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Abstract—The integration of model uncertainty 

quantification in clinical decision support systems, 

incorporating machine learning models, can augment the 

models’ reliability and robustness against domain shifts while 

also promoting user confidence and trust. In the present study, 

an uncertainty-informed active learning approach, leveraging 

Monte Carlo dropout for uncertainty estimation, is proposed 

towards the development of a deep learning model able to 

classify carotid ultrasound images as high-risk and low-risk for 

cardiovascular disease. An auxiliary dataset (CUBS) is 

employed for the initial model’s development and fine-tuning as 

well as the optimization of the Monte Carlo dropout’s 

hyperparameters. A dataset (87 B-mode ultrasound sequences) 

from ATTIKON hospital is subsequently utilized within the 

framework of active learning for model retraining based on the 

selection of the most informative samples according to the 

Monte Carlo dropout uncertainty estimation. In this context, the 

use of three active learning strategies is investigated, including 

uncertainty rank selection, pseudo-labeling for certain samples, 

and pseudo-labeling with variable sample weighting. The 

obtained results indicate that pseudo-labeling with variable 

sample weighting yields the best performance, achieving an 

AUC of 87.28% with only 21 annotated samples, which account 

for 30% of the total training data. Thus, this work provides 

evidence regarding the ability of uncertainty quantification and 

active learning to reduce labeling costs while maintaining model 

performance and enhancing the robustness and reliability of 

cardiovascular risk prediction models. 
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I. INTRODUCTION 

Recent advancements in deep learning (DL) have 
revolutionized various fields, including medical image 
analysis [1], where DL models have shown significant 
potential in automating and enhancing diagnostic processes. 
Particularly in the realm of cardiovascular health, deep neural 
networks (DNNs) have been instrumental in disease detection 
[2], risk stratification [3], and prognosis [4] based on imaging 
data. Despite their promising performance, a critical challenge 
toward the reliable deployment of these models in clinical 
settings remains unaddressed: their unpredictable behavior on 
data that deviates from the training distribution, known as 
domain shift [5]. This issue limits the generalizability of DNN 
models and raises concerns about their clinical utility, 
especially in the case of diverse patient populations and 
imaging conditions. Various approaches have been proposed 
towards addressing domain shift in machine learning, such as 
Source-Free Domain Adaptation (SFDA) techniques that 
adapt models to new data without considering source data [6], 
[7]. Uncertainty quantification plays a crucial role in 

enhancing these methods by enabling more reliable and robust 
adaptation to domain shifts, ultimately improving model 
generalization and performance in various tasks. In this 
context, Bayesian Neural Networks (BNNs) have been shown 
to improve target self-training by better estimating pseudo-
label uncertainty in SFDA for semantic segmentation [8]. 
Furthermore, probabilistic source models with uncertainty 
estimation are able to contribute in identifying target data 
points lying outside the source manifold, thus improving 
adaptation robustness in SFDA scenarios [9]. 

In the context of cardiovascular risk assessment from 
carotid ultrasound images, the ability to accurately quantify 
model uncertainty [10] is vital. Clinicians rely on confidence 
estimates to make informed decisions, particularly when 
dealing with life-threatening conditions. Standard DL models, 
however, typically do not provide a measure of uncertainty, 
leading to overconfident predictions that can potentially 
misguide clinical decisions. This gap underscores the need for 
methods that can not only predict outcomes with high 
accuracy but also reliably estimate the confidence in those 
predictions. 

Monte Carlo dropout is a widely adopted technique for 
uncertainty quantification in DL. It leverages the dropout 
mechanism, normally used only during training [11], to 
approximate Bayesian inference [12]. By performing multiple 
forward passes with dropout enabled, the model generates a 
distribution of predictions for each input, from which 
uncertainty measures such as total variance can be derived. 
This approach has been successfully applied in various 
domains, including digital pathology [13] and brain-computer 
interfaces [14], to provide uncertainty estimates alongside 
predictions, thereby enhancing the reliability of AI systems in 
critical applications. 

