

000 WHERE TO BEGIN: EFFICIENT PRETRAINING VIA SUB- 001 NETWORK SELECTION AND DISTILLATION 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006

007 ABSTRACT 008

009 Small Language models (SLMs) offer an efficient and accessible alternative to
010 Large Language Models (LLMs), delivering strong performance while using far
011 fewer resources. We introduce a simple and effective framework for pretraining
012 SLMs that brings together three complementary ideas. First, we identify struc-
013 turally sparse **sub-network initializations** that consistently outperform randomly
014 initialized models of similar size under the same compute budget. Second, we use
015 **evolutionary search** to automatically discover high-quality sub-network initializa-
016 tions, providing better starting points for pretraining. Third, we apply **knowledge**
017 **distillation** from larger teacher models to speed up training and improve gener-
018 alization. Together, these components make SLM pretraining substantially more
019 efficient: our best model, discovered using evolutionary search and initialized with
020 LLM weights, matches the validation perplexity of a comparable Pythia SLM while
021 requiring **5.16 \times** and **1.26 \times** fewer floating point operations for token budgets of
022 10B and 100B, respectively. We release all code publicly, offering a practical and
023 reproducible path toward cost-efficient small language model development at scale.
024

025 1 INTRODUCTION 026

027 Large Language Models (LLMs) have recently delivered state-of-the-art performance across a wide
028 range of tasks. Their success is largely driven by scale: modern LLMs routinely exceed tens and
029 hundreds of billions of parameters, unlocking remarkable generalization and emergent abilities.
030 However, this scale comes at a cost. Training and deploying such massive models requires substantial
031 computational resources, and inference often exceeds practical memory or latency budgets.
032

033 These challenges have motivated increasing interest in **Small Language Models (SLMs)** (Allal et al.,
034 2025; Yang et al., 2025), which aim to preserve strong performance while remaining deployable
035 in resource-constrained settings such as mobile or edge devices. Although pretraining SLMs is
036 substantially cheaper than training LLMs, the costs are still formidable and often beyond the reach of
037 most smaller research groups. For example, Allal et al. (2025) estimate that training **SmoILM2** with
038 1.7B parameters required on the order of 10^{23} FLOPs—roughly \$250,000 of GPU compute.
039

040 A common strategy to reduce pretraining cost is to leverage open-weight LLMs as teachers. For
041 instance, Team et al. (2025) used knowledge distillation to train the Gemma 3 family. This idea
042 can be pushed further by warm-starting students from non-random initializations derived from their
043 teachers. Muralidharan et al. (2024) demonstrated this by pruning a teacher model and refining it
044 through distillation, while the smaller variants of Llama 3.2 (Meta AI, 2024) were similarly obtained
045 using a combination of pruning and distillation.
046

047 Unfortunately, most existing efforts in this space are closed-source, making them difficult to reproduce
048 and extend. While the evidence so far suggests that teacher models can greatly improve the efficiency
049 of SLM pretraining, the underlying mechanisms remain poorly understood. In this work, we present
050 the first systematic open-source study of *warm-starting student models from larger teachers for*
051 *pretraining*. Our contributions are:
052

- 053 • **Sub-network initialization.** We propose a new warm-starting strategy that extracts high-
054 quality sub-networks from pretrained teachers. The smaller variants (around 410M param-
055 eters) require **1.71 \times** fewer FLOP of pretraining than a comparable Pythia-410M model
056 to achieve the same validation perplexity. Larger variants achieve higher speed-ups, with
057

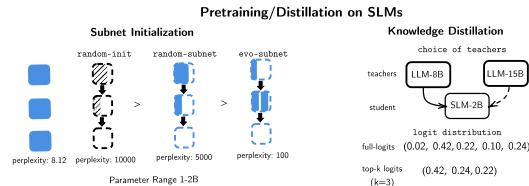


Figure 1: Left: Initialization schemes — random weights, sub-network from a pretrained teacher, and our evolutionary search-based sub-network. Right: The same teacher is used for knowledge distillation to train the student.

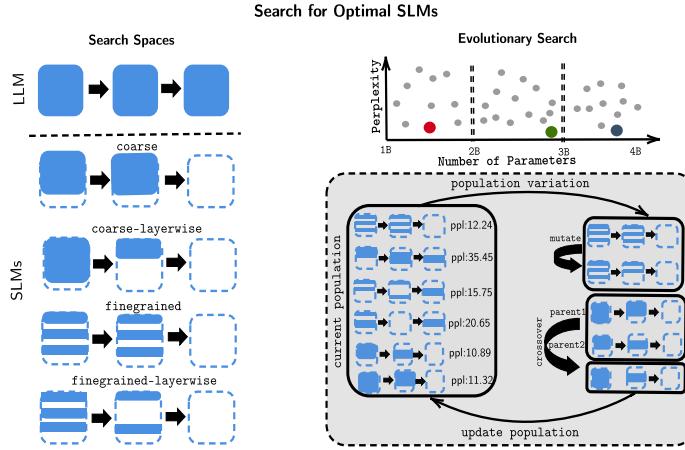


Figure 2: Overview of our search spaces and search strategy

models comparable to Pythia-1B requiring $1.75 \times$ fewer FLOP using pretraining, and models comparable to Pythia-2.8B requiring $5.16 \times$ fewer FLOP during pretraining (see Appendix B.1 for details). We also analyze how different search spaces and extraction strategies affect downstream performance.

- **Comprehensive analysis.** We provide the first systematic comparison of sub-network initialization under knowledge distillation versus standard cross-entropy training, **showing the benefits of knowledge distillation over standard pretraining**. Our study spans multiple student scales and investigates how teacher size influences effectiveness of distillation.
- **Reproducible framework.** We release an open-source library¹ for extracting sub-networks from existing LLM checkpoints. Together with our empirical findings, this establishes practical guidelines for compute-optimal SLM pretraining across **different scales**.

Section 2 presents our methodology for extracting sub-networks from a pretrained teacher network, and Section 3 introduces our open-source library for sub-network extraction. **We provide an empirical analysis and compare to baseline approaches in Section 4. In Appendix A, we discuss prior work relevant to our approach.**

2 METHODOLOGY

We study the problem of pretraining a Small Language Model (SLM) with the help of a larger open-weight teacher. Our approach follows a two-step strategy: (i) extract a sub-network from the pretrained teacher, and (ii) use this sub-network as initialization for SLM pretraining with knowledge distillation. In this section, we describe the key components of this pipeline. We first introduce the search space granularities considered (Section 2.1), then present our constrained evolutionary search procedure (Section 2.2), and finally delineate the pretraining and distillation process (Section 2.3).

2.1 SEARCH SPACES

We consider a dense transformer model T , with L layers and embedding dimension E . Each layer $i \in 1, \dots, L$ consists of a causal self-attention block with H attention heads of dimension

¹<https://anonymous.4open.science/r/whittle-iclr-71CD/>

108 H_s , followed by an MLP block with intermediate dimension D . For **simplicity**, we restrict our
 109 discussion to the multi-head attention setting, though the approach extends naturally to **multi-query**
 110 and **group-query** attention.

111 We parameterize a sub-network S of the teacher model T by specifying the number of layers
 112 $l \in 1, \dots, L$, the embedding dimension $e \in 1, \dots, E$, the number of attention heads $h \in 1, \dots, H$,
 113 the head dimension $h_s \in 1, \dots, H_s$, and the MLP intermediate size $d \in 1, \dots, D$. We define four
 114 search spaces that differ in how weights are selected: *coarse* versus *fine-grained*, and *uniform* versus
 115 *layer-wise*.

116 **Coarse.** To **construct** the sub-network, we always select the *first* n entries from the corresponding
 117 components of the teacher T . For example, selecting h attention heads corresponds to taking the first
 118 h heads out of the H heads in T . Likewise, choosing a smaller embedding dimension e corresponds
 119 to taking the first e **elements** of the embedding vector.

120 **Fine-grained.** We select a subset of size n by sampling *indices* from the teacher’s components. For
 121 instance, selecting h attention heads corresponds to sampling h distinct heads from the H available
 122 in T (without replacement).

123 Next, we distinguish between two types of layer configurations:

124 **Uniform.** The same configuration (h, h_s, d) for heads, head size and intermediate MLP size, is
 125 applied across all layers. That is, every layer uses the same number of heads, query groups, head
 126 dimension, and MLP intermediate size.

127 **Layer-wise.** Each layer is allowed to have its own configuration, relaxing the uniformity constraint.

128 Combining the two sampling strategies (*coarse* vs. *fine-grained*) with the two configuration schemes
 129 (*uniform* vs. *layer-wise*) yields four distinct search spaces:

130 **Coarse Uniform.** This is the simplest search space, in which the same configuration is applied
 131 to all layers, always selecting the first entries. For multi-head attention layers, the total number of
 132 possible configurations is $N = L \cdot E \cdot H \cdot H_s \cdot D$. In the case of group-query attention, N additionally
 133 accounts for the number of valid combinations of heads h and query groups q .

134 **Coarse Layer-wise.** The *coarse layer-wise* search space applies coarse sampling independently
 135 to each layer in the sub-network S , allowing each layer to have its own configuration. The total
 136 number of configurations is $N = E \cdot (H \cdot H_s \cdot D)^L$, which grows exponentially with the number of
 137 layers L . Compared to the *coarse uniform* space, which is linear in L , the *coarse layer-wise* space is
 138 significantly larger, as each layer can independently select its (h, h_s, d) configuration.

139 **Fine-grained Uniform.** The *fine-grained uniform* search space applies fine-grained sampling
 140 uniformly across all layers. In this setting, the sub-network may be formed from an arbitrary subset
 141 of elements within each layer, rather than being restricted to the first l layers. The total number of
 142 configurations in this search space is $N = 2^{E \cdot H \cdot H_s \cdot D \cdot L}$.

143 **Fine-grained Layer-wise.** The *layer-wise fine-grained* search space applies fine-grained sampling
 144 independently to each layer, yielding the most granular search space considered. Each layer can
 145 independently select its number of heads, query groups, head dimension, and MLP intermediate size,
 146 and the sub-network may include an arbitrary subset of layers. The total number of configurations is

$$147 \quad N = 2^E \cdot (2^H \cdot 2^{H_s} \cdot 2^D)^L \cdot 2^L,$$

148 which grows exponentially with both the width (E, H, H_s, D) and the depth L , making it the largest
 149 and most expressive search space among the variants considered.

150 2.2 EVOLUTIONARY SEARCH

151 Before outlining our search procedure, we first formalize our experimental setup.

152 Let \mathcal{M} denote a large language model (LLM) parameterized by θ , with total parameter count $|\theta| = S$
 153 (in billions). We assume $S > 1$ and typically consider models where $S > 2$. The user specifies a
 154 *parameter bin*

$$155 \quad \mathcal{B} = [S_{\min}, S_{\max}],$$

162 which defines the range of acceptable model sizes (e.g., $S_{\min} = 1\text{B}$, $S_{\max} = 2\text{B}$).
 163

164 We partition the overall parameter space
 165

$$S = \{\boldsymbol{\theta} : |\boldsymbol{\theta}| \in [S_{\min}^{(i)}, S_{\max}^{(i)}]\}_{i=1}^K$$

168 into K disjoint bins $\{\mathcal{B}_1, \dots, \mathcal{B}_K\}$, each corresponding to a contiguous range of parameter counts.
 169 This stratification ensures balanced coverage across different model sizes. Without such binning,
 170 uniform random sampling tends to under-represent very small and very large models.
 171

172 We now delineate our constrained evolutionary search procedure.
 173

174 **Evolutionary search with constraint enforcement.** Within each bin \mathcal{B}_i , we perform an evolutionary
 175 search over candidate sub-network architectures $\mathcal{A}(\boldsymbol{\theta})$. At each iteration, candidate architectures
 176 are sampled and evaluated according to a fitness function $f(\mathcal{A})$. To enforce the bin constraint, we
 apply *rejection sampling*:
 177

$$\mathcal{A} \leftarrow \begin{cases} \mathcal{A}, & \text{if } |\boldsymbol{\theta}_{\mathcal{A}}| \in \mathcal{B}_i, \\ \text{reject}, & \text{otherwise} \end{cases}$$

180 Only candidates satisfying $|\boldsymbol{\theta}_{\mathcal{A}}| \in \mathcal{B}_i$ are retained for further evolution.
 181

182 After convergence, we return the set of small language models (SLMs)
 183

$$\mathcal{A}_i^* = \arg \max_{|\boldsymbol{\theta}_{\mathcal{A}}| \in \mathcal{B}_i} f(\mathcal{A}),$$

185 that achieve the most favorable initialization for subsequent pretraining or distillation. These selected
 186 SLMs represent the optimal sub-network architectures within the specified parameter range.
 187

188 The overall procedure is summarized in Algorithm 1 (Appendix C.2). Within each parameter-size bin,
 189 we initialize a population of sub-network candidates drawn from the constrained search space. At each
 190 epoch, candidates are evaluated by perplexity and the top- k elites are retained. Genetic operators—
 191 **mutation** and **crossover**—then generate offspring subject to bin constraints, while additional random
 192 samples encourage exploration. The next population is formed by selecting the N best candidates
 193 among elites, offspring, and random samples. After T epochs, the best-performing sub-network in
 194 each bin is returned, with mutation and crossover formally defined below.
 195

196 **Mutation.** Given a candidate architecture \mathcal{A} , we define a mutation operator $\mu(\mathcal{A})$ that perturbs one
 197 architectural dimension at a time. Specifically, we uniformly sample a dimension
 198

$$x \in \{l, e, h, g, d, h_s\},$$

199 where l denotes the number of layers, e the embedding dimension, h the number of attention heads, g
 200 the number of query groups, d the intermediate (feedforward) dimension, and h_s the per-head size.
 201

202
 203 **Mutation in layer-wise search space.** In *layer-wise* search spaces, architectural attributes
 204 (h, g, d, h_s) are defined independently for each layer. A mutation of the layer count $l \rightarrow l'$ is
 205 handled as follows:
 206

$$\mathcal{A}' = \begin{cases} \mathcal{A} \cup \text{newly sampled}(l' - l) \text{ layers}, & \text{if } l' > l, \\ \mathcal{A} \setminus \text{last } (l - l') \text{ layers}, & \text{if } l' < l \end{cases}$$

210 If $x \in \{h, g, d, h_s\}$, we first sample a layer index $i \sim \text{Uniform}\{1, \dots, l\}$, then resample the chosen
 211 dimension for that layer:
 212

$$x'_i \sim \text{Uniform}\{\text{choices}(x)\}$$

213 Where $\text{choices}(x)$ denotes the valid choices for an architectural attribute x defined by a search space.
 214 All other architectural parameters remain fixed.
 215

216 In the *fine-grained* setting, mutations operate at the neuron level. For instance, mutating the embedding
 217 dimension $e \rightarrow e'$ corresponds to
 218

219 if $e' > e$: sample $(e' - e)$ new neurons; if $e' < e$: prune the last $(e - e')$ neurons.

