
Published as a conference paper at ICLR 2023

SEARCHING LOTTERY TICKETS IN GRAPH NEURAL
NETWORKS: A DUAL PERSPECTIVE

Kun Wang3, Yuxuan Liang4∗, Pengkun Wang3, Xu Wang3, Pengfei Gu3,
Junfeng Fang3, Yang Wang1,2,3∗
1 Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology

of China (USTC), Hefei, China
2School of Software Engineering, USTC. 3School of Data Science, USTC.
4National University of Singapore, Singapore
{wk520529, pengkun, wx309, fjf, gpf9061}@mail.ustc.edu.cn,
angyan@ustc.edu.cn∗, yuxliang@outlook.com∗

ABSTRACT
Graph Neural Networks (GNNs) have shown great promise in various graph learn-
ing tasks. However, the computational overheads of fitting GNNs to large-scale
graphs grow rapidly, posing obstacles to GNNs from scaling up to real-world ap-
plications. To tackle this issue, Graph Lottery Ticket (GLT) hypothesis articu-
lates that there always exists a sparse subnetwork/subgraph with admirable per-
formance in GNNs with random initialization. Such a pair of core subgraph and
sparse subnetwork (called graph lottery tickets) can be uncovered by iteratively
applying a novel sparsification method. While GLT provides new insights for
GNN compression, it requires a full pretraining process to obtain graph lottery
tickets, which is not universal and friendly to real-world applications. Moreover,
the graph sparsification in GLT utilizes sampling techniques, which may result in
massive information loss and aggregation failure. In this paper, we explore the
searching of graph lottery tickets from a complementary perspective – transform-
ing a random ticket into a graph lottery ticket, which allows us to more compre-
hensively explore the relationships between the original network/graph and their
sparse counterpart. Compared to GLT, our proposal helps achieve a triple-win
situation of graph lottery tickets with high sparsity, admirable performance, and
good explainability. More importantly, we rigorously prove that our model can
eliminate noise and maintain reliable information in substructures using the graph
information bottleneck theory. Extensive experimental results on various graph-
related tasks validate the effectiveness of our framework.

1 INTRODUCTION

Graph Neural Networks (GNNs) Kipf & Welling (2016); Hamilton et al. (2017) have recently
emerged as the dominant model for a diversity of graph learning tasks, such as node classification
Velickovic et al. (2017), link prediction Zhang & Chen (2019), and graph classification Ying et al.
(2018). The success of GNNs mainly derives from a recursive neighborhood aggregation scheme,
i.e., message passing, in which each node updates its feature by aggregating and transforming the
features of its neighbors. However, GNNs suffer notoriously high computational overheads when
scaling up to large graphs or with dense connections, since conducting message passing over large
or dense graphs proves costly for training and inference Xu et al. (2018); You et al. (2020).

To alleviate such inefficiency, existing approaches mostly fall into two research lines – that is, they
either simplify the graph structure or compress the GNN model. Within the first class, many studies
Chen et al. (2018); Eden et al. (2018); Calandriello et al. (2018) have investigated the use of sam-
pling to reduce the computational footprint of GNNs. These sampling-based strategies are usually
integrated with mini-batch training schedule for local feature aggregation and updating. Another
representative is graph sparsification techniques Voudigari et al. (2016); Zheng et al. (2020); Li
et al. (2020b) which improve training or inference efficiency of GNNs by learning to remove redun-
dant edges from input graphs. In contrast to simplifying the graph structure, there are much fewer
prior studies on pruning or compressing GNNs Tailor et al. (2020), as GNNs are generally less
parameterized than DNNs in other fields, e.g., computer vision Wen et al. (2016); He et al. (2017).

∗Yang Wang and Yuxuan Liang are the corresponding authors.

1

Published as a conference paper at ICLR 2023

Further, Graph Lottery Ticket hypothesis (GLT) Chen et al. (2021) has surprisingly killed two birds
with one stone, i.e., for the first time it simultaneously simplifies the input graph and prunes the
GNNs without compromising model performance. The key insight is to generalize the theory of
Lottery Ticket Hypothesis (LTH) Frankle & Carbin (2018) to GNNs. Recall that LTH articulates
there always exist sparse and high-performance subnetworks in a dense network with random ini-
tialization (like winning tickets in a lottery pool), GLT delineates a Graph Lottery Ticket as a
combination of core subgraph and sparse subnetwork with admirable performance. More specifi-
cally, GLT first devises a unified GNN sparsification (UGS) strategy for jointly pruning the graph
adjacency matrix as well as the network weights, and then iteratively applies UGS to uncover the
winning tickets in GNNs. Extensive experiments on GNN benchmarks have verified the effective-
ness of GLT across various architectures, learning tasks, and initialization ways.

GLT

Figure 1: Left: graph before sparsification. Right:
a sparse graph obtained by GLT Chen et al. (2021).
The red star (★) denotes a node that connects two
important communities. After adopting GLT, it can
be seen that the edge connecting the two commu-
nities is discarded. Consequently, ★ can no longer
aggregate information from both sub-structures.

After revisiting the theory of GLT, we expose
two crucial factors that may impede GLT in
practice. Firstly, GLT takes a whole pretrain-
ing process to obtain a sparse subnetwork,
which limits its applicability to real-world us-
ages and meanwhile complicates the investi-
gation of the relationships between the origi-
nal network (or graph) and their sparse coun-
terparts. Secondly, the sampling-based graph
simplification in GLT may lead to two devas-
tating challenges: a) Information loss: prun-
ing subgraph edges as GLT does may cause
massive information loss, resulting in perfor-
mance collapse Wu et al. (2022a). b) Aggre-
gation failure: as the sparsity increases, some “unimportant” edges may be discarded by means of a
pruning algorithm, but sometimes they connect two very important local communities (see Fig. 1).

In this paper, we investigate a more universal yet challenging problem from a complementary per-
spective of GLT: how to transform a randomly selected ticket (i.e., a pair of graph and network)
to a graph lottery ticket in GNNs? Compared to the magnitude-based network pruning and graph
sparsification in GLT, such a transformation process enables us to more comprehensively explore
the relationships between the original network/graph and their sparse counterparts. Two-fold efforts
are made by us to answer the above question, including regularization-based network pruning
and hierarchical graph sparsification.

Primarily, we present the first attempt to generalize the Dual Lottery Ticket Hypothesis (DLTH) Bai
et al. (2022) for GNN network pruning. Being initially designed for pruning deep neural networks,
DLTH utilizes a Gradually Increased Regularization (GIR) term Wang et al. (2020a) to transfer the
model expressivity from the discarded part to the remaining part. When adapting to GNNs, we first
randomly select a target sparse subnetwork within the original dense network, and then attach GIR
on the rest part to stimulate magnitude discrepancy among the parameters. In other words, as the
regularization penalty factor increases, the information is continuously extruded from the rest part
into our target subnetwork. Once the difference among parameters is discrepant enough, we remove
the rest part to realize a final sparse network.

However, GIR is not applicable to graph sparsification when generalizing DLTH for finding graph
lottery tickets. To this end, we propose Hierarchical Graph Sparsification (HGS) that is not only
compatible with the GIR-based pruning strategy but also mitigates the information loss and aggrega-
tion failure issue in GLT. HGS learns a differentiable soft assignment matrix for nodes at each GNN
layer, projecting nodes to a set of clusters which is then utilized as the coarsened input for the next
GNN layer. Hierarchical representations of graphs are produced accordingly. Finally, we element-
wise product the adjacency matrix of the coarsened graph at each GNN layer with a trainable mask
for graph sparsification. In this way, useful information is extruded into the anticipative structure,
thereby avoiding massive information loss. Note there are no node or edge dropping operations in
our method, HGS can naturally remedy the aggregation failure in GNNs as well.

