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ABSTRACT

Large language models (LLMs) achieve strong performance across many tasks,
but their high computational cost limits deployment in resource-constrained envi-
ronments. Knowledge Distillation (KD) offers a practical solution by transferring
knowledge from a teacher model of a larger size to a smaller student model. While
prior work has mainly examined task-specific or small-scale settings, the post-
training stage for building general instruction-following models has received lim-
ited attention. In this paper, we conduct a systematic study of KD in post-training
using the large-scale Tulu 3 dataset. We find that KD outperforms supervised fine-
tuning (SFT) in low-data regimes, but its advantage diminishes as more training
data is added. Distilling from a stronger instruction-tuned teacher restores sub-
stantial gains even with abundant data, indicating that KD remains effective when
the teacher provides knowledge that the student cannot easily acquire from the
training data alone. We further study domain-specific, low-resource scenarios and
propose a two-stage KD strategy that leverages synthetic teacher-labeled data fol-
lowed by refinement on human annotations. This method consistently improves
student performance, providing practical guidance for building compact models
in data-scarce environments.

1 INTRODUCTION

Large Language Models (LLMs) have brought significant advancements to natural language pro-
cessing, achieving state-of-the-art performance across a wide range of tasks (OpenAI, 2023; Yang
et al., 2025; DeepSeek-AI et al., 2025). However, deploying these models in resource-constrained
environments, such as mobile phones and edge devices, remains a considerable challenge due to
their high computational and memory demands. To address this issue, model compression tech-
niques, particularly Knowledge Distillation (KD), have gained substantial attention as a practical
solution for improving efficiency without severely compromising performance.

KD transfers knowledge from a large, over-parameterized teacher model to a smaller, more efficient
student model by encouraging the student to mimic the teacher’s output distribution or internal
representations (Hinton et al., 2015). This approach allows the student model to achieve competitive
performance while significantly reducing resource consumption. Consequently, KD has been widely
explored in the context of LLMs, yielding promising results.

Several KD methods have been proposed to enhance its effectiveness for generative language
models. SeqKD (Kim & Rush, 2016) encourages the student to imitate the output sequences of
the teacher directly. MiniLLM (Gu et al., 2024) replaces the commonly used forward Kullback-
Leibler divergence (KLD) with reverse KLD, which is better suited to sequence generation tasks.
GKD (Agarwal et al., 2024) introduces a generalized KD framework that supports a range of di-
vergence measures, such as generalized Jensen-Shannon divergence, and reduces train-inference
mismatch by incorporating on-policy samples from the student. Most recently, Direct Preference
Knowledge Distillation (DPKD) (Li et al., 2024) reformulates KD as a direct preference learning
problem, supplementing KL divergence with an implicit reward signal to better align the student
with teacher preferences.
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While these approaches demonstrate strong performance, they are typically applied in task-specific
or small-scale settings. A relatively underexplored but increasingly important scenario is the post-
training setting, where a student model is trained to acquire general instruction-following capabil-
ities from a teacher model. This setting is particularly relevant for building smaller, more efficient
models that can follow human instructions across diverse domains, yet existing work has provided
limited insight into the behavior and effectiveness of KD in this context.

In this paper, we conduct a comprehensive study of KD methods applied in the post-training stage
of LLM development. We focus on understanding their effectiveness across different training data
scales. To this end, we utilize the large-scale instruction-following dataset Tulu 3 (Lambert et al.,
2024), which contains 939k high-quality instruction-response pairs. Using this dataset, we train
both teacher and student models, and apply KD using subsets of varying sizes.

Our findings reveal that KD provides clear performance benefits over supervised fine-tuning (SFT)
in low-data regimes. However, as the size of the training dataset increases, the performance gap
between KD and SFT narrows substantially, and KD offers little additional gain. This suggests that
KD does not scale effectively to large-data settings, as the student can already recover most of the
teacher’s knowledge through direct supervision.

To further test this hypothesis, we replace the original teacher model with a stronger, instruction-
tuned LLM (e.g., Llama3.3-70B-Instruct) trained on a much larger and more diverse corpus via
reinforcement learning from human feedback (RLHF). We find that distillation from this stronger
teacher significantly improves the student’s performance, even in the large-data setting, highlighting
that KD remains effective when the teacher possesses knowledge that the student cannot easily
acquire from the data alone.

While our primary focus is on post-training KD for general instruction-following, real-world deploy-
ment often involves domain-specific applications, such as translation, summarization, or scientific
QA, where high-quality labeled data is scarce. In such cases, models trained with limited super-
vision are prone to underfitting, and leveraging a stronger teacher becomes particularly valuable.
Although KD has been applied in various such contexts, there is a lack of systematic study on its
effectiveness across different low-resource domains and the optimal strategies to employ in these
data-scarce scenarios.

