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ABSTRACT

Physics-informed machine learning has emerged as a promising approach for
modeling physical systems. However, two significant challenges limit its real-
world applicability. First, most realistic scenarios allow only coarse-grained mea-
surements due to sensor limitations, making the use of physics loss based on finite
dimensional approximations infeasible. Second, the high cost of data acquisition
impedes the model’s predictive ability. To address these challenges, we introduce
a novel framework called Physics-Informed Coarse-grained data Learning (PICL)
that incorporates physics information via the learnable fine-grained state repre-
sentation from coarse-grained data. This framework effectively integrates data-
driven methods with physics-informed objectives, thereby significantly improving
the predictive ability of the model to predict the subsequent coarse-grained obser-
vations from current coarse-grained observation. The PICL framework comprises
two modules: the encoding module, responsible for generating the learnable fine-
grained state, and the transition module, used for predicting the subsequent state.
To train these modules, we employ a base-training period followed by a two-stage
fine-tuning period. The key idea behind this training strategy is that we can lever-
age physics loss to enhance the reconstruction ability of the encoding module and
the generalization ability of the transition module, using both labeled and unla-
beled data. In the base-training period, we train both modules collaboratively
using data loss and physics loss. In the two-stage fine-tuning period, we first tune
the transition module with physics loss using unlabeled data and then tune the
encoding module with data loss using labeled data to propagate the information
from the transition module to the encoding module. We demonstrate that PICL ex-
hibits superior predictive ability across modeling various PDE-governed physical
systems. Code is available on GitHub: https://github.com/PI-CL/PICL.

1 INTRODUCTION

Physical systems modeling is often used to approximate complex natural phenomena (Wang et al.,
2023). To leverage it as the surrogate for forward prediction and inverse design, the models of phys-
ical systems must accurately predict the future of the system. Using neural networks to approximate
the physical systems by using data-driven methods has become a promising direction (Zhang et al.,
2023). Recently, to reduce the use of costly data and improve the predictive ability of physical sys-
tem models, several works have introduced finite-dimensional approximated physics loss in training
models and achieved great performance (Gao et al., 2021a; Ren et al., 2022; Huang et al., 2023).
Many methods rely on fine-grained data to calculate physics loss, but in some scenarios, we only
have insufficient data on the coarse-grained mesh (Watson et al., 2020). This introduces significant
errors in computing partial derivatives, which hurts the accuracy of the physics loss. For exam-
ple, ocean circulation, governed by the shallow water equation, affects the pollutant transfer (Hu
et al., 2020). However, we can only measure the values of flow velocity and pollutants in sparse
fixed monitors (Bas et al., 2019; Su et al., 2023). As a result, enhancing neural networks trained by
coarse-grained data using known physics equations remains a scientific challenge.

In this work, we introduce a novel Physics-Informed Coarse-grained data Learning framework,
known as PICL, that integrates physics information into the training of the model when we only
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have the coarse-grained data. PICL comprises an encoding module and a transition module. The
fundamental concept is to reconstruct the learnable fine-grained state from the coarse-grained in-
put by using the encoding module and then predict the subsequent state with the transition module.
However, the encoding module makes it hard to generate the fine-grained state without available
fine-grained data through data-driven supervised methods, and if the training data is insufficient, the
model cannot accurately predict the system’s future prediction. To address these challenges, we pro-
pose jointly training the encoding and transition modules by utilizing physics losses and data loss,
along with both limited labeled and richer unlabeled coarse-grained data, to predict the subsequent
coarse-grained observation.

To train both modules, we propose a training framework comprising two periods: a base-training pe-
riod and a two-stage fine-tuning period. In the base-training period, the encoding module is trained
using a physics loss calculated based on the PDEs formulation without requiring fine-grained data.
Drawing inspiration from the PDEs formulation and finite difference method (FDM), where there
exists an equivalence relation between temporal and spatial differences, allowing for interconversion
between them, we use the most recent consecutive observations to generate a more reliably learn-
able fine-grained state. The transition module is trained collaboratively using data loss and physics
loss to overcome the limited predictive ability caused by insufficient data. During the two-stage
fine-tuning period, the model can be further improved by using more available unlabeled data in a
semi-supervised learning way. In the first stage, the transition module is fine-tuned using unlabeled
data and physics loss independently. In the second stage, we employ data loss based on the orig-
inal labeled data to fine-tune the encoding module independently. By doing so, we propagate the
information of the PDEs and unlabeled data from the transition module to the encoding module.

We demonstrate the effectiveness of PICL in three different PDEs, e.g., wave equation, linear shal-
low water equation, and nonlinear shallow water equation with uneven bottom. We find that, with
PICL, the learned model predicts the future coarse-grained observation more accurately.

Our contributions can be summarized in two parts: (1) We propose a general physics-informed deep
learning framework called PICL integrating physics information into the training of model if we
only have coarse-grained data. (2) We demonstrate that PICL leads to a significant improvement
in predictive ability to predict the subsequent coarse-grained observations with input coarse-grained
observation at time t, than data-driven manner across various PDE-governed physical systems.

2 RELATED WORK

Physics-Informed Neural Operator: There are two categories to train deep models of PDEs dy-
namics. The first one is the data-driven method using the data set collected from solvers or ex-
periments, like the neural operators (Lu et al., 2019; Li et al., 2020a;b; Boussif et al., 2022; Yin
et al., 2023; Iakovlev et al., 2023) learn an operator including a family of parametric PDEs, instead
of only a function. Another one is Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019;
Yang et al., 2021; Cai et al., 2021; Karniadakis et al., 2021) for training PDEs constrained loss to
solve an equation. Both approaches have disadvantages. On the one hand, neural operators require
data, and when data is sparse, insufficient, or not available, they cannot learn the solution operator
successfully. However, data generation might require the enormous cost of the expensive solver and
experiment. On the other hand, PINNs do not mandate the input of data, which tends to exhibit lim-
itations, particularly in the context of multi-scale dynamic systems, attributable to the complexities
of optimization (Rao et al., 2023). In addition, PINNs have the problem of slow calculation com-
pared with conventional CFD like Finite Element Method (FEM) (Reddy, 2019), Lattice Boltzmann
Method (IBM) (Chen & Doolen, 1998) and Boundary Data Immersion Method (BDIM) (Weymouth
& Yue, 2011). In order to overcome the above challenges, physics-informed operator learning has
been proposed in DeepONet (Wang et al., 2021; Goswami et al., 2022) and in FNO (Li et al., 2021)
that reduce the need for data by injecting physics information and learn an operator to generalize
multi-scale dynamics. However, the practical implementation of the above methods often still re-
quires high-quality and complete data, and they cannot be applied to learn coarse-grained measured
data directly as opposed to low-resolution data. We develop PICL to overcome these problems
further so that the physics loss can be integrated to learn coarse-grained observations.

Super-Resolution: Super-resolution (SR) represents a fundamental task in low-level vision, aiming
to reconstruct a high-resolution (HR) image from its low-resolution (LR) counterpart. HR tasks
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are focused on two domains: computer vision (CV) and physical systems. In CV, the pioneering
study in Dong et al. (2014) was among the first to utilize deep learning for SR. Subsequent to this,
numerous deep learning-based models (Lim et al., 2017; Soh et al., 2019; Nazeri et al., 2019; Zhao
et al., 2020), and generative models (Ledig et al., 2017; Liu et al., 2021; Gao et al., 2023) emerged to
enhance SR performance. SR for physical systems has attracted more and more attention (Ren et al.,
2022), which aims to inject physics information into the SR model (Wang et al., 2020; Esmaeilzadeh
et al., 2020; Fathi et al., 2020; Ren et al., 2022; Jangid et al., 2022; Shu et al., 2023) or develop the
physics-informed SR models without data (Gao et al., 2021b; Kelshaw et al., 2022; Zayats et al.,
2022). Both methods face challenges in terms of data requirements and predictive ability despite
their individual merits. On the one hand, SR in CV and most of the work in physical systems require
HR data used in supervised learning. On the other hand, other works in physical systems only rely
on physics information, often failing to provide the expected HR reconstructions, especially when
LR data makes up only a small fraction. Our proposed PICL first applies physics-informed training
to learn the HR state via coarse-grained input without HR data and embeds it to a prediction task
further instead of using SR as an end-to-end task like the above works.

