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Abstract

We consider decentralized optimization prob-
lems where one aims to minimize a sum of
strongly convex smooth objective functions dis-
tributed between nodes in the network. The links
in the network can change from time to time. For
the setting when the amount of changes is arbi-
trary, lower complexity bounds and correspond-
ing optimal algorithms are known, and the con-
sensus acceleration is not possible. However,
in practice the magnitude of network changes
may be limited. We derive lower communica-
tion complexity bounds for several regimes of ve-
locity of networks changes. Moreover, we show
how to obtain accelerated communication rates
for a certain class of time-varying graphs using a
specific consensus algorithm.

1. Introduction

In this paper we consider a decentralized optimization
problem

min f(r)= 3" fio) M
=1

rER™

where each function f; is convex, has a Lipschitz gradient
and is stored at a separate computational node. Nodes are
connected by a communication network (that may change
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over time). Each node is an independent computational
agent that can perform local computations based only on
the information in its local memory. At each communica-
tion step, nodes can only exchange information with their
neighbours.

Sum-type problems of type (1) have applications in prac-
tical scenarios where centralized coordination is not possi-
ble. Communication constraints may appear due to large
amounts of data or due to privacy constraints (Konecny
et al., 2016) and are determined by the structure of the net-
work. Decentralized optimization is widely used in dis-
tributed machine learning (Rabbat & Nowak, 2004; Forero
et al., 2010; Nedié, 2020; Gorbunov et al., 2022), dis-
tributed control (Ram et al., 2009; Gan et al., 2012) and
distributed sensing (Bazerque & Giannakis, 2009).

1.1. Time-Varying Networks

We study the setting when the network is time-varying.
That means that the links between the nodes may appear
and disappear from time to time. In practice, the changes
in the links may occur due to loss of wireless connection
between the agents or other technical malfunctions. Note
that while the set of edges may change, the set of vertices
stays the same.

1.2. Related work

In this paper, we assume the objective f(z) in (1) to be
L-smooth and p-strongly convex. Complexity bounds for
decentralized optimization include two quantities: objec-
tive condition number x, = L/p and network condition
number Y. In case of the time-varying network, x denotes
the worst-case condition number over time steps.

Lower complexity bounds for optimization over static
graphs were proposed in (Scaman et al, 2017).
The lower communication complexity bound is
Q(r X2 1og(1/e)). The corresponding optimal
algorithms are MSDA (Scaman et al., 2017) (using dual
oracle) and OPAPC (Kovalev et al., 2020) (using primal
oracle).

For time-varying networks, the lower communication
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complexity bound is Q(n;/ xlog(1/¢)) (Kovalev et al.,
2021a). The corresponding optimal algorithms with primal
oracle are ADOM+ (Kovalev et al., 2021a) and Acc-GT (Li
& Lin, 2021) with multi-step communication. An optimal
dual algorithm is ADOM (Kovalev et al., 2021b). Prior to
optimal algorithms, several non-accelerated schemes like
DIGing (Nedic et al., 2017) and sub-optimal methods with
additional logarithmic factor, i.e. APM-C (Li et al., 2020;
Dvinskikh & Gasnikov, 2021; Rogozin et al., 2021) and
Mudag (Ye et al., 2020) were proposed.

Optimal algorithms both for static and time-varying scenar-
ios use a multi-step consensus scheme. In the time-static
case, the communication matrix is replaced by a Cheby-
shev polynomial of it (Scaman et al., 2017). The degree of
polynomial is [x'/?] and its condition number is O(1). In
the time-varying case, after each oracle call multiplication
is performed by y matrices in a row instead of only one
matrix (Kovalev et al., 2021a).

1.3. Contributions

The case when arbitrarily many edges can change at each
time step is well-studied. However, we think that such
a setting is not realistic and in practice the magnitude of
graph changes may be limited. We investigate several types
of such restrictions and derive lower complexity bounds for
each case. This constitutes the first part of our work (see
Table 1). We show that it is sