
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHERE TO BEGIN: EFFICIENT PRETRAINING VIA SUB-
NETWORK SELECTION AND DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Small Language models (SLMs) offer an efficient and accessible alternative to
Large Language Models (LLMs), delivering strong performance while using far
fewer resources. We introduce a simple and effective framework for pretraining
SLMs that brings together three complementary ideas. First, we identify struc-
turally sparse sub-network initializations that consistently outperform randomly
initialized models of similar size under the same compute budget. Second, we use
evolutionary search to automatically discover high-quality sub-network initializa-
tions, providing better starting points for pretraining. Third, we apply knowledge
distillation from larger teacher models to speed up training and improve gener-
alization. Together, these components make SLM pretraining substantially more
efficient: our best model, discovered using evolutionary search and initialized with
LLM weights, matches the validation perplexity of a comparable Pythia SLM while
requiring 5.16× and 1.26× fewer floating point operations for token budgets of
10B and 100B, respectively. We release all code publicly, offering a practical and
reproducible path toward cost-efficient small language model development at scale.

1 INTRODUCTION

Large Language Models (LLMs) have recently delivered state-of-the-art performance across a wide
range of tasks. Their success is largely driven by scale: modern LLMs routinely exceed tens and
hundreds of billions of parameters, unlocking remarkable generalization and emergent abilities.
However, this scale comes at a cost. Training and deploying such massive models requires substantial
computational resources, and inference often exceeds practical memory or latency budgets.

These challenges have motivated increasing interest in Small Language Models (SLMs) (Allal et al.,
2025; Yang et al., 2025), which aim to preserve strong performance while remaining deployable
in resource-constrained settings such as mobile or edge devices. Although pretraining SLMs is
substantially cheaper than training LLMs, the costs are still formidable and often beyond the reach of
most smaller research groups. For example, Allal et al. (2025) estimate that training SmolLM2 with
1.7B parameters required on the order of 1023 FLOPs—roughly $250,000 of GPU compute.

A common strategy to reduce pretraining cost is to leverage open-weight LLMs as teachers. For
instance, Team et al. (2025) used knowledge distillation to train the Gemma 3 family. This idea
can be pushed further by warm-starting students from non-random initializations derived from their
teachers. Muralidharan et al. (2024) demonstrated this by pruning a teacher model and refining it
through distillation, while the smaller variants of Llama 3.2 (Meta AI, 2024) were similarly obtained
using a combination of pruning and distillation.

Unfortunately, most existing efforts in this space are closed-source, making them difficult to reproduce
and extend. While the evidence so far suggests that teacher models can greatly improve the efficiency
of SLM pretraining, the underlying mechanisms remain poorly understood. In this work, we present
the first systematic open-source study of warm-starting student models from larger teachers for
pretraining. Our contributions are:

• Sub-network initialization. We propose a new warm-starting strategy that extracts high-
quality sub-networks from pretrained teachers. The smaller variants (around 410M param-
eters) require 1.71× fewer FLOP of pretraining than a comparable Pythia-410M model
to achieve the same validation perplexity. Larger variants achieve higher speed-ups, with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Left: Initialization schemes — random weights, sub-network from a pretrained teacher,
and our evolutionary search–based sub-network. Right: The same teacher is used for knowledge
distillation to train the student.

Figure 2: Overview of our search spaces and search strategy

models comparable to Pythia-1B requiring 1.75× fewer FLOP using pretraining, and models
comparable to Pythia-2.8B requiring 5.16× fewer FLOP during pretraining (see Appendix
B.1 for details). We also analyze how different search spaces and extraction strategies affect
downstream performance.

• Comprehensive analysis. We provide the first systematic comparison of sub-network
initialization under knowledge distillation versus standard cross-entropy training, showing
the benefits of knowledge distillation over standard pretraining. Our study spans multiple
student scales and investigates how teacher size influences effectiveness of distillation.

• Reproducible framework. We release an open-source library1 for extracting sub-networks
from existing LLM checkpoints. Together with our empirical findings, this establishes
practical guidelines for compute-optimal SLM pretraining across different scales.

Section 2 presents our methodology for extracting sub-networks from a pretrained teacher network,
and Section 3 introduces our open-source library for sub-network extraction. We provide an empirical
analysis and compare to baseline approaches in Section 4. In Appendix A, we discuss prior work
relevant to our approach.

2 METHODOLOGY

We study the problem of pretraining a Small Language Model (SLM) with the help of a larger
open-weight teacher. Our approach follows a two-step strategy: (i) extract a sub-network from the
pretrained teacher, and (ii) use this sub-network as initialization for SLM pretraining with knowledge
distillation. In this section, we describe the key components of this pipeline. We first introduce the
search space granularities considered (Section 2.1), then present our constrained evolutionary search
procedure (Section 2.2), and finally delineate the pretraining and distillation process (Section 2.3).

2.1 SEARCH SPACES

We consider a dense transformer model T , with L layers and embedding dimension E. Each
layer i ∈ 1, . . . , L consists of a causal self-attention block with H attention heads of dimension

1https://anonymous.4open.science/r/whittle-iclr-71CD/

2

https://anonymous.4open.science/r/whittle-iclr-71CD/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Hs, followed by an MLP block with intermediate dimension D. For simplicity, we restrict our
discussion to the multi-head attention setting, though the approach extends naturally to multi-query
and group-query attention.

We parameterize a sub-network S of the teacher model T by specifying the number of layers
l ∈ 1, . . . , L, the embedding dimension e ∈ 1, . . . , E, the number of attention heads h ∈ 1, . . . ,H ,
the head dimension hs ∈ 1, . . . ,Hs, and the MLP intermediate size d ∈ 1, . . . , D. We define four
search spaces that differ in how weights are selected: coarse versus fine-grained, and uniform versus
layer-wise.

Coarse. To construct the sub-network, we always select the first n entries from the corresponding
components of the teacher T . For example, selecting h attention heads corresponds to taking the first
h heads out of the H heads in T . Likewise, choosing a smaller embedding dimension e corresponds
to taking the first e elements of the embedding vector.

Fine-grained. We select a subset of size n by sampling indices from the teacher’s components. For
instance, selecting h attention heads corresponds to sampling h distinct heads from the H available
in T (without replacement).

Next, we distinguish between two types of layer configurations:

Uniform. The same configuration (h, hs, d) for heads, head size and intermediate MLP size, is
applied across all layers. That is, every layer uses the same number of heads, query groups, head
dimension, and MLP intermediate size.

Layer-wise. Each layer is allowed to have its own configuration, relaxing the uniformity constraint.

Combining the two sampling strategies (coarse vs. fine-grained) with the two configuration schemes
(uniform vs. layer-wise) yields four distinct search spaces:

Coarse Uniform. This is the simplest search space, in which the same configuration is applied
to all layers, always selecting the first entries. For multi-head attention layers, the total number of
possible configurations is N = L ·E ·H ·Hs ·D. In the case of group-query attention, N additionally
accounts for the number of valid combinations of heads h and query groups q.

Coarse Layer-wise. The coarse layer-wise search space applies coarse sampling independently
to each layer in the sub-network S, allowing each layer to have its own configuration. The total
number of configurations is N = E · (H ·Hs ·D)L, which grows exponentially with the number of
layers L. Compared to the coarse uniform space, which is linear in L, the coarse layer-wise space is
significantly larger, as each layer can independently select its (h, hs, d) configuration.

Fine-grained Uniform . The fine-grained uniform search space applies fine-grained sampling
uniformly across all layers. In this setting, the sub-network may be formed from an arbitrary subset
of elements within each layer, rather than being restricted to the first l layers. The total number of
configurations in this search space is N = 2E·H·Hs·D·L.

Fine-grained Layer-wise. The layer-wise fine-grained search space applies fine-grained sampling
independently to each layer, yielding the most granular search space considered. Each layer can
independently select its number of heads, query groups, head dimension, and MLP intermediate size,
and the sub-network may include an arbitrary subset of layers. The total number of configurations is

N = 2E · (2H · 2Hs · 2D)L · 2L,
which grows exponentially with both the width (E,H,Hs, D) and the depth L, making it the largest
and most expressive search space among the variants considered.

2.2 EVOLUTIONARY SEARCH

Before outlining our search procedure, we first formalize our experimental setup.
LetM denote a large language model (LLM) parameterized by θ, with total parameter count |θ| = S
(in billions). We assume S > 1 and typically consider models where S > 2. The user specifies a
parameter bin

B = [Smin, Smax],

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

which defines the range of acceptable model sizes (e.g., Smin = 1B, Smax = 2B).

We partition the overall parameter space

S = {θ : |θ| ∈ [S
(i)
min, S

(i)
max]}Ki=1

into K disjoint bins {B1, . . . ,BK}, each corresponding to a contiguous range of parameter counts.
This stratification ensures balanced coverage across different model sizes. Without such binning,
uniform random sampling tends to under-represent very small and very large models.

We now delineate our constrained evolutionary search procedure.

Evolutionary search with constraint enforcement. Within each bin Bi, we perform an evolution-
ary search over candidate sub-network architectures A(θ). At each iteration, candidate architectures
are sampled and evaluated according to a fitness function f(A). To enforce the bin constraint, we
apply rejection sampling:

A ←

{
A, if |θA| ∈ Bi,
reject, otherwise

Only candidates satisfying |θA| ∈ Bi are retained for further evolution.

After convergence, we return the set of small language models (SLMs)

A∗
i = arg max

|θA|∈Bi

f(A),

that achieve the most favorable initialization for subsequent pretraining or distillation. These selected
SLMs represent the optimal sub-network architectures within the specified parameter range.

The overall procedure is summarized in Algorithm 1 (Appendix C.2). Within each parameter-size bin,
we initialize a population of sub-network candidates drawn from the constrained search space. At each
epoch, candidates are evaluated by perplexity and the top-k elites are retained. Genetic operators—
mutation and crossover—then generate offspring subject to bin constraints, while additional random
samples encourage exploration. The next population is formed by selecting the N best candidates
among elites, offspring, and random samples. After T epochs, the best-performing sub-network in
each bin is returned, with mutation and crossover formally defined below.

Mutation. Given a candidate architecture A, we define a mutation operator µ(A) that perturbs one
architectural dimension at a time. Specifically, we uniformly sample a dimension

x ∈ {l, e, h, g, d, hs},

where l denotes the number of layers, e the embedding dimension, h the number of attention heads, g
the number of query groups, d the intermediate (feedforward) dimension, and hs the per-head size.