We elaborately unify the above regularization-based pruning and hierarchical graph sparsification
into a single framework for transforming a random-selected ticket into a graph lottery ticket in
GNNs, leading to a dual perspective of GLT. We therefore name our framework as Dual Graph

2

Published as a conference paper at ICLR 2023

Lottery Tickets (DGLT). Similar to GLT, DGLT is model-agnostic and makes no assumptions on
the graph structure, and can be easily applied and scaled up to a variety of graph-based learning tasks.
To enhance its explainability, we theoretically prove our information extrusion approach from the
popular Graph Information Bottleneck (GIB) theory. Our contributions are summarized as follows:

• We explore a new and non-trivial problem of transferring a random ticket to a graph lottery ticket
in GNNs. Compared to GLT which pretrains dense GNNs to recognize graph lottery tickets,
transferring a random ticket into a pair of high-performance sparse network and core subgraph is
more appealing and valuable in practical usage, which allows us to investigate the relationships
between the original network/graph and their sparse counterparts in a principle way.

• We present the Dual Graph Lottery Ticket (DGLT) framework to transform a random ticket into a
triple-win graph lottery ticket, i.e., with high sparsity, high performance, and good explainability.
DGLT prunes the GNN architecture by GIR-based information extrusion and sparsifies the input
graph in a hierarchical manner to defeat information loss and aggregation failure in GLT. More-
over, the graph information bottleneck theory is utilized to guarantee the algorithm’s preeminence.

• Extensive experiments are conducted on GNN benchmarks to examine our DGLT. The results
show that DGLT consistently outperforms GLT across various graph/network sparsity over these
benchmarks. For node classification, DGLT achieves 40% ∼ 85% graph sparsity and 65% ∼ 92%
weight sparsity (no performance degradation), with about 13% ∼ 30% sparsity improvement on
graph and 5% ∼ 10% weights sparsity improvement. For a large-scale dataset, i.e., Ogb-Collab,
our model can obtain graph lottery tickets with nearly 43% sparsity gain on the graph. These
findings demonstrate its potential in a wide range of real-world applications.

2 PRELIMINARY & RELATED WORK

Graph Neural Networks. Given an undirected graph G = {V, E} with a node set V and an edge
set E , GNNs aim to learn a representation vector of a node or an entire graph based on the adjacency
matrix A ∈ R|V|×|V| and node features X ∈ R|V|×F . Modern GNNs mostly follow a message
passing strategy, in which we iteratively update the representation of a node vi ∈ V by aggregating
and transforming the representations of its neighbors. For example, Kipf & Welling (2016) propose
a two-layer GNN with learnable parameters Θ = {Θ(0),Θ(1)} for node classification as:

Z = S
(
Âσ

(
ÂXΘ(0)

)
Θ(1)

)
, and L (G,Θ) = −

∑
vi∈Vl

yilog (zi) is the loss function,

where Z is the prediction results, σ (·) denotes an activation function, Â = D̃− 1
2 (A+ I) D̃− 1

2 is
the normalized adjacency matrix with self-loops and D̃ is the degree matrix of A + I . To optimize
such GNNs, we minimize the cross-entropy loss L (G,Θ) over all labelled nodes Vl ⊂ V , where yi
and zi represents the label and prediction of node vi, respectively. More message passing schemes
have been investigated in Hamilton et al. (2017); Velickovic et al. (2017); Li et al. (2020a).

Despite the promising results obtained by GNNs, they encounter notorious inefficiency when scaling
up to large or dense graphs. Many streams of work have been dedicated to solving this issue. Graph
sampling or sparsification accelerates the representation learning process of GNNs by manually or
automatically extracting a sub-structure from the original graph Cheng et al. (2017); Chen et al.
(2018); Rong et al. (2019); Li et al. (2020b); Faber et al. (2021). Graph compression algorithms
attempt to merge an original graph to form a new small graph for fast representation learning Chakeri
et al. (2016); Chiang et al. (2019). Tailor et al. (2020); Zhou et al. (2021); Chen et al. (2022)
prune GNNs for speeding up reasoning. Recently, GLT Chen et al. (2021) has presented the first
attempt to jointly sparsify the input graph and the GNN model, which significantly trims down the
computational cost without compromising predictive accuracy. More importantly, GLT has opened
up a novel research line to the graph learning community on which our framework is built.

Lottery Ticket Hypothesis. LTH articulates that a sparse and admirable subnetwork can be identi-
fied from a dense network by iterative pruning Frankle & Carbin (2018). LTH is initially observed in
dense networks and is broadly found in many fields Evci et al. (2020); Frankle et al. (2020); Malach
et al. (2020); Ding et al. (2021); Chen et al. (2020a; 2021); Sui et al. (2021). Derivative theories
Chen et al. (2020b); You et al. (2021); Ma et al. (2021) are proposed to optimize the procedure of
network sparsification and pruning. In addition to them, Dual Lottery Ticket Hypothesis (DLTH)
considers a more general case to uncover the relationship between a dense network and its sparse
counterparts Bai et al. (2022). It argues that when attaching GIR to a pre-selected part of a dense

3

Published as a conference paper at ICLR 2023

Inputs

Input feature X

Adjacency matrix A

 �(1)

 �(1)

Softmax

Gradually Increasing Regularization (GIR)

�(�), �(�)

MLP

Predictor

Pr
e-

de
fin

ed
 st

ur
ct

ur
e

Subgraph

Subnetwork

High
sparsity

GNN

Admirable
accuracy

Good
explanability+ + = Triple-win!

Details of DGLT

Pretrain

Increased regularization

One-shot
pruning

Fine-tune

Pre-selected sub-structure
of network and graph

Joint
Sparsification

Lightweight
Subnetwork

Sparse
subgraph

Graph Lottery Ticket

Overview of DGLT

 �(�)

����������

()
GNNℎ��

(1)

()
GNNℎ��

(�)

Embedding
 �1 �(1)

GNN��
(1) GNN��

(�)

Hierarchical graph sparsification (HGS)

Figure 2: (Left) The overview of DGLT. (Right) The details of DGLT algorithm.

network, the complementary part can be transformed into an excellent winning ticket in an isolated
training way. In this paper, we draw inspiration from DLTH and for the first time explore a dual
problem of GLT, i.e., how to transform a random ticket into a graph lottery ticket in GNNs.

3 METHODOLOGY

Figure 2 presents an overview of our DGLT for transforming a random ticket to a graph lottery ticket
in GNNs. The first step is selecting a target structure for subnetwork and subgraph. After that, the
network is pretrained with Gradually Increased Regularization (GIR) for information extrusion. We
meanwhile perform Hierarchical Graph Sparsification (HGS) to produce coarsened subgraph repre-
sentations at each GNN layer. When GIR reaches a threshold, we stop adding penalty factors and
train GNNs until the loss converges. Finally, we prune the network/graph for a joint sparsification
with one shot and fine-tune the pruned model to obtain graph lottery tickets for evaluation. In the
following parts, we commence by introducing HGS in Sec. 3.1 and then elaborate on how GIR
benefits the sparse network training by extruding information from other weights to the target sparse
structure (see Sec. 3.2). We further theoretically justify DGLT’s power in transforming graph lottery
tickets using the popular Graph Information Bottleneck (GIB) theory in Sec. 3.3. Frequently-used
notations are listed in Appendix B for clarity.

3.1 HIERARCHICAL GRAPH SPARSIFICATION

Inspired by recent advances in clustering-based graph pooling methods Wu et al. (2022a); Ying
et al. (2018); Roy et al. (2021), we propose Hierarchical Graph Sparsification (HGS) to generate
hierarchical graph representations across different GNN layers for graph sparsification, where the
number of nodes is reduced as the GNNs go deeper. Towards this goal, HGS learns a differentiable
soft assignment matrix for nodes at each GNN layer, mapping input nodes to multiple clusters
which are then fed to the next GNN layer as coarsened inputs.

