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Abstract

Offline goal-conditioned reinforcement learning (GCRL) promises general-purpose
skill learning in the form of reaching diverse goals from purely offline datasets. We
propose Goal-conditioned f -Advantage Regression (GoFAR), a novel regression-
based offline GCRL algorithm derived from a state-occupancy matching perspec-
tive; the key intuition is that the goal-reaching task can be formulated as a state-
occupancy matching problem between a dynamics-abiding imitator agent and an
expert agent that directly teleports to the goal. In contrast to prior approaches,
GoFAR does not require any hindsight relabeling and enjoys uninterleaved opti-
mization for its value and policy networks. These distinct features confer GoFAR
with much better offline performance and stability as well as statistical performance
guarantee that is unattainable for prior methods. Furthermore, we demonstrate
that GoFAR’s training objectives can be re-purposed to learn an agent-independent
goal-conditioned planner from purely offline source-domain data, which enables
zero-shot transfer to new target domains. Through extensive experiments, we
validate GoFAR’s effectiveness in various problem settings and tasks, significantly
outperforming prior state-of-art. Notably, on a real robotic dexterous manipulation
task, while no other method makes meaningful progress, GoFAR acquires com-
plex manipulation behavior that successfully accomplishes diverse goals. Project
website: https://jasonma2016.github.io/GoFAR/

1 Introduction

Goal-conditioned reinforcement learning [19, 47, 43] (GCRL) aims to learn a repertoire of skills
in the form of reaching distinct goals. Offline GCRL [6, 51] is particularly promising because it
enables learning general goal-reaching policies from purely offline interaction datasets without any
environment interaction [30, 26], which can be expensive in the real-world. As offline datasets
contain diverse goals and become increasingly prevalent [9, 20, 6], policies learned this way can
acquire a large set of useful primitives for downstream tasks [32]. A central challenge in GCRL is the
sparsity of reward signal [3]; without any additional knowledge about the environment, an agent at a
state typically only accrues positive binary reward when the state lies within the goal neighborhood.
This sparse reward problem is exacerbated in the offline setting, in which the agent cannot explore
the environment to discover more informative states about desired goals. Therefore, designing an
effective offline GCRL algorithm is a concrete yet challenging path towards general-purpose and
scalable policy learning.

In this paper, we present a novel offline GCRL algorithm, Goal-conditioned f-Advantage Regression
(GoFAR), first casting GCRL as a state-occupancy matching [29, 35] problem and then deriving a
regression-based policy objective. In particular, GoFAR begins with the following goal-conditioned
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Figure 1: GoFAR schematic illustration.

state-matching objective:
min
π

DKL(d
π(s; g)∥p(s; g)) (1)

where dπ(s; g) is the goal-conditioned state-occupancy distribution of policy π and p(s; g) is the
distribution of states that satisfy a particular goal g. This objective casts goal-conditioned offline RL
as an imitation learning problem: a dynamics-abiding agent imitates as well as possible an expert who
can teleport to the goal in one step; see Figure 2. Posing GCRL this way is mathematically principled,
as we show that this objective is equivalent to a probabilistic interpretation of GCRL that additionally
encourages maximizing state entropy. More importantly, this objective admits elegant optimization
using purely offline data by considering an f -divergence regularized objective and exploiting ideas
from convex duality theory [45, 4]. In particular, we obtain the dual optimal value function V ∗ from a
single unconstrained optimization problem, using which we construct the optimal advantage function
(we refer to this as f-advantage) that serves as importance weighting for a regression-based policy
training objective; see Figure 1 for a schematic illustration.

Figure 2: GCRL can be thought of imitating an
expert agent that can teleport to goals.

There are several distinct features to our ap-
proach. First and foremost is GoFAR’s lack
of goal relabeling. Hindsight goal relabeling [3]
(known as HER in the literature) relabels tra-
jectory goals to be states that were actually
achieved instead of the originally commanded
goals. This heuristic is critical for alleviating the
sparse-reward problem in prior GCRL methods,
but is unnecessary for GoFAR. GoFAR updates its policy as if all data is already coming from the
optimal goal-conditioned policy and therefore does not need to perform any hindsight goal relabeling.
GoFAR’s relabeling-free training is of significant practical benefits. First, it enables more stable and
simpler training by avoiding sensitive hyperparameter tuning associated with HER that cannot be
easily performed offline [52]. Second, hindsight relabeling suffers from hindsight bias in stochastic
environments [48], as achieved goals may be accomplished due to noise; this is exacerbated in the
offline setting due to inability to collect more data. By bypassing hindsight relabeling, GoFAR
promises to be more robust and scalable.

Second, as suggested in Figure 1, GoFAR’s value and policy training steps are completely uninter-
leaved: we do not need to update the policy until the value function has converged. This confers
greater offline training stability [24, 35] compared to prior works, which mostly involve alternating
updates to a critic Q-network and policy network. Furthermore, it enables an algorithmic reduction
of GoFAR to weighted regression [7], which allows us to obtain strong finite-sample statistical
guarantee on GoFAR’s performance; prior regression-based GCRL approaches [15, 51] do not enjoy
this reduction and obtain much weaker theoretical guarantees.

Finally, we show that GoFAR can also be used to learn a goal-conditioned planner [39, 5]. The
key insight lies in observing that, under a mild assumption, GoFAR’s dual value function objective
does not depend on the action and can learn from state-only offline data. This enables learning a
goal-centric value function and thereby a near-optimal goal-conditioned planner that is capable of
zero-shot transferring to new domains of the same task that shares the goal space. In our experiments,
we illustrate that GoFAR planner can indeed plan effective subgoals in a new target domain and
enable a low-level controller to reach distant goals that it is not designed for.

We extensively evaluate GoFAR on a variety of offline GCRL environments of varying task complexity
and dataset composition, and show that it outperforms all baselines in all settings. Notably, GoFAR
is more robust to stochastic environments than methods that depend on hindsight relabeling. We
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additionally demonstrate that GoFAR learns complex manipulation behavior on a real-world high-
dimensional dexterous manipulation task [2], for which most baselines fail to make any progress.
Finally, we showcase GoFAR’s planning capability in a cross-robot zero-shot transfer task. To
summarize, our contributions are:

1. GoFAR, a novel offline GCRL algorithm derived from goal-conditioned state-occupancy
matching

2. Detailed technical derivation and analysis of GoFAR’s distinct features: (1) relabeling-free,
(2) uninterleaved optimization, and (3) planning capability

3. Extensive experimental evaluation of GoFAR, validating its empirical gains and capabilities

2 Related Work

Offline Goal-Conditioned Reinforcement Learning. One core challenge of (offline) GCRL [19, 47]
is the sparse-reward nature of goal-reaching tasks. A popular strategy is hindsight goal relabeling [3]
(or HER), which relabels off-policy transitions with future goals they have achieved instead of the
original commanded goals. Existing offline GCRL algorithms [6, 51] adapt HER-based online GCRL
algorithms to the offline setting by incorporating additional components conducive to offline training.
[6] builds on actor-critic style GCRL algorithms [3] by adding conservative Q-learning [25] as well
as goal-chaining, which expands the pool of candidate relabeling goals to the entire offline dataset.

Besides actor-critic methods, goal-conditioned behavior cloning, coupled with HER, has been shown
to be a simple and effective method [15]. [51] improves upon [15] by incorporating discount-factor
and advantage function weighting [41, 42], and shows improved performance in offline GCRL.
Diverging from existing literature, GoFAR does not tackle offline GCRL by adapting an online
algorithm; instead, it approaches offline GCRL from a novel perspective of state-occupancy matching
and derives an elegant algorithm from the dual formulation that is naturally suited for the offline
setting and carries many distinct properties that make it more stable, scalable, and versatile.

State-Occupancy Matching. Posing reinforcement learning as learning an occupancy distribution has
been shown to be an effective paradigm for learning from observations [35, 53], exploration [29, 10],
and safe RL [28, 34]; state-occupancy matching, in general, has been explored in the imitation
learning literature [18, 49, 14, 21]. At a technical level, our strategy of estimating the state-occupancy
ratio is related to the DICE technique [36, 38], which has recently been extended to the offline
setting [27, 22, 35]. The closest work to ours is [35], which proposes a f -divergence based state-
occupancy matching objective for offline imitation learning. Our work differs in that we consider a
goal-conditioned setting and do not require a separate dataset of demonstrations for policy learning.
Furthermore, we derive several new results (Section 4.2-4.4) that are of particular interest in the
GCRL setting.

3 Problem Formulation

Goal-Conditioned Reinforcement Learning. We consider an infinite-horizon Markov decision
process (MDP) [44] M = (S,A,R, T, µ0, γ) with state space S, action space A, deterministic
rewards r(s, a), stochastic transitions s′ ∼ T (s, a), initial state distribution µ0(s), and discount
factor γ ∈ (0, 1]. A policy π : S → ∆(A) outputs a distribution over actions to use in a given state.
In goal-conditioned RL, the MDP additionally assumes a goal space G := {ϕ(s) | s ∈ S}, where the
state-to-goal mapping ϕ : S → G is known. Now, the reward function r(s; g)1 as well as the policy
π(a | s, g) depend on the commanded goal g ∈ G. Given a distribution over desired goals p(g), the
objective of goal-conditioned RL is to find a policy π that maximizes the discounted cumulative
return:

J(π) := Eg∼p(g),s0∼µ0,at∼π(·|st,g),st+1∼T (·|st,at)

[ ∞∑
t=0

γtr(st; g)

]
(2)

The goal-conditioned state-action occupancy distribution dπ(s, a; g) : S ×A×G → [0, 1] of π is

dπ(s, a; g) := (1− γ)

∞∑
t=0

γtPr(st = s, at = a | s0 ∼ µ0, at ∼ π(st; g), st+1 ∼ T (st, at)) (3)

1In GCRL, the reward function customarily does not depend on action.
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which captures the relative frequency of state-action visitations for a policy π conditioned on goal g.
The state-occupancy distribution then marginalizes over actions: dπ(s; g) =

∑
a d

π(s, a; g). Then, it
follows that π(a | s, g) = dπ(s,a;g)

dπ(s;g) . A state-action occupancy distribution must satisfy the Bellman
flow constraint in order for it to be an occupancy distribution for some stationary policy π:∑

a

d(s, a; g) = (1− γ)µ0(s) + γ
∑
s̃,ã

T (s | s̃, ã)d(s̃, ã; g), ∀s ∈ S, g ∈ G (4)

We write dπ(s, g) = p(g)dπ(s; g) as the joint goal-state density induced by p(g) and the policy π.
Finally, given dπ , we can express the objective function (2) as J(π) = 1

1−γE(s,g)∼dπ(s,g)[r(s; g)].