Mutation in layer-wise search space. In layer-wise search spaces, architectural attributes
(h, g, d, hs) are defined independently for each layer. A mutation of the layer count l → l′ is
handled as follows:

A′ =

{
A ∪ newly sampled(l′ − l)layers, if l′ > l,

A \ last (l − l′) layers, if l′ < l

If x ∈ {h, g, d, hs}, we first sample a layer index i ∼ Uniform{1, . . . , l}, then resample the chosen
dimension for that layer:

x′
i ∼ Uniform{choices(x)}

Where choices(x) denotes the valid choices for an architectural attribute x defined by a search space.
All other architectural parameters remain fixed.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In the fine-grained setting, mutations operate at the neuron level. For instance, mutating the embed-
ding dimension e→ e′ corresponds to

if e′ > e : sample (e′ − e) new neurons; if e′ < e : prune the last (e− e′) neurons.

This formulation enables smooth exploration of architectures across both coarse (layer-wise) and
fine-grained structural variations, while maintaining consistency with the model size constraint.

Crossover. To produce a child architecture from two parents, P1 and P2, we apply a crossover
operator χ(P1, P2). We first require both parents to share the same number of layers:

lP1
= lP2

= l

Let the architectural dimensions of each parent be

P1 = (e1, h1, g1, hs,1, d1), P2 = (e2, h2, g2, hs,2, d2),

where e, h, g, hs, and d denote the embedding dimension, number of attention heads, number of
query groups, head size, and intermediate dimension, respectively.

A child architecture c is then generated by independently inheriting each dimension from one of the
two parents:

xc =

{
x1, with probability 0.5,

x2, with probability 0.5,
for each x ∈ {e, h, g, hs, d}

For example, a valid crossover outcome might be

c = (e2, h1, g2, hs,2, d1)

This independent dimension-wise crossover enables fine-grained recombination of architectural traits
while preserving structural compatibility (e.g., layer count consistency) between parents.

2.3 SLM PRETRAINING AND DISTILLATION

Sub-network Extraction. Our constrained evolutionary search Algorithm 1 (Appendix C.2), re-
turns a sub-network configuration sb, for every parameter bin b. Given this sub-network configuration,
we extract the smaller language model corresponding to this configuration from the larger base model
we perform search on. We then convert this extracted sub-network into a dense language model
with the corresponding architecture. This is then the SLM that we use in our pretaining pipeline,
optimizing the standard token-level cross entropy, language modeling loss.

Knowledge Distillation. Model distillation (Hinton et al., 2015), or knowledge distillation, com-
presses a large teacher model into a smaller student network that achieves similar performance with
fewer resources. Instead of training solely on hard labels, the student leverages soft labels from the
teacher, obtained via temperature-scaled softmax:

p
(T)
i (z) =

exp
(
zi
T

)∑
j exp

(zj
T

) , (1)

where z = [z1, z2, . . . , zn] are logits and T > 0 is the temperature. The student parameters ŵθ are
optimized with a loss combining hard-label cross-entropy and distillation:

L = αLCE(y, s) + β LD(pt, ps), (2)

where α, β ∈ [0, 1] ,and pt and ps are the teacher and student logit distributions, respectively. In our
setting, LD is the forward KL divergence,

LD =
∑
i

pti
(T) log

pti
(T)

psi
(T)

, (3)

encouraging the student distribution p
(T)
s to match the teacher’s softened distribution p

(T)
t . In our

final knowledge-distillation setup, we use equation 5, with LD, corresponding to the forward-kl
divergence depicted in equation 3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Top-k Logit Distillation. We define a variant of knowledge distillation that truncates the teacher
distribution to its k most salient outputs. Let zt, zs ∈ RC denote the teacher and student logits, respec-
tively, and T the temperature parameter. The teacher distribution is given by pt = softmax(zt/T).
We denote by K ⊂ {1, . . . , C} either the indices of the top-k logits of zs, or a subset sampled from
pt. The distillation loss is then defined as:

Ltop-k =
∑
i∈K

KL
(

softmax
(

z
(i)
t

T

)
∥ softmax

(
z(i)
s

T

))
. (4)

3 WHITTLE: A LIBRARY FOR SLM PRE-TRAINING AND DISTILLATION

Recent model releases such as LLaMA 3.1–8B, LLaMA 3.2–1B, and LLaMA 3.2–3B2 leverage
pruning and distillation to produce smaller variants, but their training recipes and code are closed-
source, hindering reproducibility. Similarly, Minitron (Muralidharan et al., 2024) outlines best
practices for SLM pretraining, but its implementation3 is not readily generalizable across model
families.

To address this gap, we present whittle, a fully open-source library that provides a reproducible,
general-purpose pipeline for extracting and pretraining SLMs directly from Hugging Face models.
Whittle supports a range of functionalities to allow for flexible search space design, sub-network
search, extraction, pretraining and knowledge distillation. In this section, we outline the core
functionalities of whittle and its API design:

set_sub_network(). Given a pretrained decoder-only LLM from litgpt, we first convert it into
a whittle model to enable flexible sub-network extraction. To evaluate a sub-network using the
whittle model, we dynamically activate only structured components of the LLM associated with
that sub-network using the set_sub_network() API (Listing 4). It allows the user to explicitly set
architectural parameters of the sub-network, such as embedding dimension, intermediate size, number
of heads, layers, query groups, and head size, as well as indices for sampled neurons, layers, and
heads. Importantly, it allows to vary the number of heads, head size, intermediate size, and query
groups across layers. This function is a core utility in whittle, supporting downstream procedures
such as search, pretraining, and distillation.

search(). The search() API (Listing 2, Appendix F) constructs a whittle super-network from a
base HuggingFace model and facilitates automated sub-network selection. It supports evolutionary
strategies as well as algorithms from syne-tune (Salinas et al., 2022)4, and performs constrained
search across parameter bins via rejection sampling. Each candidate sub-network is instantiated
through set_sub_network() and evaluated on a task-specific metric, such as perplexity, to guide the
search process.

convert_subnet_to_litgpt_model(). The convert_subnet_to_litgpt_model() function
(Listing 3, Appendix F) transforms a selected sub-network configuration into a standalone GPT
model within the litgpt framework. Given a super-network and a dictionary specifying architectural
configurations (e.g., embedding dimension and number of heads), this utility extracts the correspond-
ing sub-network and instantiates it as an independent GPT model. The resulting model can then be
employed for downstream tasks such as pretraining, fine-tuning, or distillation.

pretrain(). The pretrain() function (Listing 1, Appendix F) enables pretraining of a sub-
network initialized from a checkpointed GPT model. Given the model weights, a configuration
file describing the sub-network architecture, and a target dataset, this utility restores the model and
resumes training from the specified state.

distill(). The distill() function (Listing 5, Appendix F) supports knowledge distillation from
a larger teacher model into a sub-network extracted from a checkpoint. Given a teacher model, sub-
network configuration, and a target dataset, this utility trains the sub-network under the supervision of
a specified teacher (e.g., EleutherAI/pythia-12b). Different distillation objectives (e.g., forward
KL divergence) and constraints such as top-k token selection are supported.

2https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
3https://github.com/NVIDIA-NeMo/NeMo/tree/main
4https://github.com/syne-tune/syne-tune

6

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://github.com/NVIDIA-NeMo/NeMo/tree/main
https://github.com/syne-tune/syne-tune

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Search space configurations for different model families. Here, e denotes embedding
dimension, h the number of attention heads, hs the head size, l the number of layers and d the MLP
dimension

.
Base Model e h hs l d

EleutherAI/pythia-6.9b [1, 4096] [1, 32] {4, 6, 8, . . . , 128} [1, 32] [1, 16384]
EleutherAI/pythia-12b [1, 5120] [1, 40] {4, 6, 8, . . . , 128} [1, 36] [1, 20480]

4 EXPERIMENTS

Our study focuses on the Pythia (Biderman et al., 2023) family of models, which span sizes from
14M to 12B parameters; in particular, we use the 6.9B and 12B variants. Importantly, the modular
design of our framework ensures that the methodology is readily applicable to any large language
model supported by litgpt5.

Our experiments are organized around three core components: (a) sub-network search, (b) pretraining
of small language models (SLMs), and (c) distillation into SLMs. For each component, we outline
the setup, present results, and highlight key insights. We now discuss them in turn.

4.1 SEARCH SPACE DEFINITIONS

Table 1 summarizes the search spaces for Pythia-6.9B and Pythia-12B, listing the allowable values
for each transformer dimension. In the coarse layer-wise and fine-grained layer-wise settings, h,
hs, and d are sampled independently at each layer. The fine-grained spaces extend this further with
neuron-level sampling within each dimension, as detailed in Section 2.1. The size of each of the
search spaces is listed in Table 16 (Appendix H).

4.2 EVOLUTIONARY SEARCH FOR OPTIMAL SLMS

Search Setup We apply Algorithm 1 (Appendix C.2) to conduct evolutionary search over
parameter bins in Pythia-6.9B and Pythia-12B, considering the coarse uniform, coarse layer-
wise, fine-grained uniform, and fine-grained layer-wise6 search spaces from Section 2.1.

Bin 1 Bin 2 Bin 30

1000

2000

3000

4000

5000

6000

W
ik

iTe
xt

 P
er

pl
ex

ity

Coarse Uniform
Coarse Layer-wise

Fine-grained Uniform
Fine-grained Layer-wise

Figure 3: Best perplexity after evolutionary
search based on perplexity for different search
spaces.

We use perplexity on wikitext (Merity et al., 2017)
as selection metric, with mutation and crossover
probabilities fixed at 0.2. For Pythia-6.9B and -
12B, we define three bins with parameter counts of
385M–426M (bin-1), 961M–1.06B (bin-2), and
2.64B–2.91B (bin-3), centered at 5% of Pythia-
410M, Pythia-1B, and Pythia-2.8B, respectively7.
Each evolutionary run proceeds for 100 epochs, with
results in the fine-grained layer-wise setting reported
at the final epoch before rejection sampling becomes
infeasible due to the combinatorial growth of the search space.

Results Discussion. Figure 3 reports the perplexity of pruned sub-networks from Pythia-6.9B
across bin-1, bin-2, and bin-3 under different search spaces on the wikitext test set. Note that
these sub-networks are evaluated without any further pretraining or finetuning. We observe that
searches constrained to the smaller coarse uniform and coarse layer-wise spaces generally yield more
effective sub-networks.