As seen in Fig. 2, HGS learns the embedding representation Z(l) and assignment matrix S(l) at layer
l (l = 1, 2, . . . , L) via two non-shared GNNs layers, respectively. To be specific, we first adopt GNN
sparsification layer (denoted as GNN

(l)
hgs) after each GNN embedding layer (denoted as GNN(l)

em)
for projecting nodes to a set of feature clusters X(l) and coarsened adjacency matrix A(l), which are
then utilized as the coarsened input for the next GNN layer or final prediction. To facilitate subgraph
generation, we impose a differentiable mask m

(l)
A for A(l) in the hierarchical sparsification process:

Z(l) = GNN(l)
em

(
A(l−1), X(l−1); Θ(l)

em

)
, (1)

4

Published as a conference paper at ICLR 2023

S(l) = softmax
(
GNN

(l)
hgs

(
A(l−1) ⊙m

(l−1)
A , X(l−1); Θ

(l)
hgs

))
, (2)

For Eq. 1, embedding GNN at l-th layer applies X(l−1) and A(l−1) to produce node embed-
ding representation Z(l) for clustering in next sparsification layer. For Eq. 2, ⊙ is the element-
wise product operation, softmax function is applied in a row-wise fashion. assignment matrix
S(l) ∈ Rnl−1×nl (nl−1 > nl) can project coarsened subgraph into nl clusters. Notably that, in
our implementation, we hope that nl−1 is slightly larger than nl to ensure that graph information in
the hierarchical clustering process extrudes steadily into small sub-structure. Given the embedding
Z(l) and assignment matrix S(l), we apply the following equation to obtain adjacency matrix A(l)

and embedding X(l) in the next layer:

A(l) = S(l)TA(l−1)S(l), X(l) = S(l)TZ(l). (3)

After L times of iterative embedding and sparsification of the input graph, we can obtain a resilient
subgraph representation Ghgs = {A(L), X(L)} in the last layer L, where A(L) denotes the connec-
tivity between each pair of subgraph clusters and X(L) represents new node representation.

3.2 GRADUALLY INCREASED REGULARIZATION FOR INFORMATION EXTRUSION

L2 regularization, commonly known as weight decay Loshchilov & Hutter (2018), is one of the most
popular regularization terms. L2 regularization draws the weights closer to the origin by adding a
constraint term Ω (w) = 1

2α ||w||
2
2 to the loss function, where α represents the penalty coefficient.

DLTH Bai et al. (2022) presents the first attempt to leverage L2 regularization to extrude information
from pre-selected part to its complementary counterpart. It demonstrates that when progressively
increasing the penalty coefficient by adding a mini-step value, the difference between the weights
will be separated and the unimportant weights naturally pushed to a position close to zero LeCun
et al. (1989); Wang et al. (2020a) (see proof in Appendix A).

As depicted earlier, we get a sparse1 representation Gsub. Then, we directly element-product A(L)

and a trainable mask m
(L)
A , and send a combination of m(L)

A ⊙ A(L) with X(L) to GNN and MLP-
layer predictors for label forecasting (Bottom right in Fig. 2). For DGLT framework, we pick a
sparse network structure from the whole network parameters Θ and trainable matrices, then attach
GIR on the rest part to extrude information toward the target structure. DGLT can be achieved as
optimization following objective function:

LDGLT := L ({mA ⊙Aall, X} ,Θ) + ξ ||m∗
A||

2
2 + ρ ||Θ∗||22 (4)

ξ(p+1) =

{
ξ(p) + ξa ξ(p) < ξceil
ξ(p) ξ(p) = ξceil

ρ(p+1) =

{
ρ(p) + ρa ρ(p) < ρceil
ρ(p) ρ(p) = ρceil

(5)

In Eq. 4, mA and Aall denote the mask sets and adjacency matrices of all sparsification layers; in
addition to the cross-entropy loss, the objective function contains two L2 regularization terms, where
m∗

A and Θ∗ are pre-selected parameters in mA and Θ which will be discarded after pretraining.
Finally, under the interplay of progressively mini-step addition of regularization penalty, the m∗

A
and Θ∗ are pushed to a position close to zero, and the information is extruded to the target part.
In Eq. 5, ξ(p) and ρ(p) are the regularization terms at p-th updating. ξa and ρa indicate increased
mini-step values of penalty coefficient. ξceil and ρceil indicate ceiling values of two regularization
terms. We set range of regularization terms and control regularization value increases in a linear
fashion until reaches their ceiling. To facilitate reading, we show the algorithm in Algo. 1

3.3 GIB VIEW OF GRADUALLY INCREASING REGULARIZATION

Graph Information Bottleneck (GIB): Information Bottleneck (IB), which originates from the in-
formation theory, aims to find a compression code of the input signals while retaining as much valid
information as possible from the original encoding Tishby et al. (2000). In recent years, IB is natu-
rally adapted to deep neural networks in a variety of applications and shows excellent effects Peng
et al. (2018); Luo et al. (2019); Wang et al. (2020b); Wu et al. (2020); Yu et al. (2020); Miao et al.
(2022). Our work builds upon graph field and often known as Graph Information Bottleneck (GIB),

1Different from pruning, we transform graphs into small size representations and note 1 − ||
A(L)||

0
|A| as

sparsity ratio. ||·||0 and |·|0 are the number of non-zero elements and total number of elements, respectively.

5

Published as a conference paper at ICLR 2023

as defined above, Y =
{
y1, y2y|V|

}
denotes the label of all nodes and G is the input graph.

GIB-based methods try to find an optimal subgraph G∗s in subgraph set Gsub (G) by optimizing:

maxGsub∈Gsub(G)I (Gsub, Y)− βI (Gsub,G) −→ G∗s (6)

Gsub denotes a subgraph of the G and I (·) represents Shannon mutual information. β is the hyper-
parameter used to control the proportion of the two parts. In Eq. 6, The first term is used to maximize
the mutual information of subgraphs and labels, and the second term wants the subgraph to be as
small as possible. GIB theory tries to identify unserviceable or noisy nodes of the training graph-
structured data describe spurious correlation-versus-causations. Intuitively, a spurious correlation
means that after the introduction of nodes or graphs in the training set cannot increase or even
reduce the mutual information between the training set and the label Glymour et al. (2016); Arjovsky
et al. (2019); Krueger et al. (2021). Different from sampling models, we try to transform a full
graph into Ĝ∗s through a transformation function T (∗) (i.e., gradually increasing regularization) and
guarantee spurious correlation removal (satisfies Eq. 6). We will provide theoretical analysis of how
DGLT can obtain an admirable subgraph from GIB perspective.

Sampling-based algorithms

GDLT algorithms

 �(∗)

Pure noise nodes
Positive contribution nodes
Negative contribution nodes

Pure contribution nodes
Information extrusion

Pre-defined structure

Spurious correlations removal

Figure 3: The white/blue node indicate that
all features can increase/decrease I (G, Y),
while the green/yellow nodes indicate that
there are useful associations and false as-
sociations in the nodes, but in the end, the
useful/spurious association dominates

Lemma 1: when the penalty is increased at the same
pace, because of different local curvature structures,
the weights respond differently – weights with larger
curvature will be less moved. As such, the magnitude
discrepancy among weights will be magnified as regu-
larization grows. Ultimately, the weights will naturally
separate (unimportant weights tend to be very small
and can be regarded as noise) Wang et al. (2020a).

Based on Lemma 1, we list our two observations about
spurious correlations distribution in graph: (1) Some
nodes are pure noise; (2) Some node are composed
of bootless correlations and useful associations. Un-
der these two Observations. We can get such solution:
Suppose each G contains subset Gsub (G), there exist
G∗s ∈ Gsub (G) can remove spurious correlations, i.e.,
I (G∗s , Y) ≥ I (G, Y). Unserviceable or noisy infor-
mation are distributed in graph node features. In our
implementation, we can transform a G to Ĝ∗s and make

sure that I
(
Ĝ∗s , Y

)
≥ I (G∗s , Y) ≥ I (G, Y).

