RL of Thoughts: Navigating LLM Reasoning with Inference-time Reinforcement Learning

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

030 031 032

033 034

037

038

040

041

042 043

044

046

047

048

050 051

052

ABSTRACT

Despite rapid advancements in large language models (LLMs), the token-level autoregressive nature constrains their complex reasoning capabilities. To enhance LLM reasoning, inference-time techniques, including Chain/Tree/Graph-of-Thought(s), successfully improve the performance, as they are fairly cost-effective by guiding reasoning through external logical structures without modifying LLMs' parameters. However, these manually predefined, task-agnostic frameworks are applied uniformly across diverse tasks, lacking adaptability. To improve this, we propose **RL-of-Thoughts** (**RLoT**), where we train a lightweight navigator model with reinforcement learning (RL) to generate task-adaptive logical structures at inference time, enhancing LLM reasoning. Specifically, we design five basic logic blocks from the perspective of human cognition. During the reasoning process, the trained RL navigator dynamically selects the suitable logic blocks and combines them into task-specific logical structures according to problem characteristics. Experiments across multiple reasoning benchmarks (AIME, MATH, GPQA, etc.) with multiple LLMs (GPT, Llama, Qwen, and DeepSeek) illustrate that RLoT outperforms established inference-time techniques by up to 13.4%. Remarkably, with less than 3K parameters, our RL navigator is able to make sub-10B LLMs comparable to 100B-scale counterparts. Moreover, the RL navigator demonstrates strong transferability: a model trained on one specific LLM-task pair can effectively generalize to unseen LLMs and tasks. Our code is open-source at https: //anonymous.4open.science/r/RL-LLM-Reasoning-1A30.

1 Introduction

Recent years have witnessed unprecedented advancements in large language models (LLMs), achieving remarkable success across diverse natural language tasks (Chang et al., 2024), including translation (Xu et al., 2024), semantic analysis (Lan et al., 2024b;a), and information retrieval (Hao et al., 2024). Despite these advancements, the inherent token-level autoregressive nature of LLMs poses a significant limitation for complex reasoning tasks (Zhao et al., 2023), such as solving mathematical problems (Ahn et al., 2024) or answering intricate questions (Zhuang et al., 2023). These tasks require sophisticated logical structures and long-term dependencies that go beyond the scope of simple sequential token prediction, leaving a considerable gap between current LLM capabilities and the demands of advanced reasoning applications.

Plentiful research has been devoted to enhancing LLM reasoning. On one hand, fine-tuning approaches attain substantial improvements on pretrained LLMs (Zhong et al., 2024; DeepSeek-AI et al., 2025; Team et al., 2025). However, these methods demand massive computational resources and large-scale datasets, being costly to implement. On the other hand, inference-time techniques, exemplified by Chain-of-Thought (Wei et al., 2022), Tree-of-Thoughts (Yao et al., 2023), and Graph-of-Thoughts (Besta et al., 2024), offer a lightweight alternative by enhancing reasoning through predefined external logical structures. While cost-effective, their logical structures rely on manual design and are task-agnostic, lacking the adaptability to diverse reasoning tasks.

Addressing such limitations in inference-time techniques presents significant challenges. First, reasoning tasks span various domains, including mathematics, STEM, commonsense, etc., where tasks in each domain exhibit diverse characteristics, making it infeasible to manually design logical structures specified for each task. Second, complex reasoning tasks often require multiple steps,

where the problem-solving status evolves after each step, requiring dynamic adjustments to the logical structure for subsequent reasoning. Therefore, predefined logical structures fail to adapt to the changes, limiting their effectiveness in stepwise reasoning tasks. These challenges highlight the need for more adaptive inference-time techniques to handle reasoning tasks with diversity and dynamics.

Facing these challenges, we introduce **RL-of-Thoughts** (**RLoT**), a framework that leverages reinforcement learning (RL) at inference time to enhance the reasoning capabilities of LLMs. Specifically, we model long-sequence reasoning as a Markov Decision Process (MDP) and design five human cognition-inspired basic logical blocks as potential actions for decision-making. Within the MDP framework, we train an RL agent, namely the navigator model, to dynamically select and combine these blocks along the reasoning process, constructing task-specific logical structures and thereby enhancing the LLM's ability to handle complex reasoning tasks. We conduct experiments across a wide range of reasoning benchmarks, including AIME (Olympic mathematics), MATH (elementary mathematics), GPQA (STEM), StrategyQA (commonsense), etc. The results demonstrate that our RLoT design outperforms various established inference-time techniques while being compatible with multiple well-known LLMs, such as GPT, Llama, Qwen, and DeepSeek. Remarkably, our RL navigator, which contains less than 3K parameters, is able to enhance the performance of sub-10B LLMs, making them comparable to much larger LLMs with 10× parameters. Moreover, the RL navigator exhibits strong transferability: a model trained with one specific LLM on one task domain can effectively generalize to unseen LLMs and tasks without fine-tuning.

In summary, the main contributions of this work include:

- We propose RL-of-Thoughts (RLoT), an inference-time technique that leverages RL to adaptively construct task-specific logical structures, enhancing LLM reasoning.
- We conduct extensive experiments to verify the effectiveness of our method to improve LLM reasoning across various tasks. Compatible with multiple widely known LLMs, RLoT outperforms established inference-time techniques by up to 13.4%.
- We demonstrate the transferability and efficiency of our method, where the trained navigator model can transfer across various LLMs and reasoning tasks. With < 3K parameters, it enhances multiple sub-10B LLMs to be comparable to $10 \times$ larger counterparts.

2 Preliminaries

2.1 Large Language Models (LLMs)

Large language models (LLMs) are a class of advanced neural networks characterized by parameter scales up to billions, primarily trained through next-token prediction objectives. Given a sequence $\{w_1, w_2, ..., w_{t-1}\}$, the models output w_t to maximize the observation likelihood in the corpus as:

$$\prod_{t=1}^{T} P(w_t|w_1, w_2, ..., w_{t-1}). \tag{1}$$

Recent advancements in LLMs, exemplified by architectures like the GPT series (Brown et al., 2020; Kalyan, 2023; Achiam et al., 2023), the Llama family (Touvron et al., 2023; Dubey et al., 2024), etc, have demonstrated remarkable proficiency across diverse natural language understanding and generation tasks, including semantic parsing, cross-lingual translation (Zhao et al., 2023; Chang et al., 2024). Meanwhile, extensive researches integrate inference-time techniques like Chain-of-Thought (CoT) (Wei et al., 2022) and Tree-of-Thoughts (ToT) (Yao et al., 2023) to enhance the multi-step reasoning capability of LLMs. On the other hand, fine-tuning strategies leverage Outcome Reward Models (ORM) and Process Reward Models (PRM) to optimize the reasoning process through reward-guided learning (Lightman et al., 2023; Wang et al., 2024c; Luo et al., 2024). These approaches address both structural limitations of auto-regressive decoding and the challenge of maintaining logical coherence in complex tasks (Xu et al., 2025).

2.2 MARKOV DECISION PROCESS (MDP)

A Markov Decision Process (MDP) provides the core framework for sequential decision-making problems. An MDP is mathematically defined by the tuple (S, ρ, A, P, R) , where S is the state space,

and $\rho \in \Delta(\mathcal{S})$ represents the probability distribution over initial states, with $\Delta(\mathcal{S})$ being the set of all probability distributions over \mathcal{S} . The action space is denoted by \mathcal{A} . Given a specific action taken in a particular state, the state transition probability function $P: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ and the reward function $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ define the likelihood of transitioning between states and the reward associated with each action. At each time step t, the agent chooses an action $a_t \in \mathcal{A}$ in state $s_t \in \mathcal{S}$, receives a reward r_t , and transitions to the next state s_{t+1} . The agent's objective in an MDP is to maximize the total accumulated reward over time, which is the sum of the discounted rewards obtained at each step. The cumulative reward at time step t is expressed as $G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$, where γ is the discount factor that weighs the significance of future rewards.

3 METHODS

3.1 OVERVIEW

Figure 1: Framework of RL-of-Thoughts (RLoT). We train an RL agent as the navigator, which dynamically selects and combines basic logic blocks along the reasoning process, constructing task-specific logical structures for each task and thereby enhancing the LLMs' ability to handle complex reasoning tasks.

In this paper, we propose to enhance LLM reasoning at inference time with RL, namely **RL-of-Thoughts** (**RLoT**). The overall framework of RLoT is illustrated in Figure 1. Specifically, we first model long-sequence reasoning as a Markov Decision Process (MDP), where we design the action space, state space, and state transition mechanism, making the sequence of decisions within an episode correspond to the generation of a logical structure for reasoning (Section 3.2). Within this MDP framework, we train an RL agent, referred to as the navigator model, which conducts sequential decision-making to construct task-specific logical structures, thereby enhancing LLMs' capability to address complex reasoning tasks (Section 3.3).

3.2 LLM REASONING AS MDP

To leverage the sequential decision-making capability of RL for adaptively designing logical structures at inference time based on problem characteristics, we first model long-sequence reasoning as a specially designed MDP. Within this MDP, the sequence of decisions in an episode corresponds to the generation of a logical structure for reasoning. The designs of the state, action, reward, and state transition are as follows.

State. The state space is designed to capture how the current solving status of the task is after steps of reasoning, thereby supporting dynamic adjustments to the logical structure for subsequent reasoning. We employ a self-evaluation mechanism to extract concise and informative states during the reasoning process. Specifically, we prompt the LLM itself to evaluate the current reasoning steps from three major and seven detailed aspects, which are listed in Table 1.

Table 1: Aspects for state self-evaluation.

Major	A: Correctness	B: Complexity	C: Completeness
Detailed	A1: Correctness of modeling A2: Clarity for further reasoning A3: Correctness of calculation	B1: Complexity to the final answer B2: Alternative methods in further reasoning	C1: Closeness to the final solution C2: Completeness within the step

For each detailed aspect, we require the LLM to assign a score from 1 to 3, which is then aggregated to form the state of the MDP. This approach summarizes complex reasoning steps into low-dimensional states, offering a comprehensive overview of the changing problem-solving status during the reasoning process, facilitating the RL agent in adjusting the strategy for subsequent reasoning accordingly. Please refer to detailed self-evaluation prompts in Appendix K.1.

Action. When addressing difficult and complex problems, humans often employ specific cognitive strategies. For example, we break down complex tasks into smaller components and review previous steps when encountering anomalies in the solution. As evidenced by previous research, understanding and applying these cognitive strategies can significantly enhance the reasoning capabilities of LLMs (Wu et al., 2024; Xue et al., 2024).

With inspiration from human cognition, we design five "basic logic blocks" that can be flexibly combined, constituting the action space in our MDP. By selecting and cascading the blocks, the agent thereby constructs flexible logical structures, paving reasoning pathways from the initial problem to final solutions. In detail, the basic logic blocks include:

- **Reason one step**: Perform reasoning for a single step of the current task, which may not directly lead to the final answer but contributes to the overall process.
- **Decompose**: Break the current task into simpler subtasks and execute them sequentially. Then, we prompt the LLM to briefly summarize the results of these subtasks as the final result of this action.
- **Debate**: Generate multiple plans or approaches for the task at hand and compare them to identify the most promising one. Then, we prompt the LLM to reason one step further based on the selected plan.
- Refine: Review and revise the current reasoning step to improve clarity and correctness.
- **Terminate**: Based on all the previous steps, provide the final answer to the original problem and show it in a specified format. This action marks the conclusion of the reasoning process.

We illustrate the structures and detailed prompts for each blocks in Figure 1 and Appendix K.2.

Reward. To evaluate the quality of the intermediate results after the agent selects an action during the long-sequence reasoning process, we employ the Process Reward Model (PRM) to score the intermediate results and set the PRM score of the intermediate result after each action as the single-step reward for this action.

State Transition. In our MDP design, the state transition is straightforward. During the reasoning process, executing a specific action based on the current problem-solving state is to prompt the LLM to continue reasoning using the logical structure corresponding to that action. After reasoning, the new problem-solving state is obtained through the aforementioned self-evaluation approach.

Also, we impose a few simple restrictions on the state transition, ensuring the correctness and rationality of the constructed logical structures. First, once the answer is already presented in the response after executing some action, no further actions are permitted except for "Terminate". Second, the "Refine" action is automatically converted to "Reason one step" when it appears as the first action, as no refinement to the original problem is needed. Finally, to avoid the reasoning process being too long, we limit the maximum number of actions, and after reaching the limitation, the "Terminate" action will be automatically executed.

3.3 TRAINING OF THE NAVIGATOR MODEL

Within the MDP framework outlined above, given a specific LLM type and a kind of reasoning task, we train the navigator model. To enhance the learning for challenging reasoning tasks, we extract hard questions from the training set of the target task, i.e., questions that the LLM cannot answer when directly prompted. Then, we use these problems for training the navigator model, from which we randomly select one in each episode and repeat it multiple times. We employ the Double-Dueling-DQN algorithm (Van Hasselt et al., 2016; Wang et al., 2016), and include the online and target network technique to improve the stability during training (Mnih et al., 2015).

We illustrate the training and inference pipeline of RLoT in Figure 1. During training, we hire PRM to provide reward signals. The parameters of both the PRM and the LLM are kept fixed from pre-trained models, and only parameters of the navigator model, i.e., the RL agent, are updated. This significantly reduces the computational cost, making the training process highly efficient. After training, the PRM model is no longer required, and the trained navigator model is used directly. Given an intermediate reasoning state, the navigator selects an action, which is then used to prompt the LLM to continue reasoning using the logical structure associated with the selected action. By repeating this, the navigator model is able to guide the LLM in solving challenging reasoning tasks with task-specific logical structures.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Reasoning Tasks. We conduct a comprehensive evaluation of our RLoT method across a wide range of reasoning tasks, encompassing benchmarks in mathematics, STEM, and commonsense question answering. For the mathematics domain, we adopt Olympic-level datasets, the AIME24 ¹ and AMC23 ², as well as elementary math datasets GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021c). These are widely recognized as representative benchmarks. In the STEM tasks, we test on the MMLU-STEM (Hendrycks et al., 2021b;a) and GPQA (Rein et al., 2023) datasets, which span various STEM domains and a range of difficulty levels. To evaluate the commonsense reasoning ability, we employ the StrategyQA (Geva et al., 2021) benchmark, which presents challenging multihop questions across diverse contexts. These benchmarks cover various domains, difficulties, and task types, forming a systematic evaluation of the reasoning ability.

LLMs. Our RLoT framework is designed to be independent of specific LLMs, allowing it to be compatible with any off-the-shelf LLM. To evaluate this, we test our approach using four representative LLMs: Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct (Yang et al., 2024a), Llama3.1-8B-Instruct (Dubey et al., 2024), GPT-4o-mini (Hurst et al., 2024), and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025). In this paper, we mainly focus on sub-10B LLMs, which are often constrained in handling complex reasoning tasks due to their relatively smaller size. We expect that our RLoT design can substantially enhance smaller LLMs by adaptively generating task-specific logical structures at inference time, thereby making their reasoning capabilities comparable to, or even exceeding, those of much larger LLMs. Without the need to modify the LLM's parameters, this approach will be fairly computationally efficient. Note that we abandon the results of Llama3.1-8B-Instruct on the Olympic-level datasets since the capability of this base LLM is too limited to solve these challenging problems.

Baselines. We compare RLoT against various baselines designed to enhance LLM reasoning at inference time. First, we evaluate single-round question-answering techniques, including direct question answering (Direct QA), zero-shot Chain-of-Thought (Zero-shot CoT), and few-shot Chain-of-Thought (Few-shot CoT) (Wei et al., 2022). For Zero-shot CoT, we employ prompts with "Let's think step by step", and for Few-shot CoT, we include specific few-shot examples for each benchmark in the prompts as outlined in prior work (Yang et al., 2024b; Fu et al., 2023; Rein et al., 2023; Wei et al., 2022). Additionally, we consider multi-round techniques, including self-consistent Chain-of-Thought (CoT-SC) (Wang et al., 2023) and Tree-of-Thoughts (ToT) (Yao et al., 2023). Following the original settings, we perform majority voting across four reasoning samples in CoT-SC, and

¹https://huggingface.co/datasets/AI-MO/aimo-validation-aime

²https://huggingface.co/datasets/AI-MO/aimo-validation-amc

we implement a logical tree with two layers and five nodes per layer in ToT. These multi-round approaches facilitate comparison and voting across diverse reasoning paths, thereby enhancing the reasoning capability of LLMs in complex tasks.

Implementation of RLoT. In our implementation, the navigator model is a simple three-layer multilayer perceptron (MLP) with the Dueling Network architecture (Wang et al., 2016). The model merely contains 2,566 parameters in total, where the lightweight design ensures efficient training and inference. Following existing works like CoT-SC, we perform multiple repeated inferences for each task and filter out the trails that do not meet self-consistency, enhancing the robustness of reasoning.

To obtain reward signals for actions, we utilize the Math-Shepherd as the PRM (Wang et al., 2024c). This model is trained by previous researchers using automatically constructed process-wise supervision data, reducing heavy reliance on manual annotation and thereby achieving remarkable performance. For reproducibility, please refer to more detailed settings and the illustration of the whole pipeline in Appendix J.

Table 2: Overall evaluation of RLoT's capability to enhance multiple LLMs' reasoning across different tasks. The **bold** numbers indicate the best performance in each group of experiments, and the underlined numbers indicate the best baseline method.

LLM	Method	Olympi	c math	Element	tary math		STEM	Commonsense	Average
	1,1001100	AIME24	AMC23	MATH	GSM8K	GPQA	MMLU-STEM	StrategyQA	
	Direct QA	13.33	57.50	78.62	93.93	36.60	85.38	72.34	62.53
	Zero-shot CoT	16.67	62.50	78.56	94.23	38.39	85.63	75.98	64.57
Owen2.5-14B-Instruct	Few-shot CoT	6.67	55.00	80.00	94.80	45.50	85.06	78.60	63.66
Qwenz.5-14B-Instruct	CoT-SC	6.67	47.50	80.04	94.08	45.54	86.71	80.06	62.94
	ToT	10.00	55.00	79.50	93.78	45.08	86.55	78.17	64.01
	RLoT (ours)	23.33	65.00	80.38	94.16	51.34	88.93	81.22	69.19
	Direct QA	10.00	42.50	74.64	91.58	31.25	80.94	68.85	57.11
	Zero-shot CoT	16.67	55.00	74.86	91.58	34.15	81.00	71.17	60.63
Owen2.5-7B-Instruct	Few-shot CoT	13.33	45.00	75.50	91.60	36.40	81.16	74.38	59.62
Qweii2.5-76-Ilistruct	CoT-SC	6.67	50.00	76.36	92.12	38.84	83.25	78.45	60.81
	ToT	13.33	50.00	73.80	91.35	36.60	82.62	70.45	59.74
	RLoT (ours)	23.33	60.00	76.7	92.87	44.64	85.06	79.04	65.95
	Direct QA			49.12	84.83	32.14	71.58	70.74	61.68
	Zero-shot CoT			49.74	85.37	32.80	72.85	73.07	62.77
Llama3.1-8B-Instruct	Few-shot CoT			48.52	84.50	33.03	70.66	72.05	61.75
Liamas.1-8B-mstruct	CoT-SC	_		51.74	87.04	33.48	73.29	78.89	64.89
	ToT			51.93	86.80	32.24	74.72	71.47	63.43
	RLoT (ours)			56.56	90.07	46.88	80.56	84.42	71.70
	Direct QA	13.33	55.00	76.58	93.33	43.08	85.70	77.00	61.17
	Zero-shot CoT	6.67	67.50	76.76	93.93	40.20	85.76	78.17	64.14
GPT-40-mini	Few-shot CoT	6.67	57.50	75.46	93.48	35.94	85.82	80.06	62.13
GI 1-40-IIIIII	CoT-SC	6.67	45.00	76.84	93.63	46.42	86.55	82.53	62.52
	ToT	6.67	50.00	74.30	93.33	44.42	85.92	76.42	61.58
	RLoT (ours)	20.00	70.00	77.36	93.86	54.02	88.23	82.68	69.45
	Direct QA	46.67	60.00	92.27	95.74	54.47	83.61	79.48	73.18
	Zero-shot CoT	53.33	62.50	91.48	95.20	53.13	85.28	78.89	74.26
DeepSeek-R1-	Few-shot CoT	56.67	67.50	92.54	94.38	56.47	87.47	79.33	76.34
Distill-Qwen-7B	CoT-SC	56.67	67.50	95.54	96.13	60.94	89.03	82.82	78.38
	ToT	50.00	55.00	95.18	94.54	55.13	86.55	80.91	73.90
	RLoT (ours)	63.33	77.50	96.56	98.94	67.19	90.77	86.17	82.92

4.2 Overall Performance

We train the navigator model with Qwen2.5-14B-Instruct on the MATH benchmark, where the learning curve shown in Appendix A indicates good convergence. We use the obtained navigator model to enhance the reasoning of multiple LLMs across different reasoning tasks and present the results in Table 2. For the baseline performance, we prioritize using the results reported in the official technical reports of each LLM (Yang et al., 2024a; Dubey et al., 2024; Hurst et al., 2024), if available. Otherwise, we evaluate the performance through our own experiments following the settings established in previous works (Fu et al., 2023; Yang et al., 2024b; Yao et al., 2023).