5https://github.com/Lightning-AI/litgpt/
6In the fine-grained spaces, h, hs, and d are sampled independently at each layer, with additional neuron-level

sampling within each dimension. See Section 2.1 for details.
7The bins were computed based on the exact number of parameters in the Pythia models

7

https://github.com/Lightning-AI/litgpt/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

410M parameters bin

Fine­grained Uniform (Supernet init)
Fine­grained Uniform (Random init)
Pythia­410M (Random init)

0 1000 2000 3000 4000
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

1B parameters bin

Coarse Layer­wise (Supernet init)
Coarse Layer­wise (Random init)
Pythia­1B (Random init)

0 1000 2000 3000 4000
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

2.8B parameters bin

Coarse Uniform (Supernet init)
Coarse Uniform (Random init)
Pythia­2.8B (Random init)

Validation Perplexity Across Different Parameter Ranges (Pythia­6.9B as Source Model)

Figure 4: Pretraining Validation perplexity of the best sub-networks from each search space and
the bin-center Pythia models (410M, 1B, 2.8B), all trained for 10B tokens with cross-entropy loss.
Sub-networks are extracted from the Pythia-6.9B base model.

4.3 PRETRAINING OF SLMS

Pretraining Setup. We perform pretraining of our models on the Nemotron-CC dataset (Su et al.,
2025). For each parameter bin and search space, we first conduct a set of low-fidelity experiments
with a 2B-token budget to identify the most promising sub-network in each search space. Concretely,
this involves evaluating the best candidate architecture for every bin across all four search spaces,
resulting in 3 (bins) × 4 (search spaces) = 12 low-fidelity runs. We then select the top-ranked
architecture from each bin (three architectures in total) and perform larger-scale pretraining with a
10B-token budget on Nemotron-CC. All models are trained with the standard next-token prediction
objective using cross-entropy loss.

Results and Discussion. Figure 4 presents the pretraining results. We compare pretraining of
the extracted best sub-network (Supernet-init) against two baselines: (i) Random-init, where the
same architecture is trained with random initialization and a 10B-token budget, and (ii) the original
Pythia model (center of the bin), also trained with random initialization and the same budget. Across
parameter bins, initializing from the supernet yields consistent improvements in validation perplexity.
Notably, the gains are most pronounced for bin-3, indicating that supernet initialization is particularly
beneficial in higher-parameter regimes, where our model achieved the same validation perplexity
with 5.16× fewer FLOP. Results for a token-budget of 100B can be found in Appendix J.

4.4 DISTILLATION OF SLMS

Distillation Setup. To further accelerate convergence, we distill knowledge from Pythia-6.9B
and Pythia-12B teacher models. As described in Section 2, training is performed with a weighted
combination of forward-KL divergence and cross-entropy loss (0.8 and 0.2, respectively). For com-
putational efficiency, we apply top-k logits distillation with k = 1024 and a distillation temperature
of 0.9. For distillation, we select the best architectures from every bin, determined by pretraining for
a small token budget of 2B tokens in Section 4.3, and train it with a larger token budget of 10B tokens
with the distillation loss function on Nemotron-CC. When training a sub-network with distillation
loss, we use the same model for the teacher as the one that the sub-network was extracted from (a
sub-network extracted from Pythia-6.9B uses the Pythia-6.9B as the teacher model as well).

Results and Discussion. Figure 5 illustrates the effect of distillation. We find that distillation
consistently improves perplexity in both bin-1 and bin-2, with the model in bin-2. We also report
the performance of distilled models on downstream tasks in Table 14 in Appendix D.

4.5 EVALUATION ON DOWNSTREAM TASKS

Evaluation Setup. We evaluate our pretrained and distilled sub-networks on different common-
sense and question-answering type tasks. Specifically, we evaluate 0-shot performance on copa,
lambada_openai, and winogrande, 5-shot performance on MMLU, and 10-shot performance on
arc-easy, arc_challenge, piqa, and hellaswag. We report accuracy for copa, lambada_openai,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

410M parameters bin

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­410M, Random init)

0 1000 2000 3000 4000
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

1B parameters bin

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­1B, Random init)

Validation Perplexity Across Different Parameter Ranges (Pythia­6.9B as Source Model)

Figure 5: Distillation: Comparison of validation perplexity for models trained with distillation loss
v/s cross entropy loss. All sub-networks are extracted from Pythia-6.9B as a base model and trained
for 10B tokens

Base Model Initialization #Params COPA Lambada-OpenAI Winogrande MMLU PIQA ARC-challenge ARC-easy HellaSwag Avg-acc PPL-Nemotron-cc

Pythia-6.9B Random Init 389M 59.00 18.51 51.14 26.43 63.87 24.74 46.80 31.28 37.77 26.20
Supernet Init 389M 61.00 24.02 51.54 26.35 65.34 24.57 51.38 33.11 39.33 23.66

Pythia-12B Random Init 407M 57.00 14.87 50.67 26.33 61.64 23.97 42.47 29.76 36.06 29.57
Supernet Init 407M 63.00 18.37 52.09 25.99 62.73 23.55 46.42 30.91 37.50 27.33

Pythia-410M* Random Init 405M 62.00 19.54 50.67 25.54 64.14 24.57 47.35 32.70 38.42 25.29

Pythia-6.9B Random Init 1.04B 64.00 23.36 51.54 26.62 65.78 27.13 51.80 36.83 40.22 21.84
Supernet Init 1.04B 66.00 38.52 51.46 26.09 69.26 30.12 63.51 45.20 43.74 17.77

Pythia-12B Random Init 1.04B 63.00 23.33 50.51 26.14 66.76 26.36 53.74 36.65 39.32 21.21
Supernet Init 1.04B 64.00 27.56 51.77 26.19 66.54 26.45 53.96 36.42 40.88 20.77

Pythia-1B* Random Init 1.01B 64.00 25.67 52.41 25.20 66.00 28.24 56.14 38.23 41.06 20.11

Pythia-6.9B Random Init 2.91B 61.00 26.49 52.10 26.39 67.74 28.33 57.83 41.12 41.31 13.75
Supernet Init 2.91B 66.00 50.16 56.91 26.45 72.69 33.87 67.09 53.40 47.41 10.99

Pythia-12B Random Init 2.91B 67.00 27.32 50.36 25.25 67.85 27.65 57.79 40.58 41.73 13.26
Supernet Init 2.91B 69.00 41.76 51.46 26.20 70.57 28.67 61.99 45.98 44.47 11.71

Pythia-2.8B* Random Init 2.78B 68.00 24.51 53.03 25.74 67.68 25.34 46.67 39.11 40.55 14.54

Table 2: Evaluation of sub-networks extracted from Pythia-6.9B and Pythia-12B after pretraining
on 10B tokens. A Pythia model of comparable size is also trained on the same budget with random
initialization to serve as a baseline (indicated with ∗). Reported numbers are metrics as defined in
Section 4.5 (%).

winogrande, MMLU and length normalized accuracy for piqa, arc_easy, arc_challenge and
hellaswag. We use lm-eval-harness8 to perform evaluation on downstream tasks.

Results Discussion. Table 2 reports average downstream accuracies for our best sub-networks in
each parameter bin pretrained with a 10B-token budget. For comparison, we also include Pythia-
410M, 1B, and 2.8B models trained with the same budget. Across all bins, Supernet-init outper-
forms both Random-init (for the same extracted architecture) and the original Pythia architectures
(bin centers). Furthermore, sub-networks extracted from the smaller base model (Pythia-6.9B) consis-
tently outperform those from the larger base (Pythia-12B). We present results of our distilled models
on downstream tasks in Table 14.

5 ABLATIONS

In this section, we conduct ablation studies to examine the effect of four key factors in our framework:
(a) the choice of search space, (b) the loss function used for distillation, (c) the performance metric
employed during search.

Granularity of Search Spaces. Figure 6 illustrates the effect of varying search space granularity.
We find that different bins benefit from distinct choices: for bin-1, fine-grained uniform search space
is optimal; for bin-2, coarse layer-wise performs best; and for bin-3, coarse uniform yields the
strongest results.

Full logits vs. top-k logits. In our distillation experiments in Section 4, following (Team et al.,
2025), we use top-k logit based distillation. Here, we ablate this choice for the distillation loss by

8https://github.com/EleutherAI/lm-evaluation-harness

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

200 400 600 800
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

410M parameters bin

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

1B parameters bin

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
Optimizer Steps

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

2.8B parameters bin

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

Validation Perplexity Across Different Parameter Ranges (Pythia­6.9B as Source Model)

Figure 6: Validation perplexity of the best models from each search space found via evolutionary
search. All models are initialized with Pythia-6.9B weights and trained for 2 billion tokens. Within
each bin, the models’ parameter counts fall within a ±5% range of that bin’s target size.

8000 16000 24000 32000 40000
Iterations

102

103

Pe
rp

le
xi

ty

Top-k (k=1024)
Full logits

Figure 7: Full vs. top-k logit distillation.

Bin 1 Bin 2 Bin 30

10000

20000

30000

40000

W
ik

iTe
xt

 P
er

pl
ex

ity

Best of Search Spaces Minitron Importance Magnitude Importance

Figure 8: Comparison of search guided by impor-
tance metrics and perplexity. We report results
in the best search space for each bin.

comparing supervision from the full teacher distribution against a truncated variant using only the
top-k logits (Figure 7). This isolates how much of the teacher’s probability mass is required for
effective transfer. We find that, in general, distilling from the full-logit distribution yields a lower
perplexity.

Metric for Searching sub-networks. Finally, in Figure 8, we evaluate different search metrics.
Specifically, we compare activation-based importance scores (as in Minitron (Muralidharan et al.,
2024)) and weight-magnitude scores (Han et al., 2015) against directly optimizing for perplexity
in our setup. We define the details of the importance score computation procedure, i.e. the metric
guiding the search, in Appendix D. All searches are run with for 100 epochs. We find that perplexity-
based search consistently achieves lower perplexity than proxy metrics, suggesting that importance
and magnitude scores are less reliable indicators of sub-network quality.

6 CONCLUSION

We present a principled framework for initializing small language models (SLMs) by extracting
sub-networks from a larger pre-trained teacher network. Our experiments demonstrate that this
approach accelerates the overall pre-training process of SLMs by up to 9.2× compared to baseline
SLM models of similar size. To select the sub-network, we employ a constrained evolutionary search
strategy that identifies optimal candidates based on validation performance. Further, we analyze four
different search spaces of increasing granularity and demonstrate that for the larger variants of SLMs,
the least granular search space (coarse uniform) yields the best model. The smaller variants, however,
benefit from more granular search spaces such as fine-grained uniform and coarse layer-wise.