220 This formulation enables smooth exploration of architectures across both coarse (layer-wise) and
 221 fine-grained structural variations, while maintaining consistency with the model size constraint.
 222
 223

224 **Crossover.** To produce a child architecture from two parents, P_1 and P_2 , we apply a crossover
 225 operator $\chi(P_1, P_2)$. We first require both parents to share the same number of layers:
 226

$$l_{P_1} = l_{P_2} = l$$

228 Let the architectural dimensions of each parent be
 229

$$P_1 = (e_1, h_1, g_1, h_{s,1}, d_1), \quad P_2 = (e_2, h_2, g_2, h_{s,2}, d_2),$$

231 where e , h , g , h_s , and d denote the embedding dimension, number of attention heads, number of
 232 query groups, head size, and intermediate dimension, respectively.
 233

A child architecture c is then generated by independently inheriting each dimension from one of the
 two parents:
 234

$$x_c = \begin{cases} x_1, & \text{with probability 0.5,} \\ x_2, & \text{with probability 0.5,} \end{cases} \quad \text{for each } x \in \{e, h, g, h_s, d\}$$

238 For example, a valid crossover outcome might be
 239

$$c = (e_2, h_1, g_2, h_{s,2}, d_1)$$

241 This independent dimension-wise crossover enables fine-grained recombination of architectural traits
 242 while preserving structural compatibility (e.g., layer count consistency) between parents.
 243

244 2.3 SLM PRETRAINING AND DISTILLATION

246 **Sub-network Extraction.** Our constrained evolutionary search Algorithm 1 (Appendix C.2), re-
 247 turns a sub-network configuration s_b , for every parameter bin b . Given this sub-network configuration,
 248 we extract the smaller language model corresponding to this configuration from the larger base model
 249 we perform search on. We then convert this extracted sub-network into a dense language model
 250 with the corresponding architecture. This is then the SLM that we use in our pretraining pipeline,
 251 optimizing the standard token-level cross entropy, language modeling loss.

252 **Knowledge Distillation.** Model distillation (Hinton et al., 2015), or knowledge distillation, com-
 253 presses a large *teacher* model into a smaller *student* network that achieves similar performance with
 254 fewer resources. Instead of training solely on hard labels, the student leverages *soft labels* from the
 255 teacher, obtained via temperature-scaled softmax:

$$p_i^{(T)}(z) = \frac{\exp\left(\frac{z_i}{T}\right)}{\sum_j \exp\left(\frac{z_j}{T}\right)}, \quad (1)$$

259 where $z = [z_1, z_2, \dots, z_n]$ are logits and $T > 0$ is the temperature. The student parameters $\hat{\mathbf{w}}_\theta$ are
 260 optimized with a loss combining hard-label cross-entropy and distillation:
 261

$$\mathcal{L} = \alpha \mathcal{L}_{\text{CE}}(\mathbf{y}, \mathbf{s}) + \beta \mathcal{L}_{\text{D}}(p_t, p_s), \quad (2)$$

263 where $\alpha, \beta \in [0, 1]$, and p_t and p_s are the teacher and student logit distributions, respectively. In our
 264 setting, \mathcal{L}_{D} is the forward KL divergence,
 265

$$\mathcal{L}_{\text{D}} = \sum_i p_{t_i}^{(T)} \log \frac{p_{t_i}^{(T)}}{p_{s_i}^{(T)}}, \quad (3)$$

268 encouraging the student distribution $p_s^{(T)}$ to match the teacher's softened distribution $p_t^{(T)}$. In our
 269 final knowledge-distillation setup, we use equation 5, with \mathcal{L}_{D} , corresponding to the forward-kl
 divergence depicted in equation 3.

270 **Top- k Logit Distillation.** We define a variant of knowledge distillation that truncates the teacher
 271 distribution to its k most salient outputs. Let $z_t, z_s \in \mathbb{R}^C$ denote the teacher and student logits, respec-
 272 tively, and T the temperature parameter. The teacher distribution is given by $p_t = \text{softmax}(z_t/T)$.
 273 We denote by $\mathcal{K} \subset \{1, \dots, C\}$ either the indices of the top- k logits of z_s , or a subset sampled from
 274 p_t . The distillation loss is then **defined as**:

$$\mathcal{L}_{\text{top-}k} = \sum_{i \in \mathcal{K}} \text{KL} \left(\text{softmax} \left(\frac{z_t^{(i)}}{T} \right) \parallel \text{softmax} \left(\frac{z_s^{(i)}}{T} \right) \right). \quad (4)$$

279 3 WHITTLE: A LIBRARY FOR SLM PRE-TRAINING AND DISTILLATION

280 Recent **model** releases such as LLaMA 3.1–8B, LLaMA 3.2–1B, and LLaMA 3.2–3B² leverage
 281 pruning and distillation to produce smaller variants, but their training recipes and code are closed-
 282 source, hindering reproducibility. Similarly, Minitron (Muralidharan et al., 2024) outlines best
 283 practices for SLM pretraining, but its implementation³ is not readily generalizable across model
 284 families.

285 To address this gap, we present **whittle**, a fully open-source library that provides a reproducible,
 286 general-purpose pipeline for extracting and pretraining SLMs directly from Hugging Face models.
 287 Whittle supports a range of functionalities to allow for flexible search space design, sub-network
 288 search, extraction, pretraining and knowledge distillation. In this section, we outline the core
 289 functionalities of **whittle** and its API design:

290 **set_sub_network()**. Given a pretrained decoder-only LLM from **litgpt**, we first convert it into
 291 a **whittle** model to enable flexible sub-network extraction. To evaluate a sub-network using the
 292 **whittle** model, we dynamically activate only structured components of the LLM associated with
 293 that sub-network using the **set_sub_network()** API (Listing 4). It allows the user to explicitly set
 294 architectural parameters of the sub-network, such as embedding dimension, intermediate size, number
 295 of heads, layers, query groups, and head size, as well as indices for sampled neurons, layers, and
 296 heads. Importantly, it allows to vary the number of heads, head size, intermediate size, and query
 297 groups across layers. This function is a core utility in **whittle**, supporting downstream procedures
 298 such as search, pretraining, and distillation.

299 **search()**. The **search()** API (Listing 2, Appendix F) constructs a **whittle** super-network from a
 300 base HuggingFace model and facilitates automated sub-network selection. It supports evolutionary
 301 strategies as well as algorithms from **syne-tune** (Salinas et al., 2022)⁴, and performs constrained
 302 search across parameter bins via rejection sampling. Each candidate sub-network is instantiated
 303 through **set_sub_network()** and evaluated on a task-specific metric, such as perplexity, to guide the
 304 search process.

305 **convert_subnet_to_litgpt_model()**. The **convert_subnet_to_litgpt_model()** function
 306 (Listing 3, Appendix F) transforms a selected sub-network configuration into a standalone GPT
 307 model within the **litgpt** framework. Given a super-network and a dictionary specifying architectural
 308 configurations (e.g., embedding dimension and number of heads), this utility extracts the correspond-
 309 ing sub-network and instantiates it as an independent GPT model. The resulting model can then be
 310 employed for downstream tasks such as pretraining, fine-tuning, or distillation.

312 **pretrain()**. The **pretrain()** function (Listing 1, Appendix F) enables pretraining of a sub-
 313 network initialized from a checkpointed GPT model. Given the model weights, a configuration
 314 file describing the sub-network architecture, and a target dataset, this utility restores the model and
 315 resumes training from the specified state.

316 **distill()**. The **distill()** function (Listing 5, Appendix F) supports knowledge distillation from
 317 a larger teacher model into a sub-network extracted from a checkpoint. Given a teacher model, sub-
 318 network configuration, and a target dataset, this utility trains the sub-network under the supervision of
 319 a specified teacher (e.g., **EleutherAI/pythia-12b**). Different distillation objectives (e.g., forward
 320 KL divergence) and constraints such as top- k token selection are supported.

322 ²<https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>

323 ³<https://github.com/NVIDIA-NeMo/NeMo/tree/main>

324 ⁴<https://github.com/syne-tune/syne-tune>

324
325
326
327Table 1: Search space configurations for different model families. Here, e denotes embedding dimension, h the number of attention heads, h_s the head size, l the number of layers and d the MLP dimension328
329
330
331
332
333
334

Base Model	e	h	h_s	l	d
EleutherAI/pythia-6.9b	[1, 4096]	[1, 32]	{4, 6, 8, ..., 128}	[1, 32]	[1, 16384]
EleutherAI/pythia-12b	[1, 5120]	[1, 40]	{4, 6, 8, ..., 128}	[1, 36]	[1, 20480]

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4 EXPERIMENTS

Our study focuses on the Pythia (Biderman et al., 2023) family of models, which span sizes from 14M to 12B parameters; in particular, we use the 6.9B and 12B variants. Importantly, the modular design of our framework ensures that the methodology is readily applicable to any large language model supported by litgpt⁵.

Our experiments are organized around three core components: (a) sub-network search, (b) pretraining of small language models (SLMs), and (c) distillation into SLMs. For each component, we outline the setup, present results, and highlight key insights. We now discuss them in turn.

4.1 SEARCH SPACE DEFINITIONS

Table 1 summarizes the search spaces for Pythia-6.9B and Pythia-12B, listing the allowable values for each transformer dimension. In the *coarse layer-wise* and *fine-grained layer-wise* settings, h , h_s , and d are sampled independently at each layer. The *fine-grained* spaces extend this further with neuron-level sampling within each dimension, as detailed in Section 2.1. The size of each of the search spaces is listed in Table 16 (Appendix H).

4.2 EVOLUTIONARY SEARCH FOR OPTIMAL SLMs

Search Setup We apply Algorithm 1 (Appendix C.2) to conduct evolutionary search over parameter bins in Pythia-6.9B and Pythia-12B, considering the *coarse uniform*, *coarse layer-wise*, *fine-grained uniform*, and *fine-grained layer-wise*⁶ search spaces from Section 2.1. We use perplexity on wikitext (Merity et al., 2017) as selection metric, with mutation and crossover probabilities fixed at 0.2. For Pythia-6.9B and -12B, we define three bins with parameter counts of 385M–426M (bin-1), 961M–1.06B (bin-2), and 2.64B–2.91B (bin-3), centered at 5% of Pythia-410M, Pythia-1B, and Pythia-2.8B, respectively⁷. Each evolutionary run proceeds for 100 epochs, with results in the fine-grained layer-wise setting reported at the final epoch before rejection sampling becomes infeasible due to the combinatorial growth of the search space.

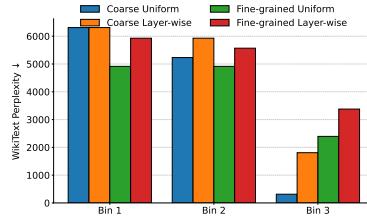


Figure 3: Best perplexity after evolutionary search based on perplexity for different search spaces.

Results Discussion. Figure 3 reports the perplexity of pruned sub-networks from Pythia-6.9B across bin-1, bin-2, and bin-3 under different search spaces on the wikitext test set. Note that these sub-networks are evaluated without any further pretraining or finetuning. We observe that searches constrained to the smaller *coarse uniform* and *coarse layer-wise* spaces generally yield more effective sub-networks.

⁵<https://github.com/Lightning-AI/litgpt/>

⁶In the fine-grained spaces, h , h_s , and d are sampled independently at each layer, with additional neuron-level sampling within each dimension. See Section 2.1 for details.

⁷The bins were computed based on the *exact* number of parameters in the Pythia models

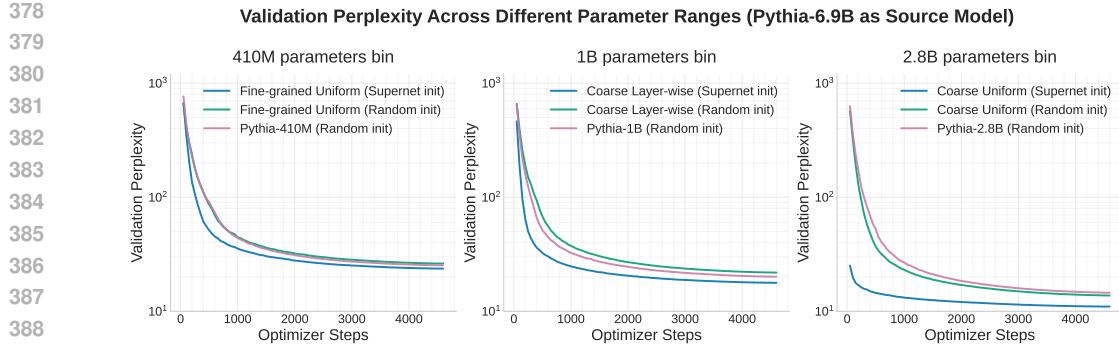


Figure 4: **Pretraining** Validation perplexity of the best sub-networks from each search space and the bin-center Pythia models (410M, 1B, 2.8B), all trained for 10B tokens with cross-entropy loss. Sub-networks are extracted from the Pythia-6.9B base model.

4.3 PRETRAINING OF SLMs

Pretraining Setup. We perform pretraining of our models on the **Nemotron-CC** dataset (Su et al., 2025). For each parameter bin and search space, we first conduct a set of low-fidelity experiments with a 2B-token budget to identify the most promising sub-network in each search space. Concretely, this involves evaluating the best candidate architecture for every bin across all four search spaces, resulting in $3(\text{bins}) \times 4(\text{search spaces}) = 12$ low-fidelity runs. We then select the top-ranked architecture from each bin (three architectures in total) and perform larger-scale pretraining with a 10B-token budget on **Nemotron-CC**. All models are trained with the standard next-token prediction objective using cross-entropy loss.

Results and Discussion. Figure 4 presents the pretraining results. We compare pretraining of the extracted best sub-network (*Supernet-init*) against two baselines: (i) *Random-init*, where the same architecture is trained with *random initialization* and a 10B-token budget, and (ii) the original Pythia model (center of the bin), also trained with *random initialization* and the same budget. Across parameter bins, initializing from the supernet yields consistent improvements in validation perplexity. Notably, the gains are most pronounced for bin-3, indicating that supernet initialization is particularly beneficial in higher-parameter regimes, where our model achieved the same validation perplexity with **5.16** \times fewer FLOP. Results for a token-budget of 100B can be found in Appendix J.