The results show that our method performs well, consistently outperforming the established inference-time baselines across almost all reasoning tasks when combined with various LLMs. Notably, our approach brings about substantial improvements in the GPQA benchmark, which is a challenging task where LLMs generally perform poorly. Specifically, when implemented with Llama3.1-8B-Instruct, we achieve a 13.4% performance boost. Among the baselines, CoT-SC performs the best across most

tasks. Meanwhile, we find that despite being more complex in design, ToT performs poorly on many reasoning tasks, which is also reported in previous studies (Wu et al., 2024; Zhang et al., 2024a; Qi et al., 2024). Furthermore, we report the computational overhead and implementation latency of RLoT in Appendix C, and also compare RLoT with more recently proposed test-time scaling baselines in Appendix E. By directly generate specific logical structures for each question without requiring search-and-trial, our method reached the best performance while maintain a low cost.

4.3 PARAMETER SIZE EFFICIENCY

In this section, we demonstrate the parameter size efficiency of our RLoT method in enhancing the reasoning capability of sub-10B LLMs, making them comparable to LLMs with several times more parameters. Specifically, we select three 10B LLMs, including Qwen2.5-14B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-mini, and their respective large-scale counterparts. It is worth noting that the parameter size of GPT-4o series models was estimated in previous studies (Abacha et al., 2024).

In Appendix D, we present the performance of these models across various reasoning tasks using Few-shot CoT, which is the standard technique commonly used in official technical reports (Yang et al., 2024a; Dubey et al., 2024; Hurst et al., 2024) and previous studies (Liu et al., 2024; ret, 2024; Tran et al., 2024; Kumar et al., 2024; Yu et al., 2024) in evaluation of LLMs. We also show the performance of the 10B LLMs after enhancement with RLoT. The results indicate that our RL-based navigator, which contains fewer than 3,000 parameters, significantly enhances the performance of sub-10B LLMs, making them comparable to much larger counterparts with around $10 \times$ more parameters. Specifically, RLoT empowers the sub-10B LLMs to be comparable to, compensating most of the performance gap, or even surpassing their larger counterparts, demonstrating its efficiency.

4.4 Transferability

To better illustrate the transferability of our navigator model, we conduct further experiments regarding transferring across different LLMs and reasoning tasks, respectively.

Transfer across Different LLMs. To verify the transferability of RLoT across different LLMs, we respectively train navigator models with three different LLMs, namely Qwen2.5-14B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-mini, on the MATH benchmark. Without any fine-tuning, we cross-test the obtained navigator models to enhance other LLMs on the MATH benchmark and present the results in Table 3.

The results indicate that the trained navigator model exhibits strong transferability across different LLMs. When implementing the navigator model to enhance the reasoning capabilities of a specific LLM, we find that, regardless of whether the navigator model is trained on the same LLM or a different one, its performance remains consistent. In all cases, the enhanced LLM outperforms the best well-known inference-time baseline.

Table 3: Evaluation of RLoT's transferability across different LLMs. We train navigator models with three different LLMs on the MATH benchmark and cross-test the obtained navigator models with other LLMs. We also list CoT-SC, the best baseline method, for comparison.

Method	Train	Test							
Method	T. u.i.	Qwen2.5-14B-Instruct @MATH	Llama3.1-8B-Instruct @MATH	GPT-4o-mini @MATH					
	Qwen2.5-14B-Instruct@MATH	80.38	56.56	77.36					
RLoT (ours)	Llama3.1-8B-Instruct@MATH	81.48	53.60	78.14					
	GPT-4o-mini@MATH	80.84	56.94	78.08					
CoT-SC	-	80.04	51.74	76.84					

Transfer across Different Reasoning Tasks. To verify the transferability of RLoT across different reasoning tasks, we respectively train navigator models with Qwen2.5-14B-Instruct on three different benchmarks, namely MATH, GPQA, and StrategyQA. Without any fine-tuning, We cross-test the obtained navigator models to enhance the reasoning capabilities of Qwen2.5-14B-Instruct on the other tasks and present the results in Table 4.

381 382 384

386 387 388

385

397

393

399 400 401

402 403

404

405

406 407 408

409

415 416

417

418

419

420

425 426

427 428

429

430

431

The results indicate that the trained navigator model owns strong transferability across different reasoning tasks. When utilizing the navigator model to enhance the reasoning capabilities of LLMs for a specific task, we observe that, regardless of whether the navigator model is trained on the same task or a different one, its performance remains largely consistent. In most cases, it surpasses the best-performing inference-time baseline.

Furthermore, we find that the navigator models trained on mathematical (MATH) and STEM (GPQA) problems exhibit better transferability to each other. However, the transferability between the navigator trained on commonsense problems (StrategyQA) and the former two is relatively limited, which is intuitive given the inherent relations and differences between domains of mathematics, STEM, and commonsense reasoning.

Table 4: Evaluation of RLoT's transferability across different tasks. We train navigator models with Owen 2.5-14B-Instruct on three different tasks and cross-test the obtained navigator models on other tasks. We also list CoT-SC, the best baseline method, for comparison.

Method	Train	Test							
		Qwen2.5-14B-Instruct @MATH	Qwen2.5-14B-Instruct @GPQA	Qwen2.5-14B-Instruct @StrategyQA					
	Qwen2.5-14B-Instruct@MATH	80.38	51.34	81.22					
RLoT (ours)	Qwen2.5-14B-Instruct@GPQA	80.76	53.57	80.64					
	Qwen2.5-14B-Instruct@StrategyQA	79.94	50.22	81.37					
CoT-SC	=	80.04	45.54	80.06					

4.5 Typical Reasoning Patterns

Table 5: Typical patterns in the task-specific logical structures generated by RLoT ("Reason" is short for "Reason one step").

Task	MATH	GPQA	StrategyQA
2-step pattern	Reason-Refine Reason-Decompose	Reason-Refine Reason-Debate	Reason-Debate Reason-Refine
3-step pattern	Decompose-Refine-Reason Reason-Refine-Debate	Reason-Refine-Debate Reason-Decompose-Refine	Reason-Decompose-Debate Reason-Refine-Debate

The experimental results above have demonstrated RLoT's capability to enhance LLM reasoning with task-specific logical structures. In Table 5, we summarize typical patterns observed in the logical structures generated by RLoT when solving tasks from the MATH, GPQA, and StrategyQA benchmarks using Qwen2.5-14B-Instruct.

From the 2-step patterns, we observe that the *Reason-Refine* mode emerges frequently. Particularly in MATH and GPQA, which require massive mathematical calculations, this pattern compensates for the LLMs' relatively poor calculation abilities, leading to more reliable results. In the 3-step patterns, operations like Decompose and Debate are frequently employed, which help break down challenging problems or facilitate discussions to explore potential solutions. Additionally, the Refine operation is often used before and after the *Decompose* and *Debate* steps, ensuring correct integration with preceding and succeeding reasoning processes. These typical reasoning patterns exhibit strong interpretability, further validating the capability of RLoT to generate task-specific logical structures that enhance LLM reasoning. For better understanding, we provide an example in Appendix B to illustrate how these logical structures empower the correct solution to a problem.

4.6 ABLATION STUDIES, ANALYSES, AND DISCUSSIONS

To better justify our designs, we conducted a series of ablation studies, analyses, and discussions. We discuss the reliability of the self-evaluation state design in Appendix F. We analyze the necessity of employing RL to train the navigator model in Appendix G. We illustrate the role of the process reward model (PRM) in training the navigator in Appendix H. Also, we verify the effectiveness of our logic block designs and quantify the contribution of each logic block in Appendix I.

5 RELATED WORKS

5.1 Inference-time reasoning of LLMs

To improve LLMs' reasoning capability, plentiful research has investigated inference-time techniques without the need for model updates. On the one hand, predefined external logical structures are widely applied as basic solutions. Most notably, Chain-of-Thought (CoT) (Wei et al., 2022) incorporates intermediate reasoning steps within the prompt, enhancing the model's abilities in complex tasks. As a subsequent advancement, CoT with Self-Consistency (CoT-SC) (Wang et al., 2023) further refines CoT by generating multiple reasoning chains and filtering out those that do not meet self-consistency, thus increasing the reliability. Moreover, the concept of Tree-of-Thoughts (ToT) (Yao et al., 2023) and Graph-of-Thoughts (GoT) (Besta et al., 2024) has been introduced, where the reasoning process is represented as a graph, enabling exploration and backtracking from more promising outcomes. Despite their success, these methods rely on task-agnostic logical structures that are applied uniformly across diverse tasks, lacking flexibility.

On the other hand, recent researchers have proposed more adaptive inference-time approaches. From hiring the decompose-analyze-rethink procedure (Xue et al., 2024) to utilizing Monte Carlo Tree Search to discover more effective logical structures (Wu et al., 2024; Wang et al., 2024a), these approaches dynamically compose appropriate logical structures for specific tasks to enhance the reasoning performance. However, the search-and-trail design incurs massive extra computational cost, limiting the efficiency of reasoning. In contrast, the proposed RLoT method employs RL to train a navigator agent. With the trained navigator, our design can directly select and combine basic logic blocks and generate task-specific logical structures, enabling more adaptive reasoning while eliminating the searching cost.