Motivated by this gap, we further investigate the application of KD in domain adaptation settings.
We propose a two-stage training paradigm that first uses teacher-annotated synthetic data to broaden
the student’s exposure to diverse instruction styles, and then refines the model with KD on the
small set of high-quality human annotations. Our experiments show that this strategy consistently
improves performance across multiple domain-specific tasks, demonstrating that carefully designed
KD pipelines can substantially benefit compact student models in data-scarce environments.

In summary, our contributions are threefold:
• We present a comprehensive study of knowledge distillation in the post-training stage of

LLMs, systematically evaluating its effectiveness across different data scales.
• We identify the scaling limitation of KD when the student and teacher are trained on the

same dataset, and demonstrate that distilling from a stronger instruction-tuned teacher can
still provide substantial benefits.

• We introduce a two-stage KD strategy leveraging synthetic data for domain-specific, low-
resource scenarios, which consistently improves student performance and provides practi-
cal guidance for real-world deployment.

2 RELATED WORK

Knowledge Distillation and Instruction Tuning. Knowledge Distillation (KD) transfers knowl-
edge from a large teacher model to a smaller student by matching output distributions or sequences
(Hinton et al., 2015). Early methods such as SeqKD (Kim & Rush, 2016) focused on sequence-
level imitation, while MiniLLM (Gu et al., 2024) introduced reverse-KL objectives better suited for
generation. GKD (Agarwal et al., 2024) addressed train–inference mismatch via on-policy samples,
and DPKD (Li et al., 2024) reformulated distillation as preference optimization. Despite their effec-
tiveness, these approaches are typically applied in task-specific or small-scale settings, leaving the
post-training stage—critical for building general instruction-following models—underexplored. In
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contrast, recent instruction-tuning efforts such as InstructGPT (Ouyang et al., 2022), Alpaca (Taori
et al., 2023), OpenAssistant (Köpf et al., 2023), and Tülu 3 (Lambert et al., 2024) highlight the
importance of alignment after pretraining, yet rely mostly on supervised fine-tuning or RLHF rather
than KD. Our work bridges these directions by systematically studying KD in the post-training stage,
evaluating its effectiveness across data scales and highlighting scenarios where stronger teachers re-
main beneficial.

Task-Specific KD and Synthetic Data. Beyond general instruction-following, KD has been
widely applied in domain-specific and low-resource scenarios, such as translation, summarization,
and QA (Kim & Rush, 2016). More recently, Speculative KD (Xu et al., 2025) improves efficiency
and robustness by interleaving student and teacher generation. While these studies confirm the use-
fulness of KD under limited supervision, they primarily focus on single tasks rather than systematic
analysis across domains. Another line of work explores synthetic data as a complementary super-
vision source: teacher-generated corpora can boost student performance (Shirgaonkar et al., 2024),
and even self-training with student generations can yield competitive results (Lewis et al., 2025).
However, naive mixing of synthetic and human-annotated data often introduces noise that harms
performance. Our work addresses this challenge by proposing a two-stage KD strategy that lever-
ages synthetic data as a warm-up before distillation on gold annotations, demonstrating consistent
improvements in domain-specific, low-resource settings.

3 POST-TRAINING KNOWLEDGE DISTILLATION FOR LLMS

3.1 PROBLEM FORMULATION

We investigate KD in the post-training stage of LLM development, where both the teacher and
student are non-intruct tuned language models. The goal is to assess whether KD can effectively
transfer general instruction-following capabilities from a teacher to a student when both are fine-
tuned on the same dataset.

Formally, let T denote the teacher model and S the smaller student model. Given a dataset D =
{(xi, yi)} of instruction-response pairs, we compare two training paradigms for the student: (1)
supervised fine-tuning (SFT) directly on D, and (2) KD from a teacher Ts, which is first trained
on D via SFT. We aim to evaluate whether the student can benefit from distillation beyond what is
learned from direct supervision alone, and how this benefit varies with the size of D.

3.2 EXPERIMENTAL SETUP

Dataset and Evaluation Tasks We conduct experiments using the Tulu 3 dataset (Lambert et al.,
2024), which contains 939k high-quality instruction-response pairs. We split this dataset into subsets
of varying sizes to evaluate the effectiveness of KD across different data scales. In specific, we create
subsets of sizes ranging from 10k samples to the full training set. Note that both the teacher and
student models are trained on the same subset.

For evaluation, we use five diverse benchmarks that collectively assess reasoning, scientific knowl-
edge, and instruction-following capabilities: BBH (Srivastava et al., 2023), GPQA (Rein et al.,
2023), IFEval (Zhou et al., 2023), InFoBench (Qin et al., 2024), and MMLU-Pro (Wang et al.,
2024). These benchmarks cover a wide range of domains, from general reasoning to domain-specific
scientific QA and fine-grained instruction following. A detailed description of each benchmark is
provided in Appendix A.3.