4.4 DISTILLATION OF SLMs

Distillation Setup. To further accelerate convergence, we distill knowledge from Pythia-6.9B and Pythia-12B teacher models. As described in Section 2, training is performed with a weighted combination of forward-KL divergence and cross-entropy loss (0.8 and 0.2, respectively). For computational efficiency, we apply top- k logits distillation with $k = 1024$ and a distillation temperature of 0.9. For distillation, we select the best architectures from every bin, determined by pretraining for a small token budget of 2B tokens in Section 4.3, and train it with a larger token budget of 10B tokens with the distillation loss function on **Nemotron-CC**. When training a sub-network with distillation loss, we use the same model for the teacher as the one that the sub-network was extracted from (a sub-network extracted from Pythia-6.9B uses the Pythia-6.9B as the teacher model as well).

Results and Discussion. Figure 5 illustrates the effect of distillation. We find that distillation consistently improves perplexity in both bin-1 and bin-2, with the model in bin-2. We also report the performance of distilled models on downstream tasks in Table 14 in Appendix D.

4.5 EVALUATION ON DOWNSTREAM TASKS

Evaluation Setup. We evaluate our pretrained and distilled sub-networks on different common-sense and question-answering type tasks. Specifically, we evaluate 0-shot performance on copa, lambada_openai, and winogrande, 5-shot performance on MMLU, and 10-shot performance on arc-easy, arc_challenge, piqa, and hellaswag. We report accuracy for copa, lambada_openai,

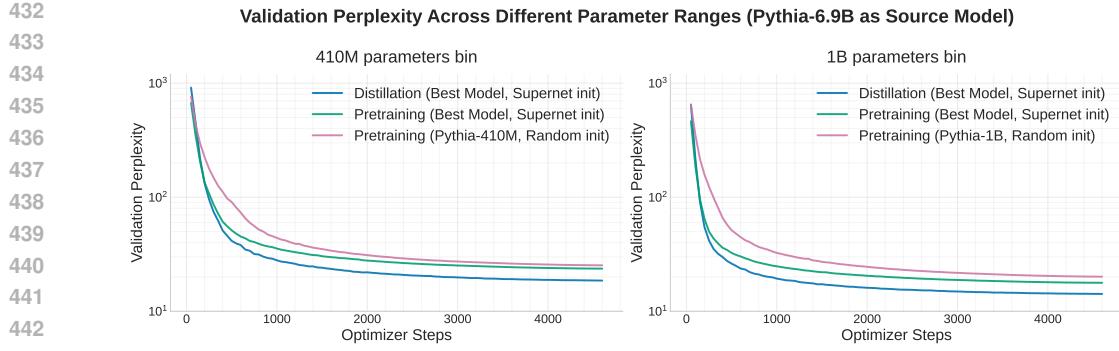


Figure 5: **Distillation:** Comparison of validation perplexity for models trained with distillation loss v/s cross entropy loss. All sub-networks are extracted from Pythia-6.9B as a base model and trained for 10B tokens

Base Model	Initialization	#Params	COPA	Lambada-OpenAI	Winogrande	MMLU	PIQA	ARC-challenge	ARC-easy	HellaSwag	Avg-acc	PPL-Nemotron-cc
Pythia-6.9B	Random Init	389M	59.00	18.51	51.14	26.43	63.87	24.74	46.80	31.28	37.77	26.20
	Supernet Init	389M	61.00	24.02	51.54	26.35	65.34	24.57	51.38	33.11	39.33	23.66
Pythia-12B	Random Init	407M	57.00	14.87	50.67	26.33	61.64	23.97	42.47	29.76	36.06	29.57
	Supernet Init	407M	63.00	18.37	52.09	25.99	62.73	23.55	46.42	30.91	37.50	27.33
Pythia-410M*	Random Init	405M	62.00	19.54	50.67	25.54	64.14	24.57	47.35	32.70	38.42	25.29
Pythia-6.9B	Random Init	1.04B	64.00	23.36	51.54	26.62	65.78	27.13	51.80	36.83	40.22	21.84
	Supernet Init	1.04B	66.00	38.52	51.46	26.09	69.26	30.12	63.51	45.20	43.74	17.77
Pythia-12B	Random Init	1.04B	63.00	23.33	50.51	26.14	66.76	26.36	53.74	36.65	39.32	21.21
	Supernet Init	1.04B	64.00	27.56	51.77	26.19	66.54	26.45	53.96	36.42	40.88	20.77
Pythia-1B*	Random Init	1.01B	64.00	25.67	52.41	25.20	66.00	28.24	56.14	38.23	41.06	20.11
Pythia-6.9B	Random Init	2.91B	61.00	26.49	52.10	26.39	67.74	28.33	57.83	41.12	41.31	13.75
	Supernet Init	2.91B	66.00	50.16	56.91	26.45	72.69	33.87	67.09	53.40	47.41	10.99
Pythia-12B	Random Init	2.91B	67.00	27.32	50.36	25.25	67.85	27.65	57.79	40.58	41.73	13.26
	Supernet Init	2.91B	69.00	41.76	51.46	26.20	70.57	28.67	61.99	45.98	44.47	11.71
Pythia-2.8B*	Random Init	2.78B	68.00	24.51	53.03	25.74	67.68	25.34	46.67	39.11	40.55	14.54

Table 2: Evaluation of sub-networks extracted from Pythia-6.9B and Pythia-12B after pretraining on 10B tokens. A Pythia model of comparable size is also trained on the same budget with random initialization to serve as a baseline (indicated with *). Reported numbers are metrics as defined in Section 4.5 (%).

winogrande, MMLU and length normalized accuracy for piqa, arc_easy, arc_challenge and hellaswag. We use lm-eval-harness⁸ to perform evaluation on downstream tasks.

Results Discussion. Table 2 reports average downstream accuracies for our best sub-networks in each parameter bin pretrained with a 10B-token budget. For comparison, we also include Pythia-410M, 1B, and 2.8B models trained with the same budget. Across all bins, Supernet-init outperforms both Random-init (for the same extracted architecture) and the original Pythia architectures (bin centers). Furthermore, sub-networks extracted from the smaller base model (Pythia-6.9B) consistently outperform those from the larger base (Pythia-12B). We present results of our distilled models on downstream tasks in Table 14.

5 ABLATIONS

In this section, we conduct ablation studies to examine the effect of four key factors in our framework: (a) the choice of search space, (b) the loss function used for distillation, (c) the performance metric employed during search.

Granularity of Search Spaces. Figure 6 illustrates the effect of varying search space granularity. We find that different bins benefit from distinct choices: for bin-1, *fine-grained uniform* search space is optimal; for bin-2, *coarse layer-wise* performs best; and for bin-3, *coarse uniform* yields the strongest results.

Full logits vs. top-k logits. In our distillation experiments in Section 4, following (Team et al., 2025), we use top-k logit based distillation. Here, we ablate this choice for the distillation loss by

⁸<https://github.com/EleutherAI/lm-evaluation-harness>

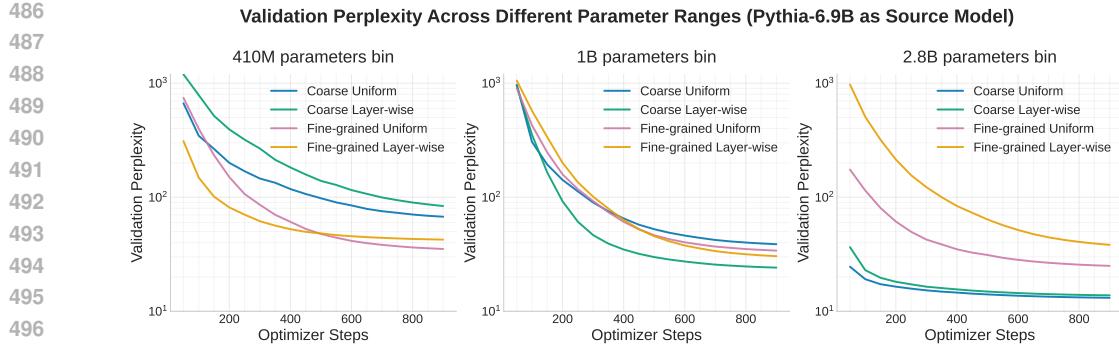


Figure 6: Validation perplexity of the best models from each search space found via evolutionary search. All models are initialized with Pythia-6.9B weights and trained for 2 billion tokens. Within each bin, the models’ parameter counts fall within a $\pm 5\%$ range of that bin’s target size.

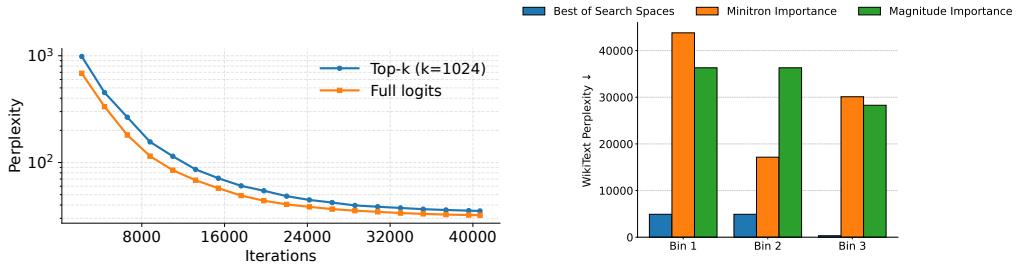


Figure 7: Full vs. top- k logit distillation.

Figure 8: Comparison of search guided by importance metrics and perplexity. We report results in the best search space for each bin.

comparing supervision from the full teacher distribution against a truncated variant using only the top- k logits (Figure 7). This isolates how much of the teacher’s probability mass is required for effective transfer. We find that, in general, *distilling from the full-logit distribution yields a lower perplexity*.

Metric for Searching sub-networks. Finally, in Figure 8, we evaluate different search metrics. Specifically, we compare activation-based importance scores (as in Minitron (Muralidharan et al., 2024)) and weight-magnitude scores (Han et al., 2015) against directly optimizing for perplexity in our setup. **We define the details of the importance score computation procedure, i.e. the metric guiding the search, in Appendix D.** All searches are run with for 100 epochs. We find that perplexity-based search consistently achieves lower perplexity than proxy metrics, suggesting that importance and magnitude scores are less reliable indicators of sub-network quality.

6 CONCLUSION

We present a principled framework for initializing small language models (SLMs) by extracting sub-networks from a larger pre-trained teacher network. Our experiments demonstrate that this approach accelerates the overall pre-training process of SLMs by up to $9.2\times$ compared to baseline SLM models of similar size. To select the sub-network, we employ a constrained evolutionary search strategy that identifies optimal candidates based on validation performance. Further, we analyze four different search spaces of increasing granularity and demonstrate that for the larger variants of SLMs, the least granular search space (*coarse uniform*) yields the best model. The smaller variants, however, benefit from more granular search spaces such as *fine-grained uniform* and *coarse layer-wise*.

For future work, we aim to derive scaling laws to better understand the impact of improved initialization strategies as model and data scales increase. Additionally, we plan to investigate the effect of teacher model choice on student performance, particularly in domain-specific settings. For example, it remains an open question whether a multilingual teacher provides advantages over an English-only teacher when training a monolingual student model.

540 REFERENCES
541

542 L. B. Allal, A. Lozhkov, E. Bakouch, G. M. Blázquez, G. Penedo, L. Tunstall, A. Marafioti, H. Ky-
543 dliček, A. P. Lajarín, V. Srivastav, J. Lochner, C. Fahlgren, X. Nguyen, C. Fourrier, B. Burtenshaw,
544 H. Larcher, H. Zhao, C. Zakka, M. Morlon, C. Raffel, L. von Werra, and T. Wolf. Smollm2:
545 When smol goes big – data-centric training of a small language model. In *Second Conference on
546 Language Modeling*, 2025. URL <https://openreview.net/forum?id=3JiC12A14H>.

547 Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
548 pruning for large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
549 volume 38, pages 10865–10873, 2024.

550 S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O'Brien, E. Hallahan, M. A. Khan,
551 S. Purohit, S. Prashanth, E. Raff, et al. Pythia: A suite for analyzing large language models across
552 training and scaling. In *International Conference on Machine Learning (ICML'23)*, 2023.

553 H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize it for
554 efficient deployment. In *International Conference on Learning Representations (ICLR'20)*, 2020.

555 Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
556 Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. *Advances in neural
557 information processing systems*, 33:15834–15846, 2020.

558 Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Dr{nas}:
559 Dirichlet neural architecture search. In *International Conference on Learning Representations*,
560 2021. URL <https://openreview.net/forum?id=9FWas6YbmB3>.

561 Hexuan Deng, Wenxiang Jiao, Xuebo Liu, Jing Li, Min Zhang, and Zhaopeng Tu. Drpruning: Efficient
562 large language model pruning through distributionally robust optimization. In *Proceedings of the
563 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
564 pages 29152–29173, 2025.

565 Shrey Desai, Hongyuan Zhan, and Ahmed Aly. Evaluating lottery tickets under distributional shifts.
566 *EMNLP-IJCNLP 2019*, page 153, 2019.

567 Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In
568 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages
569 1761–1770, 2019.

570 Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
571 search via lamarckian evolution. In *International Conference on Learning Representations*, 2019a.
572 URL <https://openreview.net/forum?id=ByME42AqK7>.

573 Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. *Journal
574 of Machine Learning Research*, 20(55):1–21, 2019b.

575 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
576 networks. In *International Conference on Learning Representations*, 2018.

577 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
578 lottery ticket hypothesis. *arXiv preprint arXiv:1903.01611*, 2019.

579 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
580 one-shot. In *International Conference on Machine Learning*, pages 10323–10337. PMLR, 2023.

581 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
582 efficient neural network. *Advances in neural information processing systems*, 28, 2015.

583 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
584 with pruning, trained quantization and huffman coding. In *4th International Conference on
585 Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
586 Proceedings*, 2016.

594 G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. *arXiv:1503.02531*
 595 [*stat.ML*], 2015.

596

597 Chi-Hung Hsu, Shu-Huan Chang, Jhao-Hong Liang, Hsin-Ping Chou, Chun-Hao Liu, Shih-Chieh
 598 Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Monas: Multi-objective neural
 599 architecture search using reinforcement learning. *arXiv preprint arXiv:1806.10332*, 2018.

600

601 Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
 602 Tinybert: Distilling bert for natural language understanding. In *Findings of the Association for*
 603 *Computational Linguistics: EMNLP 2020*, pages 4163–4174, 2020.

604

605 Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In *Proceedings of the*
 606 *2016 conference on empirical methods in natural language processing*, pages 1317–1327, 2016.

607

608 Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Struc-
 609 tural pruning of pre-trained language models via neural architecture search. *Transactions on*
 610 *Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=XiK8tHDQNX>. Survey Certification, Expert Certification.

611

612 Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In *Advances in Neural*
 613 *Information Processing Systems (NeurIPS)*, pages 598–605, 1990.

614

615 Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Help: hardware-adaptive efficient
 616 latency prediction for nas via meta-learning. In *Proceedings of the 35th International Conference*
 617 *on Neural Information Processing Systems*, pages 27016–27028, 2021.

618

619 Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
 620 Wang, and Yingyan Lin. Hw-nas-bench: Hardware-aware neural architecture search benchmark.
 621 In *The 9th International Conference on Learning Representations 2021 (ICLR 2021)*, 2021.

622

623 Hao Li, Ashish Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
 624 efficient convnets. In *International Conference on Learning Representations (ICLR)*, 2017.

625

626 Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao,
 627 and Weizhu Chen. Super tickets in pre-trained language models: From model compression to
 628 improving generalization. In *Proceedings of the 59th Annual Meeting of the Association for*
 629 *Computational Linguistics and the 11th International Joint Conference on Natural Language*
 630 *Processing (Volume 1: Long Papers)*, pages 6524–6538, 2021.

631

632 H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In *International*
 633 *Conference on Learning Representations (ICLR'19)*, 2019.

634

635 Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
 636 Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm.
 637 In *Proceedings of the genetic and evolutionary computation conference*, pages 419–427, 2019.

638

639 Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti.
 640 Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In *Computer*
 641 *Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,*
 642 *Part I 16*, pages 35–51. Springer, 2020.

643

644 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 645 language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

646

647 Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
 648 hypothesis: Pruning is all you need. In *International Conference on Machine Learning*, pages
 649 6682–6691. PMLR, 2020.

650

651 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
 652 ture models. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=Byj72udxe>.

648 Meta AI. LLaMA 3.2: Revolutionizing edge ai and vision with open, customizable models. <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>, September 25 2024. Accessed: 2025-08-20.

649

650

651

652 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for neural network pruning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11264–11272, 2019.

653

654

655 Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers. *Advances in neural information processing systems*, 32, 2019.

656

657

658

659 Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostafa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via pruning and knowledge distillation. In *Advances in Neural Information Processing Systems*, volume 37, pages 41076–41102, 2024.

660

661

662

663 Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are winning. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 3208–3229, 2020.

664

665

666

667 Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Aging evolution for image classifier architecture search. In *AAAI conference on artificial intelligence*, volume 2, page 2, 2019.

668

669

670 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In *International Conference of Learning Representations*, 2015.

671

672

673 D. Salinas, M. Seeger, A. Klein, V. Perrone, M. Wistuba, and C. Archambeau. Syne tune: A library for large scale hyperparameter tuning and reproducible research. In *First Conference on Automated Machine Learning (Main Track)*, 2022.

674

675

676 Victor Sanh, L Debut, J Chaumond, and T Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. In *Proceedings of Thirty-third Conference on Neural Information Processing Systems (NIPS2019)*, 2019.

677

678

679

680 S. Schrödi, D. Stoll, B. Ru, R. Sukthanker, T. Brox, and F. Hutter. Construction of hierarchical neural architecture search spaces based on context-free grammars. In *Proceedings of the 37th International Conference on Advances in Neural Information Processing Systems (NeurIPS'23)*, 2023.

681

682

683

684 Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Bin Cui. Proxybo: Accelerating neural architecture search via bayesian optimization with zero-cost proxies. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 9792–9801, 2023.

685

686

687

688

689 Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostafa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common crawl into a refined long-horizon pretraining dataset. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 2459–2475, July 2025. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.123. URL <https://aclanthology.org/2025.acl-long.123/>.

690

691

692

693

694

695 Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Aaron Klein, Lennart Purucker, Jörg K.H. Franke, and Frank Hutter. HW-GPT-bench: Hardware-aware architecture benchmark for language models. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=urJyyMKs7E>.

696

697

698

699

700 Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Samuel Dooley, Josif Grabocka, and Frank Hutter. Multi-objective differentiable neural architecture search. In *The Thirteenth International Conference on Learning Representations*, 2025.

701

702 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 703 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 704 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 705 2024.

706 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 707 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 708 report. *arXiv preprint arXiv:2503.19786*, 2025.

710 H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers for
 711 efficient natural language processing. In *Annual Meeting of the Association for Computational
 712 Linguistics*, 2020a.

713 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 714 attention distillation for task-agnostic compression of pre-trained transformers. In *In Advances in
 715 Neural Information Processing Systems (NeurIPS)*, 2020b.

717 Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
 718 architectures for neural architecture search. In *Proceedings of the AAAI conference on artificial
 719 intelligence*, volume 35, pages 10293–10301, 2021.

720 Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepa
 721 Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. *arXiv preprint
 722 arXiv:2301.08727*, 2023.

724 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
 725 model pre-training via structured pruning. In *The Twelfth International Conference on Learning
 726 Representations*.

727 Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
 728 Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. *CoRR*,
 729 [abs/2402.13116](https://arxiv.org/abs/2402.13116), 2024. URL <https://doi.org/10.48550/arXiv.2402.13116>.

731 A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
 732 J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
 733 L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren, X. Ren,
 734 Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report.
 735 *arXiv:2412.15115 [cs.CL]*, 2025.

736 Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
 737 Understanding and robustifying differentiable architecture search. In *International Conference on
 738 Learning Representations*, 2020.

739 Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
 740 Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In
 741 *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=K9bw7vqp_s.

743 Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for neural
 744 architecture search. In *International conference on machine learning*, pages 7603–7613. PMLR,
 745 2019.

747 Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In *International
 748 Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=r1Ue8Hcxg>.

750

751

752

753

754

755

756 A RELATED WORK
757

758 **Model Pruning.** Pruning is a core approach for compressing neural networks by removing redundant parameters while preserving accuracy. Early work on unstructured magnitude pruning (LeCun et al., 1990; Han et al., 2016) achieved high sparsity with minimal accuracy loss, but offered limited inference benefits on modern hardware. This motivated structured and semi-structured pruning methods that remove neurons, filters, or enforce hardware-friendly sparsity patterns (Li et al., 2017; Zhou et al., 2021; Ma et al., 2023; Frantar and Alistarh, 2023). The Lottery Ticket Hypothesis (LTH) (Frankle and Carbin, 2018) provided a compelling rationale, showing that large networks contain sub-networks (“winning tickets”) that can train in isolation to match full-model performance. Subsequent work examined their generalization across architectures and optimizers (Morcos et al., 2019; Desai et al., 2019), their stabilization and theoretical underpinnings (Frankle et al., 2019; Malach et al., 2020), and their presence in large pretrained language models (Chen et al., 2020; Prasanna et al., 2020; Liang et al., 2021). These advances highlight pruning as a powerful tool for efficient deployment in resource-constrained settings. Central to both pruning and ticket discovery is the design of *importance scores*—criteria based on weight magnitude, gradients, or activations (Molchanov et al., 2019; Frantar and Alistarh, 2023; An et al., 2024) that estimate which components can be removed with minimal loss. However, efficiently scaling such methods to billion-parameter LMs remains a major challenge. Our work addresses this gap by introducing a framework for discovering high-quality sub-networks that is *efficient, scalable, and easily parallelizable*.

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001001
1001002
1001003
1001004
1001005
1001006
1001007
1001008
1001009
10010010
10010011
10010012
10010013
10010014
10010015
10010016
10010017
10010018
10010019
100100100
100100101
100100102
100100103
100100104
100100105
100100106
100100107
100100108
100100109
100100110
100100111
100100112
100100113
100100114
100100115
100100116
100100117
100100118
100100119
100100120
100100121
100100122
100100123
100100124
100100125
100100126
100100127
100100128
100100129
100100130
100100131
100100132
100100133
100100134
100100135
100100136
100100137
100100138
100100139
100100140
100100141
100100142
100100143
100100144
100100145
100100146
100100147
100100148
100100149
100100150
100100151
100100152
100100153
100100154
100100155
100100156
100100157
100100158
100100159
100100160
100100161
100100162
100100163
100100164
100100165
100100166
100100167
100100168
100100169
100100170
100100171
100100172
100100173
100100174
100100175
100100176
100100177
100100178
100100179
100100180
100100181
100100182
100100183
100100184
100100185
100100186
100100187
100100188
100100189
100100190
100100191
100100192
100100193
100100194
100100195
100100196
100100197
100100198
100100199
100100100
100100101
100100102
100100103
100100104
100100105
100100106
100100107
100100108
100100109
100100110
100100111
100100112
100100113
100100114
100100115
100100116
100100117
100100118
100100119
100100120
100100121
100100122
100100123
100100124
100100125
100100126
100100127
100100128
100100129
100100130
100100131
100100132
100100133
100100134
100100135
100100136
10

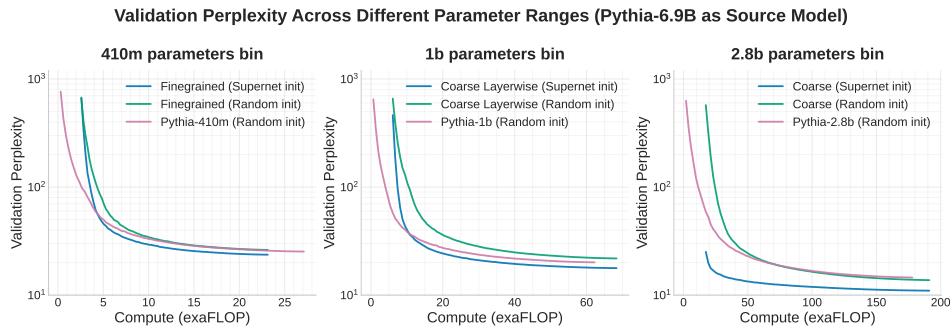


Figure 9: Validation perplexity across different parameter ranges (offset with search cost).

traditional NAS that seeks architectures for direct deployment, we focus on discovering sub-networks that provide strong initializations for efficient pretraining.

SLM Pretraining in Practice. Recent open-source releases often provide families of models ranging from compact Small Language Models (SLMs) to much larger variants. SLMs are especially important for edge deployment, where efficiency and memory are critical. A straightforward way to obtain them is to train models across multiple scales (Biderman et al., 2023), but this is computationally costly. To reduce training demands, recent work instead trains a large base model and extracts smaller ones via pruning and distillation (Muralidharan et al., 2024; Meta AI, 2024; Team et al., 2025), or relies solely on distillation from a larger teacher, as in Gemma-3 (Team et al., 2025). Despite this progress, there remains no principled framework for compute-efficient SLM pretraining. Our work addresses this gap through a systematic study of sub-network extraction and initialization strategies, combined with pipeline designs and loss functions for training high-performing SLMs.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 HYPERPARAMETER CONFIGURATIONS OF EXPERIMENTS

In Tables 4 - 8, we present the hyperparameter settings for all our experiments.

B.2 COMPUTATIONAL COST OF THE EVOLUTIONARY SEARCH

In this section, we provide an overview of the cost overhead introduced by evolutionary search. In each bin, for every search space, we sample and evaluate a total of 5,050 subnetworks during the evolutionary search. For each candidate model, we computed the perplexity on 1,000 sequences of length 512. We approximate the average FLOP of the models in bins 1, 2 and 3 as the FLOPs of Pythia-410M, Pythia-1B, and Pythia-2.8B, since these models serve as the center of the bins. The total computational cost of the search for each search space is reported in Table 9. For comparison, the cost of pretraining the best model found in each bin on 10B tokens is as presented in Table 10. As Tables 9 and 10 indicate, the search phase consumes only a small fraction of the overall pretraining budget.

Revised Cost Savings. We include the cost of the evolutionary search when computing the total cost savings achieved by our method. The updated FLOP-savings factors are reported below in Table 11. Additionally, we include the FLOP-savings factor considering *only* the pretraining budget in Table 12.

Furthermore, in Figure 9, we present the validation perplexity across different parameter ranges, taking the search cost into account.

C ADDITIONAL METHODOLOGICAL DETAILS

864
865
866
867
868
869870 Table 3: Hyperparameters used for the Best Performing Subnets per Bin (Parameter Range) from the
871 Pythia-12B Model

Search Space	Parameter range	Hyperparameter Type	Value
Evolutionary Search Coarse	Bin 1 385M–426M	Model & Data	Model Name: pythia-12b Precision: bf16-mixed Dataset: Nemotron-CC
		Optimizer & Regularization	Optimizer: AdamW Learning Rate: 3×10^{-4} Min Learning Rate: 3×10^{-5} Weight Decay: 0.01 AdamW β_1, β_2 : 0.9, 0.95 Gradient Clipping Norm: 1.0
		Training & Batching	Total Training Tokens: 50B Global Batch Size: 1056 Micro Batch Size: 8 LR Warmup Steps: 0 Max Sequence Length: 2048 Seed: 42
		Model & Data	Model Name: pythia-12b Precision: bf16-mixed Dataset: Nemotron-CC
		Optimizer & Regularization	Optimizer: AdamW Learning Rate: 3×10^{-4} Min Learning Rate: 3×10^{-5} Weight Decay: 0.01 AdamW β_1, β_2 : 0.9, 0.95 Gradient Clipping Norm: 1.0
		Training & Batching	Total Training Tokens: 50B Global Batch Size: 1056 Micro Batch Size: 8 LR Warmup Steps: 0 Max Sequence Length: 2048 Seed: 42
	Bin 2 Coarse Layerwise	Model & Data	Model Name: pythia-12b Precision: bf16-mixed Dataset: Nemotron-CC
		Optimizer & Regularization	Optimizer: AdamW Learning Rate: 3×10^{-4} Min Learning Rate: 3×10^{-5} Weight Decay: 0.01 AdamW β_1, β_2 : 0.9, 0.95 Gradient Clipping Norm: 1.0
		Training & Batching	Total Training Tokens: 50B Global Batch Size: 1056 Micro Batch Size: 8 LR Warmup Steps: 0 Max Sequence Length: 2048 Seed: 42
		Model & Data	Model Name: pythia-12b Precision: bf16-mixed Dataset: Nemotron-CC
		Optimizer & Regularization	Optimizer: AdamW Learning Rate: 1.6×10^{-4} Min Learning Rate: 1.6×10^{-5} Weight Decay: 0.01 AdamW β_1, β_2 : 0.9, 0.95 Gradient Clipping Norm: 1.0
	Bin 3 Coarse	Training & Batching	Total Training Tokens: 50B Global Batch Size: 1056 Micro Batch Size: 16 LR Warmup Steps: 238 Max Sequence Length: 2048 Seed: 42