Theoretical Analysis. Obs 1: There exist pure noise nodes (note nodes set as Ġsub) which make
no contributions to I (G, Y) at all. Considering that our target is to maximize I (Gsub, Y):

I (Gsub, Y) = I (Y ;G,Gsub)− I (Y ;G|Gsub) = I (Y ;G)− I (Y ;G|Gsub) (7)

Where the first equality is because Chain Rule for Mutual Information and the second equality is
because Gsub ∈ Gsub (G). I (Y ;G) is given from the beginning, so I (Y ;G) is a constant. Our
target is to maximize I (Gsub, Y) (i.e., minimize the I (Y ;G|Gsub)). Since all nodes in Ġsub are
noise, I

(
Ġsub, Y

)
in I (G, Y) − I

(
G\Ġsub, Y

)
= I

(
Ġsub, Y

)
reach the minimum. In GIB,

G∗s = G\Ġsub. For gradually increasing regularization, we can extrude information to a pre-defined
structure. Since Ġsub are unserviceable, the amount of information squeezed is 0 in transformed Ĝ∗s .
Based on the above inference, we can obtain I (G∗s , Y) = I

(
Ĝ∗s , Y

)
in Obs 1.

Theoretical Analysis. Obs 2: The spurious information is distributed in some nodes and these
nodes are composed of valid information and spurious information.

Suppose nodes set with spurious information is Ġsub =
{
Ġ∗sub, Ġ∗sub

}
, where nodes in Ġ∗sub make

positive contributions to I (G, Y) and Ġ∗sub makes no (even negative) contributions to I (G, Y).

I (G, Y) reaches the maximum when G∗s = G\Ġ∗sub. In our implementation, we extrude information
to Ĝ∗s by training masks, and unimportant weights in masks tend to be exceedingly small and can be

6

Published as a conference paper at ICLR 2023

regarded as noises. In this circumstance, Ĝ∗s contains at least more useful information than Ĝ∗s under
the same sparseness as Ĝ∗s . We can obtain I

(
Ĝ∗s , Y

)
> I (G∗s , Y) > I (G, Y) in Obs 2.

To summarize, DGLT can obtain a comparable (even better) subgraph compare to the sampling-
based algorithm. The difference between DGLT and other sampling methods is shown in Tab. 1
Table 1: Comparison between our DGLT, LTH Frankle & Carbin (2018), DLTH Bai et al. (2022)
and GLT Chen et al. (2021). Pruning, graph controllability, network controllability, transformation,
and pretrain denote the type of pruning process, if sparse graph structure is controllable, if sparse
network structure is controllable, if the selected subnetwork needs transformation before fine-tuning,
and if pretraining dense network is needed, respectively.

Methods Pruning Graph controllability Network controllability Transformation Pretrain
LTH Iterative Infeasible in GNNs × No Yes

DLTH One-shot Infeasible in GNNs ✓ Yes No
GLT Iterative × × No Yes

DGLT (ours) One-shot ✓ ✓ Yes No

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: RQ1:
How effective is our proposed DGLT algorithm in transforming a random ticket to a pair of sparse
subnetwork and subgraph? RQ2: Can DGLT scale up to large-scale datasets? RQ3: Under a certain
sparse ratio of subgraph (or subnetwork), how does the other ratio affect the model performance?
RQ4: How does the proposed hierarchical graph sparsification impact the results? RQ5: How
should we set the mini-step values of the increased regularization force?

4.1 EXPERIMENTAL SETTINGS

Datasets. Six benchmarks for GNN evaluation are employed in this paper to verify the effectiveness
of our DGLT. To be specific, we choose three popular graph-based datasets, including Core, Citeseer
and PubMed Kipf & Welling (2016) for node classification and link prediction. To test the scalability
of DGLT, we further use a large-scale dataset called Ogbl-Collab Hu et al. (2020) for link prediction.
Finally, we examine our algorithm for graph classification on D&D Dobson & Doig (2003) and
ENZYMES Borgwardt et al. (2005). The statistics of these datasets can be seen in Table 5.

Backbones & Parameter Settings. For all selected backbones and datasets, we compare our DGLT
algorithm with GLT Chen et al. (2021) and the random pruning algorithm under the same network
settings. For regular-scale datasets, we adopt GCN Kipf & Welling (2016), GIN Xu et al. (2018) and
GAT Veličković et al. (2017) as backbones. For Cgbl-Collab which is a large-scale dataset, we take
28-layer deep ResGCNs Li et al. (2020a) as our backbone for link prediction. To evaluate our DGLT
on the graph classification task, GraphSAGE Hamilton et al. (2017) is leveraged as the backbone on
D&D and ENZYMES. More details about experimental settings can be found in Appendix E.

4.2 CAN DGLT FINDS GRAPH LOTTERY TICKETS? (RQ1)

To answer RQ1, we compare our DGLT with GLT and random pruning on node classification. When
investigating how accuracy changes with the growth of graph sparsity, we fix the weight sparsity to
zero for stability, and vice versa. The results on Citeseer and PubMed are depicted in Fig. 4, and
those on Cora is shown in Fig. 8. From Fig. 4 and 8, we have the following observations:
(1) DGLT consistently outperforms GLT and random pruning under the same graph/weight
sparsity over all datasets, verifying the superiority of transforming a random ticket to a graph lottery
ticket via information extrusion and hierarchical graph sparsification. For example, the graph lottery
ticket2 on PubMed+GIN identified by DGLT is with 85% graph sparsity or 87% weight sparsity.
For Citeseer+GIN, we can obtain it with 65.0% and 91.0% sparsity on graph/weights using DGLT.
As for random pruning, the effectiveness of the model decreased significantly when the sparsity rate
increased, which further demonstrate the superiority of our DGLT algorithm.
(2) DGLT for the first time enables us to search an ultra-lightweight subnetwork in GNNs. For
node classification on Cora and Citeseer, the model surprisingly shows no significant performance

2In our experiments, we specify a graph lottery ticket as a pair of subgraph and subnetwork with comparable
accuracy to the baseline of full GNNs on full graphs.

7

Published as a conference paper at ICLR 2023

A
cc

ur
ac

y
(%

)
A

cc
ur

ac
y

(%
)

Graph sparsity (%) Graph sparsity (%) Graph sparsity (%)

Weight sparsity (%) Weight sparsity (%) Weight sparsity (%)

A
cc

ur
ac

y
(%

)

Graph sparsity (%) Graph sparsity (%)Graph sparsity (%)

A
cc

ur
ac

y
(%

)

Weight sparsity (%) Weight sparsity (%) Weight sparsity (%)

Figure 4: Results of node classification over Citeseer/PubMed with GCN/GIN/GAT backbones.
Blue dash lines represent the baseline performance of full GNNs on full graphs.

drop (even surpassing the baseline performance) until 90% weight sparsity. For a larger dataset (i.e.,
PubMed), DGLT achieves 85.0% graph sparsity without performance degradation. We demonstrate
that DGLT transforms graph lottery tickets by GIR, which can remedy the information loss and thus
transfer a more informative pair of subgraph and subnetwork.
(3) Whether we can find an extremely sparse subgraph depends on the property of input
graphs. Though DGLT can help find extreme sparse subgraphs in GNNs (e.g., on PubMed+GIN or
PubMed+GAT), this phenomenon does not occur in smaller datasets (e.g., Cora). We argue that the
graph property such as graph size may be an crucial factor to the possibility of transforming a very
sparse subgraph. This question will be discussed further in Sec. 4.3. Besides node classification, we
present additional empirical results on link prediction in Appendix F.

4.3 HOW DOES DGLT PERFORM ON LARGE-SCALE DATASET (RQ2)

Graph sparsity (%) Weight sparsity (%)

H
its

@
50

 (%
)

Figure 5: Link prediction results on Ogbl-Collab+ResGCNs.

To answer RQ2, we conduct exper-
iments on the Ogbl-Collab dataset
using ResGCNs as the backbone.
We show the potential of DGLT in
practice by evaluating the trade-off
among the reasoning time overhead,
accuracy, and memory savings. As
shown in Fig. 5, DGLT performs
better than GLT and random pruning
across different graph sparsity and
weight sparsity. By using DGLT, we can obtain a graph lottery ticket with nearly 70% graph sparsity
and 85% weight sparsity which outperforms GLT by 6%∼7%. Meanwhile, we find that DGLT is
more stable on large-scale datasets. Similar to DGLT’s performance on PubMed, as graph sparsity
increases (until ∼90% sparsity), we witness a slow decline in performance, but there was a very
obvious fluctuation in the small datasets (e.g. Cora), which shows that DGLT is more stable and
conducive to expanding to large-scale datasets.

