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ABSTRACT

Small Language models (SLMs) offer an efficient and accessible alternative to
Large Language Models (LLMs), delivering strong performance while using far
fewer resources. We introduce a simple and effective framework for pretraining
SLMs that brings together three complementary ideas. First, we identify struc-
turally sparse sub-network initializations that consistently outperform randomly
initialized models of similar size under the same compute budget. Second, we use
evolutionary search to automatically discover high-quality sub-network initializa-
tions, providing better starting points for pretraining. Third, we apply knowledge
distillation from larger teacher models to speed up training and improve gener-
alization. Together, these components make SLM pretraining substantially more
efficient: our best model, discovered using evolutionary search and initialized with
LLM weights, matches the validation perplexity of a comparable Pythia SLM while
requiring 5.16x and 1.26 x fewer floating point operations for token budgets of
10B and 100B, respectively. We release all code publicly, offering a practical and
reproducible path toward cost-efficient small language model development at scale.

1 INTRODUCTION

Large Language Models (LLMs) have recently delivered state-of-the-art performance across a wide
range of tasks. Their success is largely driven by scale: modern LL.Ms routinely exceed tens and
hundreds of billions of parameters, unlocking remarkable generalization and emergent abilities.
However, this scale comes at a cost. Training and deploying such massive models requires substantial
computational resources, and inference often exceeds practical memory or latency budgets.

These challenges have motivated increasing interest in Small Language Models (SLMs)
2025} [Yang et al] [2025), which aim to preserve strong performance while remaining deployable
in resource-constrained settings such as mobile or edge devices. Although pretraining SLMs is
substantially cheaper than training LLMs, the costs are still formidable and often beyond the reach of

most smaller research groups. For example, |Allal et al.| (2025)) estimate that training SmolLM?2 with
1.7B parameters required on the order of 10“* FLOPs—roughly $250,000 of GPU compute.

A common strategy to reduce pretraining cost is to leverage open-weight LLMs as teachers. For
instance, [Team et al.| (2025)) used knowledge distillation to train the Gemma 3 family. This idea
can be pushed further by warm-starting students from non-random initializations derived from their
teachers. [Muralidharan et al.| (2024) demonstrated this by pruning a teacher model and refining it
through distillation, while the smaller variants of Llama 3.2 were similarly obtained
using a combination of pruning and distillation.

Unfortunately, most existing efforts in this space are closed-source, making them difficult to reproduce
and extend. While the evidence so far suggests that teacher models can greatly improve the efficiency
of SLM pretraining, the underlying mechanisms remain poorly understood. In this work, we present
the first systematic open-source study of warm-starting student models from larger teachers for
pretraining. Our contributions are:

* Sub-network initialization. We propose a new warm-starting strategy that extracts high-
quality sub-networks from pretrained teachers. The smaller variants (around 410M param-
eters) require 1.71x fewer FLOP of pretraining than a comparable Pythia-410M model
to achieve the same validation perplexity. Larger variants achieve higher speed-ups, with
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Figure 1: Left: Initialization schemes — random weights, sub-network from a pretrained teacher,
and our evolutionary search-based sub-network. Right: The same teacher is used for knowledge
distillation to train the student.
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Figure 2: Overview of our search spaces and search strategy
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models comparable to Pythia-1B requiring 1.75 x fewer FLOP using pretraining, and models
comparable to Pythia-2.8B requiring 5.16x fewer FLOP during pretraining (see Appendix
[BT]for details). We also analyze how different search spaces and extraction strategies affect
downstream performance.

* Comprehensive analysis. We provide the first systematic comparison of sub-network
initialization under knowledge distillation versus standard cross-entropy training, showing
the benefits of knowledge distillation over standard pretraining. Our study spans multiple
student scales and investigates how teacher size influences effectiveness of distillation.

* Reproducible framework. We release an open-source libraryﬂ for extracting sub-networks
from existing LLM checkpoints. Together with our empirical findings, this establishes
practical guidelines for compute-optimal SLM pretraining across different scales.

Section 2] presents our methodology for extracting sub-networks from a pretrained teacher network,
and Section [3introduces our open-source library for sub-network extraction. We provide an empirical
analysis and compare to baseline approaches in Section[d] In Appendix [A] we discuss prior work
relevant to our approach.

2 METHODOLOGY

We study the problem of pretraining a Small Language Model (SLM) with the help of a larger
open-weight teacher. Our approach follows a two-step strategy: (i) extract a sub-network from the
pretrained teacher, and (ii) use this sub-network as initialization for SLM pretraining with knowledge
distillation. In this section, we describe the key components of this pipeline. We first introduce the
search space granularities considered (Section [2.1)), then present our constrained evolutionary search
procedure (Section[2.2)), and finally delineate the pretraining and distillation process (Section [2.3).

2.1 SEARCH SPACES

We consider a dense transformer model 7', with L layers and embedding dimension F. Each
layer ¢ € 1,..., L consists of a causal self-attention block with H attention heads of dimension

Yhttps: //anonymous.4open.science/r/whittle-iclr-71CD/
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H,, followed by an MLP block with intermediate dimension D. For simplicity, we restrict our
discussion to the multi-head attention setting, though the approach extends naturally to multi-query
and group-query attention.

We parameterize a sub-network S of the teacher model 7" by specifying the number of layers
lel,..., L, the embedding dimension e € 1, ..., E, the number of attention heads h € 1,...  H,
the head dimension hs € 1, ..., H,, and the MLP intermediate size d € 1, ..., D. We define four
search spaces that differ in how weights are selected: coarse versus fine-grained, and uniform versus
layer-wise.

Coarse. To construct the sub-network, we always select the first n entries from the corresponding
components of the teacher T'. For example, selecting h attention heads corresponds to taking the first
h heads out of the H heads in T'. Likewise, choosing a smaller embedding dimension e corresponds
to taking the first e elements of the embedding vector.

Fine-grained. We select a subset of size n by sampling indices from the teacher’s components. For
instance, selecting h attention heads corresponds to sampling / distinct heads from the H available
in T' (without replacement).

Next, we distinguish between two types of layer configurations:

Uniform. The same configuration (h, hs, d) for heads, head size and intermediate MLP size, is
applied across all layers. That is, every layer uses the same number of heads, query groups, head
dimension, and MLP intermediate size.

Layer-wise. Each layer is allowed to have its own configuration, relaxing the uniformity constraint.

Combining the two sampling strategies (coarse vs. fine-grained) with the two configuration schemes
(uniform vs. layer-wise) yields four distinct search spaces:

Coarse Uniform. This is the simplest search space, in which the same configuration is applied
to all layers, always selecting the first entries. For multi-head attention layers, the total number of
possible configurationsis N = L- E- H - H, - D. In the case of group-query attention, /N additionally
accounts for the number of valid combinations of heads ~ and query groups q.

Coarse Layer-wise. The coarse layer-wise search space applies coarse sampling independently
to each layer in the sub-network S, allowing each layer to have its own configuration. The total
number of configurationsis N = F - (H - H; - D)L7 which grows exponentially with the number of
layers L. Compared to the coarse uniform space, which is linear in L, the coarse layer-wise space is
significantly larger, as each layer can independently select its (h, hs, d) configuration.

Fine-grained Uniform . The fine-grained uniform search space applies fine-grained sampling
uniformly across all layers. In this setting, the sub-network may be formed from an arbitrary subset
of elements within each layer, rather than being restricted to the first [ layers. The total number of
configurations in this search space is N = 2F-H-Ho-D-L

Fine-grained Layer-wise. The layer-wise fine-grained search space applies fine-grained sampling
independently to each layer, yielding the most granular search space considered. Each layer can
independently select its number of heads, query groups, head dimension, and MLP intermediate size,
and the sub-network may include an arbitrary subset of layers. The total number of configurations is

N:2E(2H2Hs .QD)L.2L,

which grows exponentially with both the width (E, H, H,, D) and the depth L, making it the largest
and most expressive search space among the variants considered.

2.2 EVOLUTIONARY SEARCH

Before outlining our search procedure, we first formalize our experimental setup.

Let M denote a large language model (LLM) parameterized by 6, with total parameter count |6 = S
(in billions). We assume S > 1 and typically consider models where .S > 2. The user specifies a
parameter bin

B == [Smina Smnx]a
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which defines the range of acceptable model sizes (e.g., Smin = 1B, Smax = 2B).

We partition the overall parameter space

S=1{6:16] € [Sy- St}
into K disjoint bins {81, ..., Bk}, each corresponding to a contiguous range of parameter counts.

This stratification ensures balanced coverage across different model sizes. Without such binning,
uniform random sampling tends to under-represent very small and very large models.

We now delineate our constrained evolutionary search procedure.

Evolutionary search with constraint enforcement. Within each bin 5;, we perform an evolution-
ary search over candidate sub-network architectures A(0). At each iteration, candidate architectures
are sampled and evaluated according to a fitness function f(.A). To enforce the bin constraint, we
apply rejection sampling:

A, if (04| € B;,
A<—{ 6.4]

reject, otherwise

Only candidates satisfying |6 4| € B; are retained for further evolution.

After convergence, we return the set of small language models (SLMs)

Aj = arg o f(A),

that achieve the most favorable initialization for subsequent pretraining or distillation. These selected
SLMs represent the optimal sub-network architectures within the specified parameter range.

The overall procedure is summarized in Algorithm [T](Appendix [C.2). Within each parameter-size bin,
we initialize a population of sub-network candidates drawn from the constrained search space. At each
epoch, candidates are evaluated by perplexity and the top-% elites are retained. Genetic operators—
mutation and crossover—then generate offspring subject to bin constraints, while additional random
samples encourage exploration. The next population is formed by selecting the N best candidates
among elites, offspring, and random samples. After 1" epochs, the best-performing sub-network in
each bin is returned, with mutation and crossover formally defined below.

Mutation. Given a candidate architecture .4, we define a mutation operator 11(A) that perturbs one
architectural dimension at a time. Specifically, we uniformly sample a dimension

U {l; ¢, h7 9, da h/s}a

where [ denotes the number of layers, e the embedding dimension, h the number of attention heads, g
the number of query groups, d the intermediate (feedforward) dimension, and h, the per-head size.

Mutation in layer-wise search space. In layer-wise search spaces, architectural attributes
(h,g,d,hs) are defined independently for each layer. A mutation of the layer count | — [ is
handled as follows:

L A Unewly sampled(l’ — I)layers, ifl’ >,
A\ last (I — I") layers, ifl' <1

If v € {h,g,d, hs}, we first sample a layer index i ~ Uniform{1, ..., [}, then resample the chosen
dimension for that layer:

x}, ~ Uniform{choices(z)}

Where choices(x) denotes the valid choices for an architectural attribute = defined by a search space.
All other architectural parameters remain fixed.
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In the fine-grained setting, mutations operate at the neuron level. For instance, mutating the embed-
ding dimension ¢ — ¢’ corresponds to

if ¢/ > e: sample (¢ — €) new neurons; if e’ < e: prune the last (e — ¢’) neurons.

This formulation enables smooth exploration of architectures across both coarse (layer-wise) and
fine-grained structural variations, while maintaining consistency with the model size constraint.

Crossover. To produce a child architecture from two parents, P; and P», we apply a crossover
operator y (Py, P»). We first require both parents to share the same number of layers:

lp, =1lp, =1
Let the architectural dimensions of each parent be
P] - (61 5 h] » 91, hs,l B d] )7 P2 - (62: h2: g2, hS.27 d2)7

where e, h, g, hs, and d denote the embedding dimension, number of attention heads, number of
query groups, head size, and intermediate dimension, respectively.

A child architecture c is then generated by independently inheriting each dimension from one of the
two parents:

x1, with probability 0.5,
T, = foreach x € {e, h, g, hs,d}

2o, Wwith probability 0.5,
For example, a valid crossover outcome might be
c= (627 h1792: hs,27 dl)

This independent dimension-wise crossover enables fine-grained recombination of architectural traits
while preserving structural compatibility (e.g., layer count consistency) between parents.

2.3  SLM PRETRAINING AND DISTILLATION

Sub-network Extraction. Our constrained evolutionary search Algorithm[I] (Appendix [C.2)), re-
turns a sub-network configuration sy, for every parameter bin b. Given this sub-network configuration,
we extract the smaller language model corresponding to this configuration from the larger base model
we perform search on. We then convert this extracted sub-network into a dense language model
with the corresponding architecture. This is then the SLM that we use in our pretaining pipeline,
optimizing the standard token-level cross entropy, language modeling loss.

Knowledge Distillation. Model distillation (Hinton et al.} 2015)), or knowledge distillation, com-
presses a large teacher model into a smaller student network that achieves similar performance with
fewer resources. Instead of training solely on hard labels, the student leverages soft labels from the
teacher, obtained via temperature-scaled softmax:

() (5) = _exp(%) )
' > exp(7)’
where z = [21, 29, ..., 2,] are logits and T > 0 is the temperature. The student parameters Wy are
optimized with a loss combining hard-label cross-entropy and distillation:
L= aLce(y,s)+ B Lp(pt,ps), 2

where «, 5 € [0,1] ,and p; and p; are the teacher and student logit distributions, respectively. In our
setting, Lp is the forward KL divergence,

Lp = Z Pt; ) log

3

(T)
B 3)
Ps;

encouraging the student distribution pff) to match the teacher’s softened distribution pET). In our

final knowledge-distillation setup, we use equation [5] with Lp, corresponding to the forward-kl
divergence depicted in equation 3]
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Top-k Logit Distillation. We define a variant of knowledge distillation that truncates the teacher
distribution to its k£ most salient outputs. Let z;, z, € R denote the teacher and student logits, respec-
tively, and T the temperature parameter. The teacher distribution is given by p; = softmax(z;/T).
We denote by K C {1,...,C} either the indices of the top-k logits of z, or a subset sampled from
p¢. The distillation loss is then defined as:

(i) i
Liopt = Z KL (softmax (sz> || softmax ( Z%) ) > ) 4)

i€

3  WHITTLE: A LIBRARY FOR SLM PRE-TRAINING AND DISTILLATION

Recent model releases such as LLaMA 3.1-8B, LLaMA 3.2-1B, and LLaMA 3.2—3 leverage
pruning and distillation to produce smaller variants, but their training recipes and code are closed-
source, hindering reproducibility. Similarly, Minitron (Muralidharan et al., 2024) outlines best
practices for SLM pretraining, but its implementatio is not readily generalizable across model
families.

To address this gap, we present whittle, a fully open-source library that provides a reproducible,
general-purpose pipeline for extracting and pretraining SLMs directly from Hugging Face models.
Whittle supports a range of functionalities to allow for flexible search space design, sub-network
search, extraction, pretraining and knowledge distillation. In this section, we outline the core
functionalities of whittle and its API design:

set_sub_network(). Given a pretrained decoder-only LLM from 1litgpt, we first convert it into
a whittle model to enable flexible sub-network extraction. To evaluate a sub-network using the
whittle model, we dynamically activate only structured components of the LLLM associated with
that sub-network using the set_sub_network() API (Listing[d). It allows the user to explicitly set
architectural parameters of the sub-network, such as embedding dimension, intermediate size, number
of heads, layers, query groups, and head size, as well as indices for sampled neurons, layers, and
heads. Importantly, it allows to vary the number of heads, head size, intermediate size, and query
groups across layers. This function is a core utility in whittle, supporting downstream procedures
such as search, pretraining, and distillation.

search(). The search() API (Listing[2] Appendix[F) constructs a whittle super-network from a
base HuggingFace model and facilitates automated sub-network selection. It supports evolutionary
strategies as well as algorithms from syne-tune (Salinas et al., 2022ﬂ and performs constrained
search across parameter bins via rejection sampling. Each candidate sub-network is instantiated
through set_sub_network() and evaluated on a task-specific metric, such as perplexity, to guide the
search process.

convert_subnet_to_litgpt_model(). The convert_subnet_to_litgpt_model() function
(Listing 3] Appendix [F)) transforms a selected sub-network configuration into a standalone GPT
model within the 1itgpt framework. Given a super-network and a dictionary specifying architectural
configurations (e.g., embedding dimension and number of heads), this utility extracts the correspond-
ing sub-network and instantiates it as an independent GPT model. The resulting model can then be
employed for downstream tasks such as pretraining, fine-tuning, or distillation.

pretrain(). The pretrain() function (Listing [l Appendix enables pretraining of a sub-
network initialized from a checkpointed GPT model. Given the model weights, a configuration
file describing the sub-network architecture, and a target dataset, this utility restores the model and
resumes training from the specified state.

distill(). The distill() function (Listing[5] Appendix[F) supports knowledge distillation from
a larger teacher model into a sub-network extracted from a checkpoint. Given a teacher model, sub-
network configuration, and a target dataset, this utility trains the sub-network under the supervision of
a specified teacher (e.g., EleutherAI/pythia-12b). Different distillation objectives (e.g., forward
KL divergence) and constraints such as top-k token selection are supported.

2https ://ai.meta.com/blog/1llama-3-2-connect-2024-vision-edge-mobile-devices/
3https ://github.com/NVIDIA-NeMo/NeMo/tree/main
*https://github.com/syne-tune/syne-tune
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Table 1: Search space configurations for different model families. Here, e denotes embedding
dimension, i the number of attention heads, h the head size, [ the number of layers and d the MLP
dimension

Base Model e h hg l d

EleutherAI/pythia-6.9b [1,4096] [1,32] {4,6,8,...,128} [1,32] [1,16384]
EleutherAl/pythia-12b  [1,5120] [1,40] {4,6,8,...,128} [1,36] [I,20480]

4 EXPERIMENTS

Our study focuses on the Pythia (Biderman et al,[2023)) family of models, which span sizes from
14M to 12B parameters; in particular, we use the 6.9B and 12B variants. Importantly, the modular
design of our framework ensures that the methodology is readily applicable to any large language
model supported by 1it gptﬂ

Our experiments are organized around three core components: (a) sub-network search, (b) pretraining
of small language models (SLMs), and (c) distillation into SLMs. For each component, we outline
the setup, present results, and highlight key insights. We now discuss them in turn.