3 PRELIMINARIES

Consider the dynamical system following the work (Li et al., 2021):

du

dt
= P(u), in Ω× (0,∞),

u = g, in ∂Ω× (0,∞),

u = a, in Ω̄× {0},

(1)

where the unknown solutions u(t) ∈ U for t > 0 and the initial conditions (ICs) a = u(0) ∈ A ⊆ V .
The operator P , which possibly be a linear or non-linear partial differential operator with U and V
in Banach spaces. g denotes the known boundary conditions (BCs). It is hypothesized that u is both
existent and bounded at all times, applicable to every u0 ∈ U .

As the inherent complexity of PDEs, a large portion of them rely on numerical methods to solve
Eqn. 1 (Shi et al., 2022). Numerical solvers operate by transforming PDEs into algebraic equations
via discretization and then undertaking their numerical solution. In this process, a is discretized
at na points, producing ã, and u is represented by ũ discretized at nu points. Consequently, P̃ is
an algebraic equations to approximate P . We first solve P̃ to generate ũ on fine-grained mesh and
appropriate ã. We down-sample the fine-grained resolution to the coarse-grained resolution, denoted
as õ. The detail of down-sampling is introduced in Appendix B.5. Then, we get the coarse-grained
data set D = {õi}Ni=0. Except for the insufficient labeled data, the unlabeled data which is the
current coarse-grained observation without the corresponding subsequent observation, can also be
applied effectively in our proposed PICL. We denote the unlabeled data set as B = {õηi }N

′

i=0.

4 PHYSICS-INFORMED COARSE-GRAINED DATA LEARNING

Here we describe the overview of the proposed methodology (Sec. 4.1) and the strategy for imple-
mentation (Sec. 4.2) including the framework (Sec. 4.2.1) and the learning strategy (Sec. 4.2.2).

4.1 OVERVIEW OF METHODOLOGY

As we mentioned in the introduction, we will face a challenge when we try to integrate a data-driven
model based on coarse-grained data with physics information. The coarse-grained data cannot be
applied to calculate physics loss directly as they only have incomplete information, while we do
not have the fine-grained data to solve the super-resolution problem. Thus, the goal of this work
is to develop a framework that integrates physics information into the training of models based on
coarse-grained data; when we only have coarse-grained data, we still apply physics information to
help the training of models, whether in simulation or real-world application.

The fundamental idea is to reconstruct the learnable fine-grained state from the coarse-grained input
by using the encoding module and then predict the subsequent state by using the transition module,
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shown in Fig. 1. The aims of the two modules are to use physics loss to reconstruct the learnable
fine-grained state without fine-grained data and to inject physics information using the learnable
fine-grained state to improve predictive ability affected by insufficient data, respectively. To train
both modules, we design two training periods: a base-training period and a two-stage fine-tuning
period. In the base-training period, the encoding module is trained with a physics loss in the absence
of fine-grained data. Concurrently, the transition module is trained using a combination of data loss
and physics loss, addressing the challenges of limited predictive capabilities due to data scarcity.
The two-stage fine-tuning period utilizes additional unlabeled data in a semi-supervised manner for
further model enhancement. The first stage involves fine-tuning the transition module independently
with physics loss calculated based on the unlabeled data. In the second stage, the encoding module
is independently fine-tuned using data loss, with the original labeled coarse-grained data. By doing
so, we propagate the information of physics and unlabeled data from the transition module to the
encoding module. The details of the framework and learning strategy are described in next section.
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Figure 1: PICL. Base-training period (left): the encoding module is trained with a physics loss
without available fine-grained data, and the transition module is trained with a combination of data
loss and physics loss. Inference Period (right): given a coarse-grained observation to predict the
subsequent coarse-grained observation.

4.2 IMPLEMENTATION STRATEGY

4.2.1 FRAMEWORK OF PICL

In the encoding module, PICL encodes the input õt to ût. Inspired by the high-order FDM that uses
data from several previous steps to estimate the derivative at current time step, leading to a more
accurate solution of the following state, before the data input to the encoding module, we use the
abundant temporal feature of {õt−i}ni=0 to approximate the more reliable ût with the neural network:

ût = fθ(õt−n, õt−n+1, ..., õt), (2)

where θ is the trainable parameters and ût is the learnable fine-grained state. We eliminate the
uncertainty caused by partial observation via containing previous steps in input, which can also be
handled by Bayesian neural networks (Louizos & Welling, 2017) and VAE (Kingma & Welling,
2013), but it is not the focus of this paper. Then, we use a transition module for the prediction task.
The module inputs current fine-grained state ût, and predicts the subsequent fine-grained state ût+1.
To achieve this, we use a neural network to learn the mapping of a given ût to the subsequent ût+1:

ût+1 = fω(ût), (3)

where ω denotes the trainable parameters in the transition module. Finally, the predicted ôt+1 can
be calculated by down-sampling with the known coordinates set Φ.

In practical implementation, the encoding process is similar to the image processing task, which aims
to extract features from coarse-grained input. We employ the U-Net (Ronneberger et al., 2015) as
the encoding module, a proven model well-suited for tasks akin to SR. ût(x, y) denotes the value at
coordinates (x, y) of the n×n matrix ût. We define a set Φ = {(x, y) | x, y ∈ {0, k, 2k, . . . ,mk}},
including the coordinates of every k-th value in the ût(x, y), where m is a multiple of k. Applying
the hard encoding, the ût is modified as: ût(x, y) = {ôt(x/k, y/k) | (x, y) ∈ Φ}. For the transition
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process, which can be conceptualized as a system’s temporal evolution, we leverage the FNO (Li
et al., 2020b) as the transition module to more effectively capture continuous and global spatial
features, particularly when data availability is insufficient. Note that above architectures are choices
of our work’s specific requirements. Future work could explore the efficacy of alternative neural
network for them.

4.2.2 LEARNING STRATEGY

Based on the proposed PICL framework, there are three problems to train them jointly with data
loss and physics loss. The first is how to train the encoding module when we do not have the fine-
grained data required by supervised learning. The second is how to leverage physics loss to improve
predictive accuracy. The third is how to use unlabeled data to improve the predictive ability of phys-
ical systems modeling further. To solve the above problems, we propose a learning strategy with
two periods, including a base-training period and a two-stage fine-tuning period. The base-training
period consists of physics-informed learning and data-driven manners. The two-stage fine-tuning
period consists of semi-supervised learning and data-driven manners. The above three training man-
ners are (1) a methodology grounded in the data-driven manner to use coarse-grained data, (2) a
data-free physics-informed learning manner using learnable fine-grained state to improve predictive
ability, and (3) a semi-supervised learning method that capitalizes on the unlabeled data to improve
predictive ability further. In both periods, we design the loss function as follows:

L = βLd + γLep + γLtp, (4)

where Ld is the relative data loss calculated on coarse-grained mesh as: Ld = ∥ôt+1−õt+1∥2

∥õt+1∥2 and
õt+1 is the coarse-grained label, β and γ are the weights of data loss and physics loss. Lep

and Ltp denote the physics losses of the encoding module and transition module, respectively. By
expressing the 4th-order Runge-Kutta (RK4) formulae as F (ũt, ũt+1) = 0, we design two physics
losses Lep(θ) = F (ût(θ), ût+1(θ))

2 and Ltp(ω) = F (ût, ût+1(ω))
2. We employ the widely-used

standard RK4 method in our framework, and its formulae are listed in the Appendix B.2. In addition,
we briefly summarizes the implementation in the Algorithm 1.

Base-Training Period: In the base-training period, as we can use the labeled coarse-grained data
to achieve the basic predictive performance, we first calculate the relative data loss Ld training two
modules end-to-end in the data-driven manner. Then, for the physics-informed manner, we apply
distinct training on each module as follows.

Specifically, for training the encoding module, we train parameters θ in Eqn. 2 via physics loss to
offset the complete lack of fine-grained data. Since only the coarse-grained data is available, we
propose to encode the input õt and label õt+1 to learnable fine-grained state ût and û′

t+1 which
can be used to calculate the encoding physics loss Lep by finite dimensional approximations in
training. Then, the most likely fine-grained state can be learned to overcome the limitation caused
by the data-driven manner. Note that õt and õt+1 share the same encoding module to output the
learnable fine-grained states. Moreover, to make the learned ût and û′

t+1 more reliable, we fully
utilize existing information by hard encoding õt and õt+1 to the corresponding position.

Besides, for training the transition module, we train parameters ω in Eqn. 2 using Ltp. To collaborate
with the data loss introduced earlier, we calculate the derivative of physics loss Ltp to transition
module independently. Ltp is computed between the input ût and the predicted subsequent ût+1 in
fine-grained mesh. Moreover, the known BCs can be hard encoded to ût when training the transition
module, imposing the prior physics knowledge as described in Rao et al. (2023).

Two-Stage Fine-Tuning Period: We leverage unlabeled data to tune both modules after the base-
training period, to improve models’ predictive ability further. As we mentioned in the base-training,
the encoding module has to be trained using both input and label, while the transition module can
be trained without label. Thus, we can easily fine-tune the transition module with physics loss based
on unlabeled data and then fine-tune the encoding module with data loss using original labeled data,
so that we can propagate information of unlabeled data and PDEs from the transition module to the
encoding module. The fine-tuning of both modules corresponds to two stages, respectively.

Specifically, at the first fine-tuning stage, we apply unlabeled data to tune the transition module
using only Ltp without data loss to make predictions more in line with the PDEs, which is called
the physics-tuning stage. However, as the encoding module and transition module are first trained
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end-to-end via data loss in the base-training period, the physics-tuned transition module mismatches
the base-trained encoding module, leading to deteriorating performance in general.

Then, the second fine-tuning stage (data-tuning stage) applies data loss Ld to tune the encoding
module independently, so that we can propagate unlabeled data and physics information to the en-
coding module. Note that Ld is calculated based on the original training set without introducing new
labeled data. Also, the data efficiency is significantly improved by the above methods, as the labeled
data are applied four times to calculate Ld, Ltp, Lep and tune encoding module in the data-tuning
stage. The unlabeled data are also beneficial for learning. Such high data efficiency greatly improves
the predictive ability of physical system models utilizing insufficient data.

Algorithm 1 Physics-Informed Coarse-grained data Learning (PICL)
Input: Data set D and B, Finite dimensional approximation P̃ , Parameters θ and ω, Gaps between each fine-

tuning period q, Steps of two-stage of fine-tuning period m1 and m2.
1: Initialize θ, ω of encoding module fθ and transition module fω .
2: while True do
3: for i = 1 to q do ▷ Base-Training Period
4: Update θ and ω using Lep + Ld, Ltp + Ld, for each (õt, õt+1) in D.
5: for i = 1 to m1 do ▷ Two-Stage Fine-Tuning Period
6: Update ω using Ltp, for each õηt in B.
7: for i = 1 to m2 do
8: Update θ using Ld, for each (õt, õt+1) in D.

5 EXPERIMENTS

In this section, we test PICL on several benchmarks. For each one, we first compare the data loss Ld

and reconstruction error ϵ on test set with four baselines shown in Table 1, where ϵ = ∥ût−ũt∥2

∥ũt∥2 (ũt

only used to calculate metrics ϵ in inference). Second, we compare the data loss Ld of multi-step
prediction on the test set shown in Fig. 2. Finally, we aim to answer the following primary questions:
(1) Is PICL sensitive to hyperparameters? (2) Does the data quantity impact the performance of
PICL? (3) Does the data quality impact the performance of PICL? To answer the above questions,
we evaluate our method in ablation studies. In addition, we study about output resolution impact on
cost, different encoding networks, zero-shot super-resolution, and impact of fine-grained data (when
available). Due to space limitations, we show the details of them in Appendix B.

5.1 EXPERIMENTS SETUP

Before the description of experiments, we introduce four baselines in this part. PIDL: physics-
informed deep learning that is based on physics constraints computed by finite difference and does
not use training data, applied in Liu & Wang (2021) and Gao et al. (2021a). FNO (Li et al., 2020b):
a powerful neural operator with FFT-based spectral convolutions. FNO*: the same encoding
module as PICL is attached ahead of FNO to address our problem better, denoted as FNO*, where
γ = 0 in loss function 4. PINO* (Li et al., 2021): a hybrid approach incorporating data and physics
constraints based on FNO to learn neural operator, but with the same modification as FNO*, where
the physics loss is calculated based on õt and ôt+1. By attaching the same encoding module in
FNO* and PINO*, we create a more level playing field to evaluate the performance of our proposed
method against the modified baselines, thereby providing a clearer measure of our contributions.
In addition, we compare the computational cost between our neural network transition module and
numerical solver to demonstrate the value of our transition module in Appendix G

Another setup is the benchmarks: wave equation, linear shallow water equation (LSWE), nonlinear
shallow water equation with uneven bottom (NSWE), Burgers equation, and Navier-Stokes equation.
We first target the wave equation and LSWE (Rosofsky et al., 2023). Next, we test a more challeng-
ing benchmark NSWE with some adjustments based on that in Rosofsky et al. (2023), which is
more useful in the applications, as NSWE retains all nonlinear terms, including the uneven bottom.
The experiments in Burgers equation, and Navier-Stokes equation are shown in Appendix F. In all
benchmarks, the ICs are randomly sampled from the Gaussian Random Fields (GRFs), and models
learn to generalize to various ICs.
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5.2 WAVE EQUATION

We introduce the experiment on wave equation in this part as follows:

∂2u

∂t2
+ c2(

∂2u

∂x2
+

∂2u

∂y2
) = 0, (5)

where x, y ∈ [0, 1), t ∈ [0, 1], u(x, y, 0) = u0(x, y), u is velocity field, c denotes the speed of wave.

After evaluation, four baselines have worse prediction data loss Ld in modeling wave equation
system than our proposed PICL which can be further improved by fine-tuning with unlabeled data.
As shown in Table 1, Ld of PICL w/o fine-tune has more than 8% improvement after informing the
PDEs. After fine-tuning with unlabeled data iteratively, Ld has about 10% improvement on PICL
w/o fine-tune and over 17% improvement on FNO*. Compared with other baselines, Ld of FNO,
PIDL, and PINO* are significantly larger than that of PICL with fine-tune. Because, insufficient data
limits the models’ predictive ability in the data-driven manner like FNO and FNO*. The physics
loss calculated directly on coarse-grained data does not improve the predictive ability of the model
and has a negative impact on PIDL and PINO*. In addition, we discover PICL with fine-tune
simultaneously has over 10%, 49%, and 51% lower ϵ than those of baselines, which means PICL
can reconstruct the more reliable fine-grained state. We consider it a reason why PICL can learn the
superior model of physical systems. The above loss is calculated on the one-step prediction. Then,
we evaluate our proposed PICL on the multi-step prediction task. As you can see in Fig. 2, Ld of
PICL always has lower values among all steps. Thus, the wave equation modeling with PICL has
superior predictive ability not only on one-step task but also on multi-step task than baselines.

Table 1: Comparison between PICL and four baselines on three benchmarks.

Methods

Benchmarks Wave Eqn. LSWE NSWE

Ld ϵ Ld ϵ Ld ϵ

PIDL 1.28 1.19 7.60 1.38E-3 2.34E-1 3.16E-1

FNO 1.11E-1 - 7.92E-2 - 1.01E-1 -

FNO* 3.58E-2 2.17 4.75E-2 6.82E-3 6.41E-2 1.74

PINO* 1.01 2.09 7.60 1.63E-3 2.32E-1 3.18E-1

PICL w/o fine-tune 2.93E-2 1.09 2.54E-2 1.49E-3 3.69E-2 2.06E-1

PICL with fine-tune 2.64E-2 1.06 2.44E-2 1.47E-3 3.50E-2 2.03E-1

5.3 LINEAR SHALLOW WATER EQUATION

We introduce the experiment on LSWE in this part as follows:

∂h

∂t
+H(

∂ux

∂x
+

∂uy

∂y
) = 0,

∂ux

∂t
− fuy = −g

∂h

∂x
,

∂uy

∂t
+ fux = −g

∂h

∂y
,

(6)

where x, y ∈ [0, 1), t ∈ [0, 1], h(x, y, 0) = h0(x, y), ux(x, y, 0) = 0, uy(x, y, 0) = 0, h is the
surface height, ux and uy are the velocity fields of x and y directions. The mean height is H = 100,
and we consider the Coriolis coefficient f = 1 and gravitational constant g = 0.01.