We report the average accuracy for BBH, GPQA, and MMLU-Pro. For IFEval, we report the
prompt-level loose-accuracy, which measures the percentage of prompts for which the model’s re-
sponse satisfies at least one of the constraints specified in the prompt. For InFoBench, we report
the Decomposed Requirements Following Ratio (DRFR) (Qin et al., 2024), which measures the
percentage of requirements satisfied by the model responses. We use the official evaluation scripts
provided by the respective benchmarks to compute these metrics.

Models We use the Llama3.1-70B model (Dubey et al., 2024) as our teacher model. To investigate
the impact of student model size, we use the Llama3.1-8B, Llama3.2-1B and Llama3.2-3B models
as our student models.

We first fine-tune the teacher model on the Tulu 3 dataset using supervised fine-tuning (SFT) to
obtain Ts. The student models are then trained either via SFT directly on the same dataset, or via
knowledge distillation from Ts. The training details are listed in Appendix A.2.
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3.3 KNOWLEDGE DISTILLATION METHOD

According to Ramesh et al. (2025), various knowledge distillation methods do not show significant
differences in performance for LLMs. Therefore, we adopt the representative method GKD (Agar-
wal et al., 2024). GKD is a flexible framework for distilling auto-regressive language models, ad-
dressing the train-inference mismatch by incorporating on-policy student-generated sequences dur-
ing training. Unlike standard distillation methods that rely solely on fixed datasets (e.g., ground-truth
or teacher-decoded sequences), GKD enables distillation on a mixture of supervised and student-
generated data, guided by token-level feedback from the teacher model.

Let x denote an input, y a target sequence, and λ ∈ [0, 1] the proportion of on-policy (student-
generated) data. The GKD objective is:

LGKD = (1− λ)E(x,y)∼D [KL(pT ∥ pS ; y, x)] + λEx∼X
[
Eŷ∼pS(·|x) [KL(pT ∥ pS ; ŷ, x)]

]
, (1)

where KL(pT ∥ pS ; y, x) is the average token-level divergence:

KL(pT ∥ pS ; y, x) =
1

|y|

|y|∑
n=1

KLtoken (pT (· | y<n, x) ∥ pS(· | y<n, x)) , (2)

and KLtoken can be instantiated as forward KL, reverse KL, or generalized Jensen-Shannon diver-
gence.

In particular, the generalized Jensen-Shannon divergence between two distributions P and Q is
defined as:

JSDβ(P ∥ Q) = β · KL(P ∥M) + (1− β) · KL(Q ∥M), where M = βP + (1− β)Q. (3)

By adjusting the hyperparameter β ∈ (0, 1), GKD smoothly interpolates between different diver-
gence behaviors. When β approaches 0, JSDβ behaves similarly to forward KL, which is mode-
covering: the student must assign probability mass wherever the teacher has support, leading to
broader but potentially less precise coverage. Conversely, when β approaches 1, JSDβ resembles
reverse KL, which is mode-seeking: the student focuses on the teacher’s high-probability regions,
yielding sharper but less diverse generations. In our experiments, we adopt β = 0.5 as the default,
which balances the two effects and has been shown to perform well in practice (Agarwal et al.,
2024).

3.4 KD TRAINING PARADIGMS

While the distillation objective specifies how knowledge is transferred from the teacher to the stu-
dent, the initialization of the student model determines what prior capabilities it possesses before
distillation begins. This initialization choice can substantially influence learning dynamics and final
performance, especially under different data regimes. To investigate this factor, we compare two
KD training paradigms that differ in whether the student starts from a raw pre-trained checkpoint or
from an SFT-adapted model:

• Base model as student (Base-S): The student is initialized with the pre-trained weights of
the base model (e.g., Llama3.1-8B) and trained via KD from the teacher model Ts.

• SFTed model as student (SFT-S): The student is first fine-tuned on the training dataset via
SFT to obtain Ss, and then further trained via KD from the teacher model Ts.

We evaluate both paradigms on Llama3.1-8B as the student model, varying the training set size from
10k to the full 939k samples. Results in Figure 1 show that the SFT-initialized student consistently
outperforms the base-initialized student across most data sizes, though the gap narrows as more
data is used. Even with the full dataset, the SFT-initialized student matches or slightly exceeds the
base variant, indicating that SFT provides a stronger starting point for KD. This suggests that prior
adaptation to instruction-following enables the student to learn more effectively from the teacher.

Based on these results, we adopt the SFT-initialized student as the default configuration for KD in
subsequent experiments, as it offers a stronger prior for learning from the teacher.