For future work, we aim to derive scaling laws to better understand the impact of improved initializa-
tion strategies as model and data scales increase. Additionally, we plan to investigate the effect of
teacher model choice on student performance, particularly in domain-specific settings. For example,
it remains an open question whether a multilingual teacher provides advantages over an English-only
teacher when training a monolingual student model.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

L. B. Allal, A. Lozhkov, E. Bakouch, G. M. Blázquez, G. Penedo, L. Tunstall, A. Marafioti, H. Ky-
dlíček, A. P. Lajarín, V. Srivastav, J. Lochner, C. Fahlgren, X. Nguyen, C. Fourrier, B. Burtenshaw,
H. Larcher, H. Zhao, C. Zakka, M. Morlon, C. Raffel, L. von Werra, and T. Wolf. Smollm2:
When smol goes big – data-centric training of a small language model. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=3JiCl2A14H.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10865–10873, 2024.

S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,
S. Purohit, S. Prashanth, E. Raff, et al. Pythia: A suite for analyzing large language models across
training and scaling. In International Conference on Machine Learning (ICML’23), 2023.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize it for
efficient deployment. In International Conference on Learning Representations (ICLR’20), 2020.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Dr{nas}:
Dirichlet neural architecture search. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=9FWas6YbmB3.

Hexuan Deng, Wenxiang Jiao, Xuebo Liu, Jing Li, Min Zhang, and Zhaopeng Tu. Drpruning: Efficient
large language model pruning through distributionally robust optimization. In Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 29152–29173, 2025.

Shrey Desai, Hongyuan Zhan, and Ahmed Aly. Evaluating lottery tickets under distributional shifts.
EMNLP-IJCNLP 2019, page 153, 2019.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1761–1770, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2019a.
URL https://openreview.net/forum?id=ByME42AqK7.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 20(55):1–21, 2019b.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR, 2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

11

https://openreview.net/forum?id=3JiCl2A14H
https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=ByME42AqK7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv:1503.02531
[stat.ML], 2015.

Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh
Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural
architecture search using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 4163–4174, 2020.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 conference on empirical methods in natural language processing, pages 1317–1327, 2016.

Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Struc-
tural pruning of pre-trained language models via neural architecture search. Transactions on
Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?
id=XiK8tHDQNX. Survey Certification, Expert Certification.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems (NeurIPS), pages 598–605, 1990.

Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Help: hardware-adaptive efficient
latency prediction for nas via meta-learning. In Proceedings of the 35th International Conference
on Neural Information Processing Systems, pages 27016–27028, 2021.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, and Yingyan Lin. Hw-nas-bench: Hardware-aware neural architecture search benchmark.
In The 9th International Conference on Learning Representations 2021 (ICLR 2021), 2021.

Hao Li, Ashish Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations (ICLR), 2017.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao,
and Weizhu Chen. Super tickets in pre-trained language models: From model compression to
improving generalization. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6524–6538, 2021.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In International
Conference on Learning Representations (ICLR’19), 2019.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm.
In Proceedings of the genetic and evolutionary computation conference, pages 419–427, 2019.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti.
Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I 16, pages 35–51. Springer, 2020.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pages
6682–6691. PMLR, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

12

https://openreview.net/forum?id=XiK8tHDQNX
https://openreview.net/forum?id=XiK8tHDQNX
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Meta AI. LLaMA 3.2: Revolutionizing edge ai and vision with open, customizable models. https:
//ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/, Septem-
ber 25 2024. Accessed: 2025-08-20.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264–11272, 2019.

Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers. Advances in neural
information processing systems, 32, 2019.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. In Advances in Neural Information
Processing Systems, volume 37, pages 41076–41102, 2024.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are winning.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 3208–3229, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Aging evolution for image classifier
architecture search. In AAAI conference on artificial intelligence, volume 2, page 2, 2019.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Conference of Learning
Representations, 2015.

D. Salinas, M. Seeger, A. Klein, V. Perrone, M. Wistuba, and C. Archambeau. Syne tune: A library
for large scale hyperparameter tuning and reproducible research. In First Conference on Automated
Machine Learning (Main Track), 2022.

Victor Sanh, L Debut, J Chaumond, and T Wolf. Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. In Proceedings of Thirty-third Conference on Neural Information Processing
Systems (NIPS2019), 2019.

S. Schrodi, D. Stoll, B. Ru, R. Sukthanker, T. Brox, and F. Hutter. Construction of hierarchical
neural architecture search spaces based on context-free grammars. In Proceedings of the 37th
International Conference on Advances in Neural Information Processing Systems (NeurIPS’23),
2023.

Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Bin Cui.
Proxybo: Accelerating neural architecture search via bayesian optimization with zero-cost proxies.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 9792–9801,
2023.

Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa Patwary,
Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common crawl into
a refined long-horizon pretraining dataset. In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 2459–2475, July 2025.
ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.123. URL https://aclanthology.
org/2025.acl-long.123/.

Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Aaron Klein, Lennart Purucker, Jörg K.H.
Franke, and Frank Hutter. HW-GPT-bench: Hardware-aware architecture benchmark for language
models. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=urJyyMKs7E.

Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Samuel Dooley, Josif Grabocka, and Frank
Hutter. Multi-objective differentiable neural architecture search. In The Thirteenth International
Conference on Learning Representations, 2025.

13

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://aclanthology.org/2025.acl-long.123/
https://aclanthology.org/2025.acl-long.123/
https://openreview.net/forum?id=urJyyMKs7E

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers for
efficient natural language processing. In Annual Meeting of the Association for Computational
Linguistics, 2020a.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. In In Advances in
Neural Information Processing Systems (NeurIPS), 2020b.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 10293–10301, 2021.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv preprint
arXiv:2301.08727, 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. CoRR,
abs/2402.13116, 2024. URL https://doi.org/10.48550/arXiv.2402.13116.

A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren,
Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report.
arXiv:2412.15115 [cs.CL], 2025.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In International Conference on
Learning Representations, 2020.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In
International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=K9bw7vqp_s.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for neural
architecture search. In International conference on machine learning, pages 7603–7613. PMLR,
2019.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=
r1Ue8Hcxg.

14

https://doi.org/10.48550/arXiv.2402.13116
https://openreview.net/forum?id=K9bw7vqp_s
https://openreview.net/forum?id=K9bw7vqp_s
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Model Pruning. Pruning is a core approach for compressing neural networks by removing redun-
dant parameters while preserving accuracy. Early work on unstructured magnitude pruning (LeCun
et al., 1990; Han et al., 2016) achieved high sparsity with minimal accuracy loss, but offered limited
inference benefits on modern hardware. This motivated structured and semi-structured pruning
methods that remove neurons, filters, or enforce hardware-friendly sparsity patterns (Li et al., 2017;
Zhou et al., 2021; Ma et al., 2023; Frantar and Alistarh, 2023). The Lottery Ticket Hypothesis
(LTH) (Frankle and Carbin, 2018) provided a compelling rationale, showing that large networks
contain sub-networks (“winning tickets”) that can train in isolation to match full-model performance.
Subsequent work examined their generalization across architectures and optimizers (Morcos et al.,
2019; Desai et al., 2019), their stabilization and theoretical underpinnings (Frankle et al., 2019;
Malach et al., 2020), and their presence in large pretrained language models (Chen et al., 2020;
Prasanna et al., 2020; Liang et al., 2021). These advances highlight pruning as a powerful tool for
efficient deployment in resource-constrained settings. Central to both pruning and ticket discovery
is the design of importance scores—criteria based on weight magnitude, gradients, or activations
(Molchanov et al., 2019; Frantar and Alistarh, 2023; An et al., 2024) that estimate which components
can be removed with minimal loss. However, efficiently scaling such methods to billion-parameter
LMs remains a major challenge. Our work addresses this gap by introducing a framework for
discovering high-quality sub-networks that is efficient, scalable, and easily parallelizable.

Comparison with Sheared LLaMA and DRPruning Sheared LLaMA (Xia et al.) frames pruning
as a constrained optimization problem, updating weights and masks together via repeated pretraining-
like steps. It also uses dynamic batch loading, which blurs the distinction between pruning benefits
and training effects, while adding considerable computational overhead. Similarly, DRPruning
(Deng et al., 2025) learns structured masks under the full pretraining objective and further introduces
distributionally robust data reweighting, conflating pruning benefits with data-selection effects. In
contrast, whittle identifies strong SLM initializations within a target parameter range using only
preplexity estimates from a forward-pass, avoiding mask/weight optimization, additional training
heuristics, and data reweighting. This yields a simple approach that fits cleanly into standard
next-token-prediction pretraining pipelines.

Knowledge Distillation (KD). KD compresses large language models by transferring knowledge
from a teacher to a smaller student, aiming to preserve accuracy while reducing compute (Hinton
et al., 2015; Xu et al., 2024). For autoregressive LMs, this is typically done in two ways. Logit-based
distillation trains the student to match the teacher’s output distribution via KL-divergence, often with
top-k or top-p truncation to mitigate noise from heavy-tailed distributions (Hinton et al., 2015; Kim
and Rush, 2016; Sanh et al., 2019; Team et al., 2024). Representation-based distillation instead
aligns internal dynamics, training the student to mimic hidden states or their projections using MSE
losses (Romero et al., 2015; Jiao et al., 2020; Wang et al., 2020b). These complementary strategies
highlight KD’s versatility in shaping both outputs and internal representations. Beyond compression,
KD smooths decision boundaries and provides richer training signals, often yielding faster and more
stable convergence. Building on these insights, we demonstrate the effectiveness of KD as a key
ingredient for efficient SLM pretraining.

