation function; this parameter must be a named
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variable in the reward function and it must not be an input variable. Each transformed
reward component should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor
(4) Most importantly, the reward code input variables must contain only attributes of the
provided environment class definition (namely, variables that have prefix self.). Under
no circumstance can you introduce new input variables.

#########################################################################

Iteration 2: Eureka Output:
Based on the policy feedback, we can observe that the success rates and episode lengths are

improving over time. However, the values for ‘rot_reward‘ are near identical throughout
policy learning, which means the RL agent is not able to optimize the current rotation
reward component. We can change the scale/temperature parameter of the rotation reward
and try to make it more sensitive to the changes in rotation. We will keep the distance
reward component as it is because it seems to be optimized during training.

Here is an updated reward function for the given task:

‘‘‘python
import torch
from isaacgym.torch_utils import quat_mul, quat_conjugate

@torch.jit.script
def compute_reward(

object_pos: torch.Tensor, object_rot: torch.Tensor,
goal_pos: torch.Tensor, goal_rot: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

goal_dist = torch.norm(goal_pos - object_pos, p=2, dim=-1)

quat_diff = quat_mul(object_rot, quat_conjugate(goal_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max
=1.0))

dist_rew = goal_dist
rot_rew_temp = 0.1
rot_rew = torch.exp(-rot_rew_temp * rot_dist)

reward = torch.exp(-0.25 * dist_rew * 50) * rot_rew

reward_components = {
"dist_reward": dist_rew,
"rot_reward": rot_dist,

}

return reward, reward_components
‘‘‘
The new reward function changes the scale of the rotation reward component by introducing a

temperature parameter ‘rot_rew_temp‘ and applying a transformation using ‘torch.exp‘.
This should help the RL agent better optimize the rotation reward component during policy
learning.

G.4 EUREKA FROM HUMAN REWARD REFLECTION

We display the raw dialogue that includes all human reward reflection texts as well as the generated
EUREKA rewards in our EUREKA from human reward reflection experiment.

Example 1: EUREKA from Human Reward Reflection
#########################################################################

Iteration 1: Eureka Output:

The task is to make the humanoid run as fast as possible.
Therefore, the reward function should encourage forward movement.
This can be achieved by rewarding the agent based on the velocity in the forward direction.
We can also penalize the agent for using too much energy, as this would encourage efficient

movement.

Here is a possible reward function:

‘‘‘python
def compute_humanoid_reward(obs_buf, reset_buf, progress_buf, actions, up_weight,

heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale,
joints_at_limit_cost_scale, max_motor_effort, motor_efforts, termination_height,
death_cost, max_episode_length):
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# type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float
, float, Tensor, float, float, float) -> Tuple[Tensor, Tensor]

# Reward is based on forward velocity
reward = obs_buf[:, 1]

# Penalize energy usage
energy_cost = energy_cost_scale * torch.sum(actions**2, dim=-1)
reward -= energy_cost

# Penalize joints at limit
joints_at_limit_cost = joints_at_limit_cost_scale * torch.sum(obs_buf[:, 12:32] > 0.99,
dim=-1)
reward -= joints_at_limit_cost

# Penalize for falling
not_upright = torch.abs(1 - obs_buf[:, 10]) > 0.25
reward = torch.where(not_upright, torch.ones_like(reward) * death_cost, reward)

# Reset if fallen
reset = torch.where(not_upright, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf),
reset)

return reward, reset
‘‘‘

This reward function encourages the agent to move forward as fast as possible, while also
encouraging efficient movement and penalizing the agent for falling or reaching joint
limits.

#########################################################################

Iteration 1: Human Reward Reflection:
The learned behavior resembles forward squat jump;
please revise the reward function so that the behavior resembles forward running.

#########################################################################

Iteration 2: Eureka Output:
To encourage a running behavior, we can modify the reward function to reward the agent for

alternating leg movements and penalize for jumping (both feet off the ground).
We can also reward the agent for maintaining a relatively upright torso to resemble a

running posture.

Here is a revised reward function:

‘‘‘python
def compute_humanoid_reward(obs_buf, reset_buf, progress_buf, actions, up_weight,

heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale,
joints_at_limit_cost_scale, max_motor_effort, motor_efforts, termination_height,
death_cost, max_episode_length):
# type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float
, float, Tensor, float, float, float) -> Tuple[Tensor, Tensor]

# Reward is based on forward velocity
reward = obs_buf[:, 1]

# Penalize energy usage
energy_cost = energy_cost_scale * torch.sum(actions**2, dim=-1)
reward -= energy_cost

# Penalize joints at limit
joints_at_limit_cost = joints_at_limit_cost_scale * torch.sum(obs_buf[:, 12:32] > 0.99,
dim=-1)
reward -= joints_at_limit_cost