As shown in Table 1, four baselines see the larger data loss Ld in modeling LSWE system, while
PICL w/o fine-tune exhibits an enhancement of over 46% on FNO*. The fine-tuning with unlabeled
data brings an improvement of about 4% on PICL w/o the fine-tune and over 48% on FNO*. Except
for FNO*, Ld of FNO, PIDL, and PINO* are also much larger than that of PICL. It is evident that
modeling LSWE with PICL has superior predictive ability compared with baselines, and tuning
with unlabeled data further enhances this improvement. Additionally, shown in Table 1, PICL with
fine-tune has a relatively reduced ϵ, while FNO, FNO* and PINO* have larger reconstruction errors.
Although that of PIDL is slightly lower, it focuses on training the model with physics loss only,
ignoring the data constraint for prediction. Thus, PICL can balance the relationship between data
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and physics constraints so that superior modeling can be achieved. For the multi-step prediction
shown in Fig. 2. PICL always has the lower data loss compared with baselines, and the gap between
Ld of PICL and FNO* is increasing along with the prediction steps. The reason is that the growth of
cumulative error may slow down due to the model being constrained to meet the PDEs at each step,
thus maintaining higher accuracy in multi-step prediction.
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Figure 2: The performance of multi-steps prediction from 1st step to 10th step on three benchmarks.

5.4 NONLINEAR SHALLOW WATER EQUATION WITH UNEVEN BOTTOM

In this section, we evaluate PICL in the more complex NSWE closely to the real world as follows:
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(7)

where x, y ∈ [0, 1), t ∈ [0, 1], h(x, y, 0) = h0(x, y), ux(x, y, 0) = 0, uy(x, y, 0) = 0, z is the
uneven height of the bottom randomly sampled from GRFs, ν denotes the viscosity coefficient.

In NSWE system modeling, contrasted with PICL, the baselines exhibit larger Ld. As highlighted
in Table 1, PICL w/o fine-tune showcases Ld with an over 42% improvement compared to FNO*.
After fine-tuning with unlabeled data, it is further refined with an uplift of over 5% against PICL w/o
fine-tune and over 45% against FNO*. Baselines FNO, PIDL, and PINO* see a similar situation as
FNO*. Their Ld are much larger than that of PICL. The comparison with other baselines is placed
in Appendix E. Moreover, we discover that PICL with fine-tune reconstructs the more reliable fine-
grained state with ϵ below 2.03E-1 better than those of baselines. For multi-step prediction in Fig. 2,
PICL always performs better than baselines in multiple steps with a similar trend as that in LSWE.

5.5 ABLATION STUDIES

Is PICL sensitive to hyperparameters? To answer this question, we study the weights of physics
loss, lengths of most recent consecutive observations as input, and coefficients in two stages of fine-
tuning period on NSWE. We consider weights of physics loss γ ∈ {0, 1E-3, 5E-2, 1E-1, 2E-1, 1} in
Eqn. 4, lengths of most recent consecutive observations as input n ∈ {1, 2, 4, 6, 8} to the encoding
module, and coefficients that include steps in two stages m1,m2 ∈ {5, 10, 20} and gaps between
each fine-tuning period q ∈ {50, 100, 200, 500}. The results of evaluations trained with the above
hyperparameters are shown in Fig. 3, and their details are shown in Appendix Table 4.

In Fig. 3(a), we show how varying the weights of each term in the loss function (Eqn. 3) influences
the final performance. The results shows that the performance is better when weight γ = 1E-1 and
2E-1 than others. On the one hand, a model trained by data-driven (γ = 0), which only focuses on
data (i.e., uses Ld), performs worst. On the other hand, models trained with a significant focus on
physics constraints (i.e., γ = 1) also underperform. In general, PICL with a balance between data
and physics loss, leads to superior physical systems modeling.

For lengths of most recent consecutive observations as input shown in Fig. 3(b), n = 1 means
only the current coarse-grained observation as input, has worse results, and when lengths are longer,
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evaluations achieve better results. We consider the reason is that a model input by recent consecutive
observations can use temporal features to reconstruct more reliable fine-grained state by physics loss.

For coefficients in the two-stage fine-tuning period shown in Fig. 3(c). When the steps of two stages
m1 = 10 and m2 = 10, the evaluation has a good result. This means a model with less m1 and
m2 fails to change the performance significantly in the two-stage fine-tuning period. When the gap
coefficient q = 100, the evaluation has achieved the best result, while a model with less q tunes too
frequently, like q = 50, causing worse predictive performance than that of q = 100.
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Figure 3: Results of ablation studies. More details of results are presented in Appendix Table 4.

Does the data quantity impact the performance of PICL? To evaluate the impact of data quan-
tity for labeled data õ and unlabeled data õη , we design experiments of õ quantity of trajectory
Nlab ∈ {50, 100, 150, 200, 250, 300, 350} and õη quantity of trajectory Nun ∈ {10, 50, 100, 150}
on NSWE. The values of evaluations are shown in Fig. 3(d) and 3(e). (1) For quantity of labeled
data, Ld decreases along the rising of Nlab. More quantity of labeled data leads to better predictive
ability of models. (2) For quantity of unlabeled data, we can see no matter how many Nun is, Ld

can be reduced by two-stage fine-tuning using unlabeled data. Moreover, among the range of Nun

and Nlab, fine-tuning can always bring improvements for PICL by introducing unlabeled data.

Does the data quality impact the performance of PICL? To answer the question, we study the
quality of input and output data with the different coarse-grained sizes xo × yo ∈ {3× 3, 5× 5, 7×
7, 11×11}, based on NSWE. As smaller sizes have less spatial information, we would consider this
feature as the lower quality. The results of the evaluations are shown in Fig. 3(f). Evaluation is worse
in smaller coarse-grained sizes like 3×3, and those are better when coarse-grained sizes are relatively
larger. When the coarse-grained size is small with low data quality, the encoding module faces the
challenge of reconstructing the fine-grained state with physics loss using less spatial information,
and the larger coarse-grained size has relatively more spatial information. Furthermore, among the
range of xo × yo, PICL with fine-tune can always bring improvements.

6 CONCLUSION

In this paper, we presented PICL, a physics-informed coarse-grained data learning framework for
enhanced modeling of physical systems under limited coarse-grained data conditions. Within PICL,
we employ the encoding module and transition module in tandem, and devise a training strategy
with two periods to address challenges associated with coarse-grained data quality and insufficient
data quantity. Using Wave Eqn., LSWE, and NSWE as examples, we demonstrated that PICL can
improve prediction accuracy and data efficiency, as well as reconstruct more reliable fine-grained
states without the need for fine-grained data.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ana B. Villas Bas, Fabrice Ardhuin, Alex Ayet, Mark A. Bourassa, and Erik Van Sebille. Integrated
observations of global surface winds, currents, and waves: Requirements and challenges for the
next decade. Frontiers in Marine Science, 6, 2019.

Oussama Boussif, Yoshua Bengio, Loubna Benabbou, and Dan Assouline. Magnet: Mesh agnostic
neural pde solver. Advances in Neural Information Processing Systems, 35:31972–31985, 2022.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Shiyi Chen and Gary D Doolen. Lattice boltzmann method for fluid flows. Annual review of fluid
mechanics, 30(1):329–364, 1998.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional net-
work for image super-resolution. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pp. 184–199. Springer,
2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A
Tchelepi, Philip Marcus, Mr Prabhat, Anima Anandkumar, et al. Meshfreeflownet: A physics-
constrained deep continuous space-time super-resolution framework. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2020.

Mojtaba F Fathi, Isaac Perez-Raya, Ahmadreza Baghaie, Philipp Berg, Gabor Janiga, Amirhossein
Arzani, and Roshan M D’Souza. Super-resolution and denoising of 4d-flow mri using physics-
informed deep neural nets. Computer Methods and Programs in Biomedicine, 197:105729, 2020.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive convo-
lutional neural networks for solving parameterized steady-state pdes on irregular domain. Journal
of Computational Physics, 428:110079, 2021a.