4.1 SEARCH SPACE DEFINITIONS

Table [T| summarizes the search spaces for Pythia-6.9B and Pythia-12B, listing the allowable values
for each transformer dimension. In the coarse layer-wise and fine-grained layer-wise settings, h,
hs, and d are sampled independently at each layer. The fine-grained spaces extend this further with
neuron-level sampling within each dimension, as detailed in Section 2.1} The size of each of the
search spaces is listed in Table [16] (Appendix [H).

4.2 EVOLUTIONARY SEARCH FOR OPTIMAL SLMS

Search Setup We apply Algorithm [I] (Appendix to conduct evolutionary search over
parameter bins in Pythia-6.9B and Pythia-12B, considering the coarse uniform, coarse layer-
wise, fine-grained uniform, and fine-grained layer—wisﬁ search spaces from Section

We use perplexity on wikitext (Merity et al[2017) . . regraned Unforn

ise EEE Fine-grained Layer-wise

as selection metric, with mutation and crossover
probabilities fixed at 0.2. For Pythia-6.9B and -
12B, we define three bins with parameter counts of
385M-426M (bin-1), 961M-1.06B (bin-2), and
2.64B-2.91B (bin-3), centered at 5% of Pythia-
410M, Pythia-1B, and Pythia-2.8B, respectivelyﬂ
Each evolutionary run proceeds for 100 epochs, with
results in the fine-grained layer-wise setting reported Figure 3: Best perplexity after evolutionary

at the final epoch before rejection sampling becomes . .
infeasible due to the combinatorial growth of the searcfzgipigelclsebased on perplexity for different search

WikiText Perplexity 4

Results Discussion. Figure 3] reports the perplexity of pruned sub-networks from Pythia-6.98
across bin-1, bin-2, and bin-3 under different search spaces on the wikitext test set. Note that
these sub-networks are evaluated without any further pretraining or finetuning. We observe that
searches constrained to the smaller coarse uniform and coarse layer-wise spaces generally yield more
effective sub-networks.

5https ://github.com/Lightning-AI/litgpt/

®In the fine-grained spaces, A, hs, and d are sampled independently at each layer, with additional neuron-level
sampling within each dimension. See Section@for details.

"The bins were computed based on the exact number of parameters in the Pythia models
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Validation Perplexity Across Different Parameter Ranges (Pythia-6.9B as Source Model)
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Figure 4: Pretraining Validation perplexity of the best sub-networks from each search space and
the bin-center Pythia models (410M, 1B, 2.8B), all trained for 10B tokens with cross-entropy loss.
Sub-networks are extracted from the Pythia-6.9B base model.

4.3 PRETRAINING OF SLMS

Pretraining Setup. We perform pretraining of our models on the Nemotron-CC dataset (Su et al.,
2025). For each parameter bin and search space, we first conduct a set of low-fidelity experiments
with a 2B-token budget to identify the most promising sub-network in each search space. Concretely,
this involves evaluating the best candidate architecture for every bin across all four search spaces,
resulting in 3 (bins) x 4 (search spaces) = 12 low-fidelity runs. We then select the top-ranked
architecture from each bin (three architectures in total) and perform larger-scale pretraining with a
10B-token budget on Nemotron-CC. All models are trained with the standard next-token prediction
objective using cross-entropy loss.

Results and Discussion. Figure [4] presents the pretraining results. We compare pretraining of
the extracted best sub-network (Supernet-init) against two baselines: (i) Random-init, where the
same architecture is trained with random initialization and a 10B-token budget, and (ii) the original
Pythia model (center of the bin), also trained with random initialization and the same budget. Across
parameter bins, initializing from the supernet yields consistent improvements in validation perplexity.
Notably, the gains are most pronounced for bin-3, indicating that supernet initialization is particularly
beneficial in higher-parameter regimes, where our model achieved the same validation perplexity
with 5.16 x fewer FLOP. Results for a token-budget of 100B can be found in Appendix [J|

4.4 DISTILLATION OF SLMs

Distillation Setup. To further accelerate convergence, we distill knowledge from Pythia-6.9B
and Pythia-12B teacher models. As described in Section [2] training is performed with a weighted
combination of forward-KL divergence and cross-entropy loss (0.8 and 0.2, respectively). For com-
putational efficiency, we apply top-k logits distillation with k£ = 1024 and a distillation temperature
of 0.9. For distillation, we select the best architectures from every bin, determined by pretraining for
a small token budget of 2B tokens in Section[4.3] and train it with a larger token budget of 10B tokens
with the distillation loss function on Nemotron-CC. When training a sub-network with distillation
loss, we use the same model for the teacher as the one that the sub-network was extracted from (a
sub-network extracted from Pythia-6.9B uses the Pythia-6.9B as the teacher model as well).

Results and Discussion. Figure [3 illustrates the effect of distillation. We find that distillation
consistently improves perplexity in both bin-1 and bin-2, with the model in bin-2. We also report
the performance of distilled models on downstream tasks in Table [[4]in Appendix

4.5 EVALUATION ON DOWNSTREAM TASKS

Evaluation Setup. We evaluate our pretrained and distilled sub-networks on different common-
sense and question-answering type tasks. Specifically, we evaluate 0-shot performance on copa,
lambada_openai, and winogrande, 5-shot performance on MMLU, and 10-shot performance on
arc-easy, arc_challenge, piga, and hellaswag. We report accuracy for copa, lambada_openai,
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Validation Perplexity Across Different Parameter Ranges (Pythia-6.9B as Source Model)
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Figure 5: Distillation: Comparison of validation perplexity for models trained with distillation loss
v/s cross entropy loss. All sub-networks are extracted from Pythia-6.9B as a base model and trained
for 10B tokens

Base Model Initialization #Params COPA Lambada-OpenAl Winogrande MMLU PIQA ARC-challenge ARC-easy HellaSwag Avg-acc PPL-Nemotron-cc

Pythia-6.9B Random Init 389M  59.00 18.51 51.14 2643  63.87 24.74 46.80 31.28 37.77 26.20
Supernet Init 389M  61.00 24.02 51.54 2635 65.34 24.57 51.38 33.11 39.33 23.66
Pythia-12B Random Init 407M  57.00 14.87 50.67 2633 61.64 23.97 4247 29.76 36.06 29.57
Supernet Init 407M  63.00 18.37 52.09 2599  62.73 23.55 46.42 30.91 37.50 27.33
Pythia-410M* Random Init 405M  62.00 19.54 50.67 25.54  64.14 24.57 47.35 3270 38.42 2529
Pythia-6.9B Random Init 1.04B  64.00 23.36 51.54 26.62  65.78 27.13 51.80 36.83 40.22 21.84
Supernet Init 1.04B  66.00 38.52 5146 2609  69.26 30.12 63.51 45.20 43.74 17.77
Pythia-12B Random Init 1.04B  63.00 23.33 50.51 26.14  66.76 26.36 53.74 36.65 39.32 21.21
Supernet Init 1.04B  64.00 27.56 51.77 26.19  66.54 26.45 53.96 36.42 40.88 20.77
Pythia-1B* Random Init 1.01B  64.00 25.67 5241 2520 66.00 28.24 56.14 38.23 41.06 20.11
Pythia-6.9B Random Init 2.91B 61.00 26.49 52.10 2639  67.74 28.33 57.83 41.12 41.31 13.75
Supernet Init 291B  66.00 50.16 5691 2645  72.69 33.87 67.09 53.40 47.41 10.99
Pythia-12B Random Init 291B  67.00 27.32 50.36 2525 67.85 27.65 57.79 40.58 41.73 13.26
Supernet Init 2.91B  69.00 41.76 51.46 2620  70.57 28.67 61.99 45.98 44.47 11.71
Pythia-2.8B*  Random Init 2.78B  68.00 24.51 53.03 2574  67.68 25.34 46.67 39.11 40.55 14.54

Table 2: Evaluation of sub-networks extracted from Pythia-6.9B and Pythia-12B after pretraining
on 10B tokens. A Pythia model of comparable size is also trained on the same budget with random
initialization to serve as a baseline (indicated with x). Reported numbers are metrics as defined in

Section{.3](%).

winogrande, MMLU and length normalized accuracy for piga, arc_easy, arc_challenge and
hellaswag. We use lm-eval-harnessﬂ to perform evaluation on downstream tasks.