The present study extends the application of Monte Carlo 
dropout to the domain of cardiovascular risk prediction using 
carotid ultrasound images. The study focuses on two main 
aspects: fine-tuning the dropout parameters to optimize 
uncertainty estimation and integrating these uncertainty 
estimates into an active learning framework. Active learning 
[15], which iteratively selects the most informative samples 
for annotation, has the potential to significantly reduce the 
amount of labeled data required for training while maintaining 
high model performance. By incorporating Monte Carlo 
dropout uncertainty estimation into the sample selection 
process, the aim of this study is to improve the efficiency and 
robustness of the active learning strategy in the context of 
cardiovascular disease risk stratification. 



 

 

Fig. 1. Overall methodology. An auxiliary labeled dataset is used to train 

and validate the model's hyperparameters and fine-tune the Monte Carlo 

dropout configuration. In the active learning process with the target dataset, 
the most informative samples are selected based on model uncertainty. 

Predictions with uncertainties below a threshold are treated as pseudo-labels 

and incorporated into the training process. 

A comprehensive evaluation of the proposed approach is 
carried out using data acquired from patients referred to 
Attikon General University Hospital of Athens [16], with the 
ultimate goal to demonstrate how fine-tuned uncertainty 
estimates can enhance model performance and guide the 
active learning process. The contributions of the present work 
include the identification of the optimal Monte Carlo dropout 
configuration, and its integration in an active learning 
framework featuring three different sampling strategies: 
uncertainty rank selection, pseudo-labeling for confident 
samples, and pseudo-labeling with variable sample weighting. 
The obtained results reveal that integrating Monte Carlo 
dropout uncertainty estimation into the active learning loop 
enhances predictive performance in cardiovascular risk 
stratification based on carotid ultrasound imaging by helping 
to reliably identify the most informative and uncertain 
samples. Additionally, this integration allows the model to 
recognize and utilize confident predictions, leading to more 
efficient use of labeling resources in the training process. The 
code related to this work is available in a public repository1. 

II. METHODOLOGY 

An overview of the proposed methodology is illustrated in 
Fig. 1. An auxiliary labeled dataset was firstly deployed for 
training and validating the risk prediction model's 
hyperparameters and fine-tuning the Monte Carlo dropout 
configuration. Different active learning strategies, involving 
various uncertainty-informed approaches for the selection of 
informative samples from a target (unlabeled) dataset, were 
subsequently investigated towards model retraining with the 
ultimate goal to boost the model’s discrimination performance 
and enhance its reliability in the face of new data from 
unknown distributions. 

A. Data 

The study utilized a target domain dataset [16], [17] 
consisting of 96 B-mode ultrasound image sequences (videos) 
that were acquired from 82 patients with an age range of 46 to 
88 years, referred to Attikon General University Hospital of 

 
1  https://github.com/theogani/Uncertainty_based_AL_BHI 

Athens for carotid ultrasonography. The local institutional 
review board approved the study protocol, and all subjects 
gave their informed consent to the scientific use of the data. 
The sequences were categorized as high-risk or low-risk 
according to two key factors: the presence or absence of 
symptoms (stroke or transient ischemic attack) and the degree 
of carotid stenosis (narrowing of the artery lumen). Stenosis 
degree data was not available for all participants. The high-
risk group comprised 67 sequences from patients exhibiting 
symptoms or presenting a stenosis degree exceeding 70%. The 
low-risk group consisted of 20 sequences from asymptomatic 
patients with a stenosis degree of 70% or less. The remaining 
sequences lacked information about either symptoms or 
stenosis degree. The final ATTIKON dataset, comprising 
these 87 (67 high-risk and 20 low-risk) sequences, was used 
within the framework of active learning for model retraining 
based on the selection of the most informative samples 
according to the Monte Carlo dropout uncertainty estimation. 

The Carotid Ultrasound Boundary Study (CUBS) dataset 
[18] served as an auxiliary dataset, deployed for the initial 
model’s development and the tuning of the uncertainty 
estimation process. CUBS is a collection of ultrasound images 
acquired from 1,088 patients across various healthcare 
centers, utilizing different ultrasound equipment. The dataset 
comprises 694 patients recruited from three distinct villages in 
Cyprus and 394 patients enrolled at the Hypertension 
Outpatient Clinic of the University of Pisa, Italy. For each 
participant, two ultrasound images were captured from both 
sides of the neck, resulting in a total of 2,176 images within 
the dataset. The Cypriot cohort within the CUBS dataset 
provided information regarding cardiovascular health at 
baseline and were subsequently monitored for up to 14 years 
for any new events. Data concerning both baseline and follow-
up cardiovascular events was available for 689 Cypriot 
patients. For the purpose of this study, participants were 
classified as high-risk (117 individuals) or low-risk (572 
individuals) depending on whether they had reported a 
cardiovascular event at baseline or within a range of a 3-year 
follow-up. 