Han Gao, Luning Sun, and Jian-Xun Wang. Super-resolution and denoising of fluid flow using
physics-informed convolutional neural networks without high-resolution labels. Physics of Fluids,
33(7), 2021b.

Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu, Xi-
antong Zhen, and Baochang Zhang. Implicit diffusion models for continuous super-resolution.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10021–10030, 2023.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep
neural operators networks. arXiv preprint arXiv:2207.05748, 2022.

Shijian Hu, Janet Sprintall, Cong Guan, Michael J. Mcphaden, and Wenju Cai. Deep-reaching
acceleration of global mean ocean circulation over the past two decades. Science Advances, 6(6):
eaax7727, 2020.

Xinquan Huang, Wenlei Shi, Qi Meng, Yue Wang, Xiaotian Gao, Jia Zhang, and Tie-Yan Liu.
Neuralstagger: accelerating physics-constrained neural pde solver with spatial-temporal decom-
position. arXiv preprint arXiv:2302.10255, 2023.

Valerii Iakovlev, Markus Heinonen, and Harri Lähdesmäki. Learning space-time continuous neural
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A MODEL ARCHITECTURE

Here, we detail the architecture of model with PICL, complementary to Sec. 4.1. This architecture is
used throughout all experiments, with only adjusting a few hyperparameters (e.g., input dimension,
latent dimension) depending different settings. We detail the encoding module fθ and transition
module fω , and the architectures used in the Wave Eqn., LSWE, and NSWE experiments. A sum-
mary of the hyperparameters is also provided in Table 2.

Wave Eqn.: For the experiments in wave equation, including models of PICL w/o fine-tune and
PICL with fine-tune, our encoding module fθ employs a U-Net with the number of 23 residual
blocks. The input dimension is (2n, 9, 9), and the output dimension of the encoding module is
(2, 41, 41), which is the fine-grained state. The transition module fω employs an FNO model with
the number of 4 FNO layers and a layer width of 32. It uses the GeLu activation (Li et al., 2020b).
The input dimension is (2, 41, 41), and that of the output is (2, 41, 41). The down-sampling block
employs a gap of 5 to get the predicted subsequent coarse-grained observation that has (2, 9, 9)
dimension. For both coarse-grained observation and fine-grained state, two channels of the first
dimension represent the u that is the field of velocity in Eqn. 5, and ϕ that is the field of velocity
potential quite related to u in wave equation. The second and third dimensions are the spatial
dimensions, which are 9 for coarse-grained observation and 41 for fine-grained state. In this setting,
the coarse proportion is less than 4.82%.

LSWE and NSWE: For the experiments in shallow water equation, including models of PICL w/o
fine-tune and PICL with fine-tune, our encoding module fθ employs a U-Net with the number of 23
residual blocks. The input dimension is (3n, 7, 7), and the output dimension of the encoding module
is (3, 32, 32), which is the fine-grained state. The transition module fω employs an FNO model with
a number of 4 FNO layers, and the width is 32. It uses the GeLu activation (Li et al., 2020b).
The input dimension is (3, 32, 32), and that of the output is (3, 32, 32). The down-sampling block
employs a gap of 5 to get the predicted subsequent coarse-grained observation that has (3, 7, 7)
dimension. For both coarse-grained observation and fine-grained state, three channels of the first
dimension represent the ux and uy that are the fields of velocity in x and y directions, and h that is
the field of fluid column height, in Eqn. 6 and 7. The second and third dimensions are the spatial
dimensions, which are 7 for coarse-grained observation and 32 for fine-grained state. In this setting,
the coarse proportion is less than 4.79%.

Table 2: Hyperparameters used for model architecture.
Hyperparameters name for model architecture Wave Eqn. LSWE NSWE
fθ: Input dimension (2, 9, 9) (3, 7, 7) (3, 7, 7)
fθ: Output dimension (2, 41, 41) (3, 32, 32) (3, 32, 32)
fθ: Residual block number 23 23 23
fθ: Channel 32 32 32
fθ: Dropout 0.1 0.1 0.1
fθ: Activation function Swish Swish Swish
fω: Input dimension (2, 41, 41) (3, 32, 32) (3, 32, 32)
fω: Output dimension (2, 41, 41) (3, 32, 32) (3, 32, 32)
fω: Layers number 4 4 4
fω: Modes 12 12 12
fω: Width 32 32 32
fω: Activation function GeLu GeLu GeLu
Down-sampling gap 5 5 5
Down-sampling output dimension (2, 9, 9) (3, 7, 7) (3, 7, 7)

B IMPLEMENTATION DETAILS

In this section, we provide experiment details for three benchmarks. First, we introduce the details
of data generation by FDM. Then, we introduce the manner of physics loss calculation during the
training. After that, the details about base-training and two-stage fine-tuning periods are supple-
mented. Table 3 shows general hyperparameters of training, except for the hyperparameters that are
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modified in ablation studies introduced in Sec. 5.5. Finally, we detail the hard encoding of known
physics information.

Algorithm 2 PICL (a detailed version)

Input: Labeled data set D, Unlabeled data set B, Finite dimensional approximations P̃ , Trained
parameters θ and ω of encoding module fθ and transition module fω , Gaps between each fine-
tuning period q, Steps of two-stage of fine-tuning period m1 and m2.

1: Initialize parameters θ and ω.
2: while True do
3: for i = 1 to q do ▷ Base-Training Period
4: for each (õt, õt+1) in D do
5: Encode {õt−i}ni=0 to ût using fθ.
6: Encode {õt+1−i}ni=0 to û′

t+1 using fθ.
7: Calculate Lep based on P̃ .
8: Predict ût+1 using fω .
9: Calculate Ltp based on P̃ .

10: Down-sample ôt+1.
11: Calculate data loss Ld.
12: Update θ and ω with joint loss Lep + Ld and Ltp + Ld.
13: for i = 1 to m1 do ▷ Two-Stage Fine-Tuning Period
14: for each õηt in B do
15: Encode {õt−i}ni=0 to ût using fθ.
16: Predict ût+1 using fω .
17: Calculate transition physics loss Ltp based on P̃ .
18: Update ω using loss Ltp.
19: for i = 1 to m2 do
20: for each (õt, õt+1) in D do
21: Encode {õt−i}ni=0 to ût using fθ.
22: Predict ût+1 using fω .
23: Down-sample ôt+1.
24: Calculate data loss Ld.
25: Update θ using loss Ld.

B.1 DATA GENERATION

To generate the training data, we initiate ICs randomly sample from the GRFs and subsequently
evolved them both spatially and temporally. Specifically, we employed the RK4 method for temporal
evolution, starting from t = 0 and progressing up to t = 1 with a time-step of δt = 0.01 in the same
fashion to Rosofsky et al. (2023). For the computation of spatial derivatives, a fourth-order central
difference scheme was utilized within the framework of FDM. As we aim to generalize the model on
a variety of ICs, we divide the training data set D, and test data set D′ and unlabeled data set B based
on trajectories generated from i.i.d. ICs. For ease of reading, in this paper, we illustrate the PICL
for PDE-governed physical systems in the 2-D examples with regular mesh and finite difference
approximation.

B.2 CALCULATION OF PHYSICS LOSS

Physics loss both Lep and Ltp are calculated as similar method like data generation. By discretizing
the PDEs with fourth-order central-difference scheme and the RK4 time discretization method on
fine-grained mesh (41×41 in Wave Eqn., 32×32 in LSWE and NSWE), the RK4 to solve differential
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equation u′ = f(x, y, u) can be expressed as:

k1 = f(x, y, ut),

k2 = f
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h

6
(k1 + 2k2 + 2k3 + k4).

(8)

Let a function F denotes the RK4 calculation, where F (ut, ut+1) = 0. We design F 2 as the physics
loss. Specifically, to the encoding physics loss:

Lep(θ) = F (ut(θ), ut+1(θ))
2. (9)

To the transition physics loss:
Ltp(ω) = F (ut, ut+1(ω))

2. (10)

B.3 LEARNING STRATEGY

Base-Training Period: In the base-training period, we jointly train the parameters θ and ω in Eqn.
2 and 3 for both the encoding module and the transition module. This is done using a combination of
data-driven and physics-informed methods. A significant challenge we face is the absence of fine-
grained data, as we can only access the coarse-grained data õt and õt+1. To solve this challenge, we
introduce physics loss terms Lep and Ltp for the encoding and transition modules, respectively. The
encoding module is trained to map the coarse-grained inputs õt and õt+1 to learnable fine-grained
states ût and û′

t+1, which can then be used to compute the Lep using manner in last paragraph. In
a similar way, the transition module is trained using Ltp. By collaboratively training these modules
via Ld, Lep and Ltp, we are able to reconstruct the more reliable and reasonable fine-grained state
without requiring fine-grained data and improve the predictive ability of physical system models,
thereby overcoming the limitations of data-driven supervised approaches.