3.5 RESULTS AND ANALYSIS

We report the average performance of student models trained via SFT and KD on five evaluation
benchmarks across varying data sizes in Figure 2. In low-data regimes (fewer than 80k samples), KD
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Figure 1: Left: Performance of the student model (Llama3.1-8B) trained via SFT and KD under
different initialization paradigms across varying training set sizes. Right: Task-level performance
on the full training set. Across most data scales, the SFT-initialized student outperforms the base-
initialized student, with the gap narrowing as data increases. When trained on the full dataset, their
performances converge to nearly the same level, indicating that sufficient supervision largely closes
the initialization gap. This suggests that prior SFT adaptation offers a stronger starting point for KD.
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(b) Llama3.2-3B
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Figure 2: Performance of three student models (Llama3.2-1B, Llama3.2-3B, Llama3.1-8B) trained
with SFT and KD across different training set sizes (logarithmic scale on the x-axis). Results are
averaged over five benchmarks: BBH, GPQA, IFEval, InFoBench, and MMLU-Pro. KD provides
clear gains in low-data regimes, while the advantage diminishes as more training data is used. Com-
plete numerical results for all models and data sizes are provided in Appendix A.3.

consistently outperforms SFT, with the largest gain of up to 5% absolute observed at 10k samples.
This suggests that KD can effectively transfer knowledge from the teacher, enabling more efficient
learning when training data is scarce. As the training set grows, the performance gap narrows, and
in some cases SFT even surpasses KD (e.g., Llama3.1-8B at 150k samples), indicating that with
sufficient data, the student can acquire most of the teacher’s knowledge through direct supervision,
reducing the benefits of KD.

To examine this further, we replace GKD with SeqKD, a more traditional approach that omits on-
policy samples, and train Llama3.1-8B on the full Tulu 3 dataset. For each instance, we sample
five outputs from the teacher and train the student to minimize the cross-entropy loss against these
sequences. As shown in Table 1, SeqKD achieves similar performance to GKD, confirming that
the KD method choice has limited impact when ample training data is available, consistent with
prior findings (Ramesh et al., 2025). This supports our hypothesis that, in large-data regimes, little
additional information remains to be distilled.

We further hypothesize that this limitation arises because the teacher and student are trained on the
same dataset, leaving the student with few opportunities to acquire novel knowledge. In such cases,
the supervision provided by KD largely duplicates the ground-truth labels, limiting the marginal
utility of distillation. Consistent with this, we observed that when distilling from a same-dataset
teacher, the KD loss of the student began at a low value and fluctuated without further reduction,
suggesting that the student had little additional signal to absorb. To test this hypothesis, we replace
the teacher with a stronger instruction-tuned model, Llama3.3-70B-Instruct (denoted as GKD-IT),
which has broader instruction-following capabilities and exposure to more diverse tasks. As shown
in Figure 3, GKD-IT substantially outperforms the original GKD teacher, achieving an average per-
formance improvement of around 4% across the five benchmarks. This result supports our intuition:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model BBH GPQA IF-Eval InfoBench MMLU-pro Average
SFT 43.42 30.04 69.50 80.25 34.65 51.57
GKD 42.93 30.22 68.95 80.33 35.16 51.52
SeqKD 42.22 30.59 63.59 81.63 34.64 50.53

Table 1: Performance of different methods trained on full Tulu3 training set across five evaluation
benchmarks.
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Figure 3: Performance of Llama3.1-8B with GKD and GKD-IT on the full Tulu 3 dataset. Using
a stronger instruction-tuned teacher (GKD-IT) yields notable improvements, indicating that distilla-
tion from a more capable teacher can still provide substantial benefits.

distillation remains beneficial when the teacher brings in knowledge beyond the training data, en-
abling the student to learn patterns and reasoning strategies that it would not acquire through direct
supervision alone.

General Takeaway: Knowledge distillation provides the greatest benefits in low-data regimes, mak-
ing it particularly valuable for scenarios where only small or domain-specific datasets are available.
Moreover, when distilling from a stronger instruction-tuned teacher, substantial gains can still be
observed even in large-data settings, indicating that KD remains effective whenever the teacher con-
tributes knowledge beyond the training set.

4 TASK-SPECIFIC KNOWLEDGE DISTILLATION

Motivated by the findings in Section 3.5, we examine the use of KD in domain-specific, low-resource
settings. Such scenarios are common in real-world applications, where high-quality labeled data for
a specialized domain is often scarce. We evaluate the performance of the student model on several
domain-specific tasks and compare multiple KD strategies to assess their effectiveness under these
constraints.

4.1 EXPERIMENTAL SETUP

We use the same student models as in Section 3.5, but now focus on domain-specific tasks. Specifi-
cally, we consider the following tasks:

Low-resource Translation We adopt the Assamese–English subset of the Flores-200
dataset (Costa-jussà et al., 2022) in the low-resource setting, using the processed data splits pro-
vided by (Xu et al., 2025). Specifically, 997 instances from the development set are used for training,
while the original test set (1012 instances) is split into 500-instance development and 512-instance
test sets. Translation quality is evaluated with the COMET metric (Rei et al., 2022).