913
914
915
916
917

Search Space	Parameter range	Hyperparameter Type	Value
Evolutionary Search Finegrained	Bin 1 385M–426M	Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
	Bin 2 961M–1.06B	Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
Evolutionary Search Coarse Layerwise	Bin 3 2.64B–2.91B	Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
	Bin 4 4.03B–4.41B	Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
Evolutionary Search Coarse	Bin 5 4.41B–4.81B	Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
	Bin 6 4.81B–5.21B	Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
		Model & Data	Model Name Precision Dataset
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed

972
 973
 974 Table 5: Hyperparameters used for Distillation Experiments on the Best Performing Subnets per Bin
 975 (Parameter Range) from the Pythia-12B Model

976 Search Space	977 Parameter range	978 Hyperparameter Type	979 Value	
980 Evolutionary Search 981 Coarse	982 Bin 1 983 385M–426M	984 Model & Data	985 Teacher Model 986 Precision 987 Dataset	988 pythia-12b 989 bf16-mixed 990 Nemotron-CC
		991 Optimizer & 992 Regularization	993 Optimizer	994 AdamW
			995 Learning Rate	996 3×10^{-4}
			997 Min Learning Rate	998 3×10^{-5}
		999 Weight Decay	999 0.01	1000
			1001 AdamW β_1, β_2	1002 0.9, 0.95
		1003 Distillation	1004 Gradient Clipping Norm	1005 1.0
			1006 α	1007 0.2
			1008 β	1009 0.8
			1010 Temperature	1011 0.9
1012 Evolutionary Search 1013 Coarse Layerwise	1014 Bin 2 1015 961M–1.06B	1016 Logits	1017 Top-1024	1018
		1019 Model & Data	1020 Total Training Tokens	1021 10B
			1022 Global Batch Size	1023 1056
			1024 Micro Batch Size	1025 2
			1026 LR Warmup Steps	1027 0
			1028 Max Sequence Length	1029 2048
			1030 Seed	1031 42
			1032 Teacher Model	1033 pythia-12b
			1034 Precision	1035 bf16-true
			1036 Dataset	1037 Nemotron-CC
1038 Evolutionary Search 1039 Coarse	1040 Bin 3 1041 2.64B–2.91B	1042 Optimizer & 1043 Regularization	1044 Optimizer	1045 AdamW
		1046 Learning Rate	1047 1.6×10^{-4}	
		1048 Min Learning Rate	1049 1.6×10^{-5}	
		1050 Weight Decay	1051 0.01	
		1052 AdamW β_1, β_2	1053 0.9, 0.95	
		1054 Gradient Clipping Norm	1055 1.0	
		1056 Distillation	1057 α	1058 0.2
			1059 β	1060 0.8
			1061 Temperature	1062 0.9
			1063 Logits	1064 Top-1024
1065 Evolutionary Search 1066 Coarse	1067 Bin 4 1068 3.07B–3.41B	1069 Model & Data	1070 Total Training Tokens	1071 10B
		1072 Global Batch Size	1073 1056	
		1074 Micro Batch Size	1075 4	
		1076 LR Warmup Steps	1077 238	
		1078 Max Sequence Length	1079 2048	
		1080 Seed	1081 42	
		1082 Teacher Model	1083 pythia-12b	
		1084 Precision	1085 bf16-true	
		1086 Dataset	1087 Nemotron-CC	
		1088 Optimizer	1089 AdamW	

1026
1027
1028 Table 6: Hyperparameters used for Distillation Experiments on the Best Performing Subnets per Bin
1029 (Parameter Range) from the Pythia-6.9B Model

1030 Search Space	1031 Parameter range	1032 Hyperparameter Type	1033 Value
		Model & Data	Teacher Model pythia-6.9b Precision bf16-mixed Dataset Nemotron-CC
		Optimizer & Regularization	Optimizer AdamW Learning Rate 3×10^{-4} Min Learning Rate 3×10^{-5} Weight Decay 0.01 AdamW β_1, β_2 0.9, 0.95 Gradient Clipping Norm 1.0
1034 Evolutionary Search 1035 Finegrained	1036 Bin 1 1037 385M–426M	1038 Distillation	1039 α 0.2 1040 β 0.8 1041 Temperature 0.9 1042 Logits Top-1024
		Training & Batching	1043 Total Training Tokens 10B 1044 Global Batch Size 1056 1045 Micro Batch Size 6 1046 LR Warmup Steps 0 Max Sequence Length 2048 Seed 42
		Model & Data	Teacher Model pythia-6.9b Precision bf16-mixed Dataset Nemotron-CC
		Optimizer & Regularization	Optimizer AdamW Learning Rate 3×10^{-4} Min Learning Rate 3×10^{-5} Weight Decay 0.01 AdamW β_1, β_2 0.9, 0.95 Gradient Clipping Norm 1.0
1050 Evolutionary Search 1051 Coarse Layerwise	1052 Bin 2 1053 961M–1.06B	1054 Distillation	1055 α 0.2 1056 β 0.8 1057 Temperature 0.9 1058 Logits Top-1024
		Training & Batching	1059 Total Training Tokens 10B 1060 Global Batch Size 1056 1061 Micro Batch Size 4 1062 LR Warmup Steps 0 Max Sequence Length 2048 Seed 42
		Model & Data	Teacher Model pythia-6.9b Precision bf16-mixed Dataset Nemotron-CC
		Optimizer & Regularization	Optimizer AdamW Learning Rate 1.6×10^{-4} Min Learning Rate 1.6×10^{-5} Weight Decay 0.01 AdamW β_1, β_2 0.9, 0.95 Gradient Clipping Norm 1.0
1066 Evolutionary Search 1067 Coarse	1068 Bin 3 1069 2.64B–2.91B	1070 Distillation	1071 α 0.2 1072 β 0.8 1073 Temperature 0.9 1074 Logits Top-1024
		Training & Batching	1075 Total Training Tokens 10B 1076 Global Batch Size 1056 1077 Micro Batch Size 4 1078 LR Warmup Steps 238 Max Sequence Length 2048 Seed 42

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089

1090 Table 7: Hyperparameters used for Distillation Ablation Experiments on a Subnet from the Pythia-
 1091 6.9B Model using varying Teacher Model Sizes

Search Space	Parameter range	Hyperparameter Type	Value
		Model & Data	Teacher Model Precision Dataset
			pythia-1b bf16-mixed Nemotron-CC
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
Evolutionary Search Finegrained	Bin 1 385M–426M		AdamW 3×10^{-4} 3×10^{-5} 0.01 0.9, 0.95 1.0
		Distillation	α β Temperature Logits
			0.2 0.8 0.9 Top-1024
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
			2B 1056 6 0 2048 42
		Model & Data	Teacher Model Precision Dataset
			pythia-6.9b bf16-mixed Nemotron-CC
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
Evolutionary Search Finegrained	Bin 1 385M–426M		AdamW 3×10^{-4} 3×10^{-5} 0.01 0.9, 0.95 1.0
		Distillation	α β Temperature Logits
			0.2 0.8 0.9 Top-1024
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
			2B 1056 6 0 2048 42

1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142

1143 Table 8: Hyperparameters used for Distillation Ablation Experiments on a Subnet from the Pythia-
 1144 6.9B Model — Top-K vs. Full Logits

Search Space	Parameter range	Hyperparameter Type	Value
		Model & Data	Teacher Model Precision Dataset
			pythia-6.9b bf16-mixed Nemotron-CC
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
			AdamW 3×10^{-4} 3×10^{-5} 0.01 0.9, 0.95 1.0
Evolutionary Search Finegrained	Bin 1 385M–426M	Distillation	α β Temperature Logits
			0.2 0.8 0.9 Top-1024
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
			2B 1056 6 0 2048 42
		Model & Data	Teacher Model Precision Dataset
			pythia-6.9b bf16-mixed Nemotron-CC
		Optimizer & Regularization	Optimizer Learning Rate Min Learning Rate Weight Decay AdamW β_1, β_2 Gradient Clipping Norm
			AdamW 3×10^{-4} 3×10^{-5} 0.01 0.9, 0.95 1.0
Evolutionary Search Finegrained	Bin 1 385M–426M	Distillation	α β Temperature Logits
			0.2 0.8 0.9 Full
		Training & Batching	Total Training Tokens Global Batch Size Micro Batch Size LR Warmup Steps Max Sequence Length Seed
			2B 1056 6 0 2048 42

1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Bin	Search Cost (exaFLOP)
1	2.3
2	5.4
3	15.4

Table 9: Cost of Evolutionary Search for different bins

Bin	Pretraining Cost (exaFLOP)
1	20.9
2	63.3
3	176.6

Table 10: Cost of pretraining the best models in different bins

Bin	FLOP Savings Factor
1	1.71 \times
2	1.75 \times
3	5.16 \times

Table 11: FLOP-saving factors for all bins compared to pretraining the corresponding Pythia architectures.

Bin	FLOP Savings Factor (excluding search cost)
1	2.0 \times
2	2.07 \times
3	9.32 \times

Table 12: FLOP-saving factors for all bins compared to pretraining the corresponding Pythia architectures (without considering the search cost).

C.1 ATTENTION MASKING

The attention mechanism used in transformer blocks naturally supports sub-network extraction. In practice, this means that an attention mechanism can be masked to yield a smaller, distinct type of attention. Figure 11 provides an overview of the main variants—multi-head attention (MHA), multi-query attention (MQA), and grouped-query attention (GQA). Since GQA serves as a super-class of these mechanisms, it can be transformed into either MHA or MQA. An illustration of this transformation is shown in Figure 12.

C.2 EVOLUTIONARY SEARCH ALGORITHM

We present the details of our evolutionary search algorithm in Algorithm 1.

D ADDITIONAL RESULTS

Below, we present additional experimental results. Figure 13 shows the effect of using different teachers for knowledge distillation, Figure 14 shows the evolutionary search trajectory for different parameter bins, with the best perplexity marked in red. Table 14, presents the result of distilled models on downstream tasks. Table 17, provides the results on an extended set of common sense reasoning based downstream tasks.

Figures 15–17 summarize the training behavior of the best models across different settings. The results highlight how architectures extracted from different search spaces (Figure 15), weight initialization strategies (Figure 16), and the use of distillation (Figure 17) affect convergence and final performance.

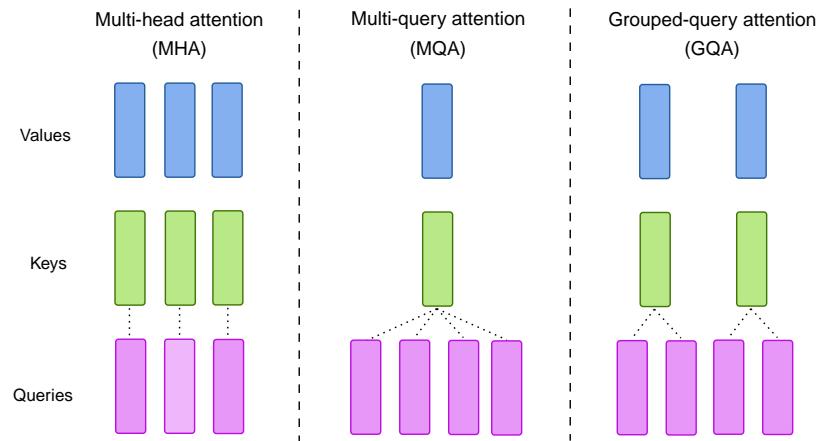
1242
1243
1244
1245
1246
1247

1248 **Whittle: A Library for SLM Extraction and Pretraining**



1250
1251
1252
1253
1254
1255
1256
1257 **Figure 10: An overview of the Whittle library.**

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270



1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287 **Figure 11: An illustration of the different types of attention mechanisms.** In multi-head attention (MHA), each query is paired with its own key and value; in multi-query attention (MQA), multiple queries share a single key–value pair; and in grouped-query attention (GQA), multiple key–value pairs are used, with each pair serving more than one query.

1291
1292
1293
1294
1295

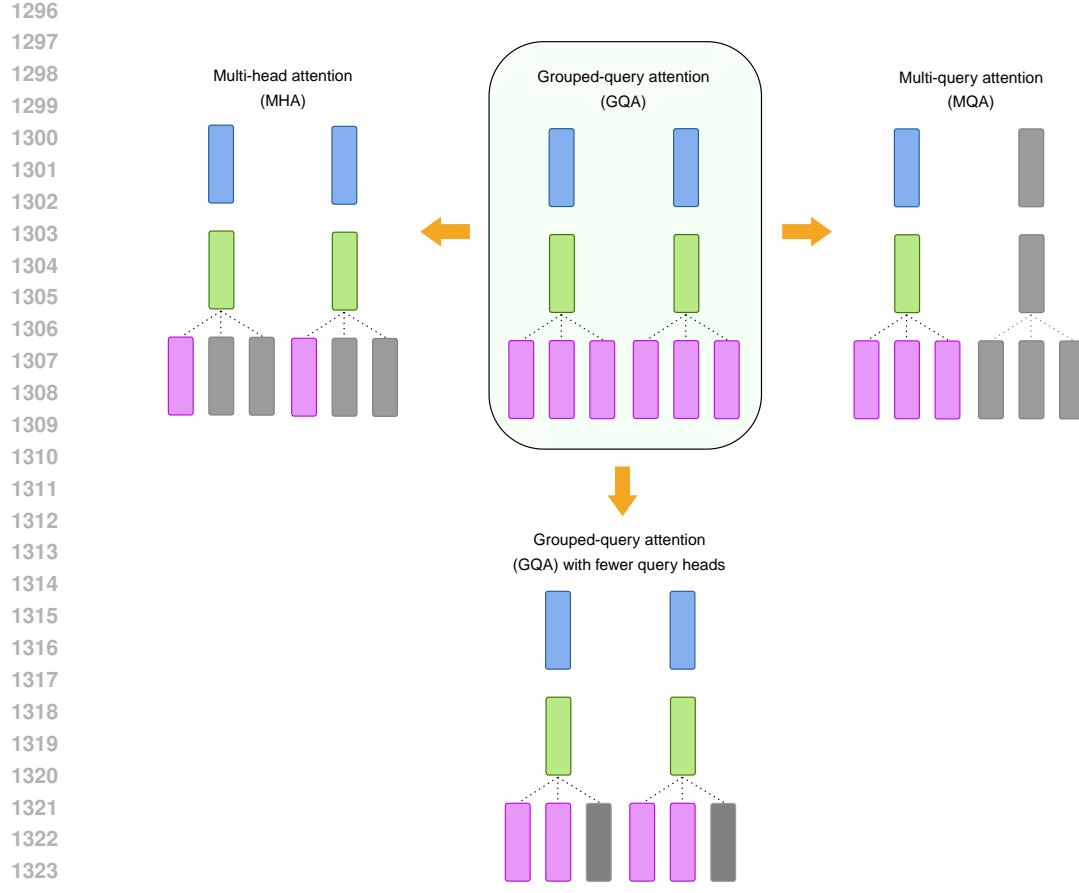


Figure 12: An example of how grouped-query attention (GQA) can be masked to emulate other forms of attention, such as multi-head or multi-query attention. The masked heads are shown in gray. Note that GQA can also be reduced to fewer query heads while preserving the same number of groups.