The sequences from ATTIKON dataset underwent 
random sampling to select a single frame, ensuring 
consistency between the structure of the two datasets. TABLE 
I. summarizes the number of data samples for each class 
across both datasets, highlighting the inverted class imbalance 
in the two datasets, with “low-risk” and “high-risk” as the 
minority class in ATTIKON and CUBS, respectively. 

TABLE I.  CLASS DISTRIBUTION FOR EACH DATASET 

 High-risk Low-risk 

ATTIKON 67 20 

CUBS 117 572 

B. Model Development 

A DL model was developed to classify carotid ultrasound 
images from the CUBS dataset as high-risk or low-risk. The 
model’s architecture consisted of a convolutional feature 
extractor pretrained on the ImageNet [19] dataset for feature 
extraction. Two different convolutional architectures were 
employed, the ResNet50 [20], [21] and the InceptionV3 [22]. 
In the realm of computer vision, these models have 
consistently delivered strong results [23], [24], [25], [26], [27] 
in CVD risk stratification tasks. In particular, ResNet50’s 



 

residual connections can help prevent the vanishing gradient 
problem, making this architecture ideal for capturing intricate 
details in the data, while InceptionV3’s proven effectiveness 
in multi-scale processing enables capturing features at 
different levels of granularity, which is useful for diverse 
visual patterns. Thus, these individual strengths motivated the 
models’ deployment towards addressing the complexity and 
diversity of the used dataset, with the aim of identifying subtle 
patterns. The outputs of the feature extraction stage comprised 
a total of 2048 features, which were identical for both of the 
employed pretrained convolutional models. The classification 
stage was composed of a stack of dropout and fully connected 
layer blocks with a rectified linear unit (ReLU) activation 
function, followed by a fully connected layer with a Softmax 
activation function and two nodes, one for each class. To 
prevent overfitting, early stopping based on the validation 
AUC score and weight decay of the fully connected layer’s 
hyperparameters were also considered. The Adam optimizer 
[28] with 0.001 learning rate and the Categorical Cross-
Entropy as a cost function were employed. 

The model was fine-tuned through a grid search process 
for the identification of the optimal hyperparameters, 
including the number of nodes in the hidden layers and the 
regularization factor for the weight decay regularization. The 
initial dataset was split into training, validation, and test 
subsets using a 60-20-20 ratio. The best hyperparameters’ 
combination was selected based on the highest AUC score 
obtained on the validation set. 

C. Monte Carlo dropout Uncertainty Estimation 

The dropout technique is a commonly employed method 
for preventing neural networks from overfitting in a 
straightforward manner [11]. A dropout layer multiplies its 
input by a binary mask that is drawn according to a predefined 
probability distribution, randomly setting some neurons to 
zero in the neural network during the training phase. In 
contrast, during the testing phase, the output of the layer is 
identical to the input. As outlined in [12], the utilization of 
dropout at test time can be regarded as an approximation of 
probabilistic Bayesian inference in deep Gaussian processes, 
which is referred to as Monte Carlo dropout. The Monte Carlo 
dropout method is employed to estimate the uncertainty of the 
network’s output in relation to its predictive distribution. This 
is achieved by sampling n distinct dropout masks for each 
forward pass. Consequently, instead of a single model output, 
n model outputs for each input sample are generated. The set 
of n outputs can be interpreted as samples from the predictive 
distribution, which is useful for extracting information 
regarding the variability of the prediction. Quantifying the 
uncertainty of the model may allow for uncertain predictions 
to be rejected or treated differently. Fig. 2 depicts an 
illustration of the standard use of dropout layers and the 
utilization of Monte Carlo dropout for uncertainty estimation. 