Dialogue Summarization We use the DialogSum dataset (Chen et al., 2021) following the prepro-
cessed splits in (Xu et al., 2025). The training set contains 1k instances, and evaluation is conducted
on the official development set (500 instances) and a 1500-instance test set. Summarization quality
is measured using ROUGE-L (Lin, 2004).

ARC-Challenge We use the ARC-Challenge dataset (Clark et al., 2018), which consists of
multiple-choice grade-school science questions that are deliberately constructed to be difficult for
surface-level methods such as retrieval or word co-occurrence. The Challenge Set contains questions
that require deeper knowledge and reasoning. Following the processed splits provided by (Ramesh
et al., 2025), we use 1.1k instances for training, 500 for development, and 672 for testing. Perfor-
mance is evaluated using accuracy.
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Figure 4: Performance of student models on Translation, Summarization, and ARC-Challenge.
GKD improves over SFT across all tasks, but the gains diminish as the student model size increases.

Before doing task-specific training, we first fine-tune the student models on the Tulu 3 dataset via
SFT to obtain student models. We then apply knowledge distillation from the teacher model Ts to
the student models, using the GKD. The training details are listed in Appendix A.2.

4.2 KD RESULTS AND ANALYSIS IN DOMAIN-SPECIFIC TASKS

We report the results of student models trained with SFT and GKD on the three domain-specific
tasks in Figure 4. Overall, GKD consistently improves performance compared to SFT, confirming
the effectiveness of distillation in these settings. This observation aligns with our earlier findings in
Section 3.5, where KD provided the largest benefits in low-data regimes: when task-specific training
data is scarce, the student can better leverage the additional knowledge provided by the teacher.

We also observe that the magnitude of improvement varies with student model size. The perfor-
mance gain from GKD is most pronounced for the 1B student, moderate for the 3B student, and
becomes marginal for the 8B student. This trend suggests that smaller models depend more on dis-
tillation to acquire knowledge that cannot be fully captured from limited supervision, whereas larger
models are capable of learning much of the teacher’s knowledge directly from data, leaving less
room for additional gains.

In practice, these findings imply that knowledge distillation is particularly valuable for building
compact student models that need to operate in domain-specific, data-scarce environments. Such
scenarios are common in real-world applications (e.g., specialized translation systems or domain-
specific assistants), where the ability to improve small models with limited data is often more crucial
than optimizing already strong larger models.

4.3 STRENGTHENING KNOWLEDGE DISTILLATION WITH SYNTHETIC DATA

The preceding results suggest that knowledge distillation is most beneficial in low-data regimes, yet
its advantages diminish as the amount of available training data increases. One key limitation lies in
the heavy reliance on human-annotated data: when the student and teacher are exposed to the same
dataset, the student can already recover much of the teacher’s knowledge through direct supervision,
leaving limited room for further gains. In practice, labeled data in specialized domains is scarce,
and scaling up high-quality annotation is often impractical. To address this challenge, we propose
to augment KD with synthetic data.

Synthetic Data Generation. Concretely, we employ the Llama3.1-70B model fine-tuned on Tulu
3 as the generator Tgen. Given a small set of demonstrations {(xj , yj)}kj=1 sampled from the training
data D and an instruction prompt I1, we construct the in-context prompt

Prompt = I ⊕
[
In: x1 Out: y1 . . . In: xk Out: yk In:

]
, (4)

where ⊕ denotes concatenation. Conditioned on this prompt, the generator samples an unlabeled
input

xs ∼ Tgen(· | Prompt). (5)

1Instruction for unlabeled data generation is provided in Appendix A.4
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Model Translation Summarization ARC-Challenge
SFT GKD Mix 2-Stage SFT GKD Mix 2-Stage SFT GKD Mix 2-Stage

Teacher (70B SFT) 86.31 – – – 44.99 – – – 91.38 – – –

1B 68.00 69.87 78.13 78.65 37.03 38.63 40.48 42.84 26.71 38.05 70.22 70.31
3B 78.91 79.39 82.41 82.67 40.98 41.37 42.17 44.02 64.25 68.69 80.22 80.46
8B 82.87 83.10 83.15 83.63 41.57 42.41 43.40 44.29 77.99 77.05 85.35 85.67

Table 2: Performance of different models on Translation, Summarization, and ARC-Challenge. We
compare SFT, KD, Mix (GKD with synthetic data mixing), and 2-Stage (two-stage GKD). Best
results for each model are highlighted in bold.