8

Published as a conference paper at ICLR 2023

4.4 ABLATION STUDIES (RQ3 & RQ4)

To complement the experiments in Sec. 4.2, we investigate a more complex case described in RQ3
by controlling the graph sparsity Pg or weight sparsity Pθ at a fixed ratio (10%, 30%, 50%, and
70%) and examining the model performance under different sparsity of the other term. The experi-
mental results are reported in Fig. 6. It can be seen easily that each line has a similar trend in both
sub-figures, where the accuracy slightly drops as the growth of the graph (or weight) sparsity. For
example, given Pθ = 70%, we can obtain an admirable subgraph (with only 2% lower accuracy)
under 40% graph sparsity. The sparsified GNNs preserve excellent performance (only 8%∼14%
decrease on accuracy) even when the sparsity reaches 90%. This indicates the capability of DGLT
in transforming graph lottery tickets with comparable performance to the original backbone. More-
over, we find that the lines in the right figure are more easily distinguished. When Pg = 30%, an
expressive subnetwork is achieved with 70% weight sparsity of the original network.

To evaluate hierarchical graph sparsification (HGS), we compare DGLT with its variant without HGS
which attaches a trainable mask to the adjacency matrix at the last GNN layer for graph sparsification
like GLT. As depicted in Tab. 2, DGLT surpass its variant without HGS by a large margin under the
same graph sparsity. Such merits stem from its hierarchical information extrusion strategy, which
allows the input graph to transfer information to the final small-size graph in a gradually compressed
form and thus avoids the instability of one-shot rough extrusion.

Graph sparsity (%) Weight sparsity (%)

A
cc

ur
ac

y
(%

)

Figure 6: Effects of different pruning ratios for transforming
sparse graphs and networks on Cora+GCN setting.

Settings Graph Sparsity
Dataset +HGS? 10% 20% 40% 60% 80%

Cora
+GCN

✓ 85.7 85.2 84.5 83.1 82.5
× 81.1 81.4 80.9 78.1 71.2

Citeseer
+GIN

✓ 75.2 75.7 75.1 74.9 70.5
× 74.1 71.8 69.5 67.4 65.3

PubMed
+GAT

✓ 87.5 90.4 86.6 88.1 87.4
× 85.0 83.1 77.5 74.3 72.6

Table 2: Effects of HGS over dif-
ferent datasets and backbones.

4.5 MINI-STEP VALUES OF REGULARIZATION (RQ5)

We control graph/weight sparsity to 30%/70% and choose multiple mini-step values of regulariza-
tion (ξa and ρa take the same mini-step values) for comparison. From Tab. 3, we argue that the
mini-step values of regularization should be maintained in a small regime. When the progressive
regularization force maintain in larger regime (>5e-4), the model effect decreases significantly. We
demonstrate that the process of information extrusion should be slow and excessive steps of in-
creased regularization may cause the model to fall into ill-condition.

Table 3: Different mini-step values of regularization over Cora/Citeseer/PubMed with different
backbones. For clarity, the highest/second-highest performances are emphasized with red/blue fonts.

Settings Mini-steps of Regularization
Datasets Methods 0 1e-6 5e-6 1e-5 5e-5 1e-4 5e-4

Cora

GCN (baseline=86.72%) 84.93±0.11 86.75±0.08 86.18±0.15 85.16±0.24 84.52±0.17 82.14±0.28 81.16±0.27
GIN (baseline=85.91%) 84.17±0.08 85.41±0.14 85.01±0.22 84.84±0.17 84.07±0.15 82.68±0.15 80.13±0.14
GAT (baseline=85.43%) 83.62±0.22 85.41±0.23 85.82±0.17 85.03±0.19 83.22±0.22 81.72±0.18 80.25±0.34

Citeseer

GCN (baseline=75.73%) 74.73±0.13 75.67±0.17 76.22±0.23 76.78±0.45 75.38±0.46 71.74±0.47 71.89±0.65
GIN (baseline=76.34%) 74.54±0.33 76.27±0.22 76.07±0.38 73.44±0.25 74.47±0.28 72.17±0.34 71.09±0.65
GAT (baseline=76.65%) 75.27±0.18 76.67±0.24 75.81±0.23 74.93±0.35 74.83±0.18 72.82±0.47 70.88±0.72

PubMed

GCN (baseline=85.11%) 84.25±0.13 85.17±0.24 85.74±0.25 83.24±0.22 83.16±0.46 81.87±0.17 79.82±0.14
GIN (baseline=84.84%) 84.01±0.11 84.84±0.17 84.35±0.13 83.12±0.55 82.83±0.25 81.12±0.34 80.44±0.47
GAT (baseline=85.73%) 84.08±0.14 85.67±0.17 85.07±0.21 83.58±0.34 82.77±0.37 81.05±0.28 79.89±0.45

5 CONCLUSION
In this paper, we propose a novel framework entitled Dual Graph Lottery Ticket (DGLT) that couples
hierarchical graph sparsification and gradually increasing regularization to achieve triple-win graph
lottery tickets (with high sparsity, admirable performance, and good explainability). Our work first
points out that an admirable subgraph can be obtained by efficient hierarchical compression, which
helps defeat the off-and-shelf sampling-based GNNs methods. We further generalize the key idea
of the dual lottery tickets hypothesis for GNNs across various GNN backbones, learning tasks, and
benchmarks. These explorations provide us a new perspective to uncover the relationships between
the full model/graph and its sparse counterpart.

9

Published as a conference paper at ICLR 2023

6 ACKNOWLEDGEMENT

This work is partially supported by the National Natural Science Foundation of China
(No.62072427, No.12227901), the Project of Stable Support for Youth Team in Basic Research
Field, CAS (No.YSBR-005), Academic Leaders Cultivation Program, USTC.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Yue Bai, Huan Wang, Zhiqiang Tao, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. arXiv
preprint arXiv:2203.04248, 2022.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Daniele Calandriello, Alessandro Lazaric, Ioannis Koutis, and Michal Valko. Improved large-scale
graph learning through ridge spectral sparsification. In International Conference on Machine
Learning, pp. 688–697. PMLR, 2018.

Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. Spectral sparsification in spectral
clustering. In 2016 23rd international conference on pattern recognition (icpr), pp. 2301–2306.
IEEE, 2016.

Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In International
Conference on Machine Learning, pp. 1448–1458. PMLR, 2020.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020a.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning,
pp. 1695–1706. PMLR, 2021.

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and Zhangyang
Wang. Bag of tricks for training deeper graph neural networks: A comprehensive benchmark
study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu. Earlybert:
Efficient bert training via early-bird lottery tickets. arXiv preprint arXiv:2101.00063, 2020b.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
257–266, 2019.

Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, pp. 2189–2200. PMLR, 2021.

Shaojin Ding, Tianlong Chen, and Zhangyang Wang. Audio lottery: Speech recognition made
ultra-lightweight, noise-robust, and transferable. In International Conference on Learning Repre-
sentations, 2021.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

10

Published as a conference paper at ICLR 2023

Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C Seshadhri. Provable and practical approxima-
tions for the degree distribution using sublinear graph samples. In Proceedings of the 2018 World
Wide Web Conference, pp. 449–458, 2018.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Lukas Faber, Yifan Lu, and Roger Wattenhofer. Should graph neural networks use features, edges,
or both? arXiv preprint arXiv:2103.06857, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Madelyn Glymour, Judea Pearl, and Nicholas P Jewell. Causal inference in statistics: A primer.
John Wiley & Sons, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020a.

Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Zafarani. Sgcn: A
graph sparsifier based on graph convolutional networks. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 275–287. Springer, 2020b.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.

Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. Significance-aware information bottle-
neck for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6778–6787, 2019.

Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu, Ming-
hai Qin, Sijia Liu, Zhangyang Wang, et al. Sanity checks for lottery tickets: Does your winning
ticket really win the jackpot? Advances in Neural Information Processing Systems, 34:12749–
12760, 2021.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pp. 6682–
6691. PMLR, 2020.

11

Published as a conference paper at ICLR 2023

Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic atten-
tion mechanism. In International Conference on Machine Learning, pp. 15524–15543. PMLR,
2022.

Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. Variational dis-
criminator bottleneck: Improving imitation learning, inverse rl, and gans by constraining infor-
mation flow. arXiv preprint arXiv:1810.00821, 2018.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Kashob Kumar Roy, Amit Roy, AKM Mahbubur Rahman, M Ashraful Amin, and Amin Ahsan Ali.
Structure-aware hierarchical graph pooling using information bottleneck. In 2021 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Yongduo Sui, Xiang Wang, Tianlong Chen, Xiangnan He, and Tat-Seng Chua. Inductive lottery
ticket learning for graph neural networks. 2021.

Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal at-
tention for interpretable and generalizable graph classification. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1696–1705, 2022.

Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. Degree-quant: Quantization-
aware training for graph neural networks. arXiv preprint arXiv:2008.05000, 2020.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. stat, 1050:20, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Elli Voudigari, Nikos Salamanos, Theodore Papageorgiou, and Emmanuel J Yannakoudakis. Rank
degree: An efficient algorithm for graph sampling. In 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pp. 120–129. IEEE, 2016.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020a.

Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich. Learning efficient
multi-agent communication: An information bottleneck approach. In International Conference
on Machine Learning, pp. 9908–9918. PMLR, 2020b.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
pooling. In International Conference on Machine Learning, pp. 24017–24030. PMLR, 2022a.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. Advances in
Neural Information Processing Systems, 33:20437–20448, 2020.

Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. arXiv preprint arXiv:2201.12872, 2022b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

12

Published as a conference paper at ICLR 2023

Haoran You, Zhihan Lu, Zijian Zhou, and Yingyan Lin. Gebt: Drawing early-bird tickets in graph
convolutional network training. arXiv preprint arXiv:2103.00794, 2021.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-gcn: Layer-wise and learned
efficient training of graph convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2127–2135, 2020.

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information
bottleneck for subgraph recognition. arXiv preprint arXiv:2010.05563, 2020.

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks. arXiv
preprint arXiv:1904.12058, 2019.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor Prasanna.
Accelerating large scale real-time gnn inference using channel pruning. arXiv preprint
arXiv:2105.04528, 2021.

A PROOF OF GRADUALLY INCREASING REGULARIZATION

Regularization is long deemed as a tool on limiting the capacity of deep learning networks, by adding
a penalty term Ω (Θ) to the objective function J . We denote the regularized objective loss function
by J̃ :

J̃ (Θ;X, y) = J (Θ;X, y) + αΩ (Θ) (8)

Where α ∈ [0,∞) is a hyperparameter that weights the relative contribution of the penalty term.
Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
For L2 regularization (commonly known as weight decay), Ω (Θ) = 1

2 ||w||
2
2 is added into objective

function. To simplify the presentation, we assume no bias parameter, so Θ is just equaled to w and
we can list objective function as:

J̃ (Θ;X, y) = J (Θ;X, y) +
α

2
wTw (9)

Where the gradient of objective function is:

∇wJ̃ (w;X, y) = αw +∇wJ (w;X, y) (10)

The whole network can be optimized by:
w ← w − ϵ (αw +∇wJ (w;X, y)) (11)

Written another way, the update is:
w ← (1− ϵα)w −∇wJ (w;X, y) (12)

Further we simplify the analysis by making a quadratic approximation to the objective function in the
neighborhood of the weights that obtains minimal unregularized training cost, w∗ = argminw (w).
In the neighborhood of w∗, we can obtain:

J (Θ;X, y) = J (w∗) +
1

2
(w − w∗)

T
H (w − w∗) (13)

Where H is the Hessian matrix of J with respect to w evaluated at w∗. There is no first-order term in
this quadratic approximation, because w∗ is defined to be a minimum, where the gradient vanishes.
Meanwhile, due to the w∗ is the minimum of J , we can conclude that H is positive-semidefinite.
The minimum of J̃ occurs where its gradient:

13

Published as a conference paper at ICLR 2023

∇w

∼
J(w) = H (w − w∗) = 0 (14)

Gradually increasing regularization (GIR): We add weight decay gradient in 14, as regularized J̃
reaches minimum (corresponding to w̃), we can obtain:

αw̃ +H (w̃ − w∗) = 0 =⇒ w̃ = (H + αI)
−1

Hw∗ (15)

After increasing the penalty α by δα, the new converged weights ŵ have the same relation (15) with
previous round convergence point w̄:

ŵ = (H + δαI)
−1

Hw̄ (16)

where I represents identity matrix.

For ease of exposition and in order to make the paper more self-contained, we prudently inherit and
place the proofs which analysis in Wang et al. (2020a), we list two simplified cases to move forward.
(1) H is diagonal. For ŵi with second derivative hii. As adding δα > 0 regularized force, the new
converged weights can be proved to be

ŵi =
hii

hii + δα
w̄i =⇒ ŵi

w̄i
=

1

δα/hii + 1
(17)

Where ŵi

w̄i
∈ [0, 1) since hii ≥ 0 and δα > 0. As seen, when hii ↑, make ŵi

w̄i
↑, we can find that the

weight relatively less moves towards the origin.

(2) We consider a general case (2-d) instead of diagonal matrix of H . w̄ =

{
w̄1

w̄2

}
, H =(

h11 h12

h21 h22

)
, Ĥ =

(
h11 + δα h12

h21 h22 + δα

)
. After adding mini-step value of regularization,

{
ŵ1

ŵ2

}
=

1∣∣∣Ĥ∣∣∣
{ (

h11h22 + h11δα− h2
12

)
w̄1 + δαh12w̄2(

h11h22 + h22δα− h2
12

)
w̄2 + δαh12w̄1

}
≈ 1∣∣∣Ĥ∣∣∣

{ (
h11h22 + h11δα− h2

12

)
w̄1(

h11h22 + h22δα− h2
12

)
w̄2

}
(18)

=⇒ ŵ1

w̄1
=

1∣∣∣Ĥ∣∣∣
(
h11h22 + h11δα− h2

12

) ŵ2

w̄2
=

1∣∣∣Ĥ∣∣∣
(
h11h22 + h22δα− h2

12

)
(19)

As seen, we can draw the same conclusion: h11 > h22 also results in ŵ1

w̄1
> ŵ2

w̄2
. According to Wang

et al. (2020a), when the penalty is increased at the same pace, due to the different local curvature
structure, the weights response in a different way. Weights with larger curvature will be less moved.
As regularization gradually increases, the magnitude discrepancy among weights will be magnified
and the unimportant weights tend to zero and can be regarded as noise.

B NOTATIONS

For the convenience of reading and consulting, we put all the notations of this work in Table 4.

C ALGORITHM OF DUAL GRAPH LOTTERY TICKET FRAMEWORK

In this part, we summarize our DGLT algorithm process in Algo. 1. We first select a part of parame-
ters to be discarded later. Then we initial our framework parameters. and perform a backpropagation
algorithm to update the network parameters. After that we adopt GIR for information extrusion.
until the useful information is sufficiently extruded into the target structure, we one-shot pruning
pre-defined structure and fine-tune unpruned parameters for model evaluation.

14

Published as a conference paper at ICLR 2023

Table 4: The notations that are commonly used in Methodology (Sec. 3).