Within the framework of the present study, the 
optimization of the Monte Carlo dropout method for 
uncertainty estimation included fine-tuning of the number of 
forward passes, the uncertainty measure for estimating 
uncertainty, and the uncertainty threshold. The number of 
forward passes was varied from 10 to 150, incremented by 10, 
towards striking a balance between computational efficiency 
and uncertainty estimation accuracy. Each forward pass 
generated a different dropout mask, producing distinct outputs 
for each input sample. To quantify uncertainty from the 
multiple predictions, the use of the following uncertainty 

measures was investigated [14]: (i) variation ratio (VR) which 
represents the proportion of cases not in the mode category, 
(ii) predictive entropy (PE) which measures uncertainty in the 
prediction distribution, (iii) mutual information (MI) which 
measures the epistemic uncertainty by capturing the model’s 
confidence from its output, and (iv) total variance (TV) which 
is the sum of variances obtained for each class. 

 

Fig. 2. Standard dropout and Monte Carlo dropout during inference mode. 
In standard dropout, dropout layers are not active during inference, resulting 

in a single prediction. In Monte Carlo dropout, dropout layers remain active 

during inference, generating multiple predictions and, thus, providing a 

distribution of outputs. 

The appropriate threshold for distinguishing between 
certain and uncertain samples was determined experimentally, 
aiming at maximizing the model's ability to identify and 
prioritize uncertain samples for annotation in the active 
learning process. Different configurations were evaluated 
based on their ability to distinguish between correctly and 
incorrectly classified samples, ultimately leading to the 
selection of the combination which maximized the model's 
classification accuracy. 

D. Active Learning  

The fine-tuned model, incorporating the Monte Carlo 

dropout, was employed in an active learning scenario, aimed 

at sustaining the model's performance and enhancing its 

reliability in classifying high-risk and low-risk carotid 

ultrasound images, thereby improving early detection of 

cardiovascular risk. The ATTIKON dataset was utilized for 

the development and evaluation of the uncertainty-informed 

active learning approach. 

In this context, the model was iteratively retrained by 

considering new samples, selected based on their uncertainty 

scores. Three distinct sampling strategies were implemented 

during this process: 

(1) Uncertainty rank selection: Samples were ranked by 
their uncertainty, and the most uncertain samples 
were annotated and added to the training set. 

(2) Pseudo-labeling for confident samples: In addition to 
the annotation of uncertain samples, the model's 
predictions for samples with uncertainty below the 
defined threshold were used as pseudo-labels, 
expanding the training set without the need for 
additional manual annotations. 

(3) Pseudo-labeling with variable sample weighting: 
Annotated samples were assigned a weight of 1 while 
pseudo-labeled samples were weighted at 0.5 in the 
loss calculation, thus balancing their influence on the 
model's learning process. 



 

Given the small size of the dataset, a 5-fold cross 
validation scheme was applied to ensure more robust and 
reliable evaluation of the model's performance. In this context, 
the ATTIKON dataset was divided into five subsets, with the 
model being actively trained on four subsets and tested on the 
remaining one. The selected data was further split in training 
and validation set with a 75%-25% ratio. 

III. RESULTS AND DISCUSSION 

A. Model Development 

The hyperparameters’ tuning process tested 24 
combinations of pretrained models, including the 
investigation of the use of InceptionV3 and ResNet50 as 
feature extractors, the hidden layer configurations [1024, 
512], [1024, 256], and [1024, 512, 256], and the values of 
10−2, 10−3, 10−4, and 0 for the regularization factor of weight 
decay. TABLE II. summarizes the top 5 combinations based 
on the obtained validation AUC score on the CUBS dataset. 

TABLE II.  CROSS-VALIDATION METRICS OF THE TOP FIVE MODEL 

CONFIGURATIONS 

Pretrained 

model 

Hidden layers Weight decay 

factor 

Validation 

AUC 

InceptionV3 [1024, 256] 10−3 67.19% 

InceptionV3 [1024, 512] 10−2 66.43% 

InceptionV3 [1024, 256] 10−2 65.82% 

ResNet50 [1024, 256] 10−3 64.74% 

ResNet50 [1024, 256] 10−2 63.52% 

The best-performing configuration involved using the 
InceptionV3 model, followed by two hidden layers with 1024 
and 256 nodes, respectively, and a weight decay regularization 
factor of 10−3. This configuration was evaluated on the 
separate test set achieving accuracy, sensitivity, balanced 
accuracy, and AUC scores of 62.3%, 65.2%, 63.4%, and 
68.44%, respectively. 