# Reward for alternating leg movements
leg_difference = torch.abs(obs_buf[:, 12] - obs_buf[:, 13])
reward += leg_difference

# Penalize for jumping (both feet off the ground)
feet_off_ground = torch.sum(obs_buf[:, 54:56] == 0)
reward -= feet_off_ground

# Reward for maintaining an upright torso
upright_torso = 1 - torch.abs(1 - obs_buf[:, 10])
reward += upright_torso

# Penalize for falling
not_upright = torch.abs(1 - obs_buf[:, 10]) > 0.25

32



reward = torch.where(not_upright, torch.ones_like(reward) * death_cost, reward)

# Reset if fallen
reset = torch.where(not_upright, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf),
reset)

return reward, reset
‘‘‘

This reward function encourages the agent to move forward as fast as possible, while also
encouraging efficient movement, alternating leg movements, maintaining an upright torso,
and penalizing the agent for jumping or reaching joint limits.

#########################################################################

Iteration 2: Human Reward Reflection:
The learned behavior now looks like duck walk;
the legs are indeed alternating but the torso is very low.
Could you improve the reward function for upright running?

#########################################################################

Iteration 3: Eureka Output:
To encourage a more upright running posture,

we can increase the reward for maintaining an upright torso and penalize the agent more
heavily for having a low torso position.

We can also add a reward for maintaining a certain height,
which would discourage the "duck walk" behavior.

Here is a revised reward function:

‘‘‘python
def compute_humanoid_reward(obs_buf, reset_buf, progress_buf, actions, up_weight,

heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale,
joints_at_limit_cost_scale, max_motor_effort, motor_efforts, termination_height,
death_cost, max_episode_length):
# type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float
, float, Tensor, float, float, float) -> Tuple[Tensor, Tensor]

# Reward is based on forward velocity
reward = obs_buf[:, 1]

# Penalize energy usage
energy_cost = energy_cost_scale * torch.sum(actions**2, dim=-1)
reward -= energy_cost

# Penalize joints at limit
joints_at_limit_cost = joints_at_limit_cost_scale * torch.sum(obs_buf[:, 12:32] > 0.99,
dim=-1)
reward -= joints_at_limit_cost

# Reward for alternating leg movements
leg_difference = torch.abs(obs_buf[:, 12] - obs_buf[:, 13])
reward += leg_difference

# Penalize for jumping (both feet off the ground)
feet_off_ground = torch.sum(obs_buf[:, 54:56] == 0)
reward -= feet_off_ground

# Reward for maintaining an upright torso
upright_torso = 1 - torch.abs(1 - obs_buf[:, 10])
reward += 2 * upright_torso # Increase reward for upright torso

# Penalize for low torso position
low_torso = obs_buf[:, 0] < 1.0
reward = torch.where(low_torso, torch.ones_like(reward) * -1.0, reward)

# Reward for maintaining a certain height
height_reward = obs_buf[:, 0]
reward += height_reward

# Penalize for falling
not_upright = torch.abs(1 - obs_buf[:, 10]) > 0.25
reward = torch.where(not_upright, torch.ones_like(reward) * death_cost, reward)

# Reset if fallen
reset = torch.where(not_upright, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf),
reset)
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return reward, reset
‘‘‘

This reward function encourages the agent to move forward as fast as possible, while also
encouraging efficient movement, alternating leg movements, maintaining an upright torso,
maintaining a certain height, and penalizing the agent for jumping, having a low torso
position, or reaching joint limits.

#########################################################################

Iteration 3: Human Reward Reflection:
The learned behavior has the robot hopping on one of its foot in order to move forward.
Please revise the reward function to encourage upright running behavior.

#########################################################################

Iteration 4: Eureka Output:
To discourage hopping and encourage a more balanced running behavior,
we can add a penalty for not using both legs equally.
We can also increase the reward for maintaining an upright torso and add a penalty for high

angular velocity,
which would discourage spinning or hopping.

Here is a revised reward function:

‘‘‘python
def compute_humanoid_reward(obs_buf, reset_buf, progress_buf, actions, up_weight,

heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale,
joints_at_limit_cost_scale, max_motor_effort, motor_efforts, termination_height,
death_cost, max_episode_length):
# type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float
, float, Tensor, float, float, float) -> Tuple[Tensor, Tensor]

# Reward is based on forward velocity
reward = obs_buf[:, 1]

# Penalize energy usage
energy_cost = energy_cost_scale * torch.sum(actions**2, dim=-1)
reward -= energy_cost

# Penalize joints at limit
joints_at_limit_cost = joints_at_limit_cost_scale * torch.sum(obs_buf[:, 12:32] > 0.99,
dim=-1)
reward -= joints_at_limit_cost