5.2 RL AND LLMS

RL has become vital in the development of LLMs (Xu et al., 2025; Hao et al., 2025). One important direction is aligning LLMs with human preferences, where the key method is Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022). In RLHF, LLMs are fine-tuned as actors in RL based on feedback derived from human preferences. Recently, extensive helpful and harmless LLMs have been created using RLHF (Bai et al., 2022; Casper et al., 2023). Beyond this, RL is also applied to enhance the reasoning capability of LLMs. In this context, reward signals are derived from Outcome Reward Models (ORM) (Kazemnejad et al., 2024) or Process Reward Models (PRM) (Lightman et al., 2023; Wang et al., 2024c; Luo et al., 2024), providing feedbacks for the LLMs' reasoning process during fine-tuning. By applying RL to LLMs with these rewards, LLMs can iteratively improve their performance in multi-step reasoning tasks (Havrilla et al., 2024a;b; Shao et al., 2024; DeepSeek-AI et al., 2025).

In summary, existing RL techniques have significantly enhanced LLMs' capabilities by updating model parameters, yet such fine-tuning demands substantial computational resources when applied to each pre-trained LLM. In this paper, the proposed RLoT method applies RL at inference time, leveraging the power of RL to train a lightweight navigator rather than the entire parameters of LLMs, our method achieves low cost and wide compatibility with various pre-trained LLMs.

6 CONCLUSIONS

In this paper, we propose RL-of-Thoughts (RLoT), an inference-time technique that utilizes RL to train a navigator model, which adaptively constructs task-specific logical structures, and thereby enhances the reasoning capabilities of LLMs. Through extensive experiments across various benchmarks, we demonstrate the effectiveness of our method in improving the reasoning capability of various widely known LLMs. Additionally, we show the strong transferability and efficiency of our approach, where the trained navigator model can effectively transfer across different LLMs and unseen reasoning tasks. With fewer than 3K parameters, our navigator model enables multiple sub-10B LLMs to attain performance comparable to larger LLMs with up to 10 times the parameter size. Our work highlights the potential of RL at inference time in enhancing the reasoning capabilities of LLMs, paving the way for more adaptive and efficient LLM reasoning in the future.

ETHICS STATEMENT

This study uses fully open-source or publicly available models and datasets, adhering to their respective licenses. All resources are properly cited in Section 1 and Section 4. The selected datasets and models are well-established, representative, and free from bias or discrimination.

REPRODUCIBILITY STATEMENT

For Reproducibility, we describe the general experimental settings in Section 4; we list the implementation details in Appendix J; and our source code are anonymously open source at https://anonymous.4open.science/r/RL-LLM-Reasoning-1A30.

REFERENCES

- Deciphering and enhancing commonsense reasoning in llms from the perspective of intrinsic factual knowledge retrieval. 2024. https://openreview.net/forum?id=MbtA7no8Ys.
- Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen, Fei Xia, and Thomas Lin. Medec: A benchmark for medical error detection and correction in clinical notes. *arXiv* preprint arXiv:2412.19260, 2024.
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for mathematical reasoning: Progresses and challenges. *arXiv preprint arXiv:2402.00157*, 2024.
- Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.
- Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph of thoughts: Solving elaborate problems with large language models. In *AAAI*, pp. 17682–17690. AAAI Press, 2024.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *NeurIPS*, 2020.
- Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems and fundamental limitations of reinforcement learning from human feedback. *arXiv preprint arXiv:2307.15217*, 2023.
- Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM Transactions on Intelligent Systems and Technology*, 15(3):1–45, 2024.
- Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

566567568

569

570 571

540

541

542

543

544

546

547

548

549

550

551

552

553

554

556

558

559

560

561

563

565

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

572 573 Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, and Tushar Khot. Chain-of-thought hub: A continuous effort to measure large language models' reasoning performance. *arXiv* preprint *arXiv*:2305.17306, 2023.

574 575 576

577

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies. *Transactions of the Association for Computational Linguistics (TACL)*, 2021.

578 579 580

Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and Yanghua Xiao. Small language model can self-correct. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18162–18170, 2024.

581 582

Qianyue Hao, Jingyang Fan, Fengli Xu, Jian Yuan, and Yong Li. Hlm-cite: Hybrid language model workflow for text-based scientific citation prediction. *arXiv preprint arXiv:2410.09112*, 2024.

583 584 585

586

Qianyue Hao, Lin Chen, Xiaoqian Qi, Yuan Yuan, Zefang Zong, Hongyi Chen, Keyu Zhao, Shengyuan Wang, Yunke Zhang, Jian Yuan, and Yong Li. Reinforcement learning in the era of large language models: Challenges and opportunities. *researchgate*, 2025.

587 588

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models to reason with reinforcement learning. *arXiv* preprint arXiv:2403.04642, 2024a.

590 591 592

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve llm reasoning via global and local refinements. *arXiv preprint arXiv:2402.10963*, 2024b.

- Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021a.
 - Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021b.
 - Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv* preprint arXiv:2103.03874, 2021c.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F Chen, Shafiq Joty, and Furu Wei. Preference optimization for reasoning with pseudo feedback. *arXiv preprint arXiv:2411.16345*, 2024.
 - Katikapalli Subramanyam Kalyan. A survey of gpt-3 family large language models including chatgpt and gpt-4. *Natural Language Processing Journal*, pp. 100048, 2023.
 - Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy, Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through refined credit assignment. *arXiv preprint arXiv:2410.01679*, 2024.
 - Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling declarative language model calls into self-improving pipelines. *arXiv preprint arXiv:2310.03714*, 2023.
 - Shanu Kumar, Saish Mendke, Karody Lubna Abdul Rahman, Santosh Kurasa, Parag Agrawal, and Sandipan Dandapat. Enhancing zero-shot chain of thought prompting via uncertainty-guided strategy selection. *arXiv preprint arXiv:2412.00353*, 2024.
 - Xiaochong Lan, Yiming Cheng, Li Sheng, Chen Gao, and Yong Li. Depression detection on social media with large language models. *arXiv preprint arXiv:2403.10750*, 2024a.
 - Xiaochong Lan, Chen Gao, Depeng Jin, and Yong Li. Stance detection with collaborative role-infused llm-based agents. In *Proceedings of the International AAAI Conference on Web and Social Media*, volume 18, pp. 891–903, 2024b.
 - Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint arXiv:2305.20050*, 2023.
 - Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Advancing frontier math reasoning with post-training and reward modeling. *arXiv preprint arXiv:2412.15084*, 2024.
 - Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated process supervision. *arXiv preprint arXiv:2406.06592*, 2024.
 - Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.
 - Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 instructions with human feedback. Advances in neural information processing systems, 35:27730–
 27744, 2022.

- Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning makes smaller llms stronger problem-solvers. *arXiv preprint arXiv:2408.06195*, 2024.
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. *arXiv preprint arXiv:2311.12022*, 2023.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- Hieu Tran, Zonghai Yao, Junda Wang, Yifan Zhang, Zhichao Yang, and Hong Yu. Rare: Retrieval-augmented reasoning enhancement for large language models. *arXiv preprint arXiv:2412.02830*, 2024.
- Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
- Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong Yu. Litesearch: Efficacious tree search for llm. *arXiv preprint arXiv:2407.00320*, 2024a.
- Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An. Q*: Improving multi-step reasoning for llms with deliberative planning. *arXiv preprint arXiv:2406.14283*, 2024b.
- Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 9426–9439, 2024c.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *ICLR*. OpenReview.net, 2023.
- Yingxu Wang and Vincent Chiew. On the cognitive process of human problem solving. *Cognitive systems research*, 11(1):81–92, 2010.
- Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling network architectures for deep reinforcement learning. In *International conference on machine learning*, pp. 1995–2003. PMLR, 2016.

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Jinyang Wu, Mingkuan Feng, Shuai Zhang, Feihu Che, Zengqi Wen, and Jianhua Tao. Beyond examples: High-level automated reasoning paradigm in in-context learning via mcts. *arXiv preprint arXiv:2411.18478*, 2024.
- Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.
- Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm performance in machine translation. *arXiv* preprint arXiv:2401.08417, 2024.
- Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, and Qi Liu. Decompose, analyze and rethink: Solving intricate problems with human-like reasoning cycle. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024a.
- An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.
- Cheng Yang, Chufan Shi, Siheng Li, Bo Shui, Yujiu Yang, and Wai Lam. Llm2: Let large language models harness system 2 reasoning. *arXiv preprint arXiv:2412.20372*, 2024c.
- Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez, and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models. *Advances in Neural Information Processing Systems*, 37:113519–113544, 2024d.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In *NeurIPS*, 2023.
- Xiaodong Yu, Ben Zhou, Hao Cheng, and Dan Roth. Reasonagain: Using extractable symbolic programs to evaluate mathematical reasoning. *arXiv preprint arXiv:2410.19056*, 2024.
- Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like olympiad-level mathematical reasoning. *arXiv preprint arXiv:2410.02884*, 2024a.
- Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. *arXiv* preprint arXiv:2410.10762, 2024b.
- Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. *arXiv preprint arXiv:2501.07301*, 2025.
- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv* preprint arXiv:2303.18223, 2023.
- Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai o1: Opportunities and challenges of agi. *arXiv preprint arXiv:2409.18486*, 2024.
- Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm question answering with external tools. *Advances in Neural Information Processing Systems*, 36: 50117–50143, 2023.

A LEARNING CURVES

In Figure 2, we show the learning curves during RL training of all navigator models used in experiments in the main text. We use a sliding window averaging to smooth the reward, and from the learning curves, we observe good convergence of the RL training.

Figure 2: Learning curves during RL training of all navigator models.

B CASE STUDY

 Problem: How many square units are in the region satisfying the inequalities $y \le |x|$ and $y \le -|x| + 3$?

Figure 3: A case study comparing few-shot CoT and RLoT on a representative problem in the MATH dataset. Results are both generated by Qwen2.5-14B-Instruct.

As shown in Figure 3, we analyze a representative case to illustrate the detailed working procedure of RLoT. The problem is sampled from the test set of MATH (Hendrycks et al., 2021c) benchmark, which involves calculating the area between two functional curves, requiring a combination of algebraic and geometric knowledge. While the Few-shot CoT method attempts to generate the answer in one step, RLoT adopts a task-specific reasoning pathway, which includes *Reason-Refine-Debate*, a typical pattern for solving complex math problems shown in Section 4.5.

Both Few-shot CoT and RLoT successfully calculate the intersection points of the curves. However, the response of Few-shot CoT fails to accurately identify the shape of the shadowed area, leading to incorrect bases for the triangles and, ultimately, an incorrect result. In contrast, RLoT utilizes the *Refine* action to clarify the intermediate results and correctly identifies the shadowed area as a rhombus. Subsequently, the *Debate* action proposes multiple plans and prioritizes directly using the area formula for a rhombus over dividing it into triangles. By avoiding unnecessary geometric division, RLoT achieves the correct answer.