B. Uncertainty Estimation Fine-Tuning 

The fine-tuning of the hyperparameters of the Monte Carlo 
dropout method focused on optimizing the number of forward 
passes n and selecting the most appropriate uncertainty 
measure among the variation ratio, the predictive entropy, the 
mutual information, and the total variance for uncertainty 
estimation. Discrimination performance metrics were applied 
to assess the model’s ability to distinguish between correctly 
and incorrectly classified samples for different combinations 
of n forward passes and uncertainty measures. Fig. 3-5 
illustrate the obtained AUC, accuracy and Youden’s index for 
these combinations on the CUBS dataset. The obtained results 
indicate that the combination of 130 forward passes and total 
variance as uncertainty measure, was consistently the most 
effective one. This combination led to the maximization of all 
evaluation metrics of the model’s discrimination performance. 

Fig. 6(a)-(d) further highlights the superiority of the 
identified optimal combination of 130 forward passes and 
total variance by depicting the distributions of the uncertainty 
estimation for the correctly and incorrectly classified samples 
for each uncertainty measure and the corresponding optimal 
number of forward passes based on the obtained AUC score. 
As shown there, total variance displayed a broader range of 
uncertainty values compared to variation ratio, mutual 
information, and predictive entropy, which exhibited a 
narrower range, predominantly consisting of high uncertainty 
values. This broader range enabled better differentiation 

between low, medium, and high uncertainty samples, 
ultimately leading to better performance. The increased 
effectiveness of total variance, which is the sum of variances 
obtained for each class, stems from its comprehensive 
approach to capturing the variability across all classes, making 
it a more robust measure of uncertainty compared to the other 
methods, which focus on specific aspects of uncertainty. 

The selected uncertainty threshold for the optimal 
configuration of total variance and 130 forward passes, as 
determined by the Youden’s index, was 0.571. This threshold 
achieved an optimal balance between sensitivity and 
specificity, resulting in the effective discrimination between 
certain and uncertain predictions. 

 

Fig. 3. Obtained AUC scores for the considered uncertainty measures 

across different numbers of forward passes. 

 

Fig. 4. Obtained accuracy for the considered uncertainty measures across 

different numbers of forward passes. 

 

Fig. 5. Obtained Youden's index for the considered uncertainty measures 

across different numbers of forward passes. 
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(d) 

Fig. 6. Distribution of uncertainty estimation for correctly and incorrectly classified samples in the case of (a) variation ratio with 150 forward passes, (b) 

predictive entropy with 10 forward passes, (c) mutual information with 20 forward passes, (d) total variance with 130 forward passes. The green and red bars 

represent the number of correctly and incorrectly classified samples, respectively, corresponding to each uncertainty estimation value. The dash-dot line 
indicates the optimal uncertainty threshold based on Youden’s index. The green and red lines show the percentage of correctly and incorrectly classified 

samples, respectively, with uncertainty values below or above the corresponding value on the x-axis. 

C. Active Learning 

Fig. 7-9 illustrate the evolution of the model’s 
discrimination performance in terms of the AUC (mean and 
standard deviation across the 5-fold evaluation scheme) across 
the iterations of the active learning process for the three 
different sampling strategies. The model’s performance 
showed progressive improvement as more samples were 
actively selected and annotated. Notably, each of the three 
sampling strategies achieved performance levels comparable 
to the performance of the fully supervised case (100% of 
labeled samples) more quickly than random sampling. 
Specifically, the uncertainty rank selection approach, which 
focused on selecting the most uncertain samples for 
annotation, led to non-gradual improvements in model 
performance with each iteration. The use of 16 samples 
achieved performance (AUC=83.62%) equivalent to that of 
the fully supervised case (AUC=87.82%). However, the 
model’s performance subsequently dropped significantly 
before reaching its highest value. 