# Reward for alternating leg movements
leg_difference = torch.abs(obs_buf[:, 12] - obs_buf[:, 13])
reward += leg_difference

# Penalize for not using both legs equally
leg_usage_difference = torch.abs(torch.sum(obs_buf[:, 12:14], dim=-1) - 1.0)
reward -= leg_usage_difference

# Penalize for jumping (both feet off the ground)
feet_off_ground = torch.sum(obs_buf[:, 54:56] == 0)
reward -= feet_off_ground

# Reward for maintaining an upright torso
upright_torso = 1 - torch.abs(1 - obs_buf[:, 10])
reward += 2 * upright_torso # Increase reward for upright torso

# Penalize for high angular velocity
high_ang_velocity = torch.abs(obs_buf[:, 4:7]).sum(dim=-1) > 1.0
reward = torch.where(high_ang_velocity, torch.ones_like(reward) * -1.0, reward)

# Penalize for falling
not_upright = torch.abs(1 - obs_buf[:, 10]) > 0.25
reward = torch.where(not_upright, torch.ones_like(reward) * death_cost, reward)

# Reset if fallen
reset = torch.where(not_upright, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf),
reset)

return reward, reset
‘‘‘

This reward function encourages the agent to move forward as fast as possible, while also
encouraging efficient movement, alternating leg movements, maintaining an upright torso,
and penalizing the agent for jumping, not using both legs equally, having high angular
velocity, or reaching joint limits.
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#########################################################################

Iteration 4: Human Reward Reflection:
This reward function removed the penalty for low torse position that you added last time;

could you just add it back in?

#########################################################################

Iteration 5: Eureka Output:
Sure, I apologize for the oversight. We can add back the penalty for low torso position to

discourage the "duck walk" behavior. Here is the revised reward function:

‘‘‘python
def compute_humanoid_reward(obs_buf, reset_buf, progress_buf, actions, up_weight,

heading_weight, potentials, prev_potentials, actions_cost_scale, energy_cost_scale,
joints_at_limit_cost_scale, max_motor_effort, motor_efforts, termination_height,
death_cost, max_episode_length):
# type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float
, float, Tensor, float, float, float) -> Tuple[Tensor, Tensor]

# Reward is based on forward velocity
reward = obs_buf[:, 1]

# Penalize energy usage
energy_cost = energy_cost_scale * torch.sum(actions**2, dim=-1)
reward -= energy_cost

# Penalize joints at limit
joints_at_limit_cost = joints_at_limit_cost_scale * torch.sum(obs_buf[:, 12:32] > 0.99,
dim=-1)
reward -= joints_at_limit_cost

# Reward for alternating leg movements
leg_difference = torch.abs(obs_buf[:, 12] - obs_buf[:, 13])
reward += leg_difference

# Penalize for not using both legs equally
leg_usage_difference = torch.abs(torch.sum(obs_buf[:, 12:14], dim=-1) - 1.0)
reward -= leg_usage_difference

# Penalize for jumping (both feet off the ground)
feet_off_ground = torch.sum(obs_buf[:, 54:56] == 0)
reward -= feet_off_ground

# Reward for maintaining an upright torso
upright_torso = 1 - torch.abs(1 - obs_buf[:, 10])
reward += 2 * upright_torso # Increase reward for upright torso

# Penalize for low torso position
low_torso = obs_buf[:, 0] < 1.0
reward = torch.where(low_torso, torch.ones_like(reward) * -1.0, reward)

# Penalize for high angular velocity
high_ang_velocity = torch.abs(obs_buf[:, 4:7]).sum(dim=-1) > 1.0
reward = torch.where(high_ang_velocity, torch.ones_like(reward) * -1.0, reward)

# Penalize for falling
not_upright = torch.abs(1 - obs_buf[:, 10]) > 0.25
reward = torch.where(not_upright, torch.ones_like(reward) * death_cost, reward)

# Reset if fallen
reset = torch.where(not_upright, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf),
reset)

return reward, reset
‘‘‘

This reward function encourages the agent to move forward as fast as possible, while also
encouraging efficient movement, alternating leg movements, maintaining an upright torso,
and penalizing the agent for jumping, not using both legs equally, having a low torso
position, having high angular velocity, or reaching joint limits.

G.5 EUREKA AND HUMAN REWARD COMPARISON

We display the human reward on a Dexterity task verbatim and contrast it with a EUREKA-generated
reward on the same task. As shown, the human reward is difficult to parse and has many commented-
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out blocks of reward components, suggesting history of trial-and-error reward design. In contrast,
EUREKA reward is clean and interpretable, amenable to post-hoc human inspection and editing.