Offline GCRL. In offline GCRL, the agent cannot interact with the environment M; instead,
it is equipped with a static dataset of logged transitions D := {τi}Ni=1, where each trajectory
τ (i) = (s

(i)
0 , a

(i)
0 , r

(i)
0 , s

(i)
1 , ...; g(i)) with s

(i)
0 ∼ µ0 and g(i) is the commanded goal of the trajectory.

Note that trajectories need not to be generated from a goal-directed agent, in which case g(i) can be
randomly drawn from p(g). We denote the empirical goal-conditioned state-action occupancies of
DO as dO(s, a; g).

4 Goal-Conditioned f -Advantage Regression

In this section, we introduce Goal-conditioned f -Advantage Regression (GoFAR). We first derive the
algorithm in full (Section 4.1), then delve deep into its several appealing properties (Section 4.2-4.4).

4.1 Algorithm

Recall the goal-conditioned state-occupancy matching objective stated in (1):
DKL(d

π(s; g)∥p(s; g)) = Edπ(s;g)[log
dπ(s;g)
p(s;g) ]. The key challenge with optimizing this ob-

jective offline is that we cannot sample from dπ(s; g). To address this issue, we first derive an offline
lower bound involving an f -divergence (see Appendix A for definition) regularization term, which
subsequently enables solving this optimization problem via its dual using purely offline data:
Proposition 4.1. Assume2 for all g in support of p(g), ∀s, dO(s; g) > 0 if p(s; g) > 0. Then, for any
f -divergence that upper bounds the KL-divergence,

−DKL(d
π(s; g)∥p(s; g)) ≥ E(s,g)∼dπ(s,g)

[
log

p(s; g)

dO(s; g)

]
−Df (d

π(s, a; g)∥dO(s, a; g)) (5)

The RHS of (5) can be understood as an f -divergence regularized GCRL objective with reward
function r(s; g) = log p(s;g)

dO(s;g)
. Intuitively, this reward encourages visiting states that occur more often

in the “expert” state distribution p(s; g) than in the offline dataset, and the f -divergence regularization
then ensures that the learned policy is supported by the offline dataset. This choice of reward function
can be estimated in practice by training a discriminator [16] c : S × G → (0, 1) using the offline
data:

min
c

Eg∼p(g)

[
Ep(s;g) [log c(s, g)] + EdO(s;g) [log 1− c(s, g)]

]
(6)

We can in fact obtain a looser lower bound that does not require training a discriminator:

−DKL(d
π(s; g)∥p(s; g)) ≥ E(s,g)∼dπ(s,g) [log p(s; g)]−Df (d

π(s, a; g)∥dO(s, a; g)) (7)

Here, the reward function is r(s; g) = log p(s; g), which encompasses standard GCRL reward
functions [40] and is related to a probabilistic interpretation of GCRL; see Appendix E.1for detail.

Now, for either choice of lower bound, we may pose the optimization problem with respect to valid
choices of state-action occupancies directly, introducing the Bellman flow constraint (4):

max
d(s,a;g)≥0

E(s,g)∼d(s,g) [r(s; g)]−Df (d(s, a; g)∥dO(s, a; g))

(P) s.t.
∑
a

d(s, a; g) = (1− γ)µ0(s) + γ
∑
s̃,ã

T (s | s̃, ã)d(s̃, ã; g),∀s ∈ S, g ∈ G
(8)

2This assumption is only needed in our technical derivation to avoid division-by-zero issue.
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This reformulation does not solve the fundamental problem that (8) still requires sampling from
d(s; g); however, it has now written the problem in a way amenable to simplification using tools
from convex analysis. Now, we show that its dual problem can be reduced to an unconstrained
minimization problem over the dual variables which serve the role of a value function; importantly,
the optimal solution to the dual problem can be used to directly retrieve the optimal primal solution:
Proposition 4.2. The dual problem to (8) is
(D) min

V (s,g)≥0
(1−γ)E(s,g)∼µ0,p(g)[V (s; g)]+E(s,a,g)∼dO [f⋆ (r(s; g) + γT V (s, a; g)− V (s; g))] ,

(9)
where f⋆ denotes the convex conjugate function of f , V (s; g) is the Lagrangian vector, and
T V (s, a; g) = Es′∼T (·|s,a)[V (s′; g)]. Given the optimal V ∗, the primal optimal d∗ satisfies:

d∗(s, a; g) = dO(s, a; g)f ′
⋆ (r(s; g) + γT V ∗(s, a, g)− V ∗(s, g)) ,∀s ∈ S, a ∈ A, g ∈ G (10)

A proof is given in Appendix B. Crucially, as neither expectation in (9) depends on samples from
d, this objective can be estimated entirely using offline data, making it suitable for offline GCRL.
For tabular MDPs, we show that for a suitable choice of f -divergence, the optimal V ∗ in fact admits
closed-form solutions; see Appendix D for details. In the continuous control setting, we can optimize
(9) using stochastic gradient descent (SGD) by parameterizing V using a deep neural network.

Then, once we have obtained the optimal (resp. converged) V ∗, we propose learning the policy via
the following supervised regression update:

max
π

Eg∼p(g)E(s,a)∼dO(s,a;g) [(f
′
⋆(r(s; g) + γT V ∗(s, a; g)− V ∗(s; g)) log π(a | s, g)] (11)

We see that the regression weights are the first-order derivatives of the convex conjugate of f evaluated
at the dual optimal advantage, r(s; g) + γT V ∗(s, a; g)− V ∗(s; g); we refer to this weighting term
as f -advantage. Hence, we name our overall method Goal-conditioned f -Advantage Regression
(GoFAR); an abbreviated high-level pseudocode is provided in Algorithm 1 and a detailed version
is provided in Appendix C. In practice, we implement GoFAR with χ2-divergence, a choice of
f -divergence that is stable for off-policy optimization [53, 35, 27]; see Appendix C for details.

Algorithm 1 Goal-Conditioned f -Advantage Regression
(Abbreviated); 3-disjoint steps

1: (Optionally) Train discriminator-based reward (6)
2: Train (optimal) dual value function V ∗(s; g) (9)
3: Train policy π via f -Advantage Regression (11)

Note that (11) forgos directly minimiz-
ing (1) offline, which has been found
to suffer from training instability [22].
Instead, it naturally incorporates the
primal-dual optimal solutions in a re-
gression loss. Now, we will show that
this policy objective has several theo-

retical and practical benefits for offline GCRL that make it particularly appealing.

4.2 Optimal Goal-Weighting Property

We show that optimizing (11) automatically obtains the optimal goal-weighting distribution. That is,
GoFAR trains its policy as if all the data is coming from the optimal goal-conditioned policy for (8).
In particular, this property is achieved without any explicit hindsight relabeling (see Appendix A for a
technical definition), a mechanism that prior works heavily depend on. To this end, we first note that
by Bayes rule, p(g)dO(s, a; g) = dO(s, a)p(g | s, a). Then, we can rewrite the policy objective (11)
as follows:

min
π

−E(s,a)∼dO(s,a)Eg∼p(g|s,a) [(f
′
⋆(r(s; g) + γT V ∗(s, a; g)− V ∗(s; g)) log π(a | s, g)] (12)

=min
π

−E(s,a)∼dO(s,a)Eg∼p̃(g|s,a) [log π(a | s, g)] (13)

where

p̃(g | s, a) ∝ p(g | s, a) (f ′
⋆(r(s; g) + γT V ∗(s, a; g)− V ∗(s; g)) = p(g | s, a) d

∗(s, a; g)

dO(s, a; g)
(14)

Thus, we see that GoFAR’s f -advantage weighting scheme is equivalent to performing supervised
policy regression where goals are sampled from p̃(g | s, a). Now, combining (14) and Bayes rule
gives

dO(s, a)p̃(g | s, a) ∝ dO(s, a)p(g | s, a) d∗(s, a; g)
p(g|s,a)dO(s,a)

p(g)

= p(g)d∗(s, a; g) (15)
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Thus, we can replace the nested expectations in (13) and obtain that GoFAR policy update amounts
to supervised regression of the state-action occupancy distribution of the optimal policy to the
regularized GCRL problem (8):

πGoFAR = min
π

−Eg∼p(g)E(s,a)∼d∗(s,a;g) [log π(a | s, g)] (16)

This derivation makes clear GoFAR’s connection with the hindsight goal relabeling mechanism [3]
that is ubiquitous in GCRL: GoFAR automatically performs the optimal goal-weighting policy update
without any explicit goal relabeling. Furthermore, our derivation also suggests why hindsight relabel-
ing is sub-optimal without further assumption on the reward function [11]: it heuristically chooses
p̃(g | s, a) to be the empirical trajectory-wise future achieved goal distribution (i.e., HER), which
generally does not coincide with the goals that the optimal policy would reach; see Appendix E.2 for
further discussion.