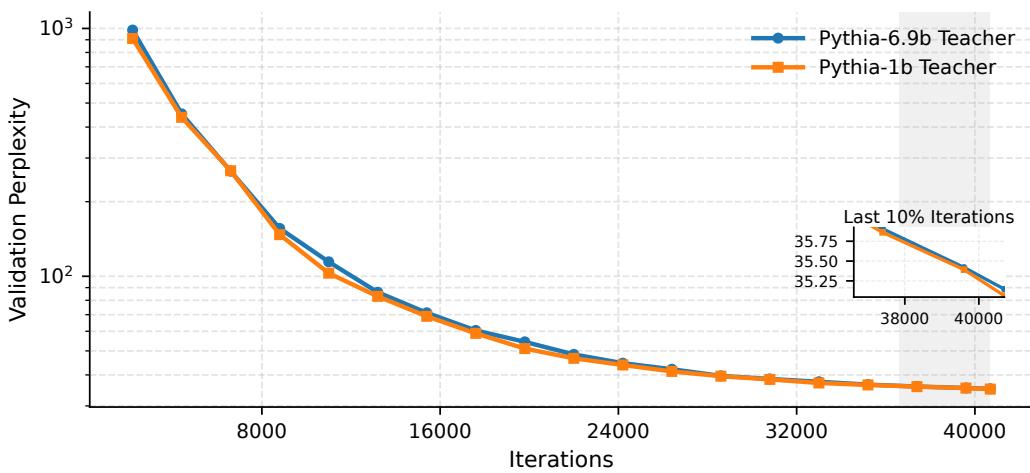
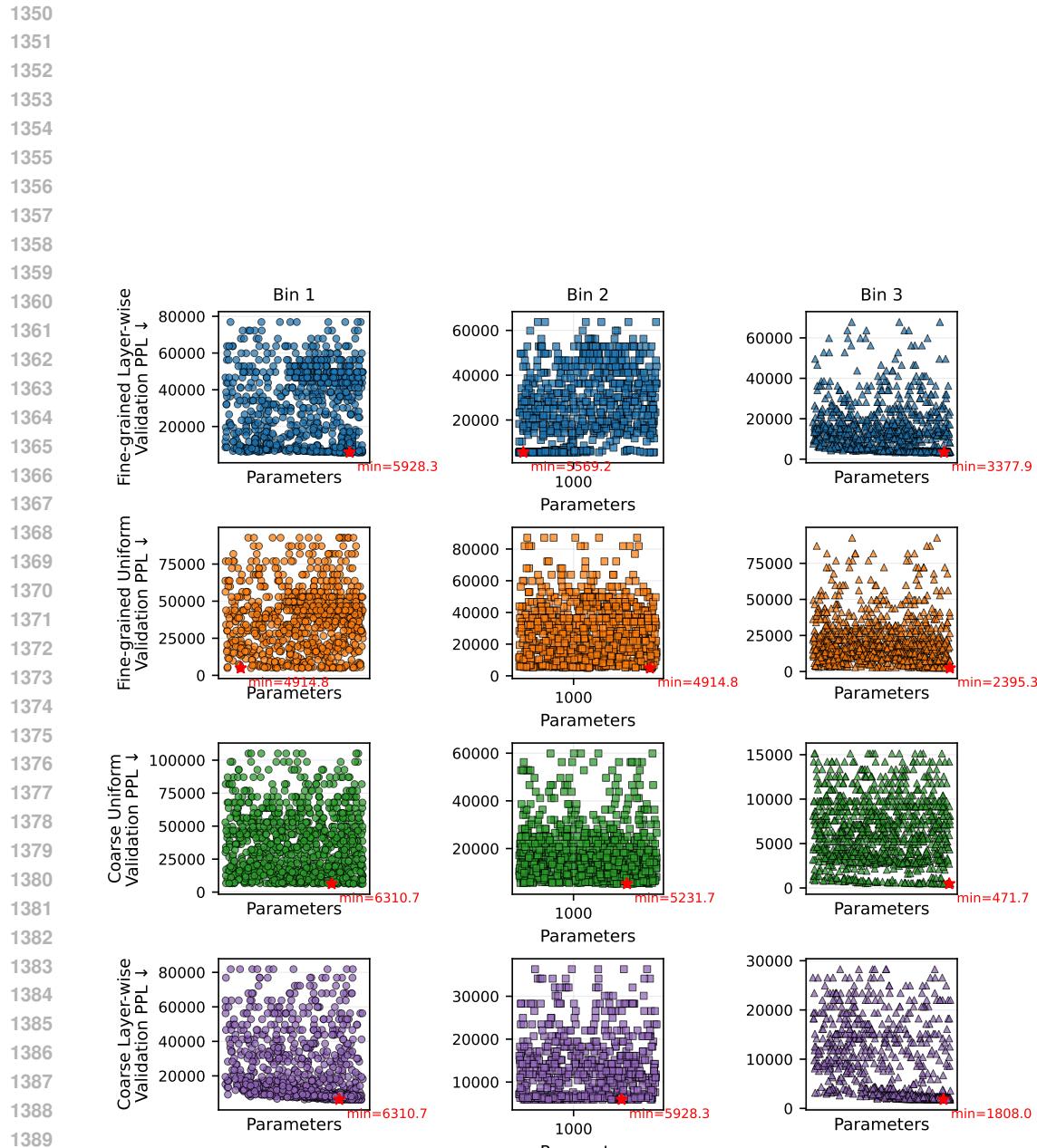


Figure 13: Teacher size vs. student performance with a 2B-token budget. A Pythia-1B teacher achieves validation perplexity 35.06, slightly better than Pythia-6.9B (35.15).



1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

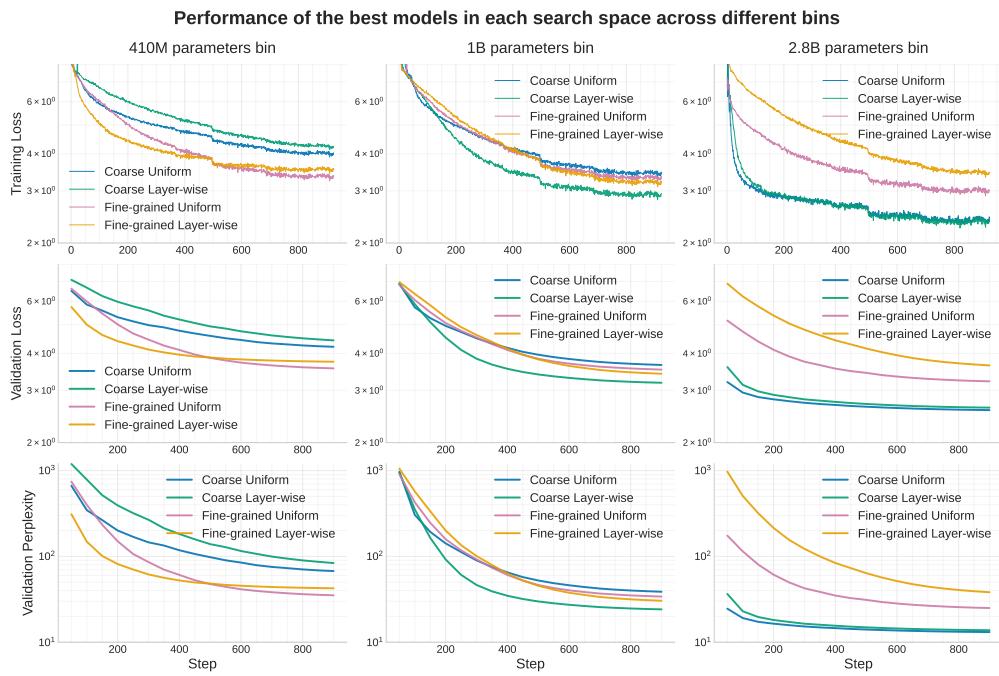


Figure 15: Training curves of the best models from each search space extracted from Pythia-6.9b (trained for 2 billion tokens)

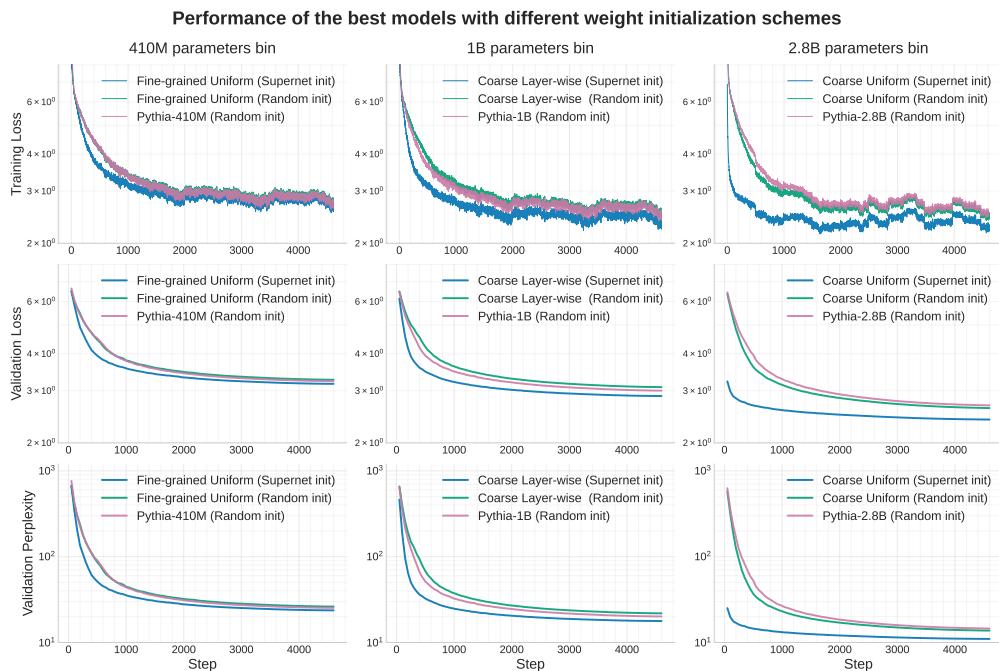


Figure 16: Training curves of the best models found in each bin, initialized with supernet weights as well as random weights. A Pythia model of comparable size is also trained with random initialization in each bin as a baseline. The models are trained with 10 billion tokens.

1458	Base Model	Initialization	#Params	COPA	OpenBookQA	Lambada-OpenAI	Winograde	Social IQA	MMLU-cont.	MMLU	CommonsenseQA	PIQA	ARC-challenge	ARC-easy	HellaSwag	BoolQ	Avg-acc	PPL-Nemotron-cc
1459	Pythia-6.9B	Random Init	389M	59.00	29.20	18.51	51.14	36.59	25.82	26.43	19.41	63.87	24.74	46.80	31.28	58.17	37.77	26.20
		Supernet Init	389M	61.00	30.03	24.02	51.54	38.23	26.21	26.35	18.84	65.34	24.57	51.38	33.11	60.73	39.33	23.66
1460	Pythia-12B	Random Init	407M	57.00	27.80	14.87	50.67	35.93	25.32	26.33	20.48	61.64	23.97	42.47	29.76	52.50	36.06	29.57
		Supernet Init	407M	63.00	27.40	18.37	52.09	37.10	25.90	25.99	21.21	62.73	23.55	46.42	30.91	52.78	37.50	27.33
1461	Pythia-410M	Random Init	405M	62.00	29.60	19.54	50.67	36.49	25.72	25.54	20.15	64.14	24.57	47.35	32.70	61.01	38.42	25.29
		Supernet Init	1.04B	64.00	29.20	23.36	51.54	38.59	26.63	26.62	21.05	65.78	27.13	51.80	36.83	60.36	40.22	21.84
1462	Pythia-6.9B	Random Init	1.04B	66.00	34.60	38.52	51.46	41.04	28.98	26.09	19.81	69.26	30.12	63.51	45.20	53.98	43.74	17.77
		Supernet Init	1.04B	64.00	31.20	27.56	51.77	38.48	27.36	26.19	19.82	66.54	26.45	53.96	36.42	61.65	40.88	20.77
1463	Pythia-1B	Random Init	1.01B	64.00	30.20	25.67	52.41	38.95	26.93	25.20	20.97	66.00	28.24	56.14	38.23	60.83	41.06	20.11
		Supernet Init	2.91B	61.00	30.60	26.49	52.10	39.00	27.60	26.39	19.82	67.74	28.33	57.83	41.12	59.05	41.31	13.75
1464	Pythia-12B	Random Init	2.91B	67.00	28.40	23.33	50.51	37.92	27.05	26.14	19.57	66.76	26.36	53.74	36.65	51.77	39.32	21.21
		Supernet Init	2.91B	69.00	31.20	27.32	50.36	38.18	27.29	25.25	21.21	67.85	27.65	57.79	40.58	60.15	41.73	13.26
1465	Pythia-2.8B	Random Init	2.78B	68.00	30.4	24.51	53.03	39.50	27.18	25.74	20.47	67.68	25.34	46.67	39.11	59.54	40.55	14.54

Table 13: Evaluation of Pythia models across multiple benchmarks. Reported numbers are metrics as defined in Section 4.5 (%).

1469	Initialization	#Params	COPA	OpenBookQA	Lambada-OpenAI	Winograde	Social IQA	MMLU-cont.	MMLU	CommonsenseQA	PIQA	ARC-challenge	ARC-easy	HellaSwag	BoolQ	Avg-acc	PPL-Nemotron-cc
1470	from-supernet	389M	61.00	30.00	24.02	51.54	38.23	26.21	26.35	18.84	65.34	24.57	51.38	33.11	60.73	39.33	23.66
	from-supernet-distill	389M	66.00	30.60	23.95	49.57	37.41	26.31	25.62	19.57	65.56	25.34	49.66	33.92	54.31	39.06	18.59
1471	from-supernet	1.04B	66.00	34.60	38.52	51.46	41.04	28.98	26.09	19.81	69.26	30.12	63.51	45.20	53.98	43.74	17.77
	from-supernet-distill	1.04B	66.00	33.00	37.92	54.22	40.17	29.06	25.94	21.46	70.02	28.33	62.92	47.57	53.06	43.82	14.20

Table 14: Evaluation of sub-networks extracted from Pythia-6.9b for bin-0 and bin-1. Reported numbers are metrics as defined in Section 4.5 (%). We compare training with the cross entropy loss (*from-supernet*) to training with knowledge distillation (*from-supernet-distill*) loss.