C COMPUTATIONAL OVERHEAD AND LATENCY

As shown in Table 6, RLoT improves the reasoning ability of LLMs with a low cost comparing with complex inference-time techniques. The results show that at inference-time, RLoT's token consumption only accounts for 78 % of ToT, and the consumption is comparable to CoT-SC. This is because the trained navigator can directly select appropriate logic blocks without searching like ToT, improving the performance and reducing cost. Besides, our navigator with <3k parameters has almost negligible inference cost itself.

Though RL training incurs extra costs, our lightweight navigator makes training efficient, and the trained navigator can transfer across tasks, diluting the cost. Specifically, our navigator is trained for 3000 episodes, and each episode consumes an average of 5004 input and 1448 output tokens. Shared across all test questions, it only adds less than 5% input and output tokens per question.

Table 6: Token consumption per question across tasks. The **bold** numbers indicate our method.

1 1 1										our.							
Model	Method	AIN	ME24		IC23		ATH		M8K		PQA		J-STEM		egyQA		erage
		Input	Output	Input	Output	Input	Output	Input	Output	Input	Output	Input	Output	Input	Output	Input	Output
	Direct QA	653	1433	619	1131	46	362	55	183	159	460	82	210	30	259	235	577
	Zero-shot CoT	667	1489	633	1007	58	367	66	206	175	546	87	334	33	376	246	618
Owen2.5-14B-Instruct	Few-shot CoT	1955	1341	1921	940	466	336	1089	135	1557	589	1114	259	421	223	1218	546
Q	CoT-SC	7823	5330	7685	4109	2014 4983	1320 6277	4339	543	6295	1945 7404	4448 4797	1039	1586	897	4884	2169
	ToT RLoT (ours)	5994 22004	10844 3888	3836 17963	8029 3463	3735	1109	3570 2310	4312 634	6063 5501	1485	2923	5363 791	5762 2348	6491 756	5001 8112	6960 1732
	Direct QA	642	1714	644	1443	44	366	58	182	159	546	66	404	1 22	279	1 234	705
	Zero-shot CoT	667	1385	663	1180	47	393	78	222	184	522	82	413	32	401	250	645
Owen2.5-7B-Instruct	Few-shot CoT	4230	1789	3875	1501	483	581	1074	188	1556	442	1128	221	396	348	1820	724
Qwen2.5-/B-Instruct	CoT-SC	16890	7131	15341	5821	1932	1443	4379	750	6290	1800	4433	883	1612	1391	7268	2746
	ToT	5289	9180	3741	7621	6679	7525	5792	5301	5771	6489	5058	4669	3807	2013	5162	6114
	RLoT (ours)	23093	4168	12876	2896	1437	807	1283	476	2112	889	1028	434	1735	606	6223	1468
Llama3.1-8B-Instruct	Direct QA					44	437	53	180	174	811	71	406	13	201	71	407
	Zero-shot CoT					73	495 472	64 1101	215	175	661 769	91	365	20	418 272	85 945	431 371
	Few-shot CoT CoT-SC			-		510 2049	1885	4325	173 808	1568 6120	3078	1127 4429	168 808	417 1582	1071	3701	1530
	ToT					3474	4307	5212	4780	5615	3794	5331	5999	4320	4868	4790	4750
	RLoT (ours)					4481	1981	2842	1028	9818	3387	4408	1486	3049	1094	4920	1795
	Direct QA	601	1356	571	1184	43	404	54	223	165	397	86	175	13	201	219	563
	Zero-shot CoT	614	1435	585	1192	50	422	68	260	160	525	89	326	16	382	226	649
GPT-4o-mini	Few-shot CoT	1853	1365	1823	1202	513	408	1107	205	1575	505	1119	275	409	254	1200	602
OI I-40-IIIIII	CoT-SC	7414	5493	7294	5097	2030	1554	4442	823	6305	2027	4360	1005	1601	1014	4778	2430
	ToT	4639	4929	5726	4521	4534	5649	5890	5810	5175	5841	4950	5324	3833	1467	4964	4792
	RLoT (ours)	26529	4778	19513	3973	3483	1575	3069	1048	4372	1550	1882	710	1612	673	8637	2044
	Direct QA Zero-shot CoT	879 906	11793 12129	597 640	4686 5140	541 565	4960 4697	533 547	1364 1381	808 822	5462 5443	521 574	2094 2012	436 450	1268 1344	616	4518 4592
DeepSeek-R1-	Few-shot CoT	2360	7778	2086	5140	1938	3301	3253	1303	4390	5194	2063	1890	1197	1275	2470	4592 3694
Distill-Qwen-7B	CoT-SC	9240	32005	8556	21859	7749	13071	12976	5123	17562	20553	7883	7820	4791	5094	9822	15075
	ToT	5879	34616	4474	45524	3076	25913	6680	26033	4481	19222	2158	9604	8393	11697	5020	24658
	RLoT (ours)	13556	21870	15684	31915	4003	8450	8347	12389	3734	18787	6732	8613	6445	10546	8357	16081
Average	Direct QA	694	4074	608	2111	144	1306	151	426	293	1535	165	658	103	442	308	1507
	Zero-shot CoT	714	4110	630	2130	159	1275	165	457	303	1539	185	690	110	584	324	1541
	Few-shot CoT	2600	3068	2426	2191	782	1020	1525	401	2129	1500	1310	563	568	474	1620	1317
	CoT-SC	10342	12490	9719	9222	3155	3855	6092	1609	8514	5881	5111	2311	2234	1893	6452	5323
	ToT	5450	14892	4444	16424	4549	9934	5429	9247	5421	8550	4459	6192	5223	5307	4996	10078
	RLoT (ours)	21296	8676	16509	10562	3428	2784	3570	3115	5107	5220	3395	2407	3038	2735	8049	5071
RLoT plus train	ning cost	21649	8779	16863	10664	3782	2887	3924	3217	5461	5322	3749	2509	3392	2837	8403	5174

Besides token consumption, we show the average solving time (min) per problem along with the standard deviation across 3 repeats in Table 7.

Table 7: Average solving time (minutes) per problem across various benchmarks. Standard deviations from 3 repeats are shown in parentheses.

Method	AIME24	AMC23	MATH	GSM8K	GPQA	MMLU-STEM	StrategyQA	Average
Direct QA	0.44(0.02)	0.25(0.01)	0.13(0.00)	0.05(0.00)	0.17(0.01)	0.08(0.00)	0.05(0.00)	0.17(0.01)
Zero-shot CoT	0.44(0.02)	0.25(0.02)	0.13(0.01)	0.06(0.00)	0.17(0.02)	0.08(0.00)	0.06(0.00)	0.17(0.01)
Few-shot CoT	0.52(0.03)	0.42(0.02)	0.17(0.01)	0.18(0.01)	0.33(0.02)	0.17(0.02)	0.10(0.01)	0.27(0.02)
CoT-SC	2.09(0.13)	1.74(0.12)	0.64(0.03)	0.71(0.07)	1.32(0.09)	0.68(0.05)	0.38(0.02)	1.08(0.07)
ToT	1.86(0.07)	1.91(0.15)	1.33(0.12)	1.35(0.11)	1.28(0.06)	0.98(0.10)	0.97(0.11)	1.38(0.10)
RLoT (ours)	2.75(0.21)	2.48(0.22)	0.57(0.02)	0.61(0.05)	0.95(0.05)	0.53(0.03)	0.53(0.04)	1.20(0.09)

Our navigator can directly generate a task-specific logical trajectory, reducing the LLM interaction cost. Also, our lightweight navigator itself brings almost negligible cost.

D PERFORMANCE COMPARISON WITH LARGER LLMS

Table 8: Performance comparison between sub-10B LLMs enhanced by RLoT, and larger LLMs with several times of parameters.

LLM	Size	Method	MATH	GSM8K	GPQA	MMLU-STEM	StrategyQA	Average	Gap
	14B	Few-shot CoT	80.00	94.80	45.50	85.06	78.60	76.79	-4.13
Owen2.5-Instruct	14D	RLoT (ours)	80.38	94.16	51.34	88.93	81.22	79.21	-1.71
	72B	Few-shot CoT	83.10	95.80	49.00	89.80	86.90	80.92	-
	8B	Few-shot CoT	48.52	84.50	33.03	70.66	72.05	61.75	-12.51
Llama3.1-Instruct	ŏБ	RLoT (ours)	56.56	90.07	46.88	80.56	84.42	71.70	-2.56
	70B	Few-shot CoT	68.00	95.10	46.70	84.81	76.71	74.26	-
	mini (8B)	Few-shot CoT	75.46	93.48	35.94	85.82	80.06	74.15	-4.44
GPT-40	IIIIII (od)	RLoT (ours)	77.36	93.86	54.02	88.23	82.68	79.23	+0.64
	(200B)	Few-shot CoT	76.60	93.73	53.60	87.90	81.10	78.59	-

In table 8, we show the performance of the sub-10B LLMs after enhancement with RLoT. The results indicate that our RL-based navigator, which contains fewer than 3,000 parameters, significantly enhances the performance of sub-10B LLMs, making them comparable to much larger counterparts with around $10\times$ more parameters. Specifically, our RLoT method empowers the sub-10B LLMs to be comparable to, compensating most of the performance gap, or even surpassing their larger counterparts, demonstrating remarkable efficiency.

E EXTENDED BASELINE COMPARISONS

E.1 TEST-TIME SCALING BASELINES

 In addition to math reasoning models, we also compare RLoT with multiple models which cover different categories and designs. The details of baselines are listed below.

Fixed reasoning patterns. Baselines from this category adopts a fixed workflow to obtain the answer, which

- DeAR (Xue et al., 2024): The problem is consequently decomposed, analyzed and refined in this workflow. The workflow follows a recurrent manner to a detailed decomposition of original problem.
- **Self-Refine** (Madaan et al., 2023): This method adds a simple refine step after every reasoning step to correct potential mistakes.

Tree search.Tree-based models divide the reasoning task into sub-steps, and searches for a best path to the final answer. Tree-based methods usually requires multiple rounds Q/A, resulting in high reasoning cost.