4.3 Uninterleaved Optimization and Performance Guarantee

An additional algorithmic advantage of GoFAR is that it disentangles the optimization of the value
network and the policy network. This can be observed by noting that GoFAR’s advantage term (10)
is computed using V ∗, the optimal solution of the dual problem. This has the practical significance
of disentangling the value-function update (9) from the policy update (11), as we do not need to
optimize the latter until the former has converged. This disentanglement is in sharp contrast to prior
GCRL works [51, 6, 12, 3], which typically involve alternating updates to the critic Q-network and
the policy network, a training procedure that has found to be unstable in the offline setting [24]. This
is unavoidable for prior works because their advantage functions are estimated using the Q-estimate
of the current policy, whereas our advantage term naturally falls out from the primal-dual optimality
condition.

The uninterleaved and relabeling-free nature of GoFAR also allows us to derive strong performance
guarantees. Because V ∗ is fixed in (11), this policy objective amounts to a weighted supervised
learning problem. Therefore, we can extend and adapt mature theoretical results for analyzing
Behavior Cloning [1, 46, 50] as well as finite sample error guarantees for weighted regression [7] to
obtain statistical guarantees on GoFAR’s performance with respect to the optimal π∗ for (8):

Theorem 4.1. Assume sups,a,g
d∗(s,a;g)
dO(s,a;g)

≤ M and sup|r(s, g)| ≤ Rmax. Consider a policy class
Π : {S → ∆(A)} such that π∗ ∈ Π. Then, for any δ ∈ (0, 1], with probability at least 1 − δ,
GoFAR (16) will return a policy π̂ such that:

V ∗ − V π̂ ≤ 2RmaxM

(1− γ)2

√
ln(|Π|/δ)

N
(17)

Notably, the error shrinks as the size of the offline data N increases, requiring no dependency on
access to data from the “expert” distribution d∗. This provides a theoretical basis for GoFAR’s
empirical scalability as we are guaranteed to obtain good results when the offline data becomes more
expansive. In contrast, prior regression-based GCRL methods cannot be easily reduced to a simple
weighted regression with respect to the desired goal distribution p(g), so they only obtain weaker
results under stronger assumptions on the offline data (e.g, full state-space coverage) as well as the
policy; see Appendix E.3 for discussion.

4.4 Goal-Conditioned Planning

Next, we show that GoFAR can be used to learn a goal-conditioned planner that supports zero-
shot transfer to other domains of the same task. The key insight is that GoFAR’s value function
objective (9) does not depend on actions assuming deterministic transitions. This is because given
a transition (s, a, s′, g) ∼ dO, T V (s, a; g) = V (s′; g), so we can rewrite the second term in (9)
as E(s,a,s′,g)∼dO [f⋆ (r(s, g) + γV (s′; g)− V (s; g))], which does not depend on the action. This
property enables us to learn a goal-centric value function that is independent of the agent’s state
space because the agent’s actions are not relevant. Specifically, we propose the following objective:

min
V (ϕ(s),g)≥0

(1−γ)E(s,g)∼µ0,p(g)[V (ϕ(s); g)]+E(s,s′,g)∼dO [f⋆ (r(s; g) + γV (ϕ(s′), g)− V (ϕ(s), g))]

(18)

6



We can think of this objective as learning a value function with the inductive bias that the first
operation transforms the state input to the goal space via ϕ. Since V is now independent of the agent,
we can use f -advantage regression to instead learn a goal-conditioned planner:

max
π

Eg∼p(g)E(s,s′,g)∼dO [(f ′
⋆(r(s; g) + γV ∗(ϕ(s′); g)− V ∗(ϕ(s); g)) log π(ϕ(s′) | ϕ(s), g)]

(19)
where π now outputs the next subgoal ϕ(s′) conditioned on the current achieved goal ϕ(s) and
the desired goal g. In our experiments, we show how this planner can achieve hierarchical control
through zero-shot transfer subgoal plans to a new target domain that shares the same goal space and
by empowering a target-domain low-level controller that is only effective for nearby goals to reach
distant goals.

5 Experiments
We pose the following questions and provide affirmative answers in our experiments3:

1. Is GoFAR effective for offline GCRL? What components are important for performance?
2. Is GoFAR more robust to stochastic environments than hindsight relabeling methods?
3. Can GoFAR be applied to a real-robotics system?
4. Can GoFAR learn a goal-conditioned planner for zero-shot cross-embodiment transfer?

5.1 Offline GCRL

Tasks. In our simulation experiments, we consider six distinct environments. They include four robot
manipulation environments[43]: FetchReach, FetchPickAndPlace, FetchPush, and FetchSlide, and
two dexterous manipulation environments: HandReach [43], and D’ClawTurn [2]. The dexterous
manipulation tasks are particularly challenging due to the high-dimensional action space that makes
credit assignment difficult. The offline dataset for each task is collected by either a random policy or
a mixture of 90% random policy and 10% expert policy [35, 22], depending on whether random data
provides enough coverage of the desired goal distribution. See Appendix G.3 for dataset details and
Appendix F for detailed task descriptions and figures.

Algorithms. We compare to state-of-art offline GCRL algorithms, consisting of both regression-based
and actor-critic methods. The regression-based methods are: (1) GCSL [15], which incorporates
hindsight relabeling in conjunction with behavior cloning to clone actions that lead to a specified
goal, and (2) WGCSL [51], which improves upon GCSL by incorporating discount factor and
advantage weighting into the supervised policy learning update. The actor-critic methods are (1)
DDPG [3], which adapts DDPG [31] to the goal-conditioned setting by incorporating hindsight
relabeling, and (2) ActionableModel (AM) [6], which incorporates conservative Q-Learning [25] as
well as goal-chaining on top of an actor-critic method; in this work, we use DDPG as the actor-critic
method for AM.

We use tuned hyperparameters for each baseline on all tasks and additionally search the best HER
ratio from {0.2, 0.5, 1.0} for each task separately. For GoFAR, we use identical hyperparameters as
WGCSL for the shared network components and do not tune further. We train each method for 3
seeds, and each training run uses 400k minibatch updates of size 512. Complete architecture and
hyperparameter table as well as additional training details are provided in Appendix G.

Table 1: Discounted Return on offline GCRL tasks.

Task Supervised Learning Actor-Critic
GoFAR (Ours) WGCSL GCSL AM DDPG

FetchReach 27.8 22.5 (1.0) 21.6 (1.0) 30.0 (0.5) 29.8 (0.2)
FetchPick 19.5 10.0 (1.0) 8.1 (1.0) 17.2 (0.5) 15.7 (0.5)
FetchPush 18.9 13.1 (1.0) 12.2 (1.0) 16.5 (0.5) 14.3 (0.5)
FetchSlide 3.67 2.88 (1.0) 1.80 (1.0) 2.18 (0.5) 1.71 (0.5)

HandReach 11.9 4.84 (1.0) 1.25 (1.0) 0.(0.5) 0.(0.5)
D’ClawTurn 9.34 0.0 (1.0) 0.0 (1.0) 2.82 (1.0) 0.0 (0.2)

Average Rank 1.33 3.17 4.17 2.33 3.33

Evaluations and Results. We
report the discounted return us-
ing the sparse binary task reward.
This metric rewards algorithms
that reach goals as fast as possi-
ble and stay in the goal region
thereafter. Note that this metric
favors the baseline algorithms as
they use the same binary reward
label and therefore have knowl-
edge of the success criterion that
is used for evaluation. In contrast, GoFAR’s reward signal comes from its discriminator. Because the
task reward is binary, this metric does not take account into how precisely a goal is being reached.
Therefore, we additionally report the final distance to goal in Appendix H.

3Code is available at: https://github.com/JasonMa2016/GoFAR
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The full discounted return results4 are shown in Table 1; the fraction inside () indicates the best HER
rate for each baseline. Aside from the simplest FetchReach, on which actor-critic methods slightly
outperform GoFAR, GoFAR attain the best performance on all tasks and is significantly better on the
more challenging dexterous manipulation tasks. In Table 5 in Appendix H, we also report the final
distance metric, on which GoFAR is once again superior. In other words, GoFAR reaches the goals
fastest and most precisely.

Ablations. Recall that GoFAR achieves optimal goal-weighting, and does not require the HER heuris-
tic that has been key to prior GCRL approaches. We now experimentally confirm that the baselines are
not performant without HER. Conversely, we investigate whether HER can help GoFAR. Additionally,
we evaluate GoFAR using the sparse binary reward, which implements the looser lower bound in (7).

Figure 3: Offline GCRL ablation studies.

Finally, we replace χ2-divergence
with KL to understand whether the
f -divergence lower bound in (5) is
necessary. The results are shown in
Figure 3 (task-specific breakdown is
included in Appendix H). Compared
to their original performances (col-
ored dash lines), baselines without
HER suffer severely, especially GCSL
and WGCSL: both these methods in
fact require 100% relabeling and rely
solely on HER for positive learning
signals. In sharp contrast, GoFAR is
also a regression-based method, yet it
performs very well without HER and its performance is unaffected by adding HER. These findings
are consistent with the theoretical results of Section 4.2. GoFAR (Binary) performs slightly worse
than GoFAR, which is to be expected due to the looser bound; however, it is still better than all
baselines, which use the same binary reward and are aided by HER. Again, this ablation highlights
the merit of our optimization approach. Finally, GoFAR (KL) suffers from numerical instability and
fails to learn, showing that our general f -divergence lower bound (5) is not only of theoretical value
but also practically significant.

5.2 Robustness in Stochastic Offline GCRL Settings

Figure 4: Stochastic environment evaluation.