Results Discussion. Table [2]reports average downstream accuracies for our best sub-networks in
each parameter bin pretrained with a 10B-token budget. For comparison, we also include Pythia-
410M, 1B, and 2.8B models trained with the same budget. Across all bins, Supernet-init outper-
forms both Random-init (for the same extracted architecture) and the original Pythia architectures
(bin centers). Furthermore, sub-networks extracted from the smaller base model (Pythia-6.9B) consis-
tently outperform those from the larger base (Pythia-12B). We present results of our distilled models
on downstream tasks in Table[T4

5 ABLATIONS

In this section, we conduct ablation studies to examine the effect of four key factors in our framework:
(a) the choice of search space, (b) the loss function used for distillation, (c) the performance metric
employed during search.

Granularity of Search Spaces. Figure[f]illustrates the effect of varying search space granularity.
We find that different bins benefit from distinct choices: for bin-1, fine-grained uniform search space
is optimal; for bin-2, coarse layer-wise performs best; and for bin-3, coarse uniform yields the
strongest results.

Full logits vs. top- logits. In our distillation experiments in Section ] following (Team et al|
2025)), we use top-k logit based distillation. Here, we ablate this choice for the distillation loss by

8https://github.com/Eleuther Al/lm-evaluation-harness
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Validation Perplexity Across Different Parameter Ranges (Pythia-6.9B as Source Model)
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Figure 6: Validation perplexity of the best models from each search space found via evolutionary
search. All models are initialized with Pythia-6.9B weights and trained for 2 billion tokens. Within
each bin, the models’ parameter counts fall within a +5% range of that bin’s target size.
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Figure 8: Comparison of search guided by impor-
tance metrics and perplexity. We report results
in the best search space for each bin.

Figure 7: Full vs. top-k logit distillation.

comparing supervision from the full teacher distribution against a truncated variant using only the
top-k logits (Figure [7]). This isolates how much of the teacher’s probability mass is required for
effective transfer. We find that, in general, distilling from the full-logit distribution yields a lower
perplexity.

Metric for Searching sub-networks. Finally, in Figure[8] we evaluate different search metrics.
Specifically, we compare activation-based importance scores (as in Minitron (Muralidharan et al.|
[2024)) and weight-magnitude scores against directly optimizing for perplexity
in our setup. We define the details of the importance score computation procedure, i.e. the metric
guiding the search, in Appendix[D} All searches are run with for 100 epochs. We find that perplexity-
based search consistently achieves lower perplexity than proxy metrics, suggesting that importance
and magnitude scores are less reliable indicators of sub-network quality.

6 CONCLUSION

We present a principled framework for initializing small language models (SLMs) by extracting
sub-networks from a larger pre-trained teacher network. Our experiments demonstrate that this
approach accelerates the overall pre-training process of SLMs by up to 9.2x compared to baseline
SLM models of similar size. To select the sub-network, we employ a constrained evolutionary search
strategy that identifies optimal candidates based on validation performance. Further, we analyze four
different search spaces of increasing granularity and demonstrate that for the larger variants of SLMs,
the least granular search space (coarse uniform) yields the best model. The smaller variants, however,
benefit from more granular search spaces such as fine-grained uniform and coarse layer-wise.

For future work, we aim to derive scaling laws to better understand the impact of improved initializa-
tion strategies as model and data scales increase. Additionally, we plan to investigate the effect of
teacher model choice on student performance, particularly in domain-specific settings. For example,
it remains an open question whether a multilingual teacher provides advantages over an English-only
teacher when training a monolingual student model.

10
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A RELATED WORK

Model Pruning. Pruning is a core approach for compressing neural networks by removing redun-
dant parameters while preserving accuracy. Early work on unstructured magnitude pruning
let all, [1990; Han et all, 2016) achieved high sparsity with minimal accuracy loss, but offered limited
inference benefits on modern hardware. This motivated structured and semi-structured pruning
methods that remove neurons, filters, or enforce hardware-friendly sparsity patterns
[Zhou et al} 2021} Ma et all, 2023}, [Frantar and Alistarhl [2023). The Lottery Ticket Hypothesis
(LTH) (Frankle and Carbinl [2018) provided a compelling rationale, showing that large networks
contain sub-networks (“winning tickets”) that can train in isolation to match full-model performance.
Subsequent work examined their generalization across architectures and optimizers (Morcos et al.
2019} [Desai et all}, 2019), their stabilization and theoretical underpinnings (Frankle et al., [2019;
Malach et al., [2020), and their presence in large pretrained language models (Chen et al., |[2020;
Prasanna et al., [2020; [Liang et al.l [2021)). These advances highlight pruning as a powerful tool for
efficient deployment in resource-constrained settings. Central to both pruning and ticket discovery
is the design of importance scores—criteria based on weight magnitude, gradients, or activations
(Molchanov et al.} 2019; [Frantar and Alistarh}, 2023}, [An et al.| 2024) that estimate which components
can be removed with minimal loss. However, efficiently scaling such methods to billion-parameter
LMs remains a major challenge. Our work addresses this gap by introducing a framework for
discovering high-quality sub-networks that is efficient, scalable, and easily parallelizable.

Comparison with Sheared LLaMA and DRPruning Sheared LLaMA frames pruning
as a constrained optimization problem, updating weights and masks together via repeated pretraining-
like steps. It also uses dynamic batch loading, which blurs the distinction between pruning benefits
and training effects, while adding considerable computational overhead. Similarly, DRPruning
learns structured masks under the full pretraining objective and further introduces
distributionally robust data reweighting, conflating pruning benefits with data-selection effects. In
contrast, whittle identifies strong SLM initializations within a target parameter range using only
preplexity estimates from a forward-pass, avoiding mask/weight optimization, additional training
heuristics, and data reweighting. This yields a simple approach that fits cleanly into standard
next-token-prediction pretraining pipelines.

Knowledge Distillation (KD). KD compresses large language models by transferring knowledge
from a teacher to a smaller student, aiming to preserve accuracy while reducing compute (Hinton|
et all 2013} [Xu et al} 2024)). For autoregressive LMs, this is typically done in two ways. Logit-based
distillation trains the student to match the teacher’s output distribution via KL-divergence, often with
top-k or top-p truncation to mitigate noise from heavy-tailed distributions (Hinton et al.} 2015}, [Kim|
and Rush| 2016}, [Sanh et al.l, 2019}, [Team et al, 2024). Representation-based distillation instead
aligns internal dynamics, training the student to mimic hidden states or their projections using MSE
losses (Romero et all,[2015} Jiao et al.},[2020; [Wang et al},2020b). These complementary strategies
highlight KD’s versatility in shaping both outputs and internal representations. Beyond compression,
KD smooths decision boundaries and provides richer training signals, often yielding faster and more
stable convergence. Building on these insights, we demonstrate the effectiveness of KD as a key
ingredient for efficient SLM pretraining.

Neural Architecture Search (NAS). NAS (White et al, 2023} [Elsken et al., 2019b) automates the
exploration of large architecture spaces. Existing approaches include black-box optimization (Zoph

and Le|, 2017} [White et al.l 2021} [Real et al, 2019}, [Shen et al., 2023}, [Zhou et al, 2019} [Schrodi
et al., 2023), which repeatedly train and evaluate candidates, and gradient-based methods (Liu et al.,

2019; Dong and Yang, [2019; (Chen et al, 2021} Zela et al} 2020, which perform differentiable search
over a weight-sharing supernetwork. Extensions incorporate hardware-awareness and multi-objective
criteria (Sukthanker et al. Elsken et al., [2019a; [Lu et al., 2019} [Hsu et al.l 2018; [Lu et al.|
[2020; [Sukthanker et al., 2024} [Lee et al., 2021} |Li et al.| 2021} [Klein et al.} [2024)), jointly optimizing
accuracy, efficiency, and deployment constraints. A major limitation, however, is the expensive
supernet pretraining required by most methods (Cai et al.| 2020} [Sukthanker et al.| 2024} [Wang et al )
[2020a), which is prohibitive at the scale of LLMs. Our approach sidesteps this by leveraging open-
source pretrained LLMs as the basis for search, eliminating supernet pretraining. Moreover, unlike
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Validation Perplexity Across Different Parameter Ranges (Pythia-6.9B as Source Model)
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Figure 9: Validation perplexity across different parameter ranges (offset with search cost).

traditional NAS that seeks architectures for direct deployment, we focus on discovering sub-networks
that provide strong initializations for efficient pretraining.

SLM Pretraining in Practice. Recent open-source releases often provide families of models
ranging from compact Small Language Models (SLMs) to much larger variants. SLMs are especially
important for edge deployment, where efficiency and memory are critical. A straightforward way
to obtain them is to train models across multiple scales (Biderman et al., [2023)), but this is compu-
tationally costly. To reduce training demands, recent work instead trains a large base model and
extracts smaller ones via pruning and distillation (Muralidharan et al., 2024; Meta AT, 2024}
[2025)), or relies solely on distillation from a larger teacher, as in Gemma-3 (Team et al., [2025).