Example 1: Human reward for PushBlock
@torch.jit.script
def compute_hand_reward(

rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, left_target_pos, left_target_rot,
right_target_pos, right_target_rot, block_right_handle_pos, block_left_handle_pos,
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,
right_hand_lf_pos, right_hand_th_pos,
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
# Distance from the hand to the object
left_goal_dist = torch.norm(left_target_pos - block_left_handle_pos, p=2, dim=-1)
right_goal_dist = torch.norm(right_target_pos - block_right_handle_pos, p=2, dim=-1)
# goal_dist = target_pos[:, 2] - object_pos[:, 2]

right_hand_dist = torch.norm(block_right_handle_pos - right_hand_pos, p=2, dim=-1)
left_hand_dist = torch.norm(block_left_handle_pos - left_hand_pos, p=2, dim=-1)

right_hand_finger_dist = (torch.norm(block_right_handle_pos - right_hand_ff_pos, p=2, dim
=-1) + torch.norm(block_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)

+ torch.norm(block_right_handle_pos - right_hand_rf_pos, p=2, dim
=-1) + torch.norm(block_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)

+ torch.norm(block_right_handle_pos - right_hand_th_pos, p=2, dim
=-1))
left_hand_finger_dist = (torch.norm(block_left_handle_pos - left_hand_ff_pos, p=2, dim=-1)
+ torch.norm(block_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)

+ torch.norm(block_left_handle_pos - left_hand_rf_pos, p=2, dim
=-1) + torch.norm(block_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)

+ torch.norm(block_left_handle_pos - left_hand_th_pos, p=2, dim
=-1))
# Orientation alignment for the cube in hand and goal cube
# quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
# rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max
=1.0))

right_hand_dist_rew = 1.2-1*right_hand_finger_dist
left_hand_dist_rew = 1.2-1*left_hand_finger_dist

# rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale

action_penalty = torch.sum(actions ** 2, dim=-1)

# Total reward is: position distance + orientation alignment + action regularization +
success bonus + fall penalty
# reward = torch.exp(-0.05*(up_rew * dist_reward_scale)) + torch.exp(-0.05*(
right_hand_dist_rew * dist_reward_scale)) + torch.exp(-0.05*(left_hand_dist_rew *
dist_reward_scale))
up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = 5 - 5*left_goal_dist - 5*right_goal_dist

# reward = torch.exp(-0.1*(right_hand_dist_rew * dist_reward_scale)) + torch.exp(-0.1*(
left_hand_dist_rew * dist_reward_scale))
reward = right_hand_dist_rew + left_hand_dist_rew + up_rew

resets = torch.where(right_hand_finger_dist >= 1.2, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_finger_dist >= 1.2, torch.ones_like(resets), resets)

# Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.abs(left_goal_dist) <= 0.1,
torch.where(torch.abs(right_goal_dist) <= 0.1, torch.ones_like(

successes), torch.ones_like(successes) * 0.5), successes), successes)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
# reward = successes
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return reward, resets, goal_resets, progress_buf, successes, cons_successes

Example 2: Eureka reward for PushBlock
@torch.jit.script
def compute_reward(object_pos: Tensor,

left_hand_pos: Tensor,
right_hand_pos: Tensor,
left_goal_pos: Tensor,
right_goal_pos: Tensor) -> Tuple[Tensor, Dict[str, Tensor]]:

# Temperature parameters for reward components
temp_left_proximity: float = 0.5
temp_right_proximity: float = 0.5
temp_hand_distance: float = 0.1

# Proximity reward for pushing the block to the left goal
left_push_distance = torch.norm(object_pos - left_goal_pos, dim=1)
left_proximity_reward = torch.exp(-temp_left_proximity * left_push_distance)

# Proximity reward for pushing the block to the right goal
right_push_distance = torch.norm(object_pos - right_goal_pos, dim=1)
right_proximity_reward = torch.exp(-temp_right_proximity * right_push_distance)

# Proximity rewards for the hands to be close to the block for better control
left_hand_to_block = torch.norm(object_pos - left_hand_pos, dim=1)
left_hand_reward = torch.exp(-temp_hand_distance * left_hand_to_block)

right_hand_to_block = torch.norm(object_pos - right_hand_pos, dim=1)
right_hand_reward = torch.exp(-temp_hand_distance * right_hand_to_block)

# Final reward as a weighted sum of individual reward components
reward = 0.25 * (left_proximity_reward + right_proximity_reward) + 0.25 * (
left_hand_reward + right_hand_reward)

reward_components = {
"left_proximity_reward": left_proximity_reward,
"right_proximity_reward": right_proximity_reward,
"left_hand_reward": left_hand_reward,
"right_hand_reward": right_hand_reward,

}

return reward, reward_components
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