For this experiment, we create noisy variants of
the FetchReach environment by adding varying
levels of white Gaussian noise to policy action
outputs. FetchReach is well-suited for this ex-
periment because all baselines attain satisfactory
performance and even outperform GoFAR in Ta-
ble 1. Furthermore, to isolate the effect of noisy
actions, we use GoFAR with binary reward so
that all methods now use the same reward in-
put and perform comparatively without added
noise. We consider zero-mean Gaussian noise
of σ value from 0.5, 1, and 1.5. For each noise level, we re-collect offline data by executing random
actions in the respective noisy environment and train on these noisy offline random data.

Figure 5: D’Claw (left); Cross-Embodiment trans-
fer source (middle) and target (right) domains.

The average discounted returns over different
noise levels are illustrated in Figure 4. As shown,
at noise level 0.5, while GoFAR’s performance
is not effected, all baselines already exhibit
degraded performance. In particular, DDPG
sharply degrades, underperforming GoFAR de-
spite better original performance. At 1.0, the
gap continues to widen, and AM notably col-
lapses, highlighting its sensitivity to noise. This is expected as AM’s relabeling mechanism also
samples future goals from other trajectories and labels the selected goals with their current Q-value
estimates; this procedure becomes highly noisy when the dataset already exhibits high stochasticity,

4The error bar version is included in Appendix H.

8



thus contributing to the instability observed in this experiment. It is only at noise level 1.5 that
GoFAR’s performance degradation becomes comparable to those of other methods. Thus, GoFAR’s
relabeling-free optimization indeed confers greater robustness to environmental stochasticity; in
contrast, all baselines suffer from “false positive” relabeled goals due to such disturbances.

5.3 Real-World Robotic Dexterous Manipulation

Now, we evaluate on a real D’Claw [2] dexterous manipulation robot (Figure 5 (left)). The task is to
have the tri-finger robot rotate the valve to a specified goal angle from its initial angle; see Appendix F
for detail. The offline dataset contains 400K transitions, collected by executing purely random actions
in the environment, which provides sufficient coverage of the goal space. Compared to the simulated
D’Claw, an additional challenge is the inherent stochasticity on a real robot system due to imperfect
actuation and hardware wear and tear. Given our conclusion in the stochastic environment experiment
above, we should expect GoFAR to perform better.

Figure 6: Real-robot results.

The training curve of final distances averaged
over 3 seeds is shown in Figure 6. We see that
GoFAR exhibits smooth progress over training
and significantly outperforms all baselines. At
the end of training, GoFAR is able to rotate
the valve on average within 10 degrees of the
specified goal angle. In contrast, most baselines
do not make any progress on this difficult task
and learns policies that do not manage to turn
the valve at all. AM is the only baseline that
learns a non-trivial policy; however, its training
fluctuates significantly, and the learned policy
often executes extreme actions during evaluation
that fail to reach the desired goal. We provide qualitative analysis in Appendix H.3, and the full
videos are included on the project website.

5.4 Zero-Shot Transfer Across Robots

Table 2: Zero-shot transfer results.
Method Success Rate

GoFAR Planner (Oracle) 84%

GoFAR Hierarchical Controller 37%
Low-Level Controller 19%

For this experiment, we consider zero-shot transfer from
the FetchPush task (source domain) to an equivalent pla-
nar object pushing task using the 7-DOF Franka Panda
robot [13]; the environments are illustrated in Figure 5.
In the target domain, we assume a pre-programmed or
learned low-level goal-reaching controller πlow(a | s, g)
that can push objects over short distances but fails for longer tasks. For these distant goals, we train
the goal-conditioned GoFAR value function V ∗(ϕ(s); g) and planner π(ϕ(s′) | ϕ(s), g) according
to (18) and (19), to set goals for πlow. We use the same offline FetchPush data as in Section 5.1. We
compare two approaches: (1) naively using the Low-Level Controller, and (2) using the GoFAR
planner to guide the low-level controller (GoFAR Hierarchical Controller). See Appendix G.4
for additional details. We report the success rate over 100 random distant test goals in Table 2. We
see that naively commanding the low-level controller with these distant goals indeed results in very
low success rate. When the controller is augmented with GoFAR planner, the success rate nearly
doubles. Note that our planner itself is much superior: if all subgoals are perfectly reached, GoFAR
Planner (Oracle) achieves 84% success. See Appendix G.4 for additional experimental details.
These experiments validate GoFAR’s ability to zero-shot transferring subgoal plans to enhance the
capabability of low-level controllers. Note that we have no access to any data from the target domain,
and this planning capability naturally emerges from our training objectives and does not require any
change in the algorithm. We show qualitative results in Appendix H.4 and videos on the project
website.

6 Conclusion

We have presented GoFAR, a novel regression-based offline GCRL algorithm derived from a state-
occupancy matching perspective. GoFAR is relabeling-free and enjoys uninterleaved training, making

9



it both theoretically and practically advantageous compared to prior state-of-art. Furthermore, GoFAR
supports training a goal-conditioned planner with promising zero-shot transfer capability. Through
extensive experiments, we have validated the practical utility of GoFAR in various challenging
problem settings, showing significant improvement over prior state-of-art. We believe that GoFAR’s
strong theoretical foundation and empirical performance make it an ideal candidate for scalable skill
learning in the real world.
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A Additional Technical Background

We provide some technical definitions that are needed in our proofs in Appendix B and discussions
of hindsight relabeling in Section 4.1 of the main text as well as Appendix E.2.
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A.1 f -Divergence and Fenchel Duality

These definitions are adapted from [35, 37].

Definition A.1 (f -divergence). For any continuous, convex function f and two probability distribu-
tions p, q ∈ ∆(X ) over a domain X , the f -divergence of p computed at q is defined as

Df (p∥q) = Ex∼q

[
f

(
p(x)

q(x)

)]
(20)

Some common choices of f -divergence includes the KL-divergence and the χ2-divergence, which
corresponds to choosing f(x) = x log x and f(x) = 1

2 (x− 1)2, respectively.

Definition A.2 (Fenchel conjugate). Given a vector space X with inner-product ⟨·, ·⟩, the Fenchel
conjugate f⋆ : X⋆ → R of a convex and differentiable function f : Ω → R is

f⋆(y) := max
x∈X

⟨x, y⟩ − f(x) (21)

and any maximizer x∗ of f⋆(y) satisfies x∗ = f ′
⋆(y).

For an f -divergence, under mild realizability assumptions [8] on f , the Fenchel conjugate of Df (p∥q)
at y : X → R is

D⋆,f (y) = max
p∈∆(X )

Ex∼p[y(x)]−Df (p∥q) (22)

= Ex∼q[f⋆(y(x))] (23)

and any maximizer p∗ of D⋆,f (y) satisfies p∗(x) = q(x)f ′
⋆(y(x)). These optimality conditions can

be seen as extensions of the KKT-condition.

A.2 Hindsight Goal-Relabeling

We provide a mathematical formalism of hindsight goal relabeling [3].

Definition A.3. Given a state st from a trajectory τ = {s0, a0, r0, ..., sT ; g}, hindsight goal-
relabeling is the goal-relabeling distribution

pHER(g | st, at, τ) = q[ϕ(st), ..., ϕ(sT )] (24)

where q is some categorical distribution taking values in {ϕ(st), ..., ϕ(sT )}.

That is, the relabeled goal is selected from some distribution goals that are reached in the future in
the same trajectory. The most canonical choice of q, known as hindsight experience replay (HER),
selects q to be the uniform distribution. Once a goal g̃ is chosen, the reward label is also re-computed
using the reward function assumed by the algorithm: rt := r(st, g̃).

B Proofs

In this section, we restate propositions and theorems in the paper and present their proofs.

B.1 Proof of Proposition 4.1

Proposition B.1. Assume for all g in support of p(g), ∀s, dO(s; g) > 0 if p(s; g) > 0. Then, for any
f -divergence that upper bounds the KL-divergence,

−DKL(d
π(s; g)∥p(s; g)) ≥ E(s,g)∼dπ(s,g)

[
log

p(s; g)

dO(s; g)

]
−Df (d

π(s, a; g)∥dO(s, a; g)) (25)

≥ E(s,g)∼dπ(s,g) [log p(s; g)]−Df (d
π(s, a; g)∥dO(s, a; g)) (26)

Proof. We first present and prove some technical lemma needed to prove this result. The following
lemmas and proofs are adapted from [35]; in particular, we extend these known results to the
goal-conditioned setting.
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Lemma B.1. For any pair of valid occupancy distributions d1 and d2, we have

DKL(d1(s; g)∥d2(s; g) ≤ DKL(d1(s, a; g)∥d2(s, a; g)) (27)

Proof. This lemma hinges on proving the following lemma first.

Lemma B.2.

DKL (d1(s, a, s
′; g)∥d2(s, a, s′; g)) = DKL (d1(s, a; g)∥d2(s, a; g)) (28)

Proof.