Despite this progress, there remains no principled framework for compute-efficient SLM pretraining.
Our work addresses this gap through a systematic study of sub-network extraction and initialization
strategies, combined with pipeline designs and loss functions for training high-performing SLMs.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 HYPERPARAMETER CONFIGURATIONS OF EXPERIMENTS

In Tables[]-[8] we present the hyperparameter settings for all our experiments.

B.2 COMPUTATIONAL COST OF THE EVOLUTIONARY SEARCH

In this section, we provide an overview of the cost overhead introduced by evolutionary search. In
each bin, for every search space, we sample and evaluate a total of 5,050 subnetworks during the
evolutionary search. For each candidate model, we computed the perplexity on 1,000 sequences of
length 512. We approximate the average FLOP of the models in bins 1, 2 and 3 as the FLOPs of
Pythia-410M, Pythia-1B, and Pythia-2.8B, since these models serve as the center of the bins. The
total computational cost of the search for each search space is reported in Table[9] For comparison,
the cost of pretraining the best model found in each bin on 10B tokens is as presented in Table[I0} As
Tables[P]and[T0]indicate, the search phase consumes only a small fraction of the overall pretraining
budget.

Revised Cost Savings. We include the cost of the evolutionary search when computing the total
cost savings achieved by our method. The updated FLOP-savings factors are reported below in Table

Additionally, we include the FLOP-savings factor considering only the pretraining budget in
Table

Furthermore, in Figure 0} we present the validation perplexity across different parameter ranges,

taking the search cost into account.

C ADDITIONAL METHODOLOGICAL DETAILS
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Table 3: Hyperparameters used for the Best Performing Subnets per Bin (Parameter Range) from the
Pythia-12B Model

Search Space Parameter range Hyperparameter Type Value
Model Name pythia-12b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Evolutionary Search Bin 1 gptlrinz.er fz Mil} Learning Rate 3x107°
Coarse 385M-426M egularization  Weight Decay 0.01
AdamW 1, 52 0.9,0.95
Gradient Clipping Norm 1.0
Total Training Tokens 50B
Global Batch Size 1056
Training & Micro Batch Size 8
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Model Name pythia-12b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Evolutionary Search Bin 2 gptlrinz.er fz Mil} Learning Rate 3x107°
Coarse Layerwise ~ 961M-1.06B cgularization  Weight Decay 0.01
AdamW 1, 32 0.9,0.95
Gradient Clipping Norm 1.0
Total Training Tokens 50B
Global Batch Size 1056
Training & Micro Batch Size 8
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Model Name pythia-12b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 1.6 x 107*
Evolutionary Search Bin 3 gptlrinz.er fz Min Learning Rate 1.6x107°
Coarse 2.64B-2.91B ceularization - Weight Decay 0.01
AdamW f1, B2 0.9,0.95
Gradient Clipping Norm 1.0
Total Training Tokens 50B
Global Batch Size 1056
Training & Micro Batch Size 16
Batching LR Warmup Steps 238
Max Sequence Length 2048
Seed 42
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Table 4: Hyperparameters used for the Best Performing Subnets per Bin (Parameter Range) from the
Pythia-6.9B Model

Search Space Parameter range Hyperparameter Type Value
Model Name pythia-6.9b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Evolutionary Search Bin 1 gptlrinz.er fz Mil} Learning Rate 3x107°
Finegrained 385M—426M cgulanzation  Weight Decay 0.01
AdamW 1, 52 0.9,0.95
Gradient Clipping Norm 1.0
Total Training Tokens 50B
Global Batch Size 1056
Training & Micro Batch Size 6
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Model Name pythia-6.9b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Evolutionary Search Bin 2 gptlrinz.er fz Mil} Learning Rate 3x107°
Coarse Layerwise ~ 961M-1.06B cgularization  Weight Decay 0.01
AdamW 1, 32 0.9,0.95
Gradient Clipping Norm 1.0
Total Training Tokens 50B
Global Batch Size 1056
Training & Micro Batch Size 4
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Model Name pythia-6.9b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 1.6 x 107*
Evolutionary Search Bin 3 gptlrinz.er fz Min Learning Rate 1.6x107°
Coarse 2.64B-2.91B ceularization - Weight Decay 0.01
AdamW f1, B2 0.9,0.95
Gradient Clipping Norm 1.0
Total Training Tokens 50B
Global Batch Size 1056
Training & Micro Batch Size 16
Batching LR Warmup Steps 238
Max Sequence Length 2048
Seed 42
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Table 5: Hyperparameters used for Distillation Experiments on the Best Performing Subnets per Bin
(Parameter Range) from the Pythia-12B Model

Search Space Parameter range Hyperparameter Type Value
Teacher Model pythia-12b
Model & Data  Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Optimizer &  Mip Learning Rate 3x107°
Regularization Weight Decay 0.01
. . AdamW 1, B2 0.9,0.95
Evolutionary Search Bin 1 ; on
Conrse 385M_426M Gradient Clipping Norm 1.0
«a 0.2
S B 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 10B
Global Batch Size 1056
Training & Micro Batch Size 2
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Teacher Model pythia-12b
Model & Data Precision bf16-true
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Optimizer &  Min Learning Rate 3x107°
Regularization Weight Decay 0.01
. . AdamW 1, B2 0.9,0.95
Evolutionary Search Bin 2 : i3y
Coarse Layerwise ~ 961M-1.06B Gradient Clipping Norm 1.0
« 0.2
S 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 10B
Global Batch Size 1056
Training & Micro Batch Size 8
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Teacher Model pythia-12b
Model & Data Precision bf16-true
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 1.6 x 107*
Optimizer & Mip Learning Rate 1.6 x 1075
Regularization Weight Decay 0.01
. . AdamW 1, B2 0.9,0.95
Evolutionary Search Bin 3 ; 3
Conrae 7 64B-2.91B Gradient Clipping Norm 1.0
« 0.2
Co B 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 10B
Global Batch Size 1056
Training & Micro Batch Size 4
Batching LR Warmup Steps 238
Max Sequence Length 2048
Seed 42
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Table 6: Hyperparameters used for Distillation Experiments on the Best Performing Subnets per Bin
(Parameter Range) from the Pythia-6.9B Model

Search Space Parameter range Hyperparameter Type Value
Teacher Model pythia-6.9b
Model & Data  Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Optimizer &  Mip Learning Rate 3x107°
Regularization  wejight Decay 0.01
. . AdamW 1, B2 0.9,0.95
Evolutionary Search Bin 1 : lippi 1
Finegrained 385M—426M Gradient Clipping Norm 0
« 0.2
T 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 10B
Global Batch Size 1056
Training & Micro Batch Size 6
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Teacher Model pythia-6.9b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Optimizer &  Min Learning Rate 3x107°
Regularization Weight Decay 0.01
. . AdamW f1, B2 0.9,0.95
Evolutionary Search Bin 2 : e
Coarse Layerwise ~ 961M-1.06B Gradient Clipping Norm 1.0
« 0.2
s B 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 10B
Global Batch Size 1056
Training & Micro Batch Size 4
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Teacher Model pythia-6.9b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 1.6 x 1074
Optimizer & Mip Learning Rate 1.6 x 107°
Regularization Weight Decay 0.01
. . AdamW ,317 ,32 0.97 0.95
Evolutionary Search Bin 3 ; e
Conrae 2 64B-2.91B Gradient Clipping Norm 1.0
« 0.2
S B 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 10B
Global Batch Size 1056
Training & Micro Batch Size 4
Batching LR Warmup Steps 238
Max Sequence Length 2048
Seed 42
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Table 7: Hyperparameters used for Distillation Ablation Experiments on a Subnet from the Pythia-
6.9B Model using varying Teacher Model Sizes

Search Space Parameter range Hyperparameter Type Value
Teacher Model pythia-1b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x107*
Optlmlz_er & Min Learning Rate 3x107°
Regularization Weight Decay 0.01
. . AdamW 1, B2 0.9,0.95
Evolutionary Search Bin 1 : lippi 1
Finegrained  385M—426M Gradient Clipping Norm 0
« 0.2
S 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 2B
Global Batch Size 1056
Training & Micro Batch Size 6
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Teacher Model pythia-6.9b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x 1074
Optimizer &  \Mip Learning Rate 3x107°
Regularization Weight Decay 0.01
Evolutionary Search Bin 1 AdamW f1, 3 0.9,0.95
Finegrained 385M_426M Gradient Clipping Norm 1.0
« 0.2
S Ié; 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 2B
Global Batch Size 1056
Training & Micro Batch Size 6
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
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Table 8: Hyperparameters used for Distillation Ablation Experiments on a Subnet from the Pythia-