Neural Architecture Search (NAS). NAS (White et al., 2023; Elsken et al., 2019b) automates the
exploration of large architecture spaces. Existing approaches include black-box optimization (Zoph
and Le, 2017; White et al., 2021; Real et al., 2019; Shen et al., 2023; Zhou et al., 2019; Schrodi
et al., 2023), which repeatedly train and evaluate candidates, and gradient-based methods (Liu et al.,
2019; Dong and Yang, 2019; Chen et al., 2021; Zela et al., 2020), which perform differentiable search
over a weight-sharing supernetwork. Extensions incorporate hardware-awareness and multi-objective
criteria (Sukthanker et al., 2025; Elsken et al., 2019a; Lu et al., 2019; Hsu et al., 2018; Lu et al.,
2020; Sukthanker et al., 2024; Lee et al., 2021; Li et al., 2021; Klein et al., 2024), jointly optimizing
accuracy, efficiency, and deployment constraints. A major limitation, however, is the expensive
supernet pretraining required by most methods (Cai et al., 2020; Sukthanker et al., 2024; Wang et al.,
2020a), which is prohibitive at the scale of LLMs. Our approach sidesteps this by leveraging open-
source pretrained LLMs as the basis for search, eliminating supernet pretraining. Moreover, unlike

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
Compute (exaFLOP)

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

410m parameters bin

Finegrained (Supernet init)
Finegrained (Random init)
Pythia­410m (Random init)

0 20 40 60
Compute (exaFLOP)

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

1b parameters bin

Coarse Layerwise (Supernet init)
Coarse Layerwise (Random init)
Pythia­1b (Random init)

0 50 100 150 200
Compute (exaFLOP)

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

2.8b parameters bin

Coarse (Supernet init)
Coarse (Random init)
Pythia­2.8b (Random init)

Validation Perplexity Across Different Parameter Ranges (Pythia­6.9B as Source Model)

Figure 9: Validation perplexity across different parameter ranges (offset with search cost).

traditional NAS that seeks architectures for direct deployment, we focus on discovering sub-networks
that provide strong initializations for efficient pretraining.

SLM Pretraining in Practice. Recent open-source releases often provide families of models
ranging from compact Small Language Models (SLMs) to much larger variants. SLMs are especially
important for edge deployment, where efficiency and memory are critical. A straightforward way
to obtain them is to train models across multiple scales (Biderman et al., 2023), but this is compu-
tationally costly. To reduce training demands, recent work instead trains a large base model and
extracts smaller ones via pruning and distillation (Muralidharan et al., 2024; Meta AI, 2024; Team
et al., 2025), or relies solely on distillation from a larger teacher, as in Gemma-3 (Team et al., 2025).
Despite this progress, there remains no principled framework for compute-efficient SLM pretraining.
Our work addresses this gap through a systematic study of sub-network extraction and initialization
strategies, combined with pipeline designs and loss functions for training high-performing SLMs.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 HYPERPARAMETER CONFIGURATIONS OF EXPERIMENTS

In Tables 4 - 8, we present the hyperparameter settings for all our experiments.

B.2 COMPUTATIONAL COST OF THE EVOLUTIONARY SEARCH

In this section, we provide an overview of the cost overhead introduced by evolutionary search. In
each bin, for every search space, we sample and evaluate a total of 5,050 subnetworks during the
evolutionary search. For each candidate model, we computed the perplexity on 1,000 sequences of
length 512. We approximate the average FLOP of the models in bins 1, 2 and 3 as the FLOPs of
Pythia-410M, Pythia-1B, and Pythia-2.8B, since these models serve as the center of the bins. The
total computational cost of the search for each search space is reported in Table 9. For comparison,
the cost of pretraining the best model found in each bin on 10B tokens is as presented in Table 10. As
Tables 9 and 10 indicate, the search phase consumes only a small fraction of the overall pretraining
budget.

Revised Cost Savings. We include the cost of the evolutionary search when computing the total
cost savings achieved by our method. The updated FLOP-savings factors are reported below in Table
11. Additionally, we include the FLOP-savings factor considering only the pretraining budget in
Table 12.

Furthermore, in Figure 9, we present the validation perplexity across different parameter ranges,
taking the search cost into account.

C ADDITIONAL METHODOLOGICAL DETAILS

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters used for the Best Performing Subnets per Bin (Parameter Range) from the
Pythia-12B Model

Search Space Parameter range Hyperparameter Type Value

Evolutionary Search
Coarse

Bin 1
385M–426M

Model & Data
Model Name pythia-12b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Training &
Batching

Total Training Tokens 50B
Global Batch Size 1056
Micro Batch Size 8
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse Layerwise

Bin 2
961M–1.06B

Model & Data
Model Name pythia-12b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Training &
Batching

Total Training Tokens 50B
Global Batch Size 1056
Micro Batch Size 8
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse

Bin 3
2.64B–2.91B

Model & Data
Model Name pythia-12b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 1.6× 10−4

Min Learning Rate 1.6× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Training &
Batching

Total Training Tokens 50B
Global Batch Size 1056
Micro Batch Size 16
LR Warmup Steps 238
Max Sequence Length 2048
Seed 42

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters used for the Best Performing Subnets per Bin (Parameter Range) from the
Pythia-6.9B Model

Search Space Parameter range Hyperparameter Type Value

Evolutionary Search
Finegrained

Bin 1
385M–426M

Model & Data
Model Name pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Training &
Batching

Total Training Tokens 50B
Global Batch Size 1056
Micro Batch Size 6
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse Layerwise

Bin 2
961M–1.06B

Model & Data
Model Name pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Training &
Batching

Total Training Tokens 50B
Global Batch Size 1056
Micro Batch Size 4
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse

Bin 3
2.64B–2.91B

Model & Data
Model Name pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 1.6× 10−4

Min Learning Rate 1.6× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Training &
Batching

Total Training Tokens 50B
Global Batch Size 1056
Micro Batch Size 16
LR Warmup Steps 238
Max Sequence Length 2048
Seed 42

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters used for Distillation Experiments on the Best Performing Subnets per Bin
(Parameter Range) from the Pythia-12B Model

Search Space Parameter range Hyperparameter Type Value

Evolutionary Search
Coarse

Bin 1
385M–426M

Model & Data
Teacher Model pythia-12b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation
α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 10B
Global Batch Size 1056
Micro Batch Size 2
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse Layerwise

Bin 2
961M–1.06B

Model & Data
Teacher Model pythia-12b
Precision bf16-true
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation
α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 10B
Global Batch Size 1056
Micro Batch Size 8
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse

Bin 3
2.64B–2.91B

Model & Data
Teacher Model pythia-12b
Precision bf16-true
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 1.6× 10−4

Min Learning Rate 1.6× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation
α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 10B
Global Batch Size 1056
Micro Batch Size 4
LR Warmup Steps 238
Max Sequence Length 2048
Seed 42

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters used for Distillation Experiments on the Best Performing Subnets per Bin
(Parameter Range) from the Pythia-6.9B Model

Search Space Parameter range Hyperparameter Type Value

Evolutionary Search
Finegrained

Bin 1
385M–426M

Model & Data
Teacher Model pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation

α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 10B
Global Batch Size 1056
Micro Batch Size 6
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse Layerwise

Bin 2
961M–1.06B

Model & Data
Teacher Model pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation

α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 10B
Global Batch Size 1056
Micro Batch Size 4
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Coarse

Bin 3
2.64B–2.91B

Model & Data
Teacher Model pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 1.6× 10−4

Min Learning Rate 1.6× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation

α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 10B
Global Batch Size 1056
Micro Batch Size 4
LR Warmup Steps 238
Max Sequence Length 2048
Seed 42

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters used for Distillation Ablation Experiments on a Subnet from the Pythia-
6.9B Model using varying Teacher Model Sizes

Search Space Parameter range Hyperparameter Type Value

Evolutionary Search
Finegrained

Bin 1
385M–426M

Model & Data
Teacher Model pythia-1b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation

α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 2B
Global Batch Size 1056
Micro Batch Size 6
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Finegrained

Bin 1
385M–426M

Model & Data
Teacher Model pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation

α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 2B
Global Batch Size 1056
Micro Batch Size 6
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters used for Distillation Ablation Experiments on a Subnet from the Pythia-
6.9B Model — Top-K vs. Full Logits

Search Space Parameter range Hyperparameter Type Value

Evolutionary Search
Finegrained

Bin 1
385M–426M

Model & Data
Teacher Model pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation

α 0.2
β 0.8
Temperature 0.9
Logits Top-1024

Training &
Batching

Total Training Tokens 2B
Global Batch Size 1056
Micro Batch Size 6
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

Evolutionary Search
Finegrained

Bin 1
385M–426M

Model & Data
Teacher Model pythia-6.9b
Precision bf16-mixed
Dataset Nemotron-CC

Optimizer &
Regularization

Optimizer AdamW
Learning Rate 3× 10−4

Min Learning Rate 3× 10−5

Weight Decay 0.01
AdamW β1, β2 0.9, 0.95
Gradient Clipping Norm 1.0

Distillation

α 0.2
β 0.8
Temperature 0.9
Logits Full

Training &
Batching

Total Training Tokens 2B
Global Batch Size 1056
Micro Batch Size 6
LR Warmup Steps 0
Max Sequence Length 2048
Seed 42

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Bin Search Cost (exaFLOP)
1 2.3
2 5.4
3 15.4

Table 9: Cost of Evolutionary Search for different bins

Bin Pretraining Cost (exaFLOP)
1 20.9
2 63.3
3 176.6

Table 10: Cost of pretraining the best models in different bins

Bin FLOP Savings Factor
1 1.71×
2 1.75×
3 5.16×

Table 11: FLOP-saving factors for all bins compared to pretraining the corresponding Pythia architec-
tures.

Bin FLOP Savings Factor (excluding search cost)
1 2.0×
2 2.07×
3 9.32×

Table 12: FLOP-saving factors for all bins compared to pretraining the corresponding Pythia architec-
tures (without considering the search cost).

C.1 ATTENTION MASKING

The attention mechanism used in transformer blocks naturally supports sub-network extraction. In
practice, this means that an attention mechanism can be masked to yield a smaller, distinct type
of attention. Figure 11 provides an overview of the main variants—multi-head attention (MHA),
multi-query attention (MQA), and grouped-query attention (GQA). Since GQA serves as a super-
class of these mechanisms, it can be transformed into either MHA or MQA. An illustration of this
transformation is shown in Figure 12.

C.2 EVOLUTIONARY SEARCH ALGORITHM

We present the details of our evolutionary search algorithm in Algorithm 1.

D ADDITIONAL RESULTS

Below, we present additional experimental results. Figure 13 shows the effect of using different
teachers for knowledge distillation, Figure 14 shows the evolutionary search trajectory for different
parameter bins, with the best perplexity marked in red. Table 14, presents the result of distilled
models on downstream tasks. Table 17, provides the results on an extended set of common sense
reasoning based downstream tasks.

Figures 15–17 summarize the training behavior of the best models across different settings. The results
highlight how architectures extracted from different search spaces (Figure 15), weight initialization
strategies (Figure 16), and the use of distillation (Figure 17) affect convergence and final performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 10: An overview of the Whittle library.