DKL (d1(s, a, s
′; g)∥d2(s, a, s′; g))

=

∫
S×A×S×G

p(g)d1(s, a, s
′; g) log

d1(s, a; g) · T (s′ | s, a)
d2(s, a; g) · T (s′ | s, a)

ds′dadsdg

=

∫
S×A×S×G

p(g)d1(s, a, s
′; g) log

d1(s, a; g)

d2(s, a; g)
ds′dadsdg

=

∫
S×A×G

p(g)d1(s, a; g) log
d1(s, a; g)

d2(s, a; g)
dadsdg

=DKL (d1(s, a; g)∥d2(s, a; g))

Using this result, we can prove Lemma B.1:

DKL (d1(s, a; g)∥d2(s, a; g))
=DKL (d1(s, a, s

′; g)∥d2(s, a, s′; g))

=

∫
S×A×S×G

p(g)d1(s, a, s
′; g) log

d1(s, a; g) · T (s′ | s, a)
d2(s, a; g) · T (s′ | s, a)

ds′dadsdg

=

∫
S×A×S×G

p(g)d1(s; g)π1(a | s, g)T (s′ | s, a) log d1(s, a; g) · T (s′ | s, a)
d2(s, a; g) · T (s′ | s, a)

ds′dadsdg

=

∫
p(g)d1(s; g)π1(a | s, g)T (s′ | s, a) log d1(s; g)

d2(s; g)
ds′dadsdg

+

∫
d1(s; g)π1(a | s, g)T (s′ | s, a) log π1(a | s, g)T (s′ | s, a)

π2(a | s, g)T (s′ | s, a)
ds′dadsdg

=

∫
p(g)d1(s; g) log

d1(s; g)

d2(s; g)
dsdg +

∫
p(g)d1(s; g)π1(a | s, g) log π1(a | s, g)

π2(a | s, g)
dadsdg

=DKL (d1(s; g)∥d2(s; g)) + DKL (π1(a | s, g)∥π2(a | s, g))
≥DKL (d1(s; g)∥d2(s; g))

DKL (d
π(s; g)∥p(s; g))

=

∫
p(g)dπ(s; g) log

dπ(s; g)

p(s; g)
· d

O(s; g)

dO(s; g)
dsdg, we assume that dO(s; g) > 0 whenever p(s; g) > 0.

=

∫
p(g)dπ(s; g) log

dO(s; g)

p(s; g)
dsdg +

∫
p(g)dπ(s; g) log

dπ(s; g)

dO(s; g)
dsdg

≤E(s,g)∼dπ(s,g)

[
log

dO(s; g)

p(s; g)

]
+DKL

(
dπ(s, a; g)∥dO(s, a; g)

)
where the last step follows from Lemma B.1. Then, for any Df ≥ DKL, we have that

−DKL (d
π(s; g)∥p(s; g)) ≥ E(s,g)∼dπ(s,g)

[
log

p(s; g)

dO(s; g)

]
−Df

(
dπ(s, a; g)∥dO(s, a; g)

)
(29)
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Then, since E(s,g)∼dπ(s,g)

[
log 1

dO(s;g)

]
≥ 0, we also obtain the following looser bound:

−DKL (d
π(s; g)∥p(s; g)) ≥ E(s,g)∼dπ(s,g) [log p(s; g)]−Df

(
dπ(s, a; g)∥dO(s, a; g)

)
(30)

B.2 Proof of Proposition 4.2

Proposition B.2. The dual problem to (8) is
(D) min

V (s,g)≥0
(1−γ)E(s,g)∼µ0,p(g)[V (s; g)]+E(s,a,g)∼dO [f⋆ (r(s, g) + γT V (s, a; g)− V (s; g))] ,

(31)
where f⋆ denotes the convex conjugate function of f , V (s; g) is the Lagrangian vector, and
T V (s, a; g) = Es′∼T (·|s,a)[V (s′; g)]. Given the optimal V ∗, the primal optimal d∗ satisfies:

d∗(s, a; g) = dO(s, a; g)f ′
⋆ (r(s, g) + γT V ∗(s, a, g)− V ∗(s, g)) ,∀s ∈ S, a ∈ A, g ∈ G (32)

Proof. We begin by writing the Lagrangian dual of the primal problem:

min
V (s;g)≥0

max
d(s,a;g)≥0

E(s,g)∼d(s,g) [log (r(s; g))]−Df (d(s, a; g)∥dO(s, a; g))

+
∑
s,g

p(g)V (s; g)

(1− γ)µ0(s) + γ
∑
s̃,ã

T (s | s̃, ã)d(s̃, ã; g)−
∑
a

d(s, a; g)

 (33)

where p(g)V (s; g) is the Lagrangian vector. Then, we note that∑
s,g

V (s; g)
∑
s̃,ã

T (s | s̃, ã)d(s̃, ã; g) =
∑
s̃,ã,g

d(s̃, ã; g)
∑
s

T (s | s̃, ã)V (s; g) =
∑
s,a,g

d(s, a; g)T V (s, a; g)

(34)
Using this, we can rewrite (33) as
min

V (s;g)≥0
max

d(s,a;g)≥0
(1− γ)E(s,g)∼(µ0,p(g))[V (s; g)] + E(s,a,g)∼d [(r(s; g) + γT V (s, a; g)− V (s; g))]

−Df (d(s, a; g)∥dO(s, a; g))
(35)

And finally,
min

V (s,g)≥0
(1− γ)E(s,g)∼(µ0,p(g))[V (s; g)] + max

d(s,a;g)≥0
E(s,a,g)∼d [(r(s, g) + γT V (s, a; g)− V (s; g))]

−Df (d(s, a; g)∥dO(s, a; g))
(36)

Now, we make the key observation that the inner maximization problem in (36) is in fact the Fenchel
conjugate of Df (d(s, a, g)∥dO(s, a, g)) at r(s, g) + γT V (s, a, g) − V (s, g). Therefore, we can
reduce (36) to an unconstrained minimization problem over the dual variables

min
V (s,g)≥0

(1− γ)E(s,g)∼µ0,p(g)[V (s; g)] + E(s,a,g)∼dO [f⋆ (r(s, g) + γT V (s, a; g)− V (s; g))] ,

(37)
and consequently, we can relate the dual-optimal V ∗ to the primal-optimal d∗ using Fenchel duality
(see Appendix A:

d∗(s, a; g) = dO(s, a; g)f ′
⋆ (r(s, g) + γT V ∗(s, a, g)− V ∗(s, g)) ,∀s ∈ S, a ∈ A, g ∈ G, (38)

as desired.

B.3 Proof of Theorem 4.1

Theorem B.3. Assume sups,a,g
d∗(s,a;g)
dO(s,a;g)

≤ M and sup|r(s, g)| ≤ Rmax. Consider a policy class
Π : {S → ∆(A)} such that π∗ ∈ Π. Then, for any δ ∈ (0, 1], with probability at least 1 − δ,
GoFAR (16) will return a policy π̂ such that:

V ∗ − V π̂ ≤ 2RmaxM

(1− γ)2

√
ln(|Π|/δ)

N
(39)

where V π := E(s,g)∼(µ0,g)[V (s; g)].
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Proof. We begin by deriving an upper bound using the performance difference lemma [1]:

V ∗ − V π̂ ≤ 1

1− γ
Es∼d∗,g∼p(g)Ea∼π∗(·|s,g)A

π̂(s, a; g) (40)

Then, using standard algebraic manipulations, we have:

1

1− γ
Es∼d∗,g∼p(g)Ea∼π∗(·|s,g)A

π̂(s, a; g)

=
1

1− γ
Es∼d∗,g∼p(g)

[
Ea∼π∗(·|s,g)A

π̂(s, a; g)− Ea∼π̂(·|s,g)A
π̂(s, a; g)

]
≤ Rmax

(1− γ)2
Es∼d∗,g∼p(g) [∥π∗(· | s, g)− π̂(· | s, g)∥1]

≤ 2Rmax

(1− γ)2
Es∼d∗,g∼p(g) [∥π∗(· | s, g)− π̂(· | s, g)∥TV]

≤2MRmax

(1− γ)2
Es∼dO,g∼p(g) [∥π∗(· | s, g)− π̂(· | s, g)∥TV]

(41)

where the last step follows since sups,a,g
d∗(s,a;g)
dO(s,a;g)

≤ M .

Now, we consider the simplified case when both π∗ and π̂ are deterministic; the stochastic case
achieves the same bound with a more involved proof strategy (see Theorem 15.2 in [1]. The following
proof snippet is adapted from [50]. First, we have that

Es∼dO,g∼p(g) [∥π∗(· | s, g)− π̂(· | s, g)∥TV] = Es∼dO,g∼p(g) [I (π̂(s; g) ̸= π∗(s; g))] (42)

Then, we can define the expected risk of a policy π to be

L(π) = Es∼dO,g∼p(g) [I (π̂(s; g) ̸= π∗(s; g))] (43)

and its empirical risk to be

LN (π) =
1

N

N∑
i=1

[
I
(
π̂(s(i); g(i)) ̸= a(i)

)]
, where (s(i), a(i), g(i)) ∼ dO (44)

Now, for any error threshold ϵ > 0, we want to bound the probability that L(π̂) > ϵ. Because π̂
admits zero empirical risk, we have that

P(L(π̂ > ϵ)) ≤ P(∃π ∈ Π, LN (π) = 0) (45)

By an union bound argument, we have that

P(L(π̂ > ϵ)) ≤ P(∃π ∈ Π, LN (π) = 0)

≤
∑
π∈Π

P(LN (π) = 0)

≤ |Π|(1− L(π))N

≤ |Π|(1− ϵ)N

≤ |Π|e−Nϵ

(46)

Setting the RHS to be equal to δ and combining with (41), we obtain that

V ∗ − V π̂ ≤ 2RmaxM

(1− γ)2

√
ln(|Π|/δ)

N
(47)

C GoFAR Technical Details

In this section, we provide additional technical details of GoFAR that are omitted in the main text.
These include (1) detail of the GoFAR discriminator training, (2) mathematical expressions of GoFAR
specialized to common f -Divergences, and (3) a full pseudocode.

18



C.1 Discriminator Training

Training the discriminator 6 in practice requires choosing p(s; g). For simplicity, we set p(s; g) to be
the Dirac distribution centered at g: I(ϕ(s) = g); this precludes having to choose hyperparameters
for p(s; g).