- One-step-greedy: Using PRM model to greedily select the best thought at each step.
- Basic Monto-carlo Tree Search: An effective tree-searched method that explore the tree via multiple roll-outs. The MCTS is also supervised by the PRM.
- Litesearch (Wang et al., 2024a): An low-cost tree search method that assigns larger search budget to a more promising nodes.
- **Q*** (Wang et al., 2024b): **Q*** adopts a value function that estimate the "distance" between the current thought and the correct answer. Then an **A*** algorithm, which is widely applied in shortest path problem, is used to finish tree-search.
- rStar (Qi et al., 2024): Use Monte Carlo Tree Search during inference to select actions.
- **AFlow** (Zhang et al., 2024b): An automated framework that uses MCTS to efficiently explore LLM agentic workflow.

Others.

- **DSPy** (Khattab et al., 2023): A programming model that can express and optimize sophisticated LM pipelines.
- Graph of Thoughts (GoT) (Besta et al., 2024): A graph-based model which allows arbitrary
 combination of thoughts according to the manually designed graph architecture. We carefully
 design graphs for each specific dataset.
- **Buffer of Thoughts (BoT)** (Yang et al., 2024d): A Retrieval-Augmented Generation (RAG) model that enhance reasoning via reasoning patterns in the buffer. These patterns are continuously updated during inference time.

As shown in Table 9,we compare these methods on representative datasets, GSM8K, GPQA, and StrategyQA, which covers three different domains. Results show that our model outperforms all baseline methods among all datasets.

By flexibly organizing logic blocks, our design can outperform these baselines. To compare the efficiency and effectiveness, we show the token consumption per question for representative baselines:

Unlike search-based methods that require multiple explorations, our design directly generates task-specific logical trajectories, allowing for better performance with a similar or lower cost.

1026 1027 1028

Table 9: Extended baseline comparisons. The **bold** numbers indicate the best performance in each group of experiments, and the underlined numbers indicate the best baseline method.

LLM		Method	GSM8K	GPQA	StrategyQA	Average
		91.58	31.25	68.85	63.89	
	De	88.38	36.16	71.13	65.22	
	Self-Re	efine (Madaan et al., 2023)	88.55	32.59	73.94	65.03
		One-step-greedy	89.08	32.59	73.07	64.91
Qwen2.5-Instruct-7B	Tuon annula	Basic MCTS	90.07	34.82	75.69	66.86
	Tree search	Litesearch (Wang et al., 2024a)	89.76	33.04	75.84	66.21
		Q* (Wang et al., 2024b)	91.51	34.60	77.00	67.70
		rStar (Qi et al., 2024)	91.96	38.62	77.15	69.24
		AFlow (Zhang et al., 2024b)	91.36	37.72	76.56	68.55
	DSP	y) (Khattab et al., 2023)	88.32	34.15	74.09	65.52
	Graph of The	oughts (GoT) (Besta et al., 2024)	88.96	33.04	75.42	65.81
	Buffer of Tho	92.35	34.51	74.33	67.06	
		RLoT (ours)	92.87	44.64	79.04	72.18

1041 1043 1044

1045

1039 1040

Table 10: Token consumption and performance scores per question for representative baselines.

040
047
048
049

LLM	Method	GSM8K		GPQA		StrategyQA		Average	
		Score	Token	Score	Token	Score	Token	Score	Token
Qwen2.5-Instruct-7B	DirectQA Self-Refine rStar RLoT (ours)	91.58 88.55 91.96 92.87	240 678 2636 1759	31.25 32.59 38.62 44.64	705 1784 4127 3001	68.85 73.94 77.15 79.04	301 939 2987 2341	63.89 65.03 69.24 72.18	415 1134 3483 2367

1050 1051 1052

1053

1054

E.2 MATH DOMAIN BASELINES

1055 1056 1057

To better demonstrate the effectiveness of our design, we compare RLoT with more baselines that have been specifically designed for math reasoning tasks. We involve fine-tuning designs which are computationally expensive.

1058

• AceMath (Liu et al., 2024): A supervised fine-tuning model designed specifically for mathematical reasoning. It first develops a math-specialized reward model using public datasets and then performs fine-tuning and reasoning guided by this reward model.

1062 1063 1064 • PFPO (Jiao et al., 2024): A supervised fine-tuning approach guided by pseudo reward feedback. The feedback is generated either through a self-consistency mechanism or with the assistance of more powerful LLMs.

1065 1067

We also include inference-time designs that hire complicated algorithms like Monte-Carlo Tree Search (MCTS).

1068 1069 • LLM2 (Yang et al., 2024c): A lightweight model aimed at enhancing LLM reasoning during inference. It achieves this by training a verifier to distinguish and prioritize better LLM-generated responses.

1070 1071

• LLaMA-Berry (Zhang et al., 2024a): An inference-time Monte Carlo Tree Search (MCTS) method that explores reasoning paths using a trained reward model.

1075

• **HiAR-ICL** (Wu et al., 2024): A method that matches problems with multiple reasoning templates at inference time. These templates are previously generated using MCTS on a subset of the dataset.

1077 1078

1079

We test with Llama3.1-8B-Insturct on MATH and GSM8K benchmarks and show the results in Table 11. For the baselines, we use the performance reported in the original papers, and for RLoT, we test with the same navigator model as in Section 4.2 in the main text. From the results, we can observe that our method outperforms all inference-time baselines. Meanwhile, with substantially

Table 11: Performance comparison of RLoT's with more baselines. The **bold** numbers indicate the best performance in each category.

Category	Method	МАТН	GSM8K	Average
Fine-tuning	AceMath (Liu et al., 2024) PFPO (Jiao et al., 2024)	64.42 57.80	90.45 89.60	77.44 73.70
Inference-time	LLM2 (Yang et al., 2024c) LLaMA-Berry (Zhang et al., 2024a) HiAR-ICL (Wu et al., 2024) RLoT (ours)	48.60 54.80 55.00 56.56	88.00 89.80 90.70 90.07	68.30 72.30 72.85 73.32

lower computational consumption, it reaches comparable performance to some fine-tuning methods that require modification on the parameters of LLMs.

F ANALYSES ON THE RELIABILITY OF SELF-EVALUATION STATE

Previous work shows that LLMs can evaluate and correct their own outputs (Han et al., 2024). Meanwhile, multiple works (Madaan et al., 2023; Xue et al., 2024) have reached success with self-correcting. Based on the literature, we design the structured self-evaluation that prompts the LLM across granular aspects (Table 1), including the correctness of modeling and calculation. This design aims to be more specific and reliable than the single judgment.

To validate the robustness, we randomly sample 100 intermediate reasoning texts and manually check the self-evaluation. We find that the LLM's assessment was accurate in 82 out of 100 cases. Also, we deliberately introduced modeling and calculation errors in a reasoning path, and test whether our self-evaluation mechanism is able to correctly identify. As shown in Table 12, the problem is from GSM8K (Cobbe et al., 2021), which includes the relationship of three variables. In addition to the correct reasoning step, we modify it to obtain two wrong reasoning steps, which respectively makes a mistake on modeling and calculation. The result shows that the LLM is able to identify and classify different kinds of mistakes, demonstrating the effectiveness of self-evaluation state extraction.

Table 12: An example of self-assessing of intermediate states.

Ouestion	Reasoning step	Self-evaluated correctness		
		Modeling	Calculation	
Mark has a garden with flowers. He planted plants of three different colors in it.	In this step, we aim at calculate the number of purple flowers, which is 80% more than the yellow ones. We calculate by 10 \times (1 + 0.8) = 18	True	True	
Ten of them are yellow, and there are 80% more of those in purple. There are only 25% as many green flowers as	In this step, we aim at calculate the number of purple flowers, which is 80% more than the yellow ones. We calculate by 10 \times 0.8 = 8	False	True	
there are yellow and purple flowers. How many flowers does Mark have in his garden?	In this step, we aim at calculate the number of purple flowers, which is 80% more than the yellow ones. We calculate by 10 \times (1 + 0.8) = 17	True	False	

Based on the validation, we consider our structured self-evaluation provides a sufficiently reliable state representation for training the navigator.

Furthermore, we explore alternative designs of self-evaluation:

- MLP. Use the self-evaluation vector from a fixed LLM as input, only train an MLP as the navigator.
- **LLM** (**fixed**). Directly prompt the LLM to select the action based on the raw reasoning trajectory.
- LLM (finetune). Use the raw reasoning trajectory as input, train an LLM backbone with an MLP classification head as the navigator.

Table 13: Comparison of alternative self-evaluation designs.

LLM	Navigator	GSM8K	GPQA	StrategyQA	Average
Qwen2.5-Instruct-7B	DirectQA LLM (fixed) LLM (finetune) MLP (ours)	91.58 89.16 88.32 92.87	31.25 37.95 34.15 44.64	68.85 74.38 70.01 79.04	63.89 67.16 64.16 72.18

As the results in Table 13 show, LLM (fixed) performs badly since pre-trained LLMs are not specified for the task. LLM (finetune) even performs worse. Our method injects valuable human knowledge for explicit, structured self-evaluation. In contrast, LLM (finetune) requires an implicit evaluation

from raw text, which is much more complex and has more parameters to be tuned. This requires substantially more consumption and specialized design to overcome the complexity and uncertainty. Therefore, our method is a comprehensive design at a low cost. While some self-evaluation cases may be inaccurate, the overall improvement demonstrates the general benefit.

G ANALYSES ON THE ROLE OF RL IN TRAINING THE NAVIGATOR

To illustrate the necessity of using RL in training the navigator, we compare the RL navigator with several other decision methods for deciding the next reasoning block. The methods includes the

• Fixed logic sequence. Fixed "Decompose-Reason-Refine" sequence like human thinking.

• **Supervised-trained navigator.** We first collected 20K state-action-score samples with random actions. Then, we trained a model to predict the outcome for each action given a state, and select the action with the highest predicted score during inference.

• **LLM as navigator.** Directly prompt another LLM to select the action based on the reasoning context.

We also add:

• Repeated strong blocks. Repeat Debate or Refine until reaching the answer.

Table 14: Comparison with alternative navigator methods on various benchmarks.