Notation Definition

G = {V, E} Input graph
A Input adjacency matrix
X Input features
Z(l) Embedding representation after l-th GNN embedding layer
S(l) Assignment matrix for l-th GNN embedding layer output
A(l) Adjacency matrix after l-th GNN sparsification layer
X(l) Nodes representation after l-th GNN sparsification layer

Θ
(l)
em (l = 1, 2 . . . L) Parameters of layer l-th embedding GNN

Θ
(l)
hgs (l = 1, 2 . . . L) Parameters of layer l-th sparsification GNN

m
(l)
A Trainable matrix for masking A(l)

Aall Aall =
{
A,A(1) . . . A(L)

}
represent all adjacency matrix outputs

mA mA =
{
m

(0)
A ,m

(1)
A . . .m

(L)
A

}
represent mask set for Aall

D COMPLEXITY ANALYSIS OF GLT AND DGLT

Follow the GLT Chen et al. (2021), we we present the complexity of DGLT algorithm. As for GLT,
the inference time complexity of GLTs is O

(
L× ||mg

⊙
A||0 × F + L× ||mθ||0×

∣∣V∣∣×F 2
)
,

where L is the number of layers, ||mg

⊙
A||0 is the number of remaining edges in sparse graph, F

is the dimension of feature and |V| is the number of nodes. The inference time complexity of DGLT
is O

(
||mA

⊙
Aall||0 × F + ||m∗||0×

∣∣V∣∣×F 2
)
+ O (K), where mA =

{
m0

A, m
1
A . . .mL

A

}
rep-

resent mask set for all adjacency matrix outputs Aall. F is the dimension of feature and |V| is the
number of nodes. ||m∗||0 represents all remained parameters of two non-shared GNNs. O (K)
represents inference time complexity of learning the node embeddings and the assignment ma-
trix. They are obtained by multiplying multiple matrices and the inference time complexity of
O (K) = O

(
L× |V|3 + L× |V| × F

)
.

E EXPERIMENTAL SETTINGS

Metrics: Accuracy is the proportion of correct prediction results in all predictions. ROC-AUC (Re-
ceiver Operating Characteristic-Area Under the Curve) value is equivalent to the probability that
a randomly chosen positive example is ranked higher than a randomly chosen negative example.

Algorithm 1 Dual Graph Lottery Tickets (DGLT) Algorithm (aligned with Fig. 2)

Require: Input graph G = {A,X}, GNN f (G;mA,Θ) with initialization parameters Θ0 and mA0 , step size
η, penalty hyper-parameters ξ and ρ of regularization terms.

1: Select a part of parameters to be discarded later, i.e., m∗
A in mA and Θ∗ in Θ.

2: for layer ϕ = 1, 2 . . . L in embedding GNN and sparsification GNN do
3: Learn ϕ-layer embedding representation Z(ϕ) in Eq. 1.
4: Learn ϕ-layer coarsened representation by S(ϕ) in Eq. 2.
5: Hierarchical cluster to form new graph in Eq. 3.
6: Obtain Gsub = {A(L), X(L)}.
7: m

(L)
A ⊙A(L) and send G

′
sub =

{
m

(L)
A ⊙A

(L)
, X(L)

}
into predictor.

8: for iteration i = 1, 2 . . . E do
9: Forward f ({mA ⊙A,X} ,Θ) to compute loss LDGLT in Eq. 4.

10: Update Θi+1 ←− Θi − η∇ΘiLDGLT

11: Update mAi+1 ←− mAi − η∇mAi
LDGLT

12: Increase regularization penalty Θ0 and mA0 by mini-step in Eq. 5
13: One-shot pruning of m∗

A and Θ∗.
14: Fine-tune the model with rest parameters.
15: return Dual graph lottery ticket.

15

Published as a conference paper at ICLR 2023

Table 5: Dataset details. The description of the metrics is placed in Appendix E

Dataset Task #Graphs #Nodes #Edges #Features #Classes Evaluation Metric

Cora Node classification/Link prediction – 2,708 5,429 1,443 7 Accuracy/ROC-AUC
Citeseer Node classification/Link prediction – 3,327 4,732 3,703 6 Accuracy/ROC-AUC
PubMed Node classification/Link prediction – 19,717 88,338 500 3 Accuracy/ROC-AUC

Ogbl-Collab Link prediction – 235,868 1,285,465 128 2 Hits@50
D&D Graph classification 1,178 334,925 16,886,092 89 2 Accuracy

ENZYMES Graph classification 600 19,580 745,654 3 6 Accuracy

Hit@50 means that taking the candidate edge of the top 50, the proportion of the 50 edges is pre-
dicted correctly.

Sparsity ratio: we transform graphs into small size representations and note 1− ||
A(L)||

0

|A| as graph
sparsity ratio. ||·||0 and |·|0 are the number of non-zero elements and total number of elements,
respectively. Similarly, weight sparsity denotes that the ratio of the discarded parameters to the total
parameters in the whole network.

Train-val-test Splitting of Datasets. To rigorously verify the effectiveness of our proposed DGLT
algorithm, we control the network designs consistent under the same task. As for node classification
task of regular-size datasets, we follow the same data split criteria among different backbones, i.e.,
700 (Cora), 420 (Citeseer) and 460 (PubMed) labeled data for training, 500 nodes for validation
and 500 nodes for testing. As for link prediction, we shuffle the datasets and sample 85% edges for
training, 10% for validation, 5% for testing, respectively. For Ogbl-Collab, in order to simulate a
real collaborative recommendation application, we take the cooperation before 2017 as the training
edge, the cooperation in 2018 as the validation edge and the cooperation in 2019 as the testing edge.
For graph classification task, we choose D&D and ENZYMES datasets. D&D and ENZYMES
includes graphs of protein structures, in which a node represents an amino acid. We perform 10-fold
cross-validation to observe model performance and reported the accuracy averaged over 10-fold.

Backbone settings. As for regular-scale datasets Cora, Citeseer and PubMed, we adopt GCN/GIN/-
GAT backbones for node classification and link prediction tasks. In our implementation, we adopt
3-layer GCN, 3-layer GIN and 3-layer GAT, respectively. For link prediction in Ogbl-Collab, we
adopt 28-layer ResGCNs. For graph classification, we hope to obtain a small size graph represen-
tation and we use GraphSAGE for forecasting. Concretely, we select three sparsification layers for
graph size scaling. After the last sparsification layer, we add a GrpahSAGE layer and MLP for
prediction. Further, we place the training details and hyper-parameter configuration in Table 6.

Weight sparsity settings. In our implementation, we control the sparsity of each individual layer
to be equal to the total sparsity and random choice weights in each layer. In this setting, we keep
the first layer dense, since sparsifying this layer has a disproportional effect on the performance and
almost no effect on the total size.

Hierarchical graph sparsification ratio. For graph classification, we found that nl has little effect
on the results, while the final nL can be limited to a small size (even 95% graph sparsity). As for
node classification and link prediction tasks, we should control nl to be slightly larger than nl+1 in
hierarchical graph sparsification (HGS) process.

Table 6: Training details and hyper-parameter configuration. ξ(0) and ρ(0) indicate the starting value
of the graph regularization and weight regularization, respectively. ξa and ρa indicate the size of the
graph regularization and weight regularization increase value.

Computing Infrastructures: three NIVIDIA Tesla v100 (16GB GPU) Software Framework: Pytorch

Task Node classification Link prediction Graph classification

Dataset Cora Citeseer PubMed Cora Citeseer PubMed Ogbl-collab D&D ENZYMES
Epochs (pre-train/fine-tune) 500/200 500/200 700/200 500/200 500/200 700/200 500/200 500/300 500/300

ξ(0) 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04
ξa 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06
ρ(0) 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04
ρa 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam
learning rate 0.008 0.01 0.01 0.008 0.01 0.01 0.01 0.0001 0.0001

16

Published as a conference paper at ICLR 2023

R
O

C
-A

U
C

 (%
)

Graph sparsity (%) Graph sparsity (%) Graph sparsity (%)

Weight sparsity (%)

R
O

C
-A

U
C

 (%
)

Weight sparsity (%) Weight sparsity (%)

R
O

C
-A

U
C

 (%
)

Graph sparsity (%) Graph sparsity (%) Graph sparsity (%)

R
O

C
-A

U
C

 (%
)

Weight sparsity (%) Weight sparsity (%) Weight sparsity (%)

R
O

C
-A

U
C

 (%
)

Graph sparsity (%) Graph sparsity (%) Graph sparsity (%)

R
O

C
-A

U
C

 (%
)

Weight sparsity (%) Weight sparsity (%) Weight sparsity (%)

Figure 7: The results for additional link prediction task. We adopt Cora/Citeseer/PubMed as bench-
marks and test our DGLT alogrithms on GCN/GIN/GAT three backbones for comparison. Blue dash
lines represent the baseline performance of full GNNs on full graphs.