Multi-head attention

(MHA)

Values

Keys

Queries

Grouped-query attention

(GQA)

Multi-query attention

(MQA)

Figure 11: An illustration of the different types of attention mechanisms. In multi-head attention
(MHA), each query is paired with its own key and value; in multi-query attention (MQA), multiple
queries share a single key–value pair; and in grouped-query attention (GQA), multiple key–value
pairs are used, with each pair serving more than one query.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Grouped-query attention

(GQA) with fewer query heads

Multi-head attention

(MHA)

Multi-query attention

(MQA)

Grouped-query attention

(GQA)

Figure 12: An example of how grouped-query attention (GQA) can be masked to emulate other forms
of attention, such as multi-head or multi-query attention. The masked heads are shown in gray. Note
that GQA can also be reduced to fewer query heads while preserving the same number of groups.

8000 16000 24000 32000 40000
Iterations

102

103

Va
lid

at
io

n
Pe

rp
le

xi
ty

Pythia-6.9b Teacher
Pythia-1b Teacher

38000 40000

35.25
35.50
35.75

Last 10% Iterations

Figure 13: Teacher size vs. student performance with a 2B-token budget. A Pythia-1B teacher
achieves validation perplexity 35.06, slightly better than Pythia-6.9B (35.15).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Parameters

20000

40000

60000

80000

Fin
e-

gr
ai

ne
d

La
ye

r-w
ise

Va
lid

at
io

n
PP

L

min=5928.3

Bin 1

1000
Parameters

20000

40000

60000

min=5569.2

Bin 2

Parameters
0

20000

40000

60000

min=3377.9

Bin 3

Parameters
0

25000

50000

75000

Fin
e-

gr
ai

ne
d

Un
ifo

rm
Va

lid
at

io
n

PP
L

min=4914.8
1000

Parameters

0

20000

40000

60000

80000

min=4914.8 Parameters
0

25000

50000

75000

min=2395.3

Parameters
0

25000

50000

75000

100000

Co
ar

se
 U

ni
fo

rm
Va

lid
at

io
n

PP
L

min=6310.7
1000

Parameters

20000

40000

60000

min=5231.7 Parameters
0

5000

10000

15000

min=471.7

Parameters

20000

40000

60000

80000

Co
ar

se
 L

ay
er

-w
ise

Va
lid

at
io

n
PP

L

min=6310.7
1000

Parameters

10000

20000

30000

min=5928.3 Parameters
0

10000

20000

30000

min=1808.0

Figure 14: Evolutionary search on coarse uniform, coarse layer-wise, fine-grained uniform and
fine-grained layer-wise search spaces for Pythia-6.9B. Minimum perplexity for each bin marked in
red

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 200 400 600 800
2 × 100

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s
410M parameters bin

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

0 200 400 600 800
2 × 100

3 × 100

4 × 100

6 × 100

1B parameters bin

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

0 200 400 600 800
2 × 100

3 × 100

4 × 100

6 × 100

2.8B parameters bin

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
2 × 100

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
Lo

ss

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
2 × 100

3 × 100

4 × 100

6 × 100

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
2 × 100

3 × 100

4 × 100

6 × 100

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
Step

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
Step

101

102

103

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

200 400 600 800
Step

101

102

103

Coarse Uniform
Coarse Layer­wise
Fine­grained Uniform
Fine­grained Layer­wise

Performance of the best models in each search space across different bins

Figure 15: Training curves of the best models from each search space extracted from Pythia-6.9b
(trained for 2 billion tokens)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

410M parameters bin

Fine­grained Uniform (Supernet init)
Fine­grained Uniform (Random init)
Pythia­410M (Random init)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

1B parameters bin

Coarse Layer­wise (Supernet init)
Coarse Layer­wise (Random init)
Pythia­1B (Random init)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

2.8B parameters bin

Coarse Uniform (Supernet init)
Coarse Uniform (Random init)
Pythia­2.8B (Random init)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
Lo

ss

Fine­grained Uniform (Supernet init)
Fine­grained Uniform (Random init)
Pythia­410M (Random init)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

Coarse Layer­wise (Supernet init)
Coarse Layer­wise (Random init)
Pythia­1B (Random init)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

Coarse Uniform (Supernet init)
Coarse Uniform (Random init)
Pythia­2.8B (Random init)

0 1000 2000 3000 4000
Step

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

Fine­grained Uniform (Supernet init)
Fine­grained Uniform (Random init)
Pythia­410M (Random init)

0 1000 2000 3000 4000
Step

101

102

103

Coarse Layer­wise (Supernet init)
Coarse Layer­wise (Random init)
Pythia­1B (Random init)

0 1000 2000 3000 4000
Step

101

102

103

Coarse Uniform (Supernet init)
Coarse Uniform (Random init)
Pythia­2.8B (Random init)

Performance of the best models with different weight initialization schemes

Figure 16: Training curves of the best models found in each bin, initialized with supernet weights as
well as random weights. A Pythia model of comparable size is also trained with random initialization
in each bin as a baseline. The models are trained with 10 billion tokens.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Base Model Initialization #Params COPA OpenBookQA Lambada-OpenAI Winogrande Social IQA MMLU-cont. MMLU CommonsenseQA PIQA ARC-challenge ARC-easy HellaSwag BoolQ Avg-acc PPL-Nemotron-cc

Pythia-6.9B Random Init 389M 59.00 29.20 18.51 51.14 36.59 25.82 26.43 19.41 63.87 24.74 46.80 31.28 58.17 37.77 26.20
Supernet Init 389M 61.00 30.00 24.02 51.54 38.23 26.21 26.35 18.84 65.34 24.57 51.38 33.11 60.73 39.33 23.66

Pythia-12B Random Init 407M 57.00 27.80 14.87 50.67 35.93 25.32 26.33 20.48 61.64 23.97 42.47 29.76 52.50 36.06 29.57
Supernet Init 407M 63.00 27.40 18.37 52.09 37.10 25.90 25.99 21.21 62.73 23.55 46.42 30.91 52.78 37.50 27.33

Pythia-410M Random Init 405M 62.00 29.60 19.54 50.67 36.49 25.72 25.54 20.15 64.14 24.57 47.35 32.70 61.01 38.42 25.29

Pythia-6.9B Random Init 1.04B 64.00 29.20 23.36 51.54 38.59 26.63 26.62 21.05 65.78 27.13 51.80 36.83 60.36 40.22 21.84
Supernet Init 1.04B 66.00 34.60 38.52 51.46 41.04 28.98 26.09 19.81 69.26 30.12 63.51 45.20 53.98 43.74 17.77

Pythia-12B Random Init 1.04B 63.00 28.40 23.33 50.51 37.92 27.05 26.14 19.57 66.76 26.36 53.74 36.65 51.77 39.32 21.21
Supernet Init 1.04B 64.00 31.20 27.56 51.77 38.48 27.36 26.19 19.82 66.54 26.45 53.96 36.42 61.65 40.88 20.77

Pythia-1B Random Init 1.01B 64.00 30.20 25.67 52.41 38.95 26.93 25.20 20.97 66.00 28.24 56.14 38.23 60.83 41.06 20.11

Pythia-6.9B Random Init 2.91B 61.00 30.60 26.49 52.10 39.00 27.60 26.39 19.82 67.74 28.33 57.83 41.12 59.05 41.31 13.75
Supernet Init 2.91B 66.00 34.60 50.16 56.91 41.71 30.54 26.45 20.80 72.69 33.87 67.09 53.40 62.05 47.41 10.99

Pythia-12B Random Init 2.91B 67.00 31.80 27.32 50.36 38.18 27.40 25.25 21.21 67.85 27.65 57.79 40.58 60.15 41.73 13.26
Supernet Init 2.91B 69.00 33.20 41.76 51.46 40.79 29.29 26.20 21.21 70.57 28.67 61.99 45.98 58.04 44.47 11.71

Pythia-2.8B Random Init 2.78B 68.00 30.4 24.51 53.03 39.50 27.18 25.74 20.47 67.68 25.34 46.67 39.11 59.54 40.55 14.54

Table 13: Evaluation of Pythia models across multiple benchmarks. Reported numbers are metrics as
defined in Section 4.5 (%).

Initialization #Params COPA OpenBookQA Lambada-OpenAI Winogrande Social IQA MMLU-cont. MMLU CommonsenseQA PIQA ARC-challenge ARC-easy HellaSwag BoolQ Avg-acc PPL-Nemotron-cc

from-supernet 389M 61.00 30.00 24.02 51.54 38.23 26.21 26.35 18.84 65.34 24.57 51.38 33.11 60.73 39.33 23.66
from-supernet-distill 389M 66.00 30.60 23.95 49.57 37.41 26.31 25.62 19.57 65.56 25.34 49.66 33.92 54.31 39.06 18.59

from-supernet 1.04B 66.00 34.60 38.52 51.46 41.04 28.98 26.09 19.81 69.26 30.12 63.51 45.20 53.98 43.74 17.77
from-supernet-distill 1.04B 66.00 33.00 37.92 54.22 40.17 29.06 25.94 21.46 70.02 28.33 62.92 47.57 53.06 43.82 14.20

Table 14: Evaluation of sub-networks extracted from Pythia-6.9b for bin-0 and bin-1. Reported
numbers are metrics as defined in Section 4.5 (%). We compare training with the cross entropy loss (
from-supernet) to training with knowledge distillation (from-supernet-distill) loss.

E DETAILS ON IMPORTANCE SCORING

Importance scoring aims at defining scores for each transformer dimension, neuron or architecture
parameter based on activation or weight magnitude. In our case, for a sub-network, the corresponding
importance score serves as the proxy to sub-network quality or performance metrics like perplexity.
The higher the importance score of a sub-network, the better its quality.

We adopt the dimension-wise importance scoring proposed by Muralidharan et al. (2024), which uses
the activation of a component as proxy for its importance. Given a batch as input X ∈ RB×T×dmodel

after applying the embedding layer W emb we compute the following scores for each component,
where B corresponds to the batch dimension and T corresponds to the sequence length dimension,
and abs corresponds to the absolute value function:

• For a neuron i ∈ {1, ..., U} in a FFN layer l, we compute its importance by: F
(i)
FFNl

=
1/B

∑
B

(
1/T

∑
T XW l

1[:, i]
)

where Wl
1[:, i] corresponds to all weights of neuron i in layer

l.