Repeating this process yields a synthetic unlabeled set X s = {xs
1, . . . , x

s
N}. These inputs are

subsequently annotated by the teacher model T , which is the Llama3.1-70B fine-tuned on the cor-
responding training subset D, to obtain pseudo-labeled pairs

Ds = {(xs
i , y

s
i )}Ni=1, ysi ∼ T (· | xs

i ). (6)

Synthetic Data Integration. A straightforward approach is to simply combine the synthetic
dataset Ds with the original human-annotated dataset D and train the student under the KD ob-
jective:

Lmix = E(x,y)∼D∪Ds [KL(pT (· | x) ∥ pS(· | x))] . (7)
As we will show in Section 4.4, this simple mixing strategy indeed provides improvements over
SFT, indicating that synthetic data can be beneficial despite its noise However, its effect remains
limited, as the noisy synthetic samples Ds dilute the high-quality supervision from D, preventing
the student from fully exploiting the additional data. This motivates the development of a more
structured integration scheme.

To this end, we adopt a two-stage training paradigm. In the first stage, the student S is exposed only
to the synthetic dataset, performing an initial training step:

S(0) = Train(S;Ds), (8)

where the objective is the standard cross-entropy loss with pseudo-labels ysi . Although Ds is noisy,
this stage helps the student adapt to a broader distribution of instruction formats and response struc-
tures, providing a better starting point.

In the second stage, we initialize the student with S(0) and then optimize the GKD objective on the
human-annotated dataset D (see Sec. 3.3 for details):

S⋆ = argmin
S
LGKD(S;T,D) with initialization S ← S(0). (9)

This staged design leverages synthetic data as a “warm-up” that broadens the student’s exposure,
while preserving the high-quality guidance of the teacher on D in the final distillation step. Empir-
ically, we find that this method significantly improves performance compared to both direct mixing
and vanilla KD.

4.4 RESULTS OF SYNTHETIC DATA AUGMENTATION

We empirically set the number of synthetic samples N for each task to 100k. Besides SFT and
GKD, we report the results of the following two strategies:

• Mixing: Directly combining the synthetic dataset Ds with the original dataset D and train-
ing the student via GKD on the mixed dataset.

• Two-stage: The proposed two-stage training paradigm, where the student is first trained on
the synthetic dataset Ds, and then fine-tuned via GKD on the original dataset D.

We report the results in Table 2, from which we draw the following findings:

Mixing synthetic data yields clear improvements. Across all tasks and model sizes, the mix-
ing strategy consistently outperforms SFT, showing that synthetic data can effectively enhance KD
despite its noisiness. For example, the 3B model on Translation improves from 78.91 (SFT) to
82.41 with mixing, and the 8B model on Summarization improves from 41.57 (SFT) to 43.40 with
mixing. These results indicate that even a direct combination of human and synthetic data provides
noticeable gains.
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Figure 5: Impact of synthetic data size on knowledge distillation. Performance improves as more
synthetic data is added, with smaller models benefiting more, but the gains quickly saturate as data
size grows.

Two-stage training maximizes the benefit of synthetic data. The two-stage paradigm consis-
tently achieves the best results across all settings. For example, the 1B model on ARC-Challenge
improves to 44.97, compared to 26.71 with SFT and 28.66 with mixing. This demonstrates that,
while synthetic data is inherently noisy, it becomes substantially more beneficial when used as a
warm-up stage before distillation on human-annotated data.

General takeaway. Overall, our results show that synthetic data is indeed useful for improving
KD in low-resource, domain-specific tasks. Even the simple mixing strategy brings consistent gains
over SFT. At the same time, the two-stage paradigm further amplifies these benefits by structuring
how synthetic data is leveraged. This demonstrates that synthetic data, whether used directly or in
a staged manner, can substantially enhance student models in low-resource settings, with two-stage
training providing the most effective integration.

4.5 IMPACT OF SYNTHETIC DATA SIZE

To better understand the role of synthetic data, we investigate how the size of the synthetic dataset
influences distillation performance. Specifically, we vary the number of synthetic samples N from
5k to 100k for all 1B, 3B, and 8B student models, and report the results in Figure 5. We find that
adding synthetic data consistently improves performance across different tasks, with the 1B student
benefiting the most. However, the improvement is most significant when moving from very limited
to moderate amounts of synthetic data, after which the marginal gains diminish. This indicates that
while synthetic data is an effective complement to KD in low-resource settings, its utility does not
scale linearly with quantity. Instead, the main advantage comes from a relatively small but diverse
synthetic set that broadens the student’s exposure beyond what human annotations alone can provide.

5 CONCLUSION

In this work, we conducted a systematic study of KD in the post-training stage of LLMs. Through
extensive experiments on the large-scale Tulu 3 dataset, we found that KD consistently outperforms
SFT in low-data regimes, but its benefits diminish as training data grows. Nevertheless, distilling
from a stronger instruction-tuned teacher restores substantial gains even in high-data settings, high-
lighting that KD remains effective when the teacher possesses knowledge beyond the training set.

We further explored domain-specific, low-resource scenarios and demonstrated that KD is particu-
larly valuable for smaller student models. To address the limitations of scarce human annotations,
we introduced a two-stage KD paradigm that first leverages synthetic teacher-labeled data before re-
fining on human annotations. This method consistently improved student performance, surpassing
both direct mixing and standard KD, thereby offering a practical recipe for building compact and
capable models under resource constraints.