LLM	Method	GSM8K	GPQA	StrategyQA	Average
	DirectQA	91.58	31.25	68.85	66.62
	Repeated refine	87.72	32.37	72.34	66.65
Qwen2.5-Instruct-7B	Repeated debate	89.99	33.04	72.05	67.51
	Fixed logic sequence	88.38	36.16	71.13	67.47
	Supervise-trained navigator	89.84	36.83	70.31	67.94
	LLM as navigator	89.16	37.95	74.38	69.17
	RL-trained navigator (ours)	92.87	44.64	79.04	73.34

The results in Table 14 show that these methods are worse than RLoT:

• Fixed logic sequence. Rigid, unable to design flexible logical structures for specific tasks.

 • **Supervise-trained navigator.** The randomly sampled state-action pairs lack the ability of RL to purposely exploit effective parts of the sample space.

• LLM as navigator. Pre-trained LLMs are not specified for the logic selection task.

These show the importance of using RL for our navigator to flexibly select logic blocks.

H ANALYSES ON THE ROLE OF PROCESS REWARD MODEL (PRM)

As literature (Zhang et al., 2025) indicates that math-trained PRMs perform well on MMLU-STEM, and the performance of PRMs in math and STEM is generally correlated. Our navigator, which is trained with a math PRM, achieves strong performance on GPQA (STEM). This also reflects the generalization capability of PRM across domains. We also test an ORM to train the navigator.

Table 15: Comparison of RLoT using an Outcome Reward Model (ORM) vs. a Process Reward Model (PRM).

LLM		
Qwen2.5-Instruct		

	Method	GSM8K	GPQA	StrategyQA	Average
	DirectQA	91.58	31.25	68.85	66.62
ruct-7B	RLoT with ORM	91.96	41.52	73.94	70.71
	RLoT with PRM (ours)	92.87	44.64	79.04	73.34

The results in Table 15 show that the PRM outperforms the ORM, indicating that the step reward signal from PRM is crucial.

Further, to explore the impact of PRM quality, we test:

• ORM: As a minimal quality PRM.

• Degraded PRM: Add a std=0.1 Gaussian noise to our raw PRM.

• Better PRM: Qwen2.5-Math-PRM-7B, a stronger PRM.

Table 16: Impact of PRM quality on navigator performance.

LLM	PRM	GSM8K	GPQA	StrategyQA	Average
	None-DirectQA	91.58	31.25	68.85	63.89
	ORM	91.96	41.52	73.94	69.14
Qwen2.5-Instruct-7B	MathShepherd-Mistral-7B + disturb	92.49	42.41	77.15	70.68
	MathShepherd-Mistral-7B	92.87	44.64	79.04	72.18
	Qwen2.5-Math-PRM-7B	93.10	45.31	80.06	72.82

These results in Table 16 show that a higher-quality PRM is beneficial. However, the navigator is robustly beneficial with a lower-quality PRM, as long as the reward signal is directionally meaningful.

I ANALYSES ON THE DESIGN OF LOGIC BLOCKS

We first check the test-time scaling for the logic blocks. Results in Figure 4 show that a longer sequence of logic blocks brings a performance gain.

Figure 4: Test-time scaling with different number of logic blocks.

To examine the impact of each block, we remove each of them and train a navigator:

Table 17: Ablation study results for each logic block.

LLM	Ablation	MATH	GPQA	StrategyQA	Average
Qwen2.5-Instruct-7B	w/o Decompose	75.42	31.92	77.00	61.45
	w/o Debate	74.02	36.61	77.58	62.74
	w/o Refine	75.76	41.29	72.93	63.33
	Full RLoT	76.70	44.64	79.04	66.79
GPT-4o-mini	w/o Decompose	76.08	41.74	79.33	65.72
	w/o Debate	74.68	45.31	78.75	66.25
	w/o Refine	76.44	51.56	74.38	67.46
	Full RLoT	77.36	54.02	82.68	71.35

The ablation results in Table 17 confirm that all blocks are effective.

We also analyze the impact of different logic blocks on different datasets. Results in Figure 5 show the average PRM reward gain of each logic block. The most useful block varies in different tasks, specifically Debate for math tasks, Decompose for STEM tasks, and refine for common-sense reasoning.

Figure 5: Contribution of each logic block in the reasoning sequence.

Further, we test some possible new blocks:

- Follow-up-question: Propose and answer a sub-question based on the current reasoning.
- **Rephrasing**: Reorganize the current reasoning.
- Compression: Condense the current reasoning.

Table 18: Performance with additional logic blocks.

Logic blocks	MATH	GPQA	StrategyQA	Average
Original in RLoT	76.70	44.64	79.04	66.79
Original + Follow-up-question	76.78	43.97	79.24	66.66
Original + Rephrasing	77.30	45.54	80.20	67.68
Original + Compression	76.06	43.53	77.87	65.82
	Original in RLoT Original + Follow-up-question Original + Rephrasing	Original in RLoT 76.70 Original + Follow-up-question 76.78 Original + Rephrasing 77.30	Original in RLoT 76.70 44.64 Original + Follow-up-question 76.78 43.97 Original + Rephrasing 77.30 45.54	Original in RLoT 76.70 44.64 79.04 Original + Follow-up-question 76.78 43.97 79.24 Original + Rephrasing 77.30 45.54 80.20

The results in Table 18 showed that "Rephrasing" is beneficial, while "Follow-up-question" (perhaps self-ask-and-answer has limited effect) and "Compression" (likely due to information loss) are not. This shows the extensibility of RLoT: it provides a framework for the community to design more reasoning blocks to enhance the performance.

J IMPLEMENTATION DETAILS

J.1 SETTINGS

In this section, we provide the main implementation settings for reproducibility in Table 19. Please refer to our source code at https://anonymous.4open.science/r/RL-LLM-Reasoning-1A30 for the exact usage of each hyper-parameters and more details.

Table 19: Implementation details.

Module	Element	Detail
	OS	Ubuntu 22.04.2
System	CUDA	11.7
•	Python	3.11.4
	γ	0.9
	Number of episodes	3000
	Batch Size	64
	Interval of target network updating	50
Daubla Dualina DON	Optimizer	Adam
Double-Dueling DQN	Learning rate	0.01
	Learning rate decay	0.5 per 1000 episodes
	Replay buffer size	500
	Start epsilon	1
	Min epsilon	0.0
	Epsilon decay	0.9995 per step
	Maximum number of actions	5
RLoT framework	Number of trails for self-consistency	3
	Temperature for LLMs	1.0

J.2 Illustration of the full pipeline

Here we illustrate how every parts in our design work together as an whole pipeline.

1 DATA CONSTRUCTION

We pick out "hard problems", namely those that the LLM wrongly answers when directly prompted, for training the navigator. Here are more details: we used Qwen2.5-14B-Instruct as a reference model to select "hard problems" from the training sets. The direct prompts are:

```
Prompts: {Problem} Please generate the answer for the problem. (MATH) Wrap the answer with boxed{{answer}}. (GPQA) End the answer with 'The answer is (CHOICE)'. (StrategyQA) End the answer with 'YES/NO'.
```

The statistics on benchmarks involved in our training are shown in Table 20.

Table 20: Statistics on benchmarks involved in our training.

Dataset	Total	Hard	Proportion (%)
MATH	7500	1736	23.15
GPQA	448	255	56.92
StrategyQA	1600	341	21.31

By selecting "hard problems", our navigator dedicates to strategies that enhance LLMs on problems that they cannot solve directly. For our RL approach, we do not construct (input, expected_output) pairs like supervised learning. The training data consists of individual questions. During training, the model is fed with questions, and the outputs are evaluated to generate rewards, which are then fed back to train the model. We will detail the key components and entire process of training below.

```
1512
       2 STATE SELF-EVALUATION (STATE SPACE)
1513
1514
       We obtain the 7-aspect state vector through a prompted self-evaluation mechanism. We feed the
       problem and the existing reasoning into the LLM with the prompt in Appendix K.1. This design
1515
       compresses the textual reasoning trajectory into a low-dimensional state vector, making the policy
1516
       learning process more efficient and tractable.
1517
1518
       Here is an input-output example of state self-evaluation, as seen in our case study in Appendix F:
1519
1520
       Input
       (Problem) Mark has a garden with flowers. He planted plants of three different
1521
       colors in it. Ten of them are yellow, and there are 80% more of those in
1522
       purple. There are only 25% as many green flowers as there are yellow and
1523
       purple flowers. How many flowers does Mark have in his garden?
1524
       (Existing reasoning) In this step, we aim at calculating the number of purple
1525
       flowers, which is 80% more than the yellow ones. We calculate by 10 * (1 + 0.8) = 17
1526
1527
       Output
1528
       (State vector) {Modelling: True, Calculation: False, ...}
1529
1530
       3 LOGICAL BLOCKS (ACTION SPACE)
1531
       First, these logic blocks are inspired by well-established cognitive strategies in human problem
1532
       solving. "Decompose," "Debate," and "Refine" are the core actions, supplemented by "Reason one
1533
       step" and "Terminate" to ensure complete reasoning flows.
1534
1535
       For instance, "Decompose" reflects the widely studied divide-and-conquer approach, while "Debate"
       aligns with strategies involving comparative evaluation (Wang & Chiew, 2010). Also, they are
1537
       empirically effective. Prior studies (Madaan et al., 2023; Xue et al., 2024) have demonstrated that
       "Decompose" and "Refine" can significantly enhance the performance of LLMs on complex tasks.
1538
1539
       Second, while preserving the high-level cognitive intuition, we have operationalized them into
1540
       specific primitives that the LLM can execute. The key differences are:
1541
1542
             • Formalization with prompts: Each block corresponds to a prompt template that instructs
1543
               the LLM to perform a specific function (Appendix K.2).
1544
             • Standard Input/Output: All blocks operate on a unified interface. The input is the original
1545
               problem and the existing reasoning, and the output is a new segment of reasoning. This
1546
              allows flexible composition of logic blocks.
1547
       Third, here is an input-output example for the 'Debate' block (as Appendix B):
1548
1549
       Input
1550
       (Problem) How many square units are in the region satisfying the inequalities
1551
       y \neq |x|  and y = -|x| + 3?
1552
       (Existing reasoning) Let's start by analyzing the given inequalities. The next
1553
       step is to determine the points of intersection... Now we know the points of
1554
       intersection are...
1555
1556
       Output
1557
       (New reasoning) The most promising plan is: Given the diagonals of the rhombus,
       we can now calculate the area.
1558
1559
```

4 Process reward

1560 1561

1562 1563

1564

1565

The PRM takes in the problem and existing reasoning and outputs a numerical score evaluating its quality.