• Similarly for each neuron i ∈ {1, ..., dmodel} in the embedding layer we compute F
(i)
emb =

1/B
∑

B (1/T
∑

T (Norm(X[:, :, i]))). Specifically we perform mean absolute aggregation
over output of every (Layer or RMS) Norm layer as

• For causal attention layers we compute the importance of head h ∈ {1, ...,H} of heads as :

F
(h)
MHA = 1/B

∑
B

(
1/T

∑
T

∥∥∥Attn
(
Qh,Kh,Vh

)∥∥∥
2

)

• For a block l ∈ {1, ..., L} consisting of a MHA and a FFN layer with RMS
or layer normalization in between, we compute the score: F(l)

block = 1 −
1/B

∑
B

(
1/T

∑
T

(
XT

l Xl+1

∥Xl∥2∥Xl+1∥2

))
where Xl is the input to block l and Xl+1 the output.

Given, the score for each unit (layer, head or neuron), and a subnetwork configuration (for example:
e = 64, d = 128, l = 2, h = 4), we compute the importance score corresponding the sub-network, by
simply aggregating the normalized importance scores corresponding to the selected neurons, layers
or heads. Similarly, for the weight space we define neuron, layer and head level importance scores
by simply focussing on the magnitude of weight or neurons corresponding to every transformer
dimension (Han et al., 2015).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000

100

101

Tr
ai

ni
ng

 L
os

s

410M parameters bin

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­410M, Random init)

0 1000 2000 3000 4000

100

101
1B parameters bin

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­1B, Random init)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
Lo

ss

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­410M, Random init)

0 1000 2000 3000 4000
2 × 100

3 × 100

4 × 100

6 × 100

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­1B, Random init)

0 1000 2000 3000 4000
Step

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­410M, Random init)

0 1000 2000 3000 4000
Step

101

102

103

Distillation (Best Model, Supernet init)
Pretraining (Best Model, Supernet init)
Pretraining (Pythia­1B, Random init)

Performance of pretraining versus distillation

Figure 17: Training curves of the best models in bins 1 and 2, obtained through distillation and
pretraining. In both cases, the models are initialized with weights from the supernet (Pythia-6.9B).
For comparison, a Pythia model of similar size is trained from random initialization in both bins,
serving as a baseline. All models are trained on 10 billion tokens.

Algorithm 1 Bin-Constrained Evolutionary Search
1: Input: arch. space S; bins {[Lb, Ub]}Bb=1; population N ; elites k; epochs T ; random samples r;

offspring λ; mutation prob. m; crossover prob. c
2: Helpers: Params(s) = param. count; ppl(s) = perplexity
3: CONSTRAIN(x, [L,U]): resample/repair until Params(x) ∈ [L,U]
4: for b = 1 to B do
5: Sb ← {s ∈ S | Lb ≤ Params(s) ≤ Ub}
6: Init population P(0)

b ∼ Sb
7: for t = 0 to T − 1 do
8: Evaluate ppl(s) for s ∈ P(t)

b

9: Select elites E(t)b = argmink ppl(s)

10: Mutants Omut ← CONSTRAIN(Mut(s), [Lb, Ub]), s ∼ E(t)b , size λ (with prob. m)
11: CrossoversOcross ← CONSTRAIN(Cross(s, s′), [Lb, Ub]), s, s′ ∼ E(t)b , size λ (with prob.

c)
12: RandomsR(t)

b ∼ Sb, size r

13: Next pop. P(t+1)
b ← argminN ppl(s) over E(t)b ∪ Omut ∪ Ocross ∪R(t)

b
14: end for
15: Best s⋆b ← argmin

s∈P(T)
b

ppl(s)

16: end for
17: Output: {s⋆b}Bb=1

F WHITTLE APIS

An overview of the Whittle library is shown in Figure 10. In addition to the core functionalities of
our framework described in Section 3, we provide an API to compute various importance metrics
across different sub-network dimensions.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Listing 1: API for pretraining.
def pretrain(

model_name: str, # Name of the model to load. E.g., EleutherAI/pythia-410m
model_config: Optional[Config] = None, # Model configuration, overrides model_name
config_path : Optional[str] = None, # Path to yaml file with model configuration,
overrides model_config
out_dir: Path = Path("out/pretrain"), # Path to save checkpoints to
precision: Literal["bf16-true", "bf16-mixed", "32-true", None] = None,
resume: Union[bool, Literal["auto"], Path] = False, # If true, resumes from the
latest available checkpoint
data: Optional[DataModule] = None, # Dataset to use to train
train: TrainArgs = TrainArgs(# Training hyperparameters

save_interval=1000,
log_interval=1,
global_batch_size=512,
micro_batch_size=4,
max_tokens=int(3e12), # 3 trillion
max_norm=1.0,
min_lr=4e-5,
lr_warmup_steps=2000,
tie_embeddings=False,

),
eval: EvalArgs = EvalArgs(interval=1000, max_iters=100), # Evaluation hyper-
parameters
optimizer: Union[str, Dict] = "AdamW", # Optimizer and its configuration
devices: Union[int, str] = "auto", # CUDA or CPU
num_nodes: int = 1, # Number of nodes for distributed training
tokenizer_dir: Optional[Path] = None, # Path to tokenizer (optional)
logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "tensorboard", #
Logger to use
seed: int = 42, # Seed for reproducibility
init_from: str = "random", # Path to the checkpoint to load, or "random" to
randomly initialize
use_flex: bool = False, # Set to True if the sub-network has layer-wise
configuration

) -> LitGPT

Listing 2: API for supernetwork search.
def search(

supernet_name: str ="EleutherAI/pythia-12b", # litgpt model to extract SLM from
algorithm: str = "evolutionary_search", # name of search algorithm
num_bins: int = 4, # number of parameter bins
param_upper_bounds: list, # list of upper bounds for bins
param_lower_bounds: list, # list of lower bounds for bins
number_of_epochs: int, # number of epochs for search

)-> list[dict] # returns list of subnets

compute_importance_score(). The compute_importance_score() function (Listing 6, Ap-
pendix F) assigns an importance score to a given sub-network, where higher scores indicate higher
estimated quality. Importance scores are computed independently for each architectural component
(e.g., layers, heads, neurons), normalized across available choices using a softmax, and aggregated
by summation. This computation is performed once at the beginning of the search procedure, after
which evaluating the importance of candidate sub-networks becomes inexpensive compared to full
metrics such as perplexity.

Below we present the details of our API design for setting subnetwork 4, pretrain 1, convert to litgpt
3, distillation 5, 2 search and importance metric computation 6.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Listing 3: API for converting a subnet into a LitGPT model.
def convert_subnet_to_litgpt_model(

supernet_name: str = "EleutherAI/pythia-12b", # litgpt model to extract SLM from
subnet_config: dict = { # subnet configuration

sub_network_n_embd: 4,
sub_network_intermediate_size: 16,
sub_network_num_heads: 4,
sub_network_n_layers: 2,
sub_network_head_size: 4,

}
) -> LitGPT # returns LitGPT model

Listing 4: API for activating a sub-network
def set_sub_network(

sub_network_n_embd: int = 4, # Embedding dim
sub_network_intermediate_size: int | list[int] = 42 # MLP size
sub_network_num_heads: int | list[int] = 4, # No. of Attention heads
sub_network_n_layers: int = 4, # No. of Layers
sub_network_query_groups: int | list[int] = 2, # No. of Query groups
sub_network_head_size: int | list[int] = 4, # Head size
sampled_intermediate_indices: list[int] | list[list] = [4,8], # Sampled MLP neurons
sampled_head_indices: list[int] | list[list] = [2,3], # Sampled heads
sampled_query_group_indices: list[int] | list[list] = [0,1], # Sampled query groups
sampled_head_size_indices: list[int] | list[list] = [2,3,8,12], # Sampled head sizes
sampled_layer_indices: list[int] = [2,3,5,6], # Sampled layers
sampled_embd_indices: list[int] = [0,1,2,3], # Sampled embedding neurons

)

G STUDYING DISTILLATION HYPERPARAMETERS

We define our distillation loss function below.

L = αLCE(y, s) + β
∑
i∈K

KL
(

softmax
(

z
(i)
t

T

)
∥ softmax

(
z(i)
s

T

))
., (5)

This loss has four tunable hyperparameters:

1. α: the weight of the cross-entropy loss, which minimizes the entropy with respect to the
ground-truth logits.

2. β: the weight of the KL-divergence term between the teacher and student logits.
3. T : the temperature parameter, which controls the smoothing of the teacher and student logit

distributions.
4. K: the number of top logits (Top-K) used when computing the KL-divergence. A smaller K

corresponds to a simpler distribution, while a larger K yields a more informative distribution.
The maximum K equals the full number of teacher logits.

We now perform a grid-sweep over different choices of α, β, T and K. We define the set of choices
for α as [0.2, 0.8, 0], the corresponding choices for β, which corresponds to 1− α as [0.8, 0.2, 1], the
choices for temperature T as [0.8, 0.9] and the choices for K as [1024, 2048, num_teacher_logits].
Figures 18-20 present the perplexity curves aggregated for different hyperparameter values. In
general, we observe that using only the distillation loss, i.e., setting α = 0, is not recommended.
Furthermore, a higher temperature and using the full logit distribution (Top-K = 0) perform best on
average. In Table 15, we also present the importance of each of the hyperparameter choices and find
that the most important one is the value of α, followed by K and finally the temperature T .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Listing 5: API for distilling a sub-network from a checkpoint.
def distill(

teacher_checkpoint_dir: Path, # Path to teacher model checkpoint directory
student_dir: Path, # Path to initialize student model directory with sub-network
configuration and (optional) model weights
data: DataModule | None = None, # Dataset for distillation
out_dir: Path = Path("out/distill"), # Path to save distilled checkpoints
precision: Literal["bf16-true", "bf16-mixed", "32-true", None] = None, # Precision
for training
train: TrainArgs = TrainArgs(# Training hyperparameters

save_interval=1000,
log_interval=1,
global_batch_size=512,
micro_batch_size=4,
max_tokens=int(5e8),
max_norm=1.0,
min_lr=4e-5,
lr_warmup_steps=2000,
tie_embeddings=False,

),
distill: DistillArgs = DistillArgs(# Distillation-specific hyperparameters

method="logits", # Distillation method (e.g., logits, hidden states)
temperature=10, # Softening factor for teacher logits
alpha=0.3, # Weight for student loss
beta=0.7, # Weight for distillation loss
loss="forward_kld", # Loss function for distillation
weight_scheme="other", # Weighting scheme for combining losses