E DETAILS ON IMPORTANCE SCORING

Importance scoring aims at defining scores for each transformer dimension, neuron or architecture parameter based on activation or weight magnitude. In our case, for a sub-network, the corresponding importance score serves as the proxy to sub-network quality or performance metrics like perplexity. The higher the importance score of a sub-network, the better its quality.

We adopt the dimension-wise importance scoring proposed by Muralidharan et al. (2024), which uses the activation of a component as proxy for its importance. Given a batch as input $\mathbf{X} \in \mathbb{R}^{B \times T \times d_{model}}$ after applying the embedding layer \mathbf{W}^{emb} we compute the following scores for each component, where B corresponds to the batch dimension and T corresponds to the sequence length dimension, and abs corresponds to the absolute value function:

- For a neuron $i \in \{1, \dots, U\}$ in a FFN layer l , we compute its importance by: $F_{FFN_l}^{(i)} = \frac{1}{B} \sum_B \left(\frac{1}{T} \sum_T \mathbf{X} \mathbf{W}_1^l[:, i] \right)$ where $\mathbf{W}_1^l[:, i]$ corresponds to all weights of neuron i in layer l .
- Similarly for each neuron $i \in \{1, \dots, d_{model}\}$ in the embedding layer we compute $F_{emb}^{(i)} = \frac{1}{B} \sum_B \left(\frac{1}{T} \sum_T (\text{Norm}(\mathbf{X}[:, :, i])) \right)$. Specifically we perform mean absolute aggregation over output of every (Layer or RMS) Norm layer as
- For causal attention layers we compute the importance of head $h \in \{1, \dots, H\}$ of heads as :

$$F_{MHA}^{(h)} = \frac{1}{B} \sum_B \left(\frac{1}{T} \sum_T \left\| \text{Attn}(\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h) \right\|_2 \right)$$

- For a block $l \in \{1, \dots, L\}$ consisting of a MHA and a FFN layer with RMS or layer normalization in between, we compute the score: $F_{block}^{(l)} = 1 - \frac{1}{B} \sum_B \left(\frac{1}{T} \sum_T \left(\frac{\mathbf{X}_l^T \mathbf{X}_{l+1}}{\|\mathbf{X}_l\|_2 \|\mathbf{X}_{l+1}\|_2} \right) \right)$ where \mathbf{X}_l is the input to block l and \mathbf{X}_{l+1} the output.

Given, the score for each unit (layer, head or neuron), and a subnetwork configuration (for example: $e = 64, d = 128, l = 2, h = 4$), we compute the importance score corresponding the sub-network, by simply aggregating the normalized importance scores corresponding to the selected neurons, layers or heads. Similarly, for the weight space we define neuron, layer and head level importance scores by simply focussing on the magnitude of weight or neurons corresponding to every transformer dimension (Han et al., 2015).

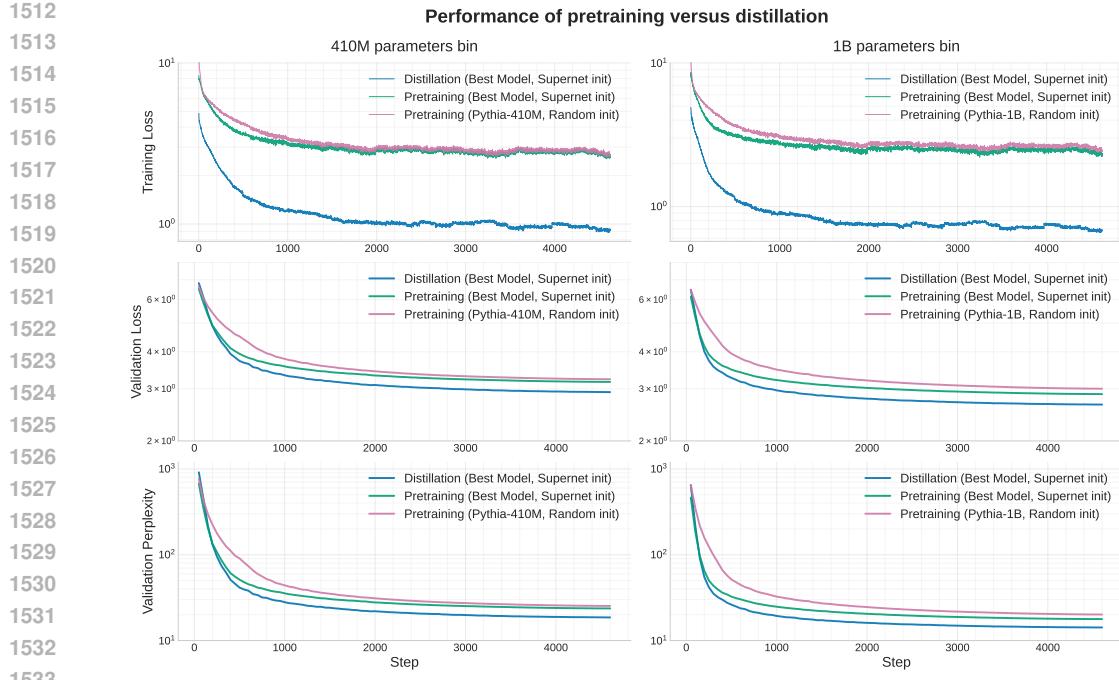


Figure 17: Training curves of the best models in bins 1 and 2, obtained through distillation and pretraining. In both cases, the models are initialized with weights from the supernet (Pythia-6.9B). For comparison, a Pythia model of similar size is trained from random initialization in both bins, serving as a baseline. All models are trained on 10 billion tokens.

Algorithm 1 Bin-Constrained Evolutionary Search

```

1: Input: arch. space  $\mathcal{S}$ ; bins  $\{[L_b, U_b]\}_{b=1}^B$ ; population  $N$ ; elites  $k$ ; epochs  $T$ ; random samples  $r$ ; offspring  $\lambda$ ; mutation prob.  $m$ ; crossover prob.  $c$ 
2: Helpers:  $\text{Params}(s) = \text{param. count}$ ;  $\text{ppl}(s) = \text{perplexity}$ 
3:  $\text{CONSTRAIN}(x, [L, U])$ : resample/repair until  $\text{Params}(x) \in [L, U]$ 
4: for  $b = 1$  to  $B$  do
5:    $\mathcal{S}_b \leftarrow \{s \in \mathcal{S} \mid L_b \leq \text{Params}(s) \leq U_b\}$ 
6:   Init population  $\mathcal{P}_b^{(0)} \sim \mathcal{S}_b$ 
7:   for  $t = 0$  to  $T - 1$  do
8:     Evaluate  $\text{ppl}(s)$  for  $s \in \mathcal{P}_b^{(t)}$ 
9:     Select elites  $\mathcal{E}_b^{(t)} = \arg \min^k \text{ppl}(s)$ 
10:    Mutants  $\mathcal{O}_{\text{mut}} \leftarrow \text{CONSTRAIN}(\text{Mut}(s), [L_b, U_b])$ ,  $s \sim \mathcal{E}_b^{(t)}$ , size  $\lambda$  (with prob.  $m$ )
11:    Crossovers  $\mathcal{O}_{\text{cross}} \leftarrow \text{CONSTRAIN}(\text{Cross}(s, s'), [L_b, U_b])$ ,  $s, s' \sim \mathcal{E}_b^{(t)}$ , size  $\lambda$  (with prob.  $c$ )
12:    Randoms  $\mathcal{R}_b^{(t)} \sim \mathcal{S}_b$ , size  $r$ 
13:    Next pop.  $\mathcal{P}_b^{(t+1)} \leftarrow \arg \min^N \text{ppl}(s)$  over  $\mathcal{E}_b^{(t)} \cup \mathcal{O}_{\text{mut}} \cup \mathcal{O}_{\text{cross}} \cup \mathcal{R}_b^{(t)}$ 
14:   end for
15:   Best  $s_b^* \leftarrow \arg \min_{s \in \mathcal{P}_b^{(T)}} \text{ppl}(s)$ 
16: end for
17: Output:  $\{s_b^*\}_{b=1}^B$ 

```

F WHITTLE APIs

An overview of the Whittle library is shown in Figure 10. In addition to the core functionalities of our framework described in Section 3, we provide an API to compute various importance metrics across different sub-network dimensions.

1566
1567

Listing 1: API for pretraining.

```

1568     def pretrain(
1569         model_name: str, # Name of the model to load. E.g., EleutherAI/pythia-410m
1570         model_config: Optional[Config] = None, # Model configuration, overrides model_name
1571         config_path: Optional[str] = None, # Path to yaml file with model configuration,
1572         overrides model_config
1573         out_dir: Path = Path("out/pretrain"), # Path to save checkpoints to
1574         precision: Literal["bf16-true", "bf16-mixed", "32-true", None] = None,
1575         resume: Union[bool, Literal["auto"], Path] = False, # If true, resumes from the
1576         latest available checkpoint
1577         data: Optional[DataModule] = None, # Dataset to use to train
1578         train: TrainArgs = TrainArgs( # Training hyperparameters
1579             save_interval=1000,
1580             log_interval=1,
1581             global_batch_size=512,
1582             micro_batch_size=4,
1583             max_tokens=int(3e12), # 3 trillion
1584             max_norm=1.0,
1585             min_lr=4e-5,
1586             lr_warmup_steps=2000,
1587             tie_embeddings=False,
1588         ),
1589         eval: EvalArgs = EvalArgs(interval=1000, max_iters=100), # Evaluation hyper-
1590         parameters
1591         optimizer: Union[str, Dict] = "AdamW", # Optimizer and its configuration
1592         devices: Union[int, str] = "auto", # CUDA or CPU
1593         num_nodes: int = 1, # Number of nodes for distributed training
1594         tokenizer_dir: Optional[Path] = None, # Path to tokenizer (optional)
1595         logger_name: Literal["wandb", "tensorboard", "csv", "mlflow"] = "tensorboard", #
1596         Logger to use
1597         seed: int = 42, # Seed for reproducibility
1598         init_from: str = "random", # Path to the checkpoint to load, or "random" to
1599         randomly initialize
1600         use_flex: bool = False, # Set to True if the sub-network has layer-wise
1601         configuration
1602     ) -> LitGPT
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```

Listing 2: API for supernet search.

```

1601     def search(
1602         supernet_name: str = "EleutherAI/pythia-12b", # litgpt model to extract SLM from
1603         algorithm: str = "evolutionary_search", # name of search algorithm
1604         num_bins: int = 4, # number of parameter bins
1605         param_upper_bounds: list, # list of upper bounds for bins
1606         param_lower_bounds: list, # list of lower bounds for bins
1607         number_of_epochs: int, # number of epochs for search
1608     )-> list[dict] # returns list of subnets
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```

compute_importance_score(). The `compute_importance_score()` function (Listing 6, Appendix F) assigns an importance score to a given sub-network, where higher scores indicate higher estimated quality. Importance scores are computed independently for each architectural component (e.g., layers, heads, neurons), normalized across available choices using a softmax, and aggregated by summation. This computation is performed once at the beginning of the search procedure, after which evaluating the importance of candidate sub-networks becomes inexpensive compared to full metrics such as *perplexity*.

Below we present the details of our API design for setting subnetwork 4, pretrain 1, convert to litgpt 3, distillation 5, 2 search and importance metric computation 6.

1620

1621

```

1622     def convert_subnet_to_litgpt_model(
1623         supernet_name: str = "EleutherAI/pythia-12b",      # litgpt model to extract SLM from
1624         subnet_config: dict = {                                # subnet configuration
1625             sub_network_n_embd: 4,
1626             sub_network_intermediate_size: 16,
1627             sub_network_num_heads: 4,
1628             sub_network_n_layers: 2,
1629             sub_network_head_size: 4,
1630         }
1631     ) -> LitGPT                                         # returns LitGPT model
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

```

Listing 3: API for converting a subnet into a LitGPT model.

1633 Listing 4: API for activating a sub-network

```

1634     def set_sub_network(
1635         sub_network_n_embd: int = 4, # Embedding dim
1636         sub_network_intermediate_size: int | list[int] = 42 # MLP size
1637         sub_network_num_heads: int | list[int] = 4, # No. of Attention heads
1638         sub_network_n_layers: int = 4, # No. of Layers
1639         sub_network_query_groups: int | list[int] = 2, # No. of Query groups
1640         sub_network_head_size: int | list[int] = 4, # Head size
1641         sampled_intermediate_indices: list[int] | list[list] = [4,8], # Sampled MLP neurons
1642         sampled_head_indices: list[int] | list[list] = [2,3], # Sampled heads
1643         sampled_query_group_indices: list[int] | list[list] = [0,1], # Sampled query groups
1644         sampled_head_size_indices: list[int] | list[list] = [2,3,8,12], # Sampled head sizes
1645         sampled_layer_indices: list[int] = [2,3,5,6], # Sampled layers
1646         sampled_embd_indices: list[int] = [0,1,2,3], # Sampled embedding neurons
1647     )
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

```

G STUDYING DISTILLATION HYPERPARAMETERS

We define our distillation loss function below.

$$\mathcal{L} = \alpha \mathcal{L}_{\text{CE}}(\mathbf{y}, \mathbf{s}) + \beta \sum_{i \in \mathcal{K}} \text{KL}\left(\text{softmax}\left(\frac{z_t^{(i)}}{T}\right) \parallel \text{softmax}\left(\frac{z_s^{(i)}}{T}\right)\right). \quad (5)$$

This loss has four tunable hyperparameters:

1. α : the weight of the cross-entropy loss, which minimizes the entropy with respect to the ground-truth logits.
2. β : the weight of the KL-divergence term between the teacher and student logits.
3. T : the temperature parameter, which controls the smoothing of the teacher and student logit distributions.
4. \mathcal{K} : the number of top logits (Top- \mathcal{K}) used when computing the KL-divergence. A smaller \mathcal{K} corresponds to a simpler distribution, while a larger \mathcal{K} yields a more informative distribution. The maximum \mathcal{K} equals the full number of teacher logits.