Two-Stage Fine-Tuning Period: In two-stage fine-tuning period, given the abundance of readily
available unlabeled, coarse-grained data for PDE-governed physical systems, we first focus on the
transition module in what we term the physics-tuning stage. In this stage, the module is fine-tuned
independently using the Ltp calculated using the unlabeled input (learnable fine-grained state) and
the predicted subsequent fine-grained state, thereby enhancing its prediction to better align with
PDEs. However, this physics-tuned transition module is not inherently compatible with the encoding
module, which was trained during the base-training period. This incongruence results in a gradual
deterioration in performance. To address this problem, a second fine-tuning stage, termed the data-
tuning stage, is introduced. Here, the encoding module is fine-tuned individually using the data loss
Ld, which is computed based on the original training set D without the introduction of new labeled
data. By proceeding in this manner, we effectively propagate the information of PDEs and unlabeled
data from the transition module into the encoding module. The pipline of fine-tuning is illustrated
in Fig. 4. The detailed implementation summary is in Algorithm 2.

B.4 HARD ENCODING OF PHYSICS INFORMATION

While incorporating physics loss serves as a soft constraint during training, it is essential to encode
hard constraints based on known physics information, such as BCs, coarse-grained observations,
and sampled data positions. Super-resolution of coarse-grained resolutions is inherently an ill-posed
problem due to the daunting task of extrapolating from limited data. However, in scientific tasks,
prior knowledge—such as governing equations and BCs—is often available and can offer invaluable
guidance. In this regard, we hard encode the known physics information, specifically BCs, directly
into the model to facilitate training in the same fashion to Rao et al. (2023). Given the uniform
discretization of spatial domains, encoding BCs is conveniently achieved through pixel-wise padding
techniques.
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Figure 4: Two-Stage Fine-Tuning Period. Physics-tuning stage (left) and Data-tuning stage (right).

1. For Dirichlet BCs, we can explicitly incorporate the known boundary values into the fine-
grained state.

2. For Neumann BCs, we can introduce ghost nodes to infer external node values using finite
difference methods. This allows for a time-invariant physical relationship between ghost
nodes and internal nodes.

3. For periodic BCs, we can employ periodic padding techniques to encode spatial continuity.
This approach reuses boundary values from the opposite side of the mesh.

Through these hard constraints, the model is provided with accurate descriptions of underlying dy-
namics at the boundary and effective guidance for reconstruction tasks, thereby enhancing both the
training process and the model’s predictive ability.

The task of encoding coarse-grained observations into fine-grained size is complex, particularly
when these observations span multiple data dimensions such as velocities, pressures, and spatial
positions. These coarse-grained data points serve as preliminary knowledge for learning the hidden,
fine-grained state. When the coarse-grained observation is encoded to the learnable fine-grained
state, coarse-grained observation can be hard encoded to the sampled position by the encoding mod-
ule, so that the learned state can be more reliable. On the other hand, as the position information is
the preliminary information, the down-sample can filter from the predicted subsequent fine-grained
state to the predicted subsequent coarse-grained observation. By doing so, we do not need to use
a neural network to fit the subsequent coarse-grained observation, which avoids introducing more
parameters. This approach leads to a significant improvement in the data efficiency and predictive
ability of the model with PICL.

Table 3: Hyperparameters used for training.
Hyperparameters name for training Value
Batch size 32
α, Learning rate 1
λ: Weight decay 1E-4
δt: Time gap 0.01
γ: Scheduler factor 0.5
β: Weight of data loss 1E-3
Training epochs 1000

B.5 DETAILS OF DOWN-SAMPLING OPERATION

For a given fine-grained state ũ, represented as an n × n matrix where ũ(x, y) denotes the value at
coordinates (x, y), we define a sampling set Φ as follows:

Φ = {(x, y) | x, y ∈ {0, k, 2k, . . . ,mk}},
where m is the largest integer less than or equal to (n− 1)/k and a multiple of k, signifying that Φ
includes the coordinates of every k-th value in the ũ(x, y). Applying the down-sampling operation,
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the resultant coarse-grained points P is obtained:

P = {ũ(x, y) | (x, y) ∈ Φ},
Here, P is a set of values obtained from the fine-grained state ũ(x, y) according to the sampling
positions in set Φ. Rearrange the set P to the r × r matrix of coarse-grained observation õ(xo, yo),
where (xo, yo) ∈ {0, 1, 2, . . . ,m}. The training coarse-grained data set D = {õi}Ni=0 is down-
sampled from the fine-grained state.

Moreover, as the coordinates set Φ of coarse-grained data is available, we apply a type of hard
encoding method to utilize the position information. Thus, the output of the model is down-sampled
on the predicted subsequent fine-grained state from Φ, instead of using a neural network to avoid
introducing more trainable parameters.

B.6 DETAILS OF ABLATION STUDIES

Is PICL sensitive to hyperparameters? We evaluate the sensitive of the weights given Ltp and
Lep, the input covering lengths of most recent consecutive observations, and the coefficients in
the two-stage fine-tuning period on the performance of PICL for NSWE setting. As the results of
FNO* are relatively better than other baselines, serving as a representative for them, we focus on
the improvement between FNO* and PICL in the following ablation studies.

For weights of physics loss, as presented in Eqn. 4, there are Ld, Ltp and Lep, where Ltp and Lep

are weighted with coefficient γ. Accordingly, we study the influence of the hyperparameter γ in the
loss function given in Eqn. 4 on the predictive accuracy. For this purpose, we consider γ ∈ {0, 1E-3,
5E-2, 1E-1, 2E-1, 1}. The values of the evaluations for PICL based on NSWE trained with each of
the γ values are presented in Table 4. γ = 0 indicates the FNO* depends on the Ld, and Ltp and
Lep are not accounted for. As presented in Table 4, the best performance on the test set is achieved
for a loss function with weighting coefficients of γ = 1E-1, 2E-1. Allover this work, we refer to the
weight coefficient with γ = 1E-1. A model that is trained by data-driven, which only focuses on the
data (i.e., uses Ld only) and does not account for the physics constraints (i.e., ignores Ltp and Lep)
underperform than that of PICL. On the other hand, models trained with a significant focus on the
physics constraints only (i.e., large γ) also underperform. In general, a balance between the focus
of the PICL on the data and the physics constraints leads to an optimal performance.

For lengths of most recent consecutive observations as input, as introduced in Sec. 4.2, there are
most recent consecutive observations input to the model, balanced with length coefficient n, fed to
the encoding module to make up for the lack of spatial information with the quantity of temporal
information, inspired by calculation of FDM. Accordingly, we study the influence of the hyperpa-
rameter n, deciding the temporal features carried by input data on the performance of PICL. For this
purpose, we consider n ∈ {1, 2, 4, 6, 8}. The values of the evaluations for PICL based on NSWE
trained with each of the n values are presented in Table 4. n = 1 indicates the input only has the
current coarse-grained observation, and the most recent consecutive observations are not accounted
for. As presented in Table 4, when covering the coefficient of n = 4, the evaluation on the test set
has achieved a good result. A model that is trained by input without the most recent consecutive
observations faces a challenge when the encoding module reconstruct fine-grained state leveraging
insufficient spatial information by physics loss. Allover this work, we refer to this length coefficient
n = 4.