 

Fig. 7. Evolution of model performance in terms of the AUC using the 

uncertainty rank selection approach compared to random sampling. 



 

 

Fig. 8. Evolution of model performance in terms of the AUC using the 

uncertainty rank selection combined with pseudo-labeling approach 

compared to random sampling. 

Pseudo-labeling of certain samples by using the model's 
confident predictions as pseudo-labels effectively expanded 
the training set and demonstrated a slower, more gradual 
improvement compared to the uncertainty rank selection 
alone. The model required 22 annotated samples to achieve an 
AUC of 81.14% but displayed a steady improvement, which 
indicated that the incorrectly pseudo-labeled samples caused 
a decrease in the obtained performance. Nevertheless, the 
model’s consistent improvement demonstrated the ability of 
the adopted active learning strategy to increase the reliability 
of the risk prediction model. 

It is noteworthy that the assignment of variable sample 
weights to annotated and pseudo-labeled samples during 
training proved to be the most effective strategy, yielding the 
best overall performance (AUC=87.28% ± 9.66%) with the 
use of 21 annotated samples, while demonstrating a steady 
improvement throughout the iterations, too. These results 
indicated the ability of variable sample weighting to balance 
the influence of confident predictions and actively annotated 
samples. 

Overall, each of the three active learning strategies 
contributed to enhanced model performance and reliability 
and demonstrated their ability to address the inverted class 
imbalance with respect to the CUBS dataset, which was 
present in the ATTIKON dataset. Particularly, the variable 
sample weighting strategy demonstrated substantial gains, 
which highlighted its efficacy in active learning scenarios. 

 

Fig. 9. Evolution of model performance in terms of the AUC using the 
uncertainty rank selection combined with variable sample weighting 

compared to random sampling. 

IV. CONCLUSION 

In this study, a robust deep learning model for classifying 
carotid ultrasound images as high-risk and low-risk for 
cardiovascular disease was developed. The proposed 
approach utilized Monte Carlo dropout for uncertainty 
estimation and implemented an active learning framework to 
enhance model performance while minimizing labeling costs. 

The obtained results underscored the importance of 
uncertainty estimation in enhancing the reliability and 
performance of deep learning models for cardiovascular risk 
prediction. Monte Carlo dropout provided a practical means 
of estimating model uncertainty, which was critical for the 
active learning process. By effectively identifying and 
prioritizing uncertain samples for annotation, significant 
improvements in model performance were observed. The 
comparison of different active learning strategies revealed that 
variable sample weighting not only improved the AUC but 
also maintained a steady performance improvement across 
iterations, thus demonstrating its potential for real-world 
clinical applications where labeling resources are limited. 

Potential limitations of the present study include the use of 
a relatively limited target dataset, which may restrict the 
generalizability of the results. Moreover, the proposed 
approach was specifically tailored to the use case of 
cardiovascular disease risk stratification based on B-mode 
ultrasound images; further validation of the methodology on 
different datasets and use cases would be required to 
investigate its applicability to other medical imaging tasks. 
The absence of a stopping criterion in the active learning 
process also poses a challenge for the practical 
implementation of the approach in real-world scenarios, as the 
actual top performance or plateau of reaching the top 
performance is not determined. 

Future research will focus on several key areas to further 
enhance the utility and applicability of the presented approach. 
Expanding the dataset to include a more diverse set of images 
from different institutions could improve the model's 
generalizability and robustness to domain shifts. Moreover, 
exploring other uncertainty estimation techniques, such as 
test-time augmentation [29], or similarity metrics [30] 
including structural similarity index, could provide alternative 
or complementary insights into model uncertainty. The 
investigation of the impact of different active learning 
strategies on various medical imaging tasks could help 
generalize the obtained findings to other domains within 
healthcare. The development and integration of a formal 
stopping criterion within the active learning framework also 
constitutes a critical area of future work, aiming at optimizing 
the number of iterations required and enhancing the model's 
applicability in real-world clinical settings. Other promising 
avenues for future work include the integration of semi-
supervised learning techniques to further leverage unlabeled 
data as well as explainability techniques to address potential 
reliability and trustworthiness considerations associated with 
the deployment of AI-driven diagnostic tools in healthcare 
environments. 
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