We now perform a grid-sweep over different choices of α , β , T and \mathcal{K} . We define the set of choices for α as $[0.2, 0.8, 0]$, the corresponding choices for β , which corresponds to $1 - \alpha$ as $[0.8, 0.2, 1]$, the choices for temperature T as $[0.8, 0.9]$ and the choices for \mathcal{K} as $[1024, 2048, \text{num_teacher_logits}]$. Figures 18-20 present the perplexity curves aggregated for different hyperparameter values. In general, we observe that using only the distillation loss, i.e., setting $\alpha = 0$, is not recommended. Furthermore, a higher temperature and using the full logit distribution (Top- $\mathcal{K} = 0$) perform best on average. In Table 15, we also present the importance of each of the hyperparameter choices and find that the most important one is the value of α , followed by \mathcal{K} and finally the temperature T .

1674

1675

1676

Listing 5: API for distilling a sub-network from a checkpoint.

```

1677 def distill(
1678     teacher_checkpoint_dir: Path, # Path to teacher model checkpoint directory
1679     student_dir: Path, # Path to initialize student model directory with sub-network
1680     configuration and (optional) model weights
1681     data: DataModule | None = None, # Dataset for distillation
1682     out_dir: Path = Path("out/distill"), # Path to save distilled checkpoints
1683     precision: Literal["bf16-true", "bf16-mixed", "32-true", None] = None, # Precision
1684     for training
1685     train: TrainArgs = TrainArgs( # Training hyperparameters
1686         save_interval=1000,
1687         log_interval=1,
1688         global_batch_size=512,
1689         micro_batch_size=4,
1690         max_tokens=int(5e8),
1691         max_norm=1.0,
1692         min_lr=4e-5,
1693         lr_warmup_steps=2000,
1694         tie_embeddings=False,
1695     ),
1696     distill: DistillArgs = DistillArgs( # Distillation-specific hyperparameters
1697         method="logits", # Distillation method (e.g., logits, hidden states)
1698         temperature=10, # Softening factor for teacher logits
1699         alpha=0.3, # Weight for student loss
1700         beta=0.7, # Weight for distillation loss
1701         loss="forward_kld", # Loss function for distillation
1702         weight_scheme="other", # Weighting scheme for combining losses
1703     ),
1704     eval: EvalArgs = EvalArgs(interval=50, max_iters=100, initial_validation=True), # Evaluation config
1705     optimizer: str | dict = "AdamW", # Optimizer and configuration
1706     devices: int | str = "auto", # CUDA or CPU
1707     num_nodes: int = 1, # Number of nodes for distributed distillation
1708     tokenizer_dir: Path | None = None, # Path to tokenizer (optional)
1709     logger_name: Literal["wandb", "tensorboard", "csv"] = "csv", # Logger backend
1710     seed: int = 42, # Seed for reproducibility
1711     random_init_student: bool = False, # If True, randomly initialize student instead
1712     of loading
1713 ) -> LitGPT # Returns a distilled LitGPT student model

```

1710

1711

1712

1713

1714

Listing 6: API for computing importance scores of subnet components.

```

1715 def compute_importance_score(
1716     supernet_name: str = "EleutherAI/pythia-12b", # base supernet
1717     subnet_config: dict = { # subnet configuration
1718         sub_network_n_embd: 4,
1719         sub_network_intermediate_size: 16,
1720         sub_network_num_heads: 4,
1721         sub_network_n_layers: 2,
1722         sub_network_head_size: 4,
1723     },
1724     layer_importance_type: str = "block_importance", # method for layer scoring
1725     head_importance_type: str = "minitron", # method for head scoring
1726     neuron_importance_type: str = "minitron", # method for neuron scoring
1727 ) -> int: # returns importance score for a sampled sub-network

```

1728

1729

1728

1729

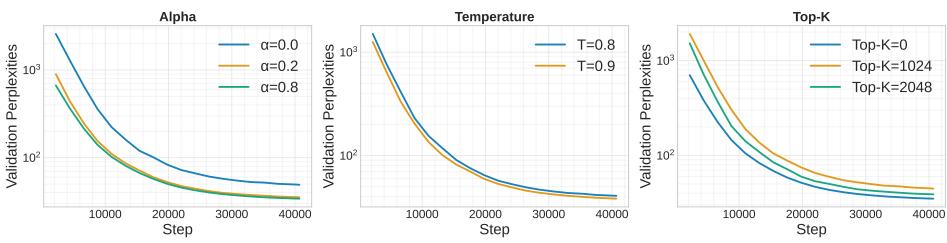
1730

1731

1732

Bin 1 Distillation Perplexities (Mean-Aggregated)

1733



1738

Figure 18: Bin 1 - distillation hyperparameter importance

1739

1740

1741

1742

1743

1744

1745

1746

1747

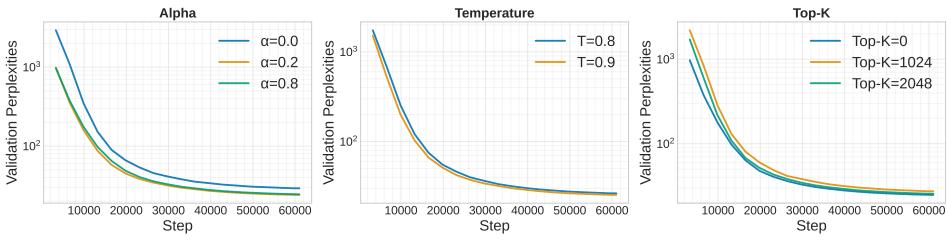
1748

1749

1750

Bin 2 Distillation Perplexities (Mean-Aggregated)

1751



1757

Figure 19: Bin 2 - distillation hyperparameter importance

1759

1760

1761

1762

1763

1764

1765

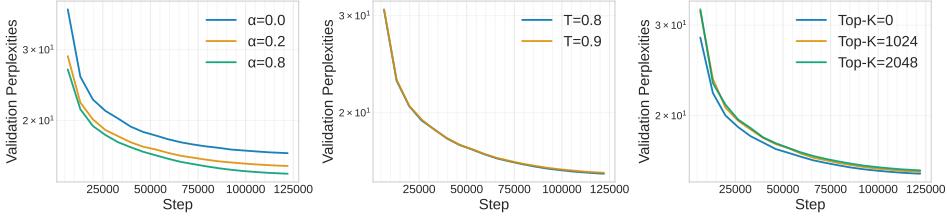
1766

1767

1768

Bin 3 Distillation Perplexities (Mean-Aggregated)

1769



1776

Figure 20: Bin 3 - distillation hyperparameter importance

1778

1779

1780

1781

hyperparameter	importance (mean)	importance (std)
α	0.986442	0.011966
\mathcal{K}	0.005968	0.000469
T	0.005000	0.000551

Table 15: Hyperparameter Importance

H SEARCH SPACE SIZES

The sizes of the search spaces for evolutionary search, especially for fine-grained (both uniform and layer-wise) can grow exponentially. In Table 16, we show the maximum number of configurations per search space for both of our base Pythia models (6.9B and 12B). For equations and information on how the number of search space configurations is calculated, refer to Section 2.1, and Table 1 for the configurations.

Table 16: Search Space Sizes (N) for Pythia-6.9B and Pythia-12B Architectures

Search Space	Pythia-6.9B (N)	Pythia-12B (N)
Coarse Uniform	4.33×10^{12}	9.51×10^{12}
Coarse Layer-wise	1.65×10^{244}	2.33×10^{281}
Fine-grained Uniform	10^{14284}	10^{17841}
Fine-grained Layer-wise	1.58×10^{159984}	5.31×10^{224611}

I REPRODUCIBILITY STATEMENTS

We have taken extensive measures to ensure that all results in this paper can be replicated and verified by the community.

- **Code and Repository:** We release all our code and scripts to reproduce our experiments at <https://anonymous.4open.science/r/whittle-iclr-71CD/>.
- **Datasets and Pretrained Models:** We evaluate on available benchmarks from lm-eval-harness (<https://github.com/EleutherAI/lm-evaluation-harness>) and use the publicly available Nemotron-CC dataset <https://research.nvidia.com/labs/adlr/Nemotron-CC/> for training. Furthermore we use the Pythia-model suite, which is open-source <https://github.com/EleutherAI/pythia>.
- **Compute Resources:** All our search experiments were run on L40 GPU per parameter bin and base model. All our pretraining runs for bin-0 and bin-1 were run on 8 L40 GPUs and bin-2 was run on 4 H200 GPUs. All our distillation experiments were run on 4 H200 GPUs. We use cuda version 11.8.
- **Evaluation and Artifacts:** Upon acceptance of the paper we will publicly release model checkpoints for all our experiments.

J SCALING BEHAVIOR OF SUBNETWORK EXTRACTION UNDER LARGER BUDGETS

To assess how the cost savings from subnetwork extraction scale with substantially larger pretraining budgets, we trained the best model from Bin 2 and Bin 3 for 100 billion tokens and compared it against a Pythia-1B and Pythia-2.8B model, respectively, trained for the same number of tokens from random initialization. We summarize our key findings below.

- **Sustained FLOP Savings at the 100B-Token Scale.** Our extracted subnetwork for Bin-3 achieves the same validation performance while requiring $1.26 \times$ fewer FLOPs (a reduction

1836	Base Model	Initialization	#Params	COPA	OpenBookQA	Lambda-OpenAI	Wingrande	Social IQA	MMLU-cont.	MMLU	CommonsenseQA	PIQA	ARC-challenge	ARC-easy	HellaSwag	BoolQ	Avg-acc
1837	Pythia-6.9B	Supernet Init	1.04B	74.00	38.40	45.604	56.98	41.81	32.54	27.04	20.88	75.03	38.57	71.76	60.05	61.19	49.53
1838	Pythia-1B	Random Init	1.01B	71.00	35.40	36.13	53.35	41.91	26.93	25.20	19.74	73.50	35.92	69.36	55.69	52.75	45.91
1839	Pythia-6.9B	Supernet Init	2.91B	76.00	37.40	53.23	58.01	42.02	34.45	38.04	43.41	77.69	41.38	73.57	64.01	63.49	54.05
1840	Pythia-2.8B	Random Init	2.78B	71.00	40.40	43.39	58.64	42.02	27.18	25.74	21.37	76.50	42.75	74.24	64.85	60.58	49.23

Table 17: Evaluation of Pythia models trained for 100B tokens across multiple benchmarks. Reported numbers are metrics as defined in Section 4.5 (%).

of approximately 21%). Although this reduction is smaller than the $5.16 \times$ savings observed at the 10B-token scale, it nevertheless demonstrates that subnetwork extraction continues to provide meaningful computational benefits even when the training budget is increased by an order of magnitude. This indicates that the method is not confined to low-budget regimes and remains competitive at significantly larger compute settings.

- **Improved Final Validation Perplexity.** In addition to being more compute-efficient, the extracted model also attains a lower final validation perplexity. The baseline Pythia-2.8B reaches a perplexity of 11.397, while our model achieves 11.204.
- **Strong Downstream Performance Advantages.** The extracted model outperforms the Pythia models trained from scratch across downstream evaluations. In particular, on MMLU-cont, our model achieves gains of up to 12% over the strongest Pythia baseline (see Table 17).

In Figures 21-23, we present the trajectories for validation perplexity, validation loss, and train loss, respectively, for Bin 2 and Bin 3 architectures and the Pythia-based models trained from scratch for 100B tokens.

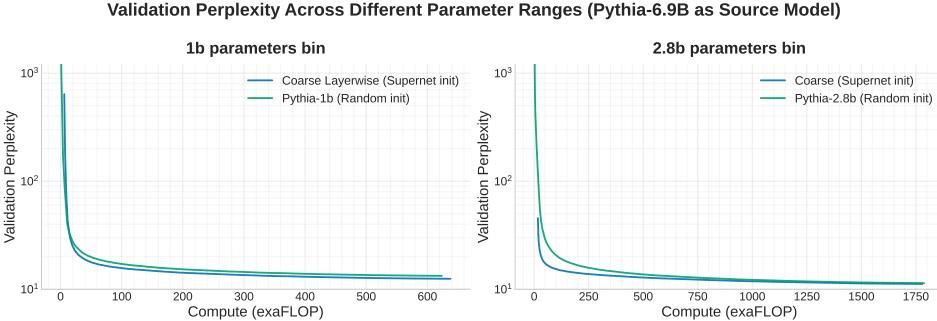


Figure 21: Bin 2 and Bin 3 validation perplexity for 100B token budget

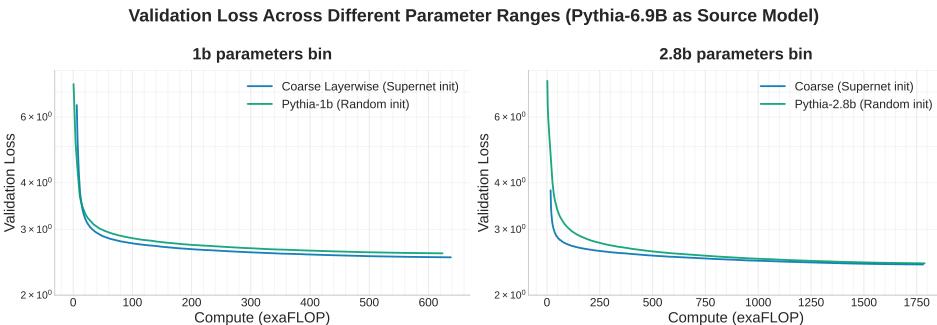


Figure 22: Bin 2 and Bin 3 validation loss for 100B token budget

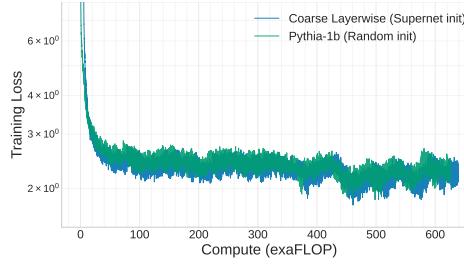
1890

Training Loss Across Different Parameter Ranges (Pythia-6.9B as Source Model)

1891

1b parameters bin

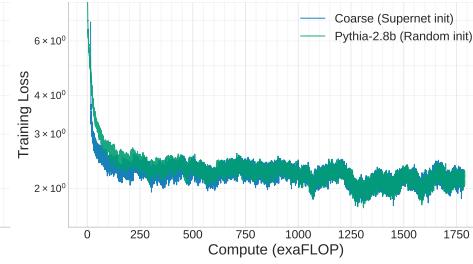
1892



1893

2.8b parameters bin

1894



1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

Figure 23: Bin 2 and Bin 3 train loss for 100B token budget