For the coefficients in the two-stage fine-tuning period, in the physics-tuning stage, unlabeled data
are applied to tune the transition module using only Ltp without Ld. Then, we apply Ld to tune
the encoding module independently in the data-tuning stage, where Ld is calculated based on the
original training set without introducing new labeled data. The steps of the two stages are controlled
by the coefficients m1 and m2 to make PICL achieve better performance in evaluation. Accordingly,
we study the impact of the hyperparameters m1 and m2. For this purpose, we consider m1 ∈
{5, 10, 20} and m2 ∈ {5, 10, 20}. The values of the evaluations for PICL based on NSWE trained
with each of the m1 and m2 values are presented in Table 4. As presented in Table 4, when the
coefficients m1 = 10 and m2 = 10, the evaluation on the test set has achieved a good result. A
model with less m1 and m2 fails to modify the performance significantly, while a model with more
steps causes too much deterioration in the physics-tuning stage. Allover this work, we refer to this
optimum coefficients m1 = 10 and m2 = 10. Another coefficient is the gap between each two-stage
fine-tuning period. We further study the impact of gap coefficient q. For this purpose, we consider
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q ∈ {50, 100, 200, 500} and control the same training epoch of the base-training period. The values
of the evaluations for PICL on NSWE trained with each of the q values are presented in Table 4.
When the gap coefficient q = 100, the evaluation of the test set has achieved the best result. A model
with less q tunes too frequently, causing instability of base-training, while a model with more q does
not have an obvious impact on results. Allover this work, we refer to this optimum gap coefficient
q = 100.

Does the data quantity impact the performance of PICL? In this part, we evaluate the impact
of the quantity of labeled data õ and unlabeled data õη when the physics information is integrated
on the performance of PICL for the NSWE setting. As presented in Sec. 4.2, Ld, Ltp and Lep are
applied to train the neural network collaboratively, where Ld is calculated by õ. Note that we can
only access õ in the real world generally. It is interesting to evaluate the performance of PICL on
different quantities of õ. Moreover, we assume some õη is accessible for two-stage fine-tuning. The
quantity of õη also impacts the result of PICL.

For quantity of õ, we study the influence of the õ quantity Nlab on the predictive accuracy. For
this purpose, we consider Nlab ∈ {50, 100, 150, 200, 250, 300, 350}. The values of the evaluations
for PICL on NSWE trained with each of the Nlab values are presented in Table 4. As we aim
to generalize the model on a variety of ICs, data number Nlab denotes the number of trajectories
beginning from different ICs. The Ld decreases along with the increasing of Nlab. In the range of
Nlab, PICL can always bring improvements based on results in Table 4.

For quantity of õη , we study the influence of the õη quantity Nun on the predictive accuracy. For
this purpose, we consider Nun ∈ {10, 50, 100, 150}. The values of the evaluations for PICL on
NSWE trained with each of the Nun values are presented in Table 4. The õη number Nun denotes
the number of trajectories beginning from different ICs with labels during training. We can see no
matter how much Nun is, Ld can be reduced by two-stage fine-tuning. On the other hand, the FNO
and FNO* cannot apply such õη . In the range of Nun, fine-tuning can always bring improvements
for PICL by introducing the unlabeled data compared with baselines.

Does the data quality impact the performance of PICL? In this part, we evaluate the quality of
input and output data with the different coarse-grained sizes based on NSWE. In the real world, the
measured network not only uses a single size but also uses different sizes of measurement according
to actual situations. As smaller sizes have less spatial information, we would consider this feature
as the lower quality. We generate four data sets with sizes xo × yo ∈ {3× 3, 5× 5, 7× 7, 11× 11}.
The values of the evaluations for PICL trained with each size of the xo × yo values are presented
in Table 4. Ld calculated between prediction and ground truth are worse in small coarse-grained
sizes like 3 × 3 as the encoding module faces the challenge of reconstructing the fine-grained state
only using less spatial knowledge and physics loss. It has better results when coarse-grained sizes
have relatively much spatial knowledge. Moreover, In the range of xo× yo, PICL with fine-tune can
always bring improvements based on results in Table 4.

When the output resolution of encoder module increases, how much does it impact the com-
putational cost? As the computation of physics loss leads to more computational cost than the
data-driven manner, we study the increasing of computational cost when the output resolution of
the encoder module fθ increases based on the NSWE setting. We employ the hyperparameters in
the same way as the experiment in Sec. 5.4 shown in Table 2 and Table 3, and calculate the com-
putational time of the model’s inference and batch training. We compare the computational time of
the proposed PICL with baseline FNO* to illustrate the variance between physics-informed training
manner and data-driven manner.

Table 5: Inference Computational Time of Different Output Resolutions of fθ.
Method 32× 32 (s) 48× 48 (s) 64× 64 (s)

FNO* 0.0751 0.1445 0.2387

PICL 0.0764 0.1398 0.2374

From the Table 5, we can see no matter how much the output resolution of fθ is, the time of inference
of FNO* and PICL always have a similar cost as they have the same model structure. In Table 6,
for the time of training, the cost of PICL is larger than that of FNO* as they have different training
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Table 6: Training Computational Time of Different Output Resolutions of fθ.
Method 32× 32 (s) 48× 48 (s) 64× 64 (s)

FNO* 0.4555 1.5786 2.8061

PICL 0.8007 2.5895 3.8649

loss functions, and PICL is required to calculate the physics losses and auto-differentiate on two
modules, but the time cost is acceptable.

Does the encoding module can be replaced by another architecture? The aim of this work
is to propose a learning framework that can apply physics information on coarse-grained data to
improve predictive ability, whether in numerical simulations or real-world applications. In practical
implementation, the encoding process is similar to the image processing task, which aims to extract
features from coarse-grained input. In response to this, we follow the works and employ the U-
Net architecture (Ronneberger et al., 2015) as the encoding module, a proven model well-suited
for tasks akin to super-resolution (Esmaeilzadeh et al., 2020). It is only a choice guided by the
specific requirements of our study. Future work could explore the efficacy of alternative neural
network architectures for these modules. In this paper, we replace the U-Net with the Transformer
to answer the question, based on the NSWE setting. We employ the official implementation of the
Transformer in ViT (Dosovitskiy et al., 2020), which is a deep learning architecture for computer
vision tasks that leverages the Transformer model’s self-attention mechanism to process images as
sequences of tokens. The results are shown in Table 7.

Table 7: Ld of model with U-Net and Transformer as encoding module.
Method FNO* PICL w/o fine-tune PICL with fine-tune

U-Net 6.41E-2 3.69E-2 3.50E-2
Transformer 6.79E-2 5.01E-2 4.70E-2

We can see that PICL can still have the improvement compared with the data-driven manner FNO*
by incorporating the physics information, especially when it is fine-tuned using the unlabeled coarse-
grained data after replacing the encoding module from U-Net to Transformer. However, the Ld of
the Transformer encoding module is slightly larger than that of the U-Net encoding module whether
the training manner is.

How to address the zero-shot super-resolution cases? We study the zero-shot super-resolution
generalization ability of the proposed PICL to new coarse-grained meshes based on the NSWE
setting. The original U-Net encoding module requires consistent coarse-grained meshes between
inference and training, making it difficult to complete the zero-shot super-resolution cases. The goal
of our work is to develop a training framework that is not limited to the specific encoding module.
In this experiment, we replace the U-Net with a Transformer as an encoding module and release the
zero-shot super-resolution case following the method in MAgNet (Boussif et al., 2022). MAgNet
is a mesh-based neural operator that enables zero-shot generalization to new non-uniform meshes
and long-term prediction. We apply the nearest neighbors interpolation as same as MAgNet in the
encoding module so that it can address the zero-shot super-resolution cases. We train the model on
7× 7 coarse-grained mesh, and test zero-shot super-resolution on 3× 3, 5× 5, 7× 7, 11× 11. We
use the reconstruction error ϵ to measure the zero-shot super-resolution performance. The results
are plotted in Fig. 5.

The data presented in the Fig. 5 shows that the PICL with fine-tune outperforms the FNO* method,
whether the inference size of the coarse-grained mesh is. It indicates that the incorporation of physics
information can significantly improve the zero-shot super-resolution of the encoding module, by
ensuring that the output adheres to the underlying physics equation, especially when fine-grained
data is not available.

Can fine-grained data (when available) improve the performance of PICL? Although the set-
ting of the proposed PICL is the scenario where only coarse-grained data is available, it is still
interesting to explore if the fine-grained data (when available) can help the training and improve the
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Figure 5: Zero-shot super-resolution performance on NSWE setting

performance of the proposed PICL. We evaluate this situation using the experiment on NSWE and
assume the coarse-grained observations have the fine-grained data.