6.9B Model — Top-K vs. Full Logits

Search Space Parameter range Hyperparameter Type Value
Teacher Model pythia-6.9b
Model & Data  Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
Learning Rate 3x107*
Optimizer &  Min Learning Rate 3x107°
Regularization Weight Decay 0.01
) ) AdamW 1, B2 0.9,0.95
Evolutionary Search Bin 1 Gradient Clipping Norm 1.0
Finegrained 385M-426M
«a 0.2
P B 0.8
Distillation Temperature 0.9
Logits Top-1024
Total Training Tokens 2B
Global Batch Size 1056
Training & Micro Batch Size 6
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
Teacher Model pythia-6.9b
Model & Data Precision bf16-mixed
Dataset Nemotron-CC
Optimizer AdamW
o Learning Rate 3x 107"
Optimizer &  Min Learning Rate 3x107°
Regularization Weight Decay 0.01
. ) AdamW 4, B2 0.9,0.95
Evolutionary Search  Bin 1 Gradient Clipping Norm 1.0
Finegrained 385M—-426M
« 0.2
U 0.8
Distillation Temperature 0.9
Logits Full
Total Training Tokens 2B
Global Batch Size 1056
Training & Micro Batch Size 6
Batching LR Warmup Steps 0
Max Sequence Length 2048
Seed 42
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Bin Search Cost (exaFLOP)

1 2.3
2 54
3 15.4

Table 9: Cost of Evolutionary Search for different bins

Bin Pretraining Cost (exaFLOP)
1 20.9
2 63.3
3 176.6

Table 10: Cost of pretraining the best models in different bins

Bin FLOP Savings Factor

1 1.71x
2 1.75x%
3 5.16x%

Table 11: FLOP-saving factors for all bins compared to pretraining the corresponding Pythia architec-
tures.

Bin FLOP Savings Factor (excluding search cost)

1 2.0x
2 2.07 x
3 9.32x

Table 12: FLOP-saving factors for all bins compared to pretraining the corresponding Pythia architec-
tures (without considering the search cost).

C.1 ATTENTION MASKING

The attention mechanism used in transformer blocks naturally supports sub-network extraction. In
practice, this means that an attention mechanism can be masked to yield a smaller, distinct type
of attention. Figure[IT]provides an overview of the main variants—multi-head attention (MHA),
multi-query attention (MQA), and grouped-query attention (GQA). Since GQA serves as a super-
class of these mechanisms, it can be transformed into either MHA or MQA. An illustration of this
transformation is shown in Figure[T2]

C.2 EVOLUTIONARY SEARCH ALGORITHM

We present the details of our evolutionary search algorithm in Algorithm I}

D ADDITIONAL RESULTS

Below, we present additional experimental results. Figure [I3] shows the effect of using different
teachers for knowledge distillation, Figure [I4] shows the evolutionary search trajectory for different
parameter bins, with the best perplexity marked in red. Table [T4] presents the result of distilled
models on downstream tasks. Table[I7] provides the results on an extended set of common sense
reasoning based downstream tasks.

Figures[[SHI7]summarize the training behavior of the best models across different settings. The results
highlight how architectures extracted from different search spaces (Figure[T3), weight initialization
strategies (Figure[T6), and the use of distillation (Figure[I7) affect convergence and final performance.
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Whittle: A Library for SLM Extraction and Pretraining
LLM Zoo Whittle

LitGPT

8 O|=»%

WHITTLE
) ey
oot S )
i

set_sub_network ()

search()

convert_subnet_to_litgpt_model ()

pretrain_from_checkpoint ()

Transformer

distill_from_checkpoint ()

compute_importance_score()

Figure 10: An overview of the Whittle library.
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Figure 11: An illustration of the different types of attention mechanisms. In multi-head attention
(MHA), each query is paired with its own key and value; in multi-query attention (MQA), multiple
queries share a single key—value pair; and in grouped-query attention (GQA), multiple key—value
pairs are used, with each pair serving more than one query.
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Grouped-query attention
(GQA) with fewer query heads

Figure 12: An example of how grouped-query attention (GQA) can be masked to emulate other forms
of attention, such as multi-head or multi-query attention. The masked heads are shown in gray. Note
that GQA can also be reduced to fewer query heads while preserving the same number of groups.
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Figure 15: Training curves of the best models from each search space extracted from Pythia-6.9b
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Figure 16: Training curves of the best models found in each bin, initialized with supernet weights as
well as random weights. A Pythia model of comparable size is also trained with random initialization
in each bin as a baseline. The models are trained with 10 billion tokens.
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Base Model _Initialization #Params COPA OpenBookQA Lambada-OpenAl Winogrande Social QA MMLU-cont. MMLU CommonsenseQA PIQA ARC-challenge ARC-easy HellaSwag BoolQ Avg-acc PPL-Nemotron-cc
Pythia-6.9B  Random Init 389M  59.00 29.20 1851 5114 36.59 2582 2643 19.41 63.87 2474 46.80 3128 5817 3177 2620
Supernet Init 389M  61.00 30.00 24.02 51.54 38.23 2621 26.35 18.84 65.34 2457 5138 3311 6073 39.33 23.66
Pythia-12B Random Init 407TM  57.00 27.80 14.87 50.67 3593 2532 26.33 20.48 61.64 2397 4247 2976 5250 3606 29.57
Supernet Init 407TM  63.00 27.40 18.37 52.09 37.10 2590 25.99 2121 6273 23.55 4642 3091 5278 37.50 27.33
Pythia-410M Random Init 405M 6200 29.60 19.54 50.67 36.49 25.72 25.54 20.15 64.14 24.57 47.35 3270 6101 3842 25.29
Pythia-6.9B  Random Init LO4B  64.00 29.20 2336 5154 38.59 26.63 26,62 21.05 65.78 27.13 51.80 3683 6036 4022 21.84
Supernet Init 1048 66.00 34.60 38.52 51.46 41.04 28.98 26,09 19.81 69.26 302 63.51 4520 5398 4374 17.77
Pythia-12B  Random Init 104B  63.00 2840 2333 50.51 37.92 27.05 26.14 19.57 66.76 26.36 53.74 36.65 5177 39.32 2121
Supernet Init 1048 64.00 31.20 2756 51.77 3848 27.36 26.19 19.82 66.54 2645 53.96 3642 6165 4088 20.77
Pythia-1B Random Init 101B 64.00 30.20 25.67 5241 38.95 2693 25.20 20.97 66.00 28.24 56.14 3823 60.83 4106 20.11
Pythia-6.9B  Random Init 291B 61.00 30.60 2649 52.10 39.00 27.60 26.39 19.82 67.74 28.33 57.83 4112 5905 4131 13.75
Supernet Init 291B 66.00 34.60 50.16 5691 4171 30.54 26.45 20.80 72.69 33.87 67.09 5340 6205 4741 10.99
Pythia-12B  Random Init 291B 67.00 3180 21.32 50.36 38.18 27.40 255 2121 67.85 27.65 51.79 4058 6015 4173 13.26
Supernet Init 291B  69.00 33.20 41.76 51.46 40.79 29.29 26.20 2121 70.57 28.67 61.99 4598 S804 4447 1171
Pythia-2.8B  Random Init 278B  68.00 304 2451 53.03 39.50 27.18 25.74 20.47 67.68 2534 46.67 3901 5954 4055 14.54

Table 13: Evaluation of Pythia models across multiple benchmarks. Reported numbers are metrics as
defined in Section .5](%).

Initialization #Params COPA  OpenBookQA Lambada-OpenAl  Winogrande Social QA MMLU-cont. MMLU CommonsenseQA PIQA  ARC-challenge ARC-easy HellaSwag BoolQ Avg-acc PPL-Nemotron-cc
from-supernet 389M  61.00 30.00 24.02 51.54 38.23 26.21 26.35 18.84 65.34 24.57 51.38 33.11 60.73  39.33 23.66
from-supernet-distill  389M  66.00 30.60 23.95 49.57 3741 2631 25.62 19.57 65.56 2534 49.66 3392 5431 39.06 18.59
from-supernet 1.04B  66.00 34.60 38.52 51.46 41.04 28.98 26.09 19.81 69.26 30.12 63.51 4520 53.98 4374 17.77
from-supernet-distill  1.04B  66.00 33.00 37.92 5422 40.17 29.06 2594 21.46 70.02 2833 62.92 4757 5306 4382 1420

Table 14: Evaluation of sub-networks extracted from Pythia-6.9b for bin-0 and bin-1. Reported
numbers are metrics as defined in Section [#.5](%). We compare training with the cross entropy loss (
Jfrom-supernet) to training with knowledge distillation (from-supernet-distill) loss.

E DETAILS ON IMPORTANCE SCORING

Importance scoring aims at defining scores for each transformer dimension, neuron or architecture
parameter based on activation or weight magnitude. In our case, for a sub-network, the corresponding
importance score serves as the proxy to sub-network quality or performance metrics like perplexity.
The higher the importance score of a sub-network, the better its quality.