Once the discriminator has converged, we can retrieve the reward function r(s; g) = log p(s;g)
dO(s;g)

=

− log
(

1
c∗(s;g) − 1

)
, since c∗(s; g) = dO(s;g)

p(s;g)+dO(s;g)
.

C.2 GoFAR with common f -Divergences

GoFAR requires choosing a f -divergence. Here, we specialize GoFAR to χ2-divergence as well as
KL-divergence as examples. Our practical implementation uses χ2-divergence, which we found to be
significantly more stable than KL-divergence (see Section 5.1).

Example 1 (GoFAR with χ2-divergence). f(x) = 1
2 (x − 1)2, and we can show that f⋆(x) =

1
2 (x+ 1)2 and f ′

⋆(x) = x+ 1. Hence, the GoFAR objective amounts to

min
V (s;g)≥0

(1− γ)E(s,g)∼(µ0,p(g))[V (s; g)] +
1

2
E(s,a,g)∼dO

[
(r(s; g) + γT V (s, a; g)− V (s; g) + 1)

2
]

(48)

and

d∗(s, a; g) = dO(s, a; g)max (0, r(s, a; g) + γT V ∗(s, a; g)− V ∗(s; g) + 1) (49)

Example 2 (GoFAR with KL-divergence). We have f(x) = x log x and that D⋆,f (y) =
logEx∼q[expy(x)] [4]. Hence, the KL-divergence GoFAR objective is

min
V (s;g)≥0

(1− γ)E(s,g)∼(µ0,p(g))[V (s; g)] + logE(s,a,g)∼dO [exp (r(s; g) + γT V (s, a; g)− V (s; g))]

(50)

and

d∗(s, a; g) = dO(s, a; g)softmax (r(s; g) + γT V ∗(s, a; g)− V ∗(s; g)) (51)

Now, we provide the full pseudocode for GoFAR implemented using χ2-divergence in Algorithm 2.
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C.3 Full Pseudocode

Algorithm 2 GoFAR for Continuous MDPs

1: Require: Offline dataset dO , choice of f -divergence f , choice of p(s; g)
2: Randomly initialize discriminator cψ , value function Vθ , and policy πϕ.
3: // Train Discriminator (Optional)
4: for number of discriminator iterations do
5: Sample minibatch {sid, gi}Ni=1 ∼ dO
6: Sample {sjg}Mj=1 ∼ p(s; gi) ∀i ∈ 1 . . . N

7: Discriminator objective: Lc(ψ) = 1
N

∑N
i=1[log(1− cψ(s

j
d, g

i)) + 1
M

∑M
j=1[log cψ(s

j
g, g

i)]]

8: Update cψ using SGD: cψ ← cψ − αc∇Lc(ψ)
9: end for

10: // Train Dual Value Function
11: for number of value iterations do
12: Sample minibatch of offline data {sit, ait, sit+1, g

i
t}Ni=1 ∼ dO, {si0}Mi=1 ∼ µ0, {gi0}Mi=1 ∼ dO

13: If discriminator, obtain reward: r(sit; git) = − log
(

1
cψ(sit;g

i
t)
− 1

)
∀i = 1 . . . N

14: If no discriminator, obtain reward: {r(sit; git)}Ni=1 ∼ dO

15: Value objective: LV (θ) = 1−γ
M

∑M
i=1[Vθ(s

i
0; g

i
0)] +

1
N

∑N
i=1

[
f⋆(r

i
t + γV (sit+1; g

i
t)− V (sit; g

i
t))

]
16: Update Vθ using SGD: Vθ ← Vθ − αV∇LV (θ)
17: end for
18: // Train Policy With f-Advantage Regression
19: for number of policy iterations do
20: Sample minibatch of offline data {sit, ait, sit+1, g

i
t}Ni=1 ∼ dO

21: If discriminator, obtain reward: r(sit; git) = − log
(

1
cψ(sit;g

i
t)
− 1

)
∀i = 1 . . . N

22: If no discriminator, obtain reward: {r(sit; git)}Ni=1 ∼ dO

23: Policy objective: Lπ(ϕ) =
∑N
i=1

[(
f ′
⋆

(
rit + γVθ(s

i
t+1; g

i
t)− Vθ(sit; git

))
log π(a | s, g)

]
24: Update πϕ using SGD: πϕ ← πϕ − απ∇L(ϕ)
25: end for

D GoFAR for Tabular MDPs

In Section 4.1 of the main text, we have stated that in tabular MDPs, GoFAR’s optimal dual value
function (9) admits closed-form solution when we choose χ2-divergence. Here, we provide a
derivation of this result.

Recall the dual problem (1)

min
V (s;g)≥0

(1−γ)E(s,g)∼(µ0,p(g))[V (s; g)]+
1

2
E(s,a,g)∼dO

[
(r(s; g) + γT V (s, a; g)− V (s; g) + 1)

2
]

(52)

To derive a closed-form solution, we rewrite the problem in vectorized notation; we borrow our
notations from [35]. We first augment the state-space by concatenating the state dimensions and
the goal dimensions so that the new state space S̃ has dimension S +G. Then, the new transition
function, with slight abuse of notation, T ((s′, g′) | (s, g), a) = T (s | s, a)I(g′ = g); the new initial
state distribution is thus µ0(s, g) = µ0(s)p(g). Therefore, T̃ ∈ R|S||G||A|×|S||G|

+ and µ0 ∈ R|S||G|
+ .

We assume that the offline dataset DO is collected by a behavior policy πb. We construct
a surrogate MDP M̂ using maximum likelihood estimation; that is, T̂ ((s′, g′) | (s, g), a) =
n(s,a,s′)
n(s,a) I(g′ = g), and we impute T̂ ((s′, g) | (s, g), a) = 1

S when n(s, a) = 0. Then, using

M̂ , we can compute dO ∈ R|S||G||A|
+ using linear programming and define reward r ∈ R|S||G|

+

as r(s; g) = log p(s;g)
dO(s;g)

, where p(s; g) ∈ R|S||G|
+ . Now, define T ∈ R|S||G||A|×|S||G| such that

(T V )(s, a; g) =
∑

s′T ((s′, g) | (s, g), a)V (s′; g), where V ∈ R|S||G|
+ is the dual optimization

variables. We also define B ∈ R|S||G||A|×|S||G| such that (BV )(s, a; g) = V (s; g). Finally, we define
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D = diag(dO) ∈ R|S||G||A|×|S||G||A|. Now, we can rewrite the dual problem as follow:

min
V (s;g)≥0

(1− γ)E(s,g)∼(µ0,p(g))[V (s; g)] +
1

2
E(s,a,g)∼dO

[
(r(s; g) + γT V (s, a; g)− V (s; g) + 1)

2
]

⇒ min
V (s;g)

(1− γ)µ⊤
0 V +

1

2
E(s,a,G)∼dO


BR(s, a; g) + γT V (s, a; g)− BV (s, a; g)︸ ︷︷ ︸

rV (s,a;g)

+1


2

⇒ min
V (s;g)

(1− γ)µ⊤
0 V +

1

2
(rV + I)⊤D(rV + I)

(53)

Now, we recognize that (53) is equivalent to Equation 49 in [35], as we have reduced goal-conditioned
RL to regular RL with an augmented state-space. Now, using the same derivation as in [35], we have
that

V ∗ =
(
(γT − B)⊤D(γT − B)

)−1 (
(γ − 1)µ0 + (B − γT )⊤D(I +BR)

)
(54)

and we can recover d∗(s, a; g):

d∗(s, a; g) = dO(s, a; g) (BR(s, a; g) + γT V ∗(s, a; g)− BV ∗(s, a; g) + 1) (55)

Given d∗, we may extract the optimal policy π∗ by marginalizing over actions:

π∗(a | s, g) = d∗(s, a; g)∑
a d

∗(s, a′; g)
=

dO(s, a; g) (r(s; g) + γT V (s, a; g)− V (s; g))∑
a d

O(s, a; g) (r(s; g) + γT V (s, a; g)− V (s; g))
(56)

E Additional Technical Discussion

E.1 Connecting Goal-Conditioned State-Matching and Probabilistic GCRL

In Section 4.1, we have hinted at a connection between GoFAR’s goal-conditioned state-matching
objective and a probabilistic interpretation of GCRL. In this section, we develop this connection
mathematically. We begin by proving the following result:
Proposition E.1. Choose r(s; g) = p(s; g), the density of states that satisfy goal g. Then,

−DKL(d
π(s; g)∥p(s; g)) ≤ log J(π) +H(dπ(s; g)) + log 1− γ (57)

Proof. We have that
logEg∼p(g)Es∼dπ(s;g) [p(s; g)]

≥Eg∼p(g)Es∼dπ(s;g) [log p(s; g)]

=Eg∼p(g)Es∼dπ(s;g)

[
log

p(s; g)

dπ(s; g)

]
+ Eg∼p(g)Es∼dπ(s;g) [d

π(s; g)]

=Eg∼p(g)

[
Es∼dπ(s;g)

[
log

p(s; g)

dπ(s; g)

]
−H(dπ(s; g))

]
=Eg∼p(g) [−DKL(d

π(s; g)∥p(s; g))−H(dπ(s; g))]

(58)

Rearranging the inequality gives the desired result.

This result shows that our objective lower bounds the log-transformation of the original GCRL
objective using reward function r(s; g) = p(s; g), with the addition of a state entropy maximization
term, which helps learning an unique and non-degenerate solution. If we push log(·) inside the
expectations of J(π) (2) through Jensen’s inequality, we in fact obtain equality. The resulting
expression is

J̃(π) := log J(π) = Eg∼p(g)Es∼dπ(s;g) [log p(s; g)] (59)

This expression can be understood as a probabilistic interpretation of GCRL. To see this, for any
r(s; g), we can choose p(s; g) = er(s;g), corresponding to a softmax distribution with inputs
r(s; g) [40]. Therefore, solving the original GCRL objective plus maximizing the state entropy
is equivalent to minimizing state-occupancy divergence with respect to the “expert” state-distribution
er(s;g).
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E.2 Optimality Conditions for Hindsight Relabeling

In section 4.2, we have stated that HER is not optimal for most choices of reward functions. In this
section, we investigate conditions under which hindsight relabeling methods such as HER would be
optimal.