Overall, our findings provide a clearer understanding of when and why KD is most effective, es-
tablish its limitations when teacher and student share the same supervision, and present a simple
yet effective two-stage framework for integrating synthetic data. We hope these insights will guide
future research on efficient LLM post-training and inform the development of deployable models in
real-world low-resource applications.
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Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana
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A APPENDIX

A.1 DETAILS OF EVALUATION TASKS

• BIG-bench(BBH) (Srivastava et al., 2023): A large-scale benchmark comprising 204 di-
verse tasks spanning linguistics, reasoning, math, science, social bias, and more. Designed
to probe capabilities believed to be beyond current language models, it evaluates both quan-
titative performance and qualitative behaviors across a wide range of domains.

• GPQA (Rein et al., 2023): A challenging multiple-choice benchmark of 448 questions in
biology, physics, and chemistry, authored by domain experts. The questions are designed
to be “Google-proof” and extremely difficult, with expert-level accuracy around 65% and
GPT-4 baselines achieving only 39%, making it suitable for evaluating advanced reasoning
in specialized scientific domains.

• IFEval (Zhou et al., 2023): An instruction-following benchmark of around 500 prompts
containing verifiable constraints, such as word-count limits or required keywords. It pro-
vides a reproducible and objective way to assess LLMs’ ability to follow natural language
instructions without relying on costly human evaluation.

• InFoBench (Qin et al., 2024): A benchmark of 500 diverse instructions decomposed into
2,250 fine-grained requirements, designed to evaluate LLMs’ instruction-following ability
under the Decomposed Requirements Following Ratio (DRFR) metric. It enables detailed
assessment of compliance with multiple constraint categories and supports evaluation using
human or LLM-based annotators.
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• MMLU-Pro (Wang et al., 2024): A benchmark built upon the Massive Multitask Language
Understanding (MMLU) benchmark, which tests language understanding and reasoning
across a wide range of subjects. While MMLU mainly contains knowledge-driven multiple-
choice questions, MMLU-Pro increases difficulty by replacing trivial or noisy items with
reasoning-focused questions and expanding the choice set from four to ten options. This de-
sign better discriminates between advanced LLMs and reduces score sensitivity to prompt
variations.

A.2 IMPLEMENTATION DETAILS

We adopt the GKD trainer from the TRL library for all KD experiments. We use the AdamW
optimizer with a learning rate of 5 × 10−6 and a batch size of 128. The models are trained for 2
epochs. We use a linear learning rate scheduler with a warm-up phase of 3% of the total training
steps. The maximum sequence length is set to 4096 tokens. All experiments are conducted on
NVIDIA H100 GPUs. To aviod the instability of gradient accumulation 2, we use sum instead of
average to compute the loss over multiple batches.

We set the hyperparameter λ in Eqn. 2 to 0.5, balancing the contributions of the training data and
the on-policy samples. The hyperparameter β in the generalized Jensen-Shannon divergence is set
to 0.5, which balances the mode-covering and mode-seeking behaviors.

For SFT training, we use the same hyperparameters as in KD training.

For generating synthetic data, we randomly sample 10 examples from the training set as in-context
demonstrations. We use nucleus sampling with p = 1.0 and a temperature of 0.8 to generate syn-
thetic inputs. The maximum generation length is set to 4096 tokens. We set the temperature to 0.6
when the teacher annotates the synthetic inputs.

A.3 DETAILED EXPERIMENTAL RESULTS

Table 3 reports the detailed performance of all student models across different training set sizes,
complementing the averaged trends shown in Figure 2. Each entry corresponds to accuracy (or
task-specific metric) on the five evaluation benchmarks: BBH, GPQA, IFEval, InFoBench, and
MMLU-Pro.

The results confirm that knowledge distillation (GKD) yields clear gains over supervised fine-tuning
(SFT) in low-data regimes, particularly for smaller students such as Llama3.2-1B and Llama3.2-3B.
However, as the training set size increases, the advantage of GKD diminishes, and in some cases
SFT matches or slightly surpasses GKD (e.g., Llama3.1-8B at 939k samples). These detailed results
provide quantitative evidence for the scaling limitations of KD and support our conclusion that its
primary benefits lie in low-resource settings.

A.4 SYNTHETIC DATA GENERATION PROMPT

The instruction prompt used for generating synthetic data is as follows:

You are a data generation assistant. You will be
given 10 demonstrations
Task: Based on these examples, produce exactly
one new input message that matches the same task,
language, and style.
Strict requirements: Output only the message content
itself. Do NOT include any explanations, quotes,
labels, or the answer.

Here are 10 demonstrations:
<10 examples from the training set>
Now, generate exactly one brand-new input message that
follows the same task and formatting.