We consider three cases when we assume the fine-grained data is available, including 1/3, 1/2, and all
coarse-grained data have the corresponding fine-grained data. Then, we apply the fine-grained data
as the labels of the encoding module so that it can learn to reconstruct the more accurate and reliable
fine-grained state. As the encoding module with fine-grained labels does not need fine-tuning, we do
the experiment using the PICL w/o fine-tune. From Table 8, we can see that both the baseline FNO*
(without physics loss) and our proposed PICL benefit from the increasing of fine-grained data. It is
worth mentioning that the improvements are over 38% and 12% when all the fine-grained data are
assumed to be available for FNO* and PICL, respectively. Moreover, these results also highlight an
important aspect of our framework: the ability to use the known physics information as a substitute
for fine-grained data in training the encoding module, especially in scenarios where such data is
unavailable. The smaller improvement observed in PICL compared to the FNO*, when fine-grained
data is available, suggests that PICL can effectively compensate for the absence of fine-grained data
to learn the state.

Table 8: Ld of model with or without fine-grained data.
FNO* PICL

w/o fine-grained data 6.41E-2 3.69E-2

1/3 with fine-grained data 5.13E-2 3.41E-2

1/2 with fine-grained data 5.01E-2 3.35E-2

all with fine-grained data 4.70E-2 3.29E-2

C BASELINES

Here, we provide additional details on the baselines used in experiments. The meanings of baselines
are introduced in Sec. 5.1. In the following, we mainly give details on their implementation.

PIDL: A physics-informed deep learning methodology that is purely based on soft physics con-
strains computed by finite difference and do not use training data which is utilized in a model-based
reinforcement learning (Liu & Wang, 2021). The calculation method of physics loss is the same
as PhyGeoNet (Gao et al., 2021a). As we aim to compare the performance between PICL and the
model purely trained by physics loss, PIDL has the same architecture as PICL except for training
via physics loss independently calculated as Liu & Wang (2021) and Gao et al. (2021a) in this paper.
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FNO: It is a powerful neural operator with FFT-based spectral convolutions (Li et al., 2020b). To
make FNO have learned parameters that are of comparable scale as PICL, we employ FNO with 5
layers, and the width is 48.

FNO*: Based on FNO, we modify it to a similar architecture like PICL, which attaches an encoding
module before the FNO model. So that, we can create a more level playing field for evaluating
the effectiveness of our proposed method against the modified baseline, thereby providing a clearer
measure of our contributions.

PINO*: PINO (Li et al., 2021) is a hybrid approach incorporating data and physics constraints based
on FNO to learn the neural operator. We also introduced a specific modification, like what we do in
FNO*, to better address the nuances of our research problem, called PINO*. The input and output
are in coarse-grained mesh, which is used to calculate the physics loss. By using this baseline, we
compare which is better to calculate physics loss on learnable fine-grained state or coarse-grained
observation.

LatentNeuralPDEs: It is a space-time continuous grid-independent model for learning PDE dy-
namics from noisy and partial observations (Iakovlev et al., 2023). We employ the official imple-
mentation and compare with our proposed PICL.

D LIMITATIONS

The primary objective of this research is to establish a framework that integrates physics information
into the training of models that rely only on coarse-grained data. This approach aims to improve the
model’s predictive capabilities in simulation or real-world problems. However, there are two notable
areas in this work that present opportunities for further exploration.

Firstly, the framework is designed to be flexible in its use of the encoding and transition modules,
not being limited to any fixed neural network architectures. In this study, we specifically explored
the adaptation of a Transformer architecture as the encoding module. Future work could explore the
efficacy of alternative neural network architectures for these modules.

Secondly, the current framework is tailored to situations where only coarse-grained data is available,
without access to fine-grained data. We conducted some experiments and discussions on how fine-
grained data (when available) improve the performance of PICL in this work. Investigating this
aspect could provide deeper insights into the framework’s applicability, particularly in scenarios
where fine-grained data becomes accessible.

E COMPARE WITH LATENTNEURALPDES

Except for the FNO-based baselines, we also compare the PICL with other state-of-the-art methods
like LatentNeuralPDEs (Iakovlev et al., 2023), and the results are shown in Table 9. We can see
that the Ld of LatentNeuralPDEs is larger than those of PICL w/o fine-tune and PICL with fine-tune
more than 81% and 91%, respectively.

Table 9: Ld of PICL and LatentNeuralPDEs based on NSWE.
PICL w/o fine-tune PICL with fine-tune LatentNeuralPDEs

Ld 3.69E-2 3.50E-2 6.70E-2

F EXPERIMENTS ON BURGERS EQUATION AND NAVIER-STOKES EQUATION

Except for the experiments on wave equation, linear shallow water equation, and nonlinear shallow
water equation with uneven bottom, we also did the experiments on Burgers Eqn. and Navier-Stokes
equation (NSE) following the work Li et al. (2020b). We compare the proposed PICL with baselines
FNO* and FNO, shown in Table 10.
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Table 10: Ld of experiments on Burgers Eqn. and NSE.
Method Burgers Eqn. NSE

FNO 1.69E-2 1.06E-1

FNO* 1.51E-2 1.64E-2

PICL w/o fine-tune 1.39E-2 1.50E-2

PICL with fine-tune 1.38E-2 1.34E-2

From the Table 10, we can see that the Ld of PICL with fine-tune is slightly less than that of FNO*
and FNO in the Burgers Equation experiment, while PICL with fine-tune has a significant improve-
ment compared with FNO* and FNO in the experiment of NSE that is a more complex PDE than
Burgers Equation.

G COMPUTATIONAL COST COMPARED WITH SOLVER

In this section, we explore the advantage of leveraging a neural network as the transition module
instead of leveraging a numerical solver based on the computational cost. We calculate the com-
putational time of a step forward by our transition module and a step computation of the numerical
solver by FDM, same as that in Appendix B.1, to illustrate the computational cost. We do the exper-
iments on different resolutions based on NSWE, including 32× 32, 48× 48, 64× 64. The results
are shown in Table 11. We can see that the time taken for a single computation using a numerical
solver is more than 5 times that of a step forward with a neural network. Furthermore, as the reso-
lution increases, the computational cost of using a neural network does not significantly change, as
only the input and output layers are affected, with small changes in the hidden layers. These results
indicate that, in terms of computational cost, whether in training or inference, employing a neural
network in the transition module offers considerable advantages.

Table 11: Computational Time
Method 32× 32 (s) 48× 48 (s) 64× 64 (s)

Neural Network 0.0030 0.0032 0.0032
Numerical Solver 0.0159 0.0168 0.0175

H THE FULL RESULTS OF MULTI-STEP PREDICTIONS

The full results of the multi-step predictions for three benchmarks introduced in Sec. 5.2 & 5.3 &
5.4 is demonstrated in Tables 12.

I ADDITIONAL RESULT VISUALIZATION

In this section, we provide additional result visualizations for the Wave Eqn., LSWE, NSWE. The
results of PINO*, FNO*, PICL with fine-tune, and ground truth corresponding to Table 1 are shown
in Fig. 6. PICL with fine-tune (third column) can learn more accurate details than PINO* and
FNO*. We use red circles to illustrate one of the improvements using PICL. For the Wave Eqn.,
there is an obvious improvement on ϕ, like the different number of triangles in the circle, and the
slight improvement on u located near the edge. For the LSWE, there is the slight improvement on
h, like the width in the middle of the saddle shape, an obvious improvement on uy , like different
shapes, and the slight improvement on ux like the size of the triangle at the edge. For the NSWE,
there is an obvious improvement on h, like the middle dot, the slight improvement on uy , like the
width of the triangle at the edge, and an obvious improvement on ux, like the link at the bottom.
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Figure 6: Visualization of predictions in (Top) Wave Eqn., (Middle) LSWE and (Bottom) NSWE
experiments, using PINO*, FNO*, PICL, and ground truth. We use red circles to illustrate one of
the improvements using PICL. Wave Eqn. ϕ denotes the field of velocity potential and u denotes
field of velocity. LSWE and NSWE h denotes the field of fluid column height, ux and uy denote
the fields of velocity in x and y directions. We can see that our PICL with fine-tune (third column)
learns details better than PINO* and FNO*.
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