We adopt the dimension-wise importance scoring proposed by [Muralidharan et al|(2024)), which uses
the activation of a component as proxy for its importance. Given a batch as input X € RBXT*dmoder
after applying the embedding layer W™ we compute the following scores for each component,
where B corresponds to the batch dimension and 7" corresponds to the sequence length dimension,
and abs corresponds to the absolute value function:

» For aneuron ¢ € {1,...,U} in a FFN layer /, we compute its importance by: Fg}m =

}/B S5 (Y13 XWH[:,i]) where W[, 4] corresponds to all weights of neuron i in layer

* Similarly for each neuron i € {1, ..., dpoder } in the embedding layer we compute F| e(I;Ll)b =

B> 5 (Y13 5 (Norm(X[:,:,4]))). Specifically we perform mean absolute aggregation
over output of every (Layer or RMS) Norm layer as

* For causal attention layers we compute the importance of head & € {1, ..., H} of heads as :

FI\(/I};I)A = /BZ (VTZ HAttn(Qh,Kh, Vi) HQ)
B T

» For a block I € {l1,..,L} consisting of a MHA and a FFN layer with RMS
O]

or layer normalization in between, we compute the score: Fy ., = 1 —
xI'x . .

1 1 _ X X

/B> g ( /T (I\Xz % H2> ) where X is the input to block [ and X the output.

Given, the score for each unit (layer, head or neuron), and a subnetwork configuration (for example:
e =064,d=128,1 = 2, h = 4), we compute the importance score corresponding the sub-network, by
simply aggregating the normalized importance scores corresponding to the selected neurons, layers
or heads. Similarly, for the weight space we define neuron, layer and head level importance scores
by simply focussing on the magnitude of weight or neurons corresponding to every transformer

dimension (Han et al| [2015]).
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Validation Loss

Performance of pretraining versus distillation
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Figure 17: Training curves of the best models in bins 1 and 2, obtained through distillation and
pretraining. In both cases, the models are initialized with weights from the supernet (Pythia-6.9B).
For comparison, a Pythia model of similar size is trained from random initialization in both bins,
serving as a baseline. All models are trained on 10 billion tokens.

Algorithm 1 Bin-Constrained Evolutionary Search

1:

—_—

T2 Y R e

,_.
»

—_
w

—
®

—_
W

—_
~N

Input: arch. space S; bins {[Ly, Ub]}le; population NV; elites k; epochs T'; random samples r;
offspring \; mutation prob. m; crossover prob. ¢
Helpers: Params(s) = param. count; ppl(s) = perplexity
CONSTRAIN(z, [L, U]): resample/repair until Params(z) € [L, U]
forb=1to B do

Sy {s € S| Ly < Params(s) < Up}

Init population Péo) ~ &

fort =0to7T — 1do

Evaluate ppl(s) for s € P,St)

Select elites Eét) = arg min” ppl(s)
Mutants Oy, < CONSTRAIN(Mut(s), [Ly, Up]), s ~ &£, size A (with prob. m)

Crossovers Ogposs < CONSTRAIN(Cross(s, s'), [Lp, Up)), 8,8 ~ é'lft), size A (with prob.
c)
Randoms R,(f) ~ 8y, size r
Next pop. PISHI) — argmin®¥ ppl(s) over Eét) U Omut U Ocross U R,(f)
end for
" .
Best s} < arg min pcr) ppl(s)

: end for
: Output: {s7}2 |

F

WHITTLE APIs

An overview of the Whittle library is shown in Figure[T0] In addition to the core functionalities of
our framework described in Section[3} we provide an API to compute various importance metrics
across different sub-network dimensions.
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Listing 1: API for pretraining.

def pretrain(
model_name: str, # Name of the model to load. E.g., EleutherAI/pythia-410m
model_config: Optional[Config] = None, # Model configuration, overrides model_name
config_path : Optional[str] = None, # Path to yaml file with model configuration,
overrides model_config
out_dir: Path = Path("out/pretrain”), # Path to save checkpoints to
precision: Literal["bf16-true”, "bfl16-mixed”, "32-true”, None] = None,
resume: Union[bool, Literal["auto”], Path] = False, # If true, resumes from the
latest available checkpoint
data: Optional[DataModule] = None, # Dataset to use to train
train: TrainArgs = TrainArgs( # Training hyperparameters
save_interval=1000,
log_interval=1,
global_batch_size=512,
micro_batch_size=4,
max_tokens=int(3e12), # 3 trillion
max_norm=1.0,
min_lr=4e-5,
lr_warmup_steps=2000,
tie_embeddings=False,

)’

eval: EvalArgs = EvalArgs(interval=1000, max_iters=100), # Evaluation hyper-
parameters

optimizer: Union[str, Dict] = "AdamW”, # Optimizer and its configuration

devices: Union[int, str] = "auto”, # CUDA or CPU
num_nodes: int = 1, # Number of nodes for distributed training
tokenizer_dir: Optional[Path] = None, # Path to tokenizer (optional)
logger_name: Literal["wandb”, "tensorboard”, "csv", "mlflow"] = "tensorboard”, #
Logger to use
seed: int = 42, # Seed for reproducibility
init_from: str = "random”, # Path to the checkpoint to load, or "random” to
randomly initialize
use_flex: bool = False, # Set to True if the sub-network has layer-wise
configuration

) > LitGPT

Listing 2: API for supernetwork search.

def search(

supernet_name: str ="EleutherAl/pythia-12b", # litgpt model to extract SLM from
algorithm: str = "evolutionary_search”, # name of search algorithm
num_bins: int = 4, # number of parameter bins
param_upper_bounds: list, # list of upper bounds for bins
param_lower_bounds: list, # list of lower bounds for bins
number_of_epochs: int, # number of epochs for search

)-> list[dict] # returns list of subnets

compute_importance_score(). The compute_importance_score() function (Listing [6), Ap-
pendix [F) assigns an importance score to a given sub-network, where higher scores indicate higher
estimated quality. Importance scores are computed independently for each architectural component
(e.g., layers, heads, neurons), normalized across available choices using a softmax, and aggregated
by summation. This computation is performed once at the beginning of the search procedure, after
which evaluating the importance of candidate sub-networks becomes inexpensive compared to full
metrics such as perplexity.

Below we present the details of our API design for setting subnetwork [] pretrain[I] convert to litgpt
[l distillation 5] [2] search and importance metric computation [6]
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Listing 3: API for converting a subnet into a LitGPT model.

def convert_subnet_to_litgpt_model(
supernet_name: str = "EleutherAl/pythia-12b", # litgpt model to extract SLM from
subnet_config: dict = { # subnet configuration
sub_network_n_embd: 4,
sub_network_intermediate_size: 16,
sub_network_num_heads: 4,
sub_network_n_layers: 2,
sub_network_head_size: 4,

}
) -> LitGPT # returns LitGPT model

Listing 4: API for activating a sub-network

def set_sub_network(
sub_network_n_embd: int = 4, # Embedding dim
sub_network_intermediate_size: int | list[int] = 42 # MLP size
sub_network_num_heads: int | list[int] = 4, # No. of Attention heads
sub_network_n_layers: int = 4, # No. of Layers
sub_network_query_groups: int | list[int] = 2, # No. of Query groups
sub_network_head_size: int | list[int] = 4, # Head size
sampled_intermediate_indices: list[int] | list[list] = [4,8], # Sampled MLP neurons
sampled_head_indices: list[int] | list[list] = [2,3], # Sampled heads
sampled_query_group_indices: list[int] | list[list] = [@,1], # Sampled query groups
sampled_head_size_indices: list[int] | list[list] = [2,3,8,12], # Sampled head sizes
sampled_layer_indices: list[int] = [2,3,5,6], # Sampled layers
sampled_embd_indices: list[int] = [0,1,2,3], # Sampled embedding neurons

G STUDYING DISTILLATION HYPERPARAMETERS

We define our distillation loss function below.

L=aLlce(y,s)+ B Z KL(softmax<Z§(j)) | softmax(z%f) )) . 5)

i€

This loss has four tunable hyperparameters:

1. «a: the weight of the cross-entropy loss, which minimizes the entropy with respect to the
ground-truth logits.

2. [3: the weight of the KL-divergence term between the teacher and student logits.

3. T': the temperature parameter, which controls the smoothing of the teacher and student logit
distributions.

4. C: the number of top logits (Top-X) used when computing the KL-divergence. A smaller /C
corresponds to a simpler distribution, while a larger /C yields a more informative distribution.
The maximum /C equals the full number of teacher logits.