Let the goal-relabeling distribution for HER be pHER(g | s, a); we do not specify the functional form
of pHER(g | s, a) for generality (see 24). Then, in order for this distribution to be optimal, then it
must satisfy

pHER(g | s, a) = p(g | s, a)(f ′
⋆(r(s; g) + γT V ∗(s, a; g)− V ∗(s; g)) (60)

Then, the choice of r(s; g) such that this equality holds is the reward function for which HER would
be optimal. However, solving for r(s; g) is generally challenging and we leave it to future work for
investigating whether doing so is possible for general f -divergence coupled with neural networks.

This optimality condition is related to a prior work [11], which has found that hindsight relabeling is
optimal in the sense of maximum-entropy inverse RL [54] for a peculiar choice of reward function
(see Equation 9 in [11]), which cannot be implemented in practice. Our result is more general as it
applies to any choice of f -divergence, and is not restricted to the form of maximum-entropy inverse
RL.

E.3 Theoretical Comparison to Prior Regression-based GCRL methods

In section 4.3, we have stated that GoFAR’s theoretical guarantee (Theorem 4.1) is stronger in nature
compared to prior regression-based GCRL methods. Here, we provide an in-depth discussion.

Both GCSL [15] and WGCSL [51] prove that their objectives are lower bounds of the true RL
objective (Theorem 3.1 in [15] and Theorem 1 in [51], respectively); however, in both works, the
lower bounds are loose due to constant terms that do not depend on the policy and hence do not vanish
to zero. In contrast, GoFAR’s objective (5) is, by construction, a lower bound on the goal-conditioned
state-matching objective, as it simply incorporates a f -divergence regularization. If the offline data
dO is on-policy, then our lower bound is an equality. In contrast, even with on-policy data, the lower
bounds in both GCSL and WGCSL are still loose due to the unavoidable constant terms.

GCSL also proves a sub-optimality guarantee (Theorem 3.2 in [15]) under the assumption of full
state-space coverage. Though full state-space coverage has been considered in some prior offline
RL works [25, 33], it is much stronger than the concentrability assumption in our Theorem 4.1,
which only applies to d∗. Furthermore, this guarantee is not statistical in nature, and instead directly
makes a strong assumption on the maximum total-variance distance between π and optimal π∗ for the
GCSL objective, which is difficult to verify in practice. In contrast, our bound suggests asymptotic
optimality: given enough offline data and assumptions satisfied, the solution to GoFAR’s policy
objective will converge to π∗. Finally, WGCSL proves a policy improvement guarantee (Proposition
1 in [51]) under their exponentially weighted advantage; the improvement is not a strict equality, and
consequently there is no convergence guarantee to the optimal policy. Furthermore, this result is not
directly dependent on their use of an advantage function, so it is not clear the precise role of their
advantage function in their algorithm.

F Task Descriptions

In this section, we describe the tasks in our experiments in Section 5.

Figure 7: Tasks from left to right: FetchReach, FetchPush, FetchSlide, FetchPick, HandReach,
D’Claw (Simulation)
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F.1 Fetch Tasks

The Fetch environments involve the Fetch robot with the following specifications, developed by
Plappert et al. [43].

• Seven degrees of freedom

• Two pronged parallel gripper

• Three dimensional goal representing Cartesian coordinates of target

• Sparse, binary reward signal: 0 when at goal with tolerance 5cm and -1 otherwisejk

• 25 Hertz simulation frequency

• Four dimensional action space

– Three Cartesian dimensions
– One dimension to control gripper

F.1.1 Fetch Reach

The task is to place the end effector at the target goal position. Observations consist of the end
effector’s positional state, whether the gripper is closed, and the end effector’s velocity. The reward is
given by:

r(s, a, g) = 1− 1(∥sxyz,ee − gxyz∥2 ≤ 0.05)

F.1.2 Fetch Push

The task is to push an object to the target goal position. Observations consist of the end effector’s
position, velocity, and gripper state as well as the object’s position, rotational orientation, linear
velocity, and angular velocity. The reward is given by:

r(s, a, g) = 1− 1(∥sxyz,obj − gxyz∥2 ≤ 0.05)

F.1.3 Fetch Slide

In this task, the goal position lies outside of the robot’s reach and the robot must slide the puck-like
object across the table to the goal. Observations consist of the end effector’s position, velocity,
and gripper state as well as the object’s position, rotational orientation, linear velocity, and angular
velocity. The reward is given by:

r(s, a, g) = 1− 1(∥sxyz,obj − gxyz∥2 ≤ 0.05)

F.1.4 Fetch Pick

The task is to grasp the object and hold it at the goal, which could be on or above the table.
Observations consist of the end effector’s position, velocity, and gripper state as well as the object’s
position, rotational orientation, linear velocity, and angular velocity. The reward is given by:

r(s, a, g) = 1− 1(∥sxyz,obj − gxyz∥2 ≤ 0.05)

F.2 Hand Reach

Uses a 24 DoF robot hand with a 20 dimensional action space. Observations consist of each of the 24
joints’ positions and velocities. The goal space is 15 dimensional corresponding to the positions of
each of its five fingers. The goal is achieved when the mean distance of the fingers to their goals is
less than 1cm. The reward is binary and sparse: 0 if the goal is reached and -1 otherwise, i.e.

r(s, a, g) = 1− 1

(
1

5

5∑
i=1

∥si − gi∥2 ≤ 0.01

)

23



F.3 D’ClawTurn (Simulation)

First introduced by Ahn et al. [2], the D’Claw environment has a 9 DoF three-fingered robotic hand.
The turn task consists of turning the valve to a desired angle. The initial angle is randomly chosen
from [−π

3 ,
π
3 ]; the target angle is randomly chosen from [− 2∗π

3 , 2∗π
3 ]. The observation space is 21D,

consisting of the current joint angles θt, their velocities θ̇, angle between current and goal angle, and
the previous action. The environment terminates after 80 steps. The reward function is defined as:

r = 1

(∣∣∣∣arctan2(sy,obj
sx,obj

)
− arctan2

(
gy,obj
gx,obj

)∣∣∣∣ ≤ 0.1

)
F.4 D’ClawTurn (Real)

To make real-world data collection easier, we slightly modify the initial and target angle distributions.
The initial angle is randomly chosen from [−π

3 ,
π
3 ]; the target angle is randomly chosen from [−π

2 ,
π
2 ].

Using this task distribution, collecting 400K transitions with random actions takes about 15 hours. In
Figure 8, we also include a larger picture of the robot platform.

Figure 8: The D’Claw tri-finger platform.

G Experimental Details

In this section, we provide experimental details omitted in Section 5 of the main text. These include
(1) technical details of the baseline methods, (2) hyperparameter and architecture details for all
methods, (3) offline GCRL dataset details, and finally, (4) experimental details of the zero-shot
transfer experiment.

G.1 Baseline Implementation Details

DDPG. We use an open-source implementation of DDPG, which has already tuned DDPG on the
set of Fetch tasks. We implement all other methods on top of this implementation, keeping identical
architectures and hyperparameters when appropriate. The critic objective is

min
Q

E(st,at,st+1,g)∼dÕ [(r(st, g) + γQ̄(st+1, π(st+1, g), g)−Q(st, at, g))
2] (61)

where Q̄ denotes the stop-gradient operation. The policy objective is

min
π

−E(st,at,st+1,g)∼dÕ [Q(st, π(st, g), g)] (62)

DDPG updates the critic and the policy in an alternating fashion.

ActionableModel. We implement AM on top of DDPG. Specifically, we add a CQL loss in the critic
update:

E(s,g)∼dÕ,a∼exp(Q)[Q(s, a, g)] (63)

where dÕ is the distribution of the relabelled dataset. In practice, we sample 10 random actions
from the action-space to approximate this expectation. Furthermore, we implement goal-chaining,
where for half of the relabeled transitions in each minibatch update, the relabelled goals are randomly
sampled from the offline dataset. We found goal-chaining to not be stable in some environments, in
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particular, FetchPush, FetchPickAndPlace, and FetchSlide. Therefore, to obtain better results, we
remove goal-chaining for these environments in our experiments.

GCSL. We implement GCSL by removing the DDPG critic component and changing the policy loss
to maximum likelihood:

min
π

−E(s,a,g)∼dÕ [log π(a | s, g)] (64)

WGCSL. We implement WGCSL on top of GCSL by including a Q-function. The Q-function
is trained using TD error as in DDPG. To compute the advantage term, we follow the original
WGCSL algorithm by setting V (st; g) = Q(st, π(st+1, g); g) and then computing A(st, at, g) =
r(st; g) + γV (st+1; g)− V (st; g). Using this, the WGCSL policy objective is

min
π

−E(st,at,ϕ(si))∼dÕ

[
γi−texpclip(A(st, at, ϕ(si))) log π(at | st, ϕ(si))

]
(65)

where we clip exp(·) for numerical stability. The original WGCSL uses different HER rates for
the critic and the actor training. To make the implementation simple and consistent with all other
approaches, we use the same HER rate for both components.