),
eval: EvalArgs = EvalArgs(interval=50, max_iters=100, initial_validation=True), #
Evaluation config
optimizer: str | dict = "AdamW", # Optimizer and configuration
devices: int | str = "auto", # CUDA or CPU
num_nodes: int = 1, # Number of nodes for distributed distillation
tokenizer_dir: Path | None = None, # Path to tokenizer (optional)
logger_name: Literal["wandb", "tensorboard", "csv"] = "csv", # Logger backend
seed: int = 42, # Seed for reproducibility
random_init_student: bool = False, # If True, randomly initialize student instead
of loading

) -> LitGPT # Returns a distilled LitGPT student model

Listing 6: API for computing importance scores of subnet components.
def compute_importance_score(

supernet_name: str = "EleutherAI/pythia-12b", # base supernetwork
subnet_config: dict = { # subnet configuration

sub_network_n_embd: 4,
sub_network_intermediate_size: 16,
sub_network_num_heads: 4,
sub_network_n_layers: 2,
sub_network_head_size: 4,

},
layer_importance_type: str = "block importance", # method for layer scoring
head_importance_type: str = "minitron", # method for head scoring
neuron_importance_type: str = "minitron", # method for neuron scoring

) -> int: # returns importance score for a sampled sub-network

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

10000 20000 30000 40000
Step

102

103

Va
lid

at
io

n
P

er
pl

ex
iti

es

Alpha

=0.0
=0.2
=0.8

10000 20000 30000 40000
Step

102

103

Va
lid

at
io

n
P

er
pl

ex
iti

es

Temperature

T=0.8
T=0.9

10000 20000 30000 40000
Step

102

103

Va
lid

at
io

n
P

er
pl

ex
iti

es

Top­K

Top­K=0
Top­K=1024
Top­K=2048

Bin 1 Distillation Perplexities (Mean­Aggregated)

Figure 18: Bin 1 - distillation hyperparameter importance

10000 20000 30000 40000 50000 60000
Step

102

103

Va
lid

at
io

n
P

er
pl

ex
iti

es

Alpha

=0.0
=0.2
=0.8

10000 20000 30000 40000 50000 60000
Step

102

103

Va
lid

at
io

n
P

er
pl

ex
iti

es

Temperature

T=0.8
T=0.9

10000 20000 30000 40000 50000 60000
Step

102

103

Va
lid

at
io

n
P

er
pl

ex
iti

es
Top­K

Top­K=0
Top­K=1024
Top­K=2048

Bin 2 Distillation Perplexities (Mean­Aggregated)

Figure 19: Bin 2 - distillation hyperparameter importance

25000 50000 75000 100000 125000
Step

2 × 101

3 × 101

Va
lid

at
io

n
P

er
pl

ex
iti

es

Alpha

=0.0
=0.2
=0.8

25000 50000 75000 100000 125000
Step

2 × 101

3 × 101

Va
lid

at
io

n
P

er
pl

ex
iti

es

Temperature

T=0.8
T=0.9

25000 50000 75000 100000 125000
Step

2 × 101

3 × 101

Va
lid

at
io

n
P

er
pl

ex
iti

es

Top­K

Top­K=0
Top­K=1024
Top­K=2048

Bin 3 Distillation Perplexities (Mean­Aggregated)

Figure 20: Bin 3 - distillation hyperparameter importance

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

hyperparameter importance (mean) importance (std)
α 0.986442 0.011966
K 0.005968 0.000469
T 0.005000 0.000551

Table 15: Hyperparameter Importance

H SEARCH SPACE SIZES

The sizes of the search spaces for evolutionary search, especially for fine-grained (both uniform and
layer-wise) can grow exponentially. In Table 16, we show the maximum number of configurations
per search space for both of our base Pythia models (6.9B and 12B). For equations and information
on how the number of search space configurations is calculated, refer to Section 2.1, and Table 1 for
the configurations.

Table 16: Search Space Sizes (N) for Pythia-6.9B and Pythia-12B Architectures
Search Space Pythia-6.9B (N) Pythia-12B (N)

Coarse Uniform 4.33× 1012 9.51× 1012

Coarse Layer-wise 1.65× 10244 2.33× 10281

Fine-grained Uniform 1014284 1017841

Fine-grained Layer-wise 1.58× 10159984 5.31× 10224611

I REPRODUCIBILITY STATEMENTS

We have taken extensive measures to ensure that all results in this paper can be replicated and verified
by the community.

• Code and Repository: We release all our code and scripts to reproduce our experiments at
https://anonymous.4open.science/r/whittle-iclr-71CD/.

• Datasets and Pretrained Models: We evaluate on available benchmarks from lm-
eval-harness (https://github.com/EleutherAI/lm-evaluation-harness) and use the
publicly available Nemotron-CC dataset https://research.nvidia.com/labs/adlr/
Nemotron-CC/ for training. Furthermore we use the Pythia-model suite, which is open-
source https://github.com/EleutherAI/pythia.

• Compute Resources: All our search experiments were run on on L40 GPU per parameter
bin and base model. All our pretraining runs for bin-0 and bin-1 were run on 8 L40 GPUs
and bin-2 was run on 4 H200 GPUs. All our distillation experiments were run on 4 H200
GPUs. We use cuda version 11.8.

• Evaluation and Artifacts: Upon acceptance of the paper we will publicly release model
checkpoints for all our experiments.

J SCALING BEHAVIOR OF SUBNETWORK EXTRACTION UNDER LARGER
BUDGETS

To assess how the cost savings from subnetwork extraction scale with substantially larger pretraining
budgets, we trained the best model from Bin 2 and Bin 3 for 100 billion tokens and compared it
against a Pythia-1B and Pythia-2.8B model, respectively, trained for the same number of tokens from
random initialization. We summarize our key findings below.

• Sustained FLOP Savings at the 100B-Token Scale. Our extracted subnetwork for Bin-3
achieves the same validation performance while requiring 1.26× fewer FLOPs (a reduction

34

https://anonymous.4open.science/r/whittle-iclr-71CD/
https://github.com/EleutherAI/lm-evaluation-harness
https://research.nvidia.com/labs/adlr/Nemotron-CC/
https://research.nvidia.com/labs/adlr/Nemotron-CC/
https://github.com/EleutherAI/pythia

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Base Model Initialization #Params COPA OpenBookQA Lambada-OpenAI Winogrande Social IQA MMLU-cont. MMLU CommonsenseQA PIQA ARC-challenge ARC-easy HellaSwag BoolQ Avg-acc

Pythia-6.9B Supernet Init 1.04B 74.00 38.40 45.604 56.98 41.81 32.54 27.04 20.88 75.03 38.57 71.76 60.05 61.19 49.53

Pythia-1B Random Init 1.01B 71.00 35.40 36.13 53.35 41.91 26.93 25.20 19.74 73.50 35.92 69.36 55.69 52.75 45.91

Pythia-6.9B Supernet Init 2.91B 76.00 37.40 53.23 58.01 42.02 34.45 38.04 43.41 77.69 41.38 73.57 64.01 63.49 54.05

Pythia-2.8B Random Init 2.78B 71.00 40.40 43.39 58.64 42.02 27.18 25.74 21.37 76.50 42.75 74.24 64.85 60.58 49.23

Table 17: Evaluation of Pythia models trained for 100B tokens across multiple benchmarks. Reported
numbers are metrics as defined in Section 4.5 (%).

of approximately 21%). Although this reduction is smaller than the 5.16× savings observed
at the 10B-token scale, it nevertheless demonstrates that subnetwork extraction continues to
provide meaningful computational benefits even when the training budget is increased by an
order of magnitude. This indicates that the method is not confined to low-budget regimes
and remains competitive at significantly larger compute settings.

• Improved Final Validation Perplexity. In addition to being more compute-efficient, the
extracted model also attains a lower final validation perplexity. The baseline Pythia-2.8B
reaches a perplexity of 11.397, while our model achieves 11.204.

• Strong Downstream Performance Advantages. The extracted model outperforms the
Pythia models trained from scratch across downstream evaluations. In particular, on MMLU-
cont, our model achieves gains of up to 12% over the strongest Pythia baseline (see Table 17).

In Figures 21-23, we present the trajectories for validation perplexity, validation loss and train loss,
respectively, for Bin 2 and Bin 3 architectures and the Pythia-based models trained from scratch for
100B tokens.

0 100 200 300 400 500 600
Compute (exaFLOP)

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

1b parameters bin

Coarse Layerwise (Supernet init)
Pythia­1b (Random init)

0 250 500 750 1000 1250 1500 1750
Compute (exaFLOP)

101

102

103

Va
lid

at
io

n
P

er
pl

ex
ity

2.8b parameters bin

Coarse (Supernet init)
Pythia­2.8b (Random init)

Validation Perplexity Across Different Parameter Ranges (Pythia­6.9B as Source Model)

Figure 21: Bin 2 and Bin 3 validation perplexity for 100B token budget

0 100 200 300 400 500 600
Compute (exaFLOP)

2 × 100

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
Lo

ss

1b parameters bin

Coarse Layerwise (Supernet init)
Pythia­1b (Random init)

0 250 500 750 1000 1250 1500 1750
Compute (exaFLOP)

2 × 100

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
Lo

ss

2.8b parameters bin

Coarse (Supernet init)
Pythia­2.8b (Random init)

Validation Loss Across Different Parameter Ranges (Pythia­6.9B as Source Model)

Figure 22: Bin 2 and Bin 3 validation loss for 100B token budget

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
Compute (exaFLOP)

2 × 100

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

1b parameters bin

Coarse Layerwise (Supernet init)
Pythia­1b (Random init)

0 250 500 750 1000 1250 1500 1750
Compute (exaFLOP)

2 × 100

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 L
os

s

2.8b parameters bin

Coarse (Supernet init)
Pythia­2.8b (Random init)

Training Loss Across Different Parameter Ranges (Pythia­6.9B as Source Model)

Figure 23: Bin 2 and Bin 3 train loss for 100B token budget

36

	Introduction
	Methodology
	Search Spaces
	Evolutionary Search
	SLM Pretraining and Distillation

	Whittle: A Library for SLM Pre-training and Distillation
	Experiments
	Search Space Definitions
	Evolutionary Search for Optimal SLMs
	Pretraining of SLMs
	Distillation of SLMs
	Evaluation on Downstream Tasks

	Ablations
	Conclusion
	Related Work
	Additional Experimental Details
	Hyperparameter Configurations of Experiments
	Computational Cost of the Evolutionary Search

	Additional Methodological Details
	Attention masking
	Evolutionary Search Algorithm

	Additional Results
	Details on Importance Scoring
	Whittle APIs
	Studying Distillation Hyperparameters
	Search Space Sizes
	Reproducibility Statements
	Scaling Behavior of Subnetwork Extraction Under Larger Budgets