2https://unsloth.ai/blog/gradient
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Output only the input message content itself. Do not
output any answer or extra text.

B LLM USAGE

In preparing this paper, we used GPT5 and Gemini solely as a writing assistant to polish the writing.
Specifically, LLMs were employed to improve the fluency, clarity, and grammar of the text, while the
core research ideas, experimental design, implementation, analysis, and conclusions were entirely
developed by the authors.
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Model Data Size Method BBH GPQA IF-Eval InfoBench MMLU-Pro Avg.

llama3.2-1b

10k SFT 2.95 25.09 12.38 34.25 12.17 17.368
GKD 3.84 24.18 15.71 34.15 12.13 18.002

20k SFT 11.06 24.73 15.90 37.84 12.25 20.356
GKD 14.88 25.27 17.93 38.68 12.37 21.826

40k SFT 14.59 23.81 21.44 44.06 12.53 23.286
GKD 15.02 25.09 24.77 45.70 12.48 24.612

80k SFT 13.64 25.46 23.84 45.10 12.36 24.080
GKD 10.81 25.09 24.58 48.00 12.67 24.230

100k SFT 13.75 26.19 25.69 46.65 12.58 24.972
GKD 11.96 23.44 27.54 47.41 12.61 24.592

150k SFT 13.79 26.01 25.69 46.83 12.36 24.936
GKD 13.84 26.92 27.73 50.64 12.52 26.330

200k SFT 13.21 26.01 26.99 48.09 12.33 25.326
GKD 11.37 26.37 27.36 50.40 12.61 25.622

500k SFT 9.32 23.81 30.13 49.05 12.48 24.958
GKD 4.72 24.54 30.31 51.39 13.10 24.812

939k SFT 13.85 27.84 36.60 52.03 12.66 28.596
GKD 14.02 25.64 39.93 55.11 12.92 29.524

llama3.2-3b

10k SFT 0.35 29.30 27.73 51.73 25.48 26.918
GKD 3.96 28.39 29.21 59.05 25.96 29.314

20k SFT 12.70 26.74 33.09 53.44 25.61 30.316
GKD 16.43 27.11 35.12 56.55 26.28 32.298

40k SFT 23.22 26.92 37.71 60.36 24.92 34.626
GKD 22.68 27.84 39.37 62.52 25.94 35.670

80k SFT 24.57 28.02 39.74 65.36 25.41 36.620
GKD 20.93 26.92 41.04 65.70 26.13 36.144

100k SFT 23.67 26.74 43.44 66.92 24.46 37.046
GKD 21.01 26.56 44.55 67.93 24.68 36.946

150k SFT 25.03 28.39 47.69 69.17 25.07 39.070
GKD 21.76 29.30 48.61 69.39 25.36 38.884

200k SFT 27.12 28.21 48.98 68.50 24.97 39.556
GKD 21.55 29.30 51.76 69.23 25.79 39.526

500k SFT 25.93 25.46 55.08 73.27 23.58 40.664
GKD 21.07 25.64 57.30 75.24 24.51 40.752

939k SFT 21.30 27.11 57.30 73.79 23.96 40.692
GKD 18.14 27.66 58.60 74.86 24.71 40.794

llama3.1-8b

10k SFT 21.98 29.85 48.98 73.90 38.41 42.624
GKD 25.50 31.14 51.76 76.27 38.71 44.676

20k SFT 38.00 31.32 53.05 75.76 37.52 47.130
GKD 34.74 32.05 57.49 77.47 39.09 48.168

40k SFT 31.72 30.95 55.08 76.01 37.61 46.274
GKD 28.23 32.05 58.96 77.13 38.23 46.920

80k SFT 33.94 33.15 59.52 79.29 37.38 48.656
GKD 28.29 31.68 63.03 79.56 38.42 48.196

100k SFT 30.56 31.68 64.51 78.47 36.14 48.272
GKD 28.54 30.77 68.76 78.86 36.56 48.698

150k SFT 40.15 31.50 65.62 79.10 36.65 50.604
GKD 34.43 29.12 68.39 79.45 37.70 49.818

200k SFT 41.47 29.85 68.58 78.58 35.90 50.876
GKD 39.32 29.12 68.02 78.90 37.13 50.498

500k SFT 40.98 30.95 69.13 79.24 35.74 51.208
GKD 38.77 30.04 69.50 82.64 35.80 51.350

939k SFT 43.42 30.04 69.50 80.25 34.65 51.572
GKD 42.93 30.22 68.95 80.33 35.16 51.518

Table 3: Detailed performance of student models (Llama3.2-1B, Llama3.2-3B, and Llama3.1-8B)
trained with SFT and GKD across different training set sizes. Results are reported on five bench-
marks (BBH, GPQA, IFEval, InFoBench, and MMLU-Pro).
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