We now perform a grid-sweep over different choices of «, 3, 7" and K. We define the set of choices
for aas [0.2, 0.8, 0], the corresponding choices for 3, which corresponds to 1 — av as [0.8, 0.2, 1], the
choices for temperature T as [0.8, 0.9] and the choices for K as [1024, 2048, num_teacher_logits].
Figures present the perplexity curves aggregated for different hyperparameter values. In
general, we observe that using only the distillation loss, i.e., setting o = 0, is not recommended.
Furthermore, a higher temperature and using the full logit distribution (Top-K = 0) perform best on
average. In Table[I3] we also present the importance of each of the hyperparameter choices and find
that the most important one is the value of «a, followed by K and finally the temperature 7.
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Listing 5: API for distilling a sub-network from a checkpoint.

def distill(

teacher_checkpoint_dir: Path, # Path to teacher model checkpoint directory
student_dir: Path, # Path to initialize student model directory with sub-network
configuration and (optional) model weights
data: DataModule | None = None, # Dataset for distillation
out_dir: Path = Path("out/distill”), # Path to save distilled checkpoints
precision: Literal["bf16-true”, "bf16-mixed”, "32-true”, None] = None, # Precision
for training
train: TrainArgs = TrainArgs( # Training hyperparameters

save_interval=1000,

log_interval=1,

global_batch_size=512,

micro_batch_size=4,

max_tokens=int(5e8),

max_norm=1.0,

min_lr=4e-5,

1r_warmup_steps=2000,

tie_embeddings=False,
),

distill: DistillArgs = DistillArgs( # Distillation-specific hyperparameters

method="logits"”, # Distillation method (e.g., logits, hidden states)
temperature=10, # Softening factor for teacher logits

alpha=0.3, # Weight for student loss

beta=0.7, # Weight for distillation loss

loss="forward_kld", # Loss function for distillation
weight_scheme="other"”, # Weighting scheme for combining losses
)’
eval: EvalArgs = EvalArgs(interval=50, max_iters=100, initial_validation=True), #
Evaluation config
optimizer: str | dict = "AdamW"”, # Optimizer and configuration
devices: int | str = "auto”, # CUDA or CPU
num_nodes: int = 1, # Number of nodes for distributed distillation
tokenizer_dir: Path | None = None, # Path to tokenizer (optional)
logger_name: Literal["wandb”, "tensorboard”, "csv"] = "csv", # Logger backend
seed: int = 42, # Seed for reproducibility
random_init_student: bool = False, # If True, randomly initialize student instead
of loading
) -> LitGPT # Returns a distilled LitGPT student model

Listing 6: API for computing importance scores of subnet components.

def compute_importance_score(
supernet_name: str = "EleutherAl/pythia-12b", # base supernetwork
subnet_config: dict = { # subnet configuration
sub_network_n_embd: 4,
sub_network_intermediate_size: 16,
sub_network_num_heads: 4,
sub_network_n_layers: 2,
sub_network_head_size: 4,

}7

layer_importance_type: str = "block importance”, # method for layer scoring

head_importance_type: str = "minitron”, # method for head scoring

neuron_importance_type: str = "minitron”, # method for neuron scoring
) => int: # returns importance score for a sampled sub-network
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Figure 18: Bin 1 - distillation hyperparameter importance

Bin 2 Distillation Perplexities (Mean-Aggregated)
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Figure 19: Bin 2 - distillation hyperparameter importance

Bin 3 Distillation Perplexities (Mean-Aggregated)
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Figure 20: Bin 3 - distillation hyperparameter importance
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hyperparameter importance (mean) importance (std)

e 0.986442 0.011966
K 0.005968 0.000469
T 0.005000 0.000551

Table 15: Hyperparameter Importance

H SEARCH SPACE SIZES

The sizes of the search spaces for evolutionary search, especially for fine-grained (both uniform and
layer-wise) can grow exponentially. In Table[I6] we show the maximum number of configurations
per search space for both of our base Pythia models (6.9B and 12B). For equations and information
on how the number of search space configurations is calculated, refer to Section 2.1} and Table [I] for
the configurations.

Table 16: Search Space Sizes (V) for Pythia-6.9B and Pythia-12B Architectures

Search Space Pythia-6.9B (V) Pythia-12B (V)
Coarse Uniform 4.33 x 102 9.51 x 1012
Coarse Layer-wise 1.65 x 10244 2.33 x 10%8!

Fine-grained Uniform 1014284 1017841
Fine-grained Layer-wise ~ 1.58 x 10159984 531 x 10224611

I REPRODUCIBILITY STATEMENTS

We have taken extensive measures to ensure that all results in this paper can be replicated and verified
by the community.

* Code and Repository: We release all our code and scripts to reproduce our experiments at
https://anonymous.4open.science/r/whittle-iclr-71CD/.

¢ Datasets and Pretrained Models: We evaluate on available benchmarks from Im-
eval-harness (https://github.com/EleutherAl/lm-evaluation-harness) and use the
publicly available Nemotron-CC dataset https://research.nvidia.com/labs/adlr/
Nemotron-CC/|for training. Furthermore we use the Pythia-model suite, which is open-
source https://github.com/EleutherAI/pythial

* Compute Resources: All our search experiments were run on on L40 GPU per parameter
bin and base model. All our pretraining runs for bin-@ and bin-1 were run on 8 L40 GPUs
and bin-2 was run on 4 H200 GPUs. All our distillation experiments were run on 4 H200
GPUs. We use cuda version 11.8.

» Evaluation and Artifacts: Upon acceptance of the paper we will publicly release model
checkpoints for all our experiments.

J SCALING BEHAVIOR OF SUBNETWORK EXTRACTION UNDER LARGER
BUDGETS

To assess how the cost savings from subnetwork extraction scale with substantially larger pretraining
budgets, we trained the best model from Bin 2 and Bin 3 for 100 billion tokens and compared it
against a Pythia-1B and Pythia-2.8B model, respectively, trained for the same number of tokens from
random initialization. We summarize our key findings below.

* Sustained FLOP Savings at the 100B-Token Scale. Our extracted subnetwork for Bin-3
achieves the same validation performance while requiring 1.26 x fewer FLOPs (a reduction
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Base Model Initialization #Params COPA OpenBookQA Lambada-OpenAl Winogrande Social IQA MMLU-cont. MMLU CommonsenseQA PIQA ARC-challenge ARC-easy HellaSwag BoolQ Avg-acc

Pythia-6.9B  Supernet Init 1.04B  74.00 38.40 45.604 56.98 41.81 3254 27.04 20.88 75.03 38.57 71.76 60.05 61.19 4953
Pythia-1B Random Init 1.01B 71.00 3540 36.13 5335 4191 2693 2520 19.74 73.50 3592 69.36 55.69 5275 4591
Pythia-6.9B  Supernet Init 291B  76.00 37.40 5323 58.01 42.02 3445 38.04 4341 71.69 41.38 73.57 64.01 6349 54.05
Pythia-2.8B  Random Init 2.78B  71.00 40.40 43.39 58.64 42.02 27.18 2574 21.37 76.50 4275 74.24 64.85 60.58 4923

Table 1

7: Evaluation of Pythia models trained for 100B tokens across multiple benchmarks. Reported

numbers are metrics as defined in Section f-3](%).

of approximately 21%). Although this reduction is smaller than the 5.16 x savings observed
at the 10B-token scale, it nevertheless demonstrates that subnetwork extraction continues to
provide meaningful computational benefits even when the training budget is increased by an
order of magnitude. This indicates that the method is not confined to low-budget regimes
and remains competitive at significantly larger compute settings.

* Improved Final Validation Perplexity. In addition to being more compute-efficient, the
extracted model also attains a lower final validation perplexity. The baseline Pythia-2.8B
reaches a perplexity of 11.397, while our model achieves 11.204.

* Strong Downstream Performance Advantages. The extracted model outperforms the
Pythia models trained from scratch across downstream evaluations. In particular, on MMLU-
cont, our model achieves gains of up to 12% over the strongest Pythia baseline (see Table[T7).

In Figures 2T23] we present the trajectories for validation perplexity, validation loss and train loss,
respectively, for Bin 2 and Bin 3 architectures and the Pythia-based models trained from scratch for
100B tokens.
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Figure 21: Bin 2 and Bin 3 validation perplexity for 100B token budget

Validation Loss Across Different Parameter Ranges (Pythia-6.9B as Source Model)
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Figure 22: Bin 2 and Bin 3 validation loss for 100B token budget
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1890 Training Loss Across Different Parameter Ranges (Pythia-6.9B as Source Model)
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Figure 23: Bin 2 and Bin 3 train loss for 100B token budget

36



	Introduction
	Methodology
	Search Spaces
	Evolutionary Search
	SLM Pretraining and Distillation

	Whittle: A Library for SLM Pre-training and Distillation
	Experiments
	Search Space Definitions
	Evolutionary Search for Optimal SLMs
	Pretraining of SLMs
	Distillation of SLMs
	Evaluation on Downstream Tasks

	Ablations
	Conclusion
	Related Work
	Additional Experimental Details
	Hyperparameter Configurations of Experiments
	Computational Cost of the Evolutionary Search

	Additional Methodological Details
	Attention masking
	Evolutionary Search Algorithm

	Additional Results
	Details on Importance Scoring
	Whittle APIs
	Studying Distillation Hyperparameters
	Search Space Sizes
	Reproducibility Statements
	Scaling Behavior of Subnetwork Extraction Under Larger Budgets