G.2 Architectures and Hyperparameters

Each algorithm uses their own set of fixed hyperparameters for all tasks. WGCSL, GCSL, and DDPG
are already tuned on our set of tasks [43, 51], so we use the reported values from prior works; AM, in
our implementation, shares same networks as DDPG, so we use DDPG’s values. For GoFAR, we
use identical hyperparameters as WGCSL because they share similar network components; GoFAR
additionally trains a discriminator, for which we use the same architecture and learning rate as the
value network. We impose a small discriminator gradient penalty [17] to prevent overfitting. For all
experiments, We train each method for 3 seeds, and each training run uses 400k minibatch updates of
size 512. The architectures and hyperparameters for all methods are reported in Table 3.

Table 3: Offline GCRL Hyperparameters.
Hyperparameter Value

Hyperparameters Optimizer Adam [23]
Critic learning rate 5e-4 (1e-3 for AM/DDPG)
Actor learning rate 5e-4 (1e-3 for AM/DDPG)
Discriminator learning rate 5e-4
Discriminator gradient penalty 0.01
Mini-batch size 256
Discount factor 0.98

Architecture Discriminator hidden dim 256
Discriminator hidden layers 2
Discriminator activation function ReLU
Critic (resp. Value) hidden dim 256
Critic (resp. Value) hidden layers 2
Critic (resp.Value) activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

G.3 Offline GCRL Experiments

Datasets. For each environment, the offline dataset composition is determined by whether data
collected by random actions provides sufficient coverage of the desired goal distribution. For
FetchReach and D’ClawTurn, we find this to be the case and choose the offline dataset to be 1 million
random transitions. For the other four tasks, random data does not capture meaningful goals, so we
create a mixture dataset with 100K transitions from a trained DDPG-HER agent and 900K random
transitions; the transitions are not labeled with their sources. This mixture setup has been considered
in prior works [22, 35] and is reminiscent of real-world datasets, where only a small portion of the
dataset is task-relevant but all transitions provide useful information about the environment.
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G.4 Zero-Shot Transfer Experiments

We use GoFAR (Binary) variant for trainning the GoFAR planner. The low-level controller is trained
using an online DDPG algorithm on a narrow goal distribution, set to be closed to the object’s initial
positions.

GoFAR Hierarchical Controller operates by first generating a sequence of subgoals (g1, ..., gT ) using
πhigh by recursively feeding the newest generated goal and conditioning on the final goal g. Then, at
each time step t, the low-level controller executes action πlow(at | st, gt). The high-level subgoals
are not re-planned during low-level controller execution. We note that this is a simple planning
algorithm, and improvement in performance can be expected by considering more sophisticated
planning approaches.

H Additional Results

H.1 Offline GCRL

In this section, we provide the full results table for dicounted return and final distance metrics,
including error bars over 3 random seeds.

Table 4: Discounted Return on offline GCRL tasks, averaged over 3 random seeds.
Task Supervised Learning Actor-Critic

GoFAR (Ours) WGCSL GCSL AM DDPG
FetchReach 27.8 ±0.55 22.5± 1.04 (1.0) 21.6 ± 1.03(1.0) 30.0 ± 0.21 (0.5) 29.8 ± 0.31(0.2)
FetchPick 19.5 ± 4.13 10.0 ± 2.09(1.0) 8.1 ± 1.33(1.0) 17.2 ± 4.89 (0.5) 15.7 ± 3.20 (0.5)
FetchPush 18.9 ± 3.87 13.1 ± 2.52(1.0) 12.2 ± 1.55(1.0) 16.5 ± 3.65(0.5) 14.3 ± 6.18(0.5)
FetchSlide 3.67 ± 0.78 2.88 ± 0.47(1.0) 1.80 ± 1.29(1.0) 2.18 ± 1.88 (0.5) 1.71 ± 0.72(0.5)

HandReach 11.9 ± 3.00 4. ± 3.00 (1.0) 1.25 ± 1.27 (1.0) 0. ± 0.0 (0.5) 0. ± 0.0 (0.5)
D’ClawTurn 9.34 ± 3.15 0.0 ± 0.0 (1.0) 0.0 ± 0.0 (1.0) 2.82± 1.71 (1.0) 0.0±0.0 (0.2)

Average Rank 1.33 3.17 4.17 2.33 3.33

Table 5: Final Distance on offline GCRL tasks, averaged over 3 random seeds.
Task Supervised Learning Actor-Critic

GoFAR (Ours) WGCSL GCSL AM DDPG
FetchReach 0.018 ± 0.002 0.0046 ± 0.002(1.0) 0.0043 ± 0.001(1.0) 0.0084± 0.002 (0.5) 0.040 ± 0.002 (0.2)
FetchPickAndPlace 0.037 ± 0.016 0.118 ± 0.033(1.0) 0.137 ± 0.026(1.0) 0.046 ± 0.026(0.5) 0.048 ± 0.017(0.5)
FetchPush 0.037 ± 0.005 0.039 ± 0.005(1.0) 0.056 ± 0.02(1.0) 0.053 ± 0.02(0.5) 0.048 ± 0.02(0.5)
FetchSlide 0.119 ± 0.01 0.169 ± 0.02(1.0) 0.186 ± 0.04(1.0) 0.172 ± 0.06(0.5) 0.23 ± 0.04(0.5)

HandReach 0.023 ± 0.009 0.033 ± 0.004 (1.0) 0.041 ± 0.009(1.0) 0.037 ± 0.004(0.5) 0.028 ± 0.007 (0.5)
D’ClawTurn 0.86 ± 0.24 1.42 ± 0.18 (1.0) 1.57 ± 0.15 (1.0) 1.31 ± 0.37 (1.0) 1.49 ± 0.10 (0.2)

Average Rank 1.5 2.67 4.12 3 3.67

H.2 Ablations

We also include the full task-breakdown table of GoFAR ablations presented in Figure 3 for complete-
ness. As shown in 6, GoFAR and GoFAR (HER) perform comparatively on all tasks. GoFAR (binary)
is slightly worse across tasks, and GoFAR (KL) collapses due to the use of an unstable f -divergence.

Table 6: GoFAR Ablation Studies
Variants FetchReach FetchPickAndPlace FetchPush FetchSlide HandReach DClawTurn

GoFAR 27.8 ± 0.55 19.5 ± 4.13 18.9 ± 3.87 3.67 ± 0.78 11.9 ± 3.00 9.34 ± 3.15
GoFAR (HER) 28.3± 0.65 19.8± 2.82 20.5± 2.29 3.85± 0.80 8.02± 5.70 10.51 ± 3.51
GoFAR (Binary) 26.1± 1.14 17.4±1.78 17.4 ± 2.67 3.69± 1.75 6.01± 1.62 5.13 ± 4.05
GoFAR (KL) 0±0.0 0±0.0 0±0.0 0±0.0 0± 0.0 0± 0.0

H.3 Real-World Dexterous Manipulations

In our qualitative analysis, we visualize all methods on a specific task instance of turning the valve
prong (marked by the red strip) clockwise for 90 degree; the goal location is marked by the green
strip. The robot initial pose is randomized. As shown in Figure 9, GoFAR reaches the goal with three
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random initial poses, whereas all baselines fail. See the figure captions for detail. Policy videos are
included on the project website.

(a) GoFAR robustly achieved the goal with three random initial poses; in the first two runs, it demonstrates
“recovery” behavior, as the robot would initially overshoot and then turn the valve counterclockwise. In the last
run, the robot initially undershoots and then turns again to reach the goal.

(b) Baselines fail to turn the volve prong (marked by the red strip) to the goal angle (marked by the green strip).
AM is the only method that is able to rotate the prong to some degree, though it overshoots in this case and
exhibits unnatural behavior.

Figure 9: D’ClawTurn policy visualization.

H.4 Zero-Shot Plan Transfer

We visualize GoFAR hierarchical controller and the plain low-level controller on three distinct goals
in Figure 10. See the figure caption for detail. Policy videos are included on the project website.
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(a) Goal 1

(b) Goal 2

(c) Goal 3

Figure 10: Qualitative comparison of GoFAR hierarchical controller (top) vs. plain low-level con-
troller (bottom) on representative goals in the Franka pushing task. Red circles represent intermediate
subgoals generated by the GoFAR planner. As shown, the low-level controller only succeeds in Goal
3, whereas the hierarchical controller achieves the distant goals in all three cases.

28


	Introduction
	Related Work
	Problem Formulation
	Goal-Conditioned f-Advantage Regression
	Algorithm
	Optimal Goal-Weighting Property
	Uninterleaved Optimization and Performance Guarantee
	Goal-Conditioned Planning

	Experiments
	Offline GCRL
	Robustness in Stochastic Offline GCRL Settings
	Real-World Robotic Dexterous Manipulation
	Zero-Shot Transfer Across Robots

	Conclusion
	Appendix
	I Appendix
	Additional Technical Background
	f-Divergence and Fenchel Duality
	Hindsight Goal-Relabeling

	Proofs
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Theorem 4.1

	GoFAR Technical Details
	Discriminator Training
	GoFAR with common f-Divergences
	Full Pseudocode

	GoFAR for Tabular MDPs
	Additional Technical Discussion
	Connecting Goal-Conditioned State-Matching and Probabilistic GCRL
	Optimality Conditions for Hindsight Relabeling
	Theoretical Comparison to Prior Regression-based GCRL methods

	Task Descriptions
	Fetch Tasks
	Fetch Reach
	Fetch Push
	Fetch Slide
	Fetch Pick

	Hand Reach
	D'ClawTurn (Simulation)
	D'ClawTurn (Real)

	Experimental Details
	Baseline Implementation Details
	Architectures and Hyperparameters
	Offline GCRL Experiments
	Zero-Shot Transfer Experiments

	Additional Results
	Offline GCRL
	Ablations
	Real-World Dexterous Manipulations
	Zero-Shot Plan Transfer