Here is an input-output example for the PRM:

The contributions of the logic blocks are discussed in Appendix I.

```
Input:
1567
      (Problem) How many square units are in the region satisfying the inequalities
1568
      y \neq |x|  and y = -|x| + 3?
1569
      (Existing reasoning) Let's start by analyzing the given inequalities. The next
1570
      step is to determine the points of intersection... Now we know the points of
      intersection are...
1571
1572
      Output:
      (Reward) 0.765
1574
1575
      5 DEFINITION OF MDP
1576
```

Combining the above components, our MDP is defined as follows:

- **State**: A low-dimensional vector generated from the LLM's self-evaluation of the current reasoning step.
- Action: One of five logic blocks that guide the next step reasoning.
- **Reward**: A score from a PRM that evaluates the quality of the reasoning step after an action is taken.

6 Training process

1577

1578 1579

1580

1581

1582

1584

1586 1587

1588

1589

1601

1614

1615

1616

1617

1618

1619

Follow the MDP framework, we train the navigator with Deep Q-Learning algorithm. The training process is:

```
- For training episodes:
        - Randomly sample a Problem. Existing reasoning={}.
        - WHILE True:
1592
          - Problem + Existing reasoning -- [Self-evaluation] --> State vector
1593
          - State vector -- [MLP navigator] -- > Logic block (action)
1594
          - Problem + Existing reasoning --[Logic block]--> New reasoning
1595
          - Existing reasoning <-- Existing reasoning + New reasoning
1596
          - Problem + Existing reasoning -- [PRM] --> Reward
1597
          - Use the reward to train the MLP navigator
1598
          - IF reach the answer: BREAK
1599
```

7 Inference process

With the trained navigator, the inference process is:

```
1603
      - Problem. Existing reasoning={}. Answers={}.
1604
      - For self-consistency candidates number:
1605
        - WHILE True:
          - Problem + Existing reasoning --[Self-evaluation] --> State vector
          - State vector -- [MLP navigator] --> Logic block (action)
1608
          - Problem + Existing reasoning -- [Logic block] --> New reasoning
1609
          - Existing reasoning <-- Existing reasoning + New reasoning
1610
          - IF reach the answer: BREAK
1611
        - Answers <-- Answers + New answer
      - Answers -- [Self-consistency] --> Final answer
1612
1613
```

8 SELF-CONSISTENCY EVALUATION

To enhance the robustness of our final answers, we employ a self-consistency mechanism. Since the final answers can be in different formats, we use *sympy.parsing.latex* library to parse the answers and determine if they are mathematically equivalent. We select the final answer using majority voting. If no majority exists, one answer is selected at random.

Here is an input-output example for self-consistency:

```
1620
        Input:
1621
        (Answers) \{0.5\} \{0.7\} \{1/2\}
1622
1623
       Output:
1624
        (Final answer) 0.5
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
```

K DETAILED PROMPTS

1674

1675 1676

1677

1678

1679 1680

1681

1682

1683

1684

1685 1686

1715

1716 1717

1718

1719

1720 1721

1722

1723

1724

1725 1726

1727

In this section, we provide the prompts for obtaining states and performing actions to ensure reproducibility. In the following prompt blocks, the text enclosed in braces "{}" denotes problem-specific content, such as intermediate reasoning steps, while the remaining texts serve as fixed templates.

K.1 PROMPT FOR OBTAINING STATES

We use the following prompt to extract a state vector from an intermediate reasoning step. This prompt guides the LLM in systematically evaluating the current step across multiple aspects. During our experiments, we observed that LLMs effectively identify these aspects and provide detailed scores for each aspect.

Listing 1: Prompts for obtaining states

```
1687
           {Problem and reasoning steps}
1688
           Please evaluate the current step from the following aspects.
1689
         3
           A) Correctness
                Al: Correctness of modeling:
         5
                Whether the current step is correctly derived from the origin
                   problem.
         6
                A2: Clarity for further reasoning:
1693
                Whether the current step is clearly presented, without ambiguity
                    , to support further reasoning.
         8
                A3: Correctness of calculation:
1695
         9
                Whether the numerical computation in the current step is
                   performed correctly.
           B) Complexity
        11
                B1: Complexity to reach the final answer:
1699
        12
                Whether it still requires complex reasoning or calculation to
                   reach the final answer from the current step.
1700
        13
                B2: Alternative methods in further reasoning:
1701
                Whether there exist multiple alternative methods to solve the
1702
                   problem in the current step.
1703
        15 C) Completeness
1704
        16
                C1: Closeness to the final solution:
        17
                Whether the current step is close enough to directly reach the
1705
                   final answer.
1706
        18
                C2: Completeness within the step:
1707
        19
                Whether all necessary elements within this specific step are
1708
                   known from the problem or previous steps.
1709
           For each aspect, please score 1 for False, 2 for Unsure, and 3 for
               True, and score 0 if the current step does not involve this
1710
               aspect. Please attach the reason for each score.
1711
           Use the format 'A1 score=[SCORE] reason=[REASON]'.
1712
           Only score the current reasoning step here, and DONOT conduct
1713
                further reasoning.
1714
```

K.2 PROMPTS FOR ACTIONS

Reason one step: The prompt below is designed to conduct the action of "Reason one step". We emphasize that it should focus on one step at a time, which better controls the output and prevents mistakes in long reasoning paths.

Listing 2: Prompts for action "Reason one step"

Decompose: A "Decompose" action consists of the following three prompts. First, we use prompt 3 to break down the current problem into multiple subtasks. Next, prompt 4 is applied sequentially to

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739 1740 1741

1742

1743

1744

1745

1746

1747

1748

1749 1750

1751

1752

1754

1755

17561757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

177017711772

1773

1774

1775

1776

1777

1778

1779

1780

1781

each subtask to complete its execution. Since the current subtask may depend on previous ones, the results of earlier subtasks are included (see line 4 of the prompt). Finally, the execution results are summarized using prompt 5, which captures the key steps and outcomes. Only the summarized result is utilized for subsequent reasoning actions.

Listing 3: Prompts for obtaining subtasks in action "Decompose"

- 1 Here is a problem and several reasoning steps.
- 2 {Problem and previous steps}
- 3 Please decompose the current task into subtasks, where we can solve the original problem by combining these results of subtasks.
- 4 Only provide subtasks decomposition here, and DONOT conduct specific reasoning or calculation.
- 5 Use the format '### Subtask1: subtask1'.

Listing 4: Prompts for executing subtasks in action "Decompose"

- 1 Here is a problem and several reasoning steps.
- 2 {Problem and reasoning steps before decomposition}
- 3 For the next step, the task is decomposed into subtasks, here are the reasonings in the first few subtasks.
- 4 {Executing results of previous subtasks}
- 5 Please conduct the following Subtask{subtask_id} to continue the reasoning. text_decompose.
- 6 DONOT conduct a more detailed decomposition for the subtask.

Listing 5: Prompts for summarize subtasks in action "Decompose"

- 1 Here are a few detailed reasoning subtasks of a problem.
- 2 {Executing results of subtasks}
- 3 Please give a clear and concise summary of these subtasks, keeping the key reasoning and results in each subtask.
- 4 Only provide the summary here, and DONOT conduct more reasoning or calculation.

Debate: A "Debate" action involves multiple rounds of question-answering. First, the LLM generates different plans for the task using prompt 6. Next, the plans are compared, and the most promising one is selected using prompt 7, mimicking how human experts debate and discuss to reach a solution. Based on the chosen plan, reasoning is advanced by one step through prompt 8. Similar to the "Decompose" action, only the results of the final one-step reasoning (output of prompt 8) are retained for subsequent reasoning processes.

Listing 6: Prompts for obtaining various plans in action "Debate"

- Here is a problem and several reasoning steps.
- 2 {Problem and previous reasoning steps}
- 3 Please propose three different alternative plans for solving the problem in the current step.
- 4 Only provide plans here, and DONOT conduct specific reasoning or calculation.
- 5 Use the format '### Plan1: plan1'.

Listing 7: Prompts for analysing and comparing plans in action "Debate"

- 1 Here is a problem and several reasoning steps.
- 2 {Problem and previous reasoning steps}
- 3 Currently, we have several alternative plans for solving the problem in the current step.
- 4 {Generated Plans}
- 5 Please review and compare these plans carefully, and tell which one is most promising for further reasoning. Only compare the plans here, and DONOT conduct further reasoning or calculation.
- 6 Use the format 'The most promising plan is Plan[INDEX]: [REASON]', where [INDEX] is an integer index of the plan and [REASON] is a detailed analysis.

Listing 8: Prompts for executing the plan in action "Debate"

```
Here is a problem and several reasoning steps.
Problem and previous reasoning steps
For the next step, we have decided on the most promising plan:
Plan
Please reason **exactly one** more step according to the plan here,
and DONOT reason too many steps at once.
```

Refine: We use prompt 9 to perform the "Refine" action, which instructs the LLM to review and improve the reasoning steps for clarity and correctness.

Listing 9: Prompts for action "Refine"

```
1 Here is a problem and several reasoning steps
2 {Problem and previous reasoning steps}
3 Please check and refine the current thought here, and DONOT conduct further reasoning or calculation.
```

Terminate: The prompt for the "Terminate" action concludes the reasoning process by generating the final answer. The only variation lies in the output format, which is adapted to the specific requirements of each dataset.

Listing 10: Prompts for action "Terminate"

```
1 Here is a problem and several reasoning steps
   {Problem and previous reasoning steps}
3
4
  ## GSM8K
5
  Please generate the answer for the problem. Please end the answer
       with 'The answer is numerical_answer'.
6
7
   ## MATH
8
   Please generate the answer for the problem. Wrap the answer with \\
       boxed{{answer}}.
10 ## MMLU-STEM and GPQA
11 End the answer with 'The answer is (CHOICE)'.
12
13 ## StrategyQA
14 Please generate the answer for the problem. At the end of your
       answer, conclude the answer with 'The answer is yes' or 'The
       answer is no'.
```

L USE OF LLMS

The authors used LLMs to aid or polish paper writing, but all content has been carefully reviewed by the author. The authors used LLMs for literature retrieval and discovery, but all related works have been carefully reviewed and organized by the author. The research ideation in this work was entirely completed by the author and does not involve the use of LLMs.