F ADDITIONAL EXPERIMENTS TO ANSWER RQ1

More experiments on link prediction task are shown in Fig. 7. We make observations as follows:
(1) DGLT aggressively improves the reasoning efficiency without significant performance degrada-
tion. For Cora dataset, we can get graph lottery tickets with nearly 50% graph sparsity and 80%
weight sparsity. For Citeseer dataset, we can get graph lottery tickets with nearly 70% graph spar-
sity and 85% weight sparsity. For PubMed dataset, we can get graph lottery tickets with nearly 60%

17

Published as a conference paper at ICLR 2023

A
cc

ur
ac

y
(%

)

Graph sparsity (%) Graph sparsity (%) Graph sparsity (%)

Weight sparsity (%)

A
cc

ur
ac

y
(%

)

Weight sparsity (%) Weight sparsity (%)

Figure 8: The results for node classification task on Cora benchmark. Blue dash lines represent the
baseline performance of full GNNs on full graphs.

graph sparsity and 80% weight sparsity. (2) DGLT can transfer seamlessly to different graph-related
tasks. In addition to the node classification task, DGLT model can also show better results on the
link prediction task. (3) We can get similar conclusions as in the main experiments, DGLT can
achieve better results than GLT and random pruning under the same sparsity ratio.

Further, we conduct 3-layer GraphSAGE Hamilton et al. (2017) counterpart with DGLT algorithm
on ENEYMES and D&D datasets under different weight sparsity ratio. Similar to the original graph
pooling method DIFFPOOL settings, we control the graph sparsity as 95% (total two pooling layers
in DIFFPOOL) and observe the performance under the different weight sparsity. As shown in Table
7, it is not difficult to find that the information extrusion algorithm well maintains the accuracy
under high sparsity. On ENEYMES dataset, We can observe that the expressiveness of the model
could be improved even pruning 80% weights. Meanwhile, when the weight sparsity of the model
reached 90%, the performance of the model still did not decrease significantly: it only decreased
by 2.24% on the ENEYMES dataset and by 0.62% on the D&D dataset. In a nutshell, these results
demonstrate that our DGLT algorithm can also be easily generalized to graph classification tasks,
which further illustrates that DGLT has resilient pluggability.

Table 7: Graph classification accuracies in percent over ENZYMES and D&D datasets under differ-
ent weight sparsity.

DIFFPOOL+ENZYMES; Baseline accuracy:63.21% Graph sparsity=95%

Weight sparsity (%) 10 20 30 40 50 60 70 80 90
DGLT (Acc) 65.27±0.33 65.44±0.49 66.53±0.37 63.55±0.44 62.49±0.47 62.17±0.57 63.21±0.54 61.77±0.47 60.97±0.53

DIFFPOOL+D&D; Baseline accuracy:77.33% Graph sparsity=95%

Weight sparsity (%) 10 20 30 40 50 60 70 80 90
DGLT (Acc) 80.17±0.34 77.38±0.47 76.39±0.55 77.670.78 78.50±0.61 77.51±0.47 77.36±0.47 78.39±0.56 76.71±0.77

G ADDITIONAL ABLATION RESULTS

In addition to Cora+GCN setting on Sec. 4.4, we summarize Citeseer+GAT experimental results on
link prediction task and PubMed+GIN experimental results on node classification task. As shown
in Fig. 9, we can further draw similar conclusions that our DGLT algorithm can obtain graph lottery
tickets, which can both save memory footprints and speed up reasoning efficiency.

H CONNECTIONS TO GNN EXPLAINABILITY

GNN explainability research line mainly focuses on identifying a key subgraph of the full
graph—that is, what knowledge drives the GNN model to make a certain prediction? They cast

18

Published as a conference paper at ICLR 2023

Graph sparsity (%) Weight sparsity (%)

Graph sparsity (%) Weight sparsity (%)

R
O

C
-A

U
C

 (
%

)
A

cc
ur

ac
y

(%
)

Figure 9: Ablation studies of pruning ratios for transforming sparse graph pg and network pθ, we
select Citeseer+GAT for link prediction task and PubMed+GIN for node classification task. Bule
dash lines represent model performance over full graph counterpart with full networks.

the learning paradigm of GNN as minimizing the empirical risk with the masked subgraphs, which
are regarded as rationales to guide the model predictions Chang et al. (2020); Miao et al. (2022);
Creager et al. (2021); Wu et al. (2022b); Sui et al. (2022). Our explanation focuses on why the trans-
formed subgraph can make reliable predictions, which is similar to those described above. In our
implementation, we want to give an explanation from a graph information bottleneck perspective
about why the transformed subgraph has expressive ability. This “explanations” process (Section
3.3) is similar to Miao et al. (2022), the difference is that our subgraph is not a fraction of the orig-
inal full graph but is obtained by a hierarchical graph sparsification (HGS) algorithm. However, to
our best knowledge, this is the first work to transform a graph lottery ticket from the information
bottleneck perspective and we will explore how the relationships between GNN explainability with
gradually increased regularization in the future work.

I DISCUSSION OF DGLT

In this work, we follow the perspective of the Dual Lottery Ticket Hypothesis (DLTH) and inves-
tigate GNN subnetwork training and subgraph identifying from a complementary direction—that
is, given a specific substructure of GNN model or size of adjacency matrix, we can always trans-
form them to a winning graph lottery ticket (please note, we consider the common case based on
uniformly random selection for GNN model or subgraph compression form, not including certain
extreme situations such as the disconnected subnetworks or subgraph). This conjecture, if it is true,
has rather promising practical implications—it may suggests that the message passing function (i.e.,
information aggregation) of training a GNN model is in fact unnecessary as one only needs to select
a target size of adjacency matrix or target substructure of GNN, and then use hierarchical graph
sparsification (HGS) algorithm or gradually increased regularization for information extrusion.

Comparisons with DLTH. DLTH focuses on transforming a randomly initialized dense network
into an admirable subnetwork, which can achieve better at least comparable to LTH. Building upon
DLTH, our DGLT firstly generalizes this idea to GNN, and investigates a more universal yet chal-
lenging problem—that is, how to transform a randomly selected ticket (i.e., a pair of graph and
network) to a graph lottery ticket in GNNs? However, the key tool of DLTH—gradually increased
regularization—is not applicable to graphs due to the fixed structure. To this end, we adopt HGS to
break this gap and adjustably pre-define the substructure of adjacency matrices. Compared with the

19

Published as a conference paper at ICLR 2023

infeasibility of DLTH in graph compression, our method makes it possible to sparse the graph and
GNN targeting to the specified structure.

20

	Introduction
	Preliminary & Related Work
	Methodology
	Hierarchical Graph Sparsification
	Gradually Increased Regularization for Information Extrusion
	GIB view of gradually increasing regularization

	Experiments
	Experimental settings
	Can DGLT Finds Graph Lottery Tickets? (RQ1)
	How Does DGLT Perform on Large-Scale Dataset (RQ2)
	Ablation studies (RQ3 & RQ4)
	Mini-step values of regularization (RQ5)

	Conclusion
	Acknowledgement
	Proof of gradually increasing regularization
	Notations
	Algorithm of Dual Graph Lottery Ticket Framework
	Complexity analysis of GLT and DGLT
	Experimental settings
	Additional Experiments to Answer RQ1
	Additional ablation results
	Connections to GNN Explainability
	Discussion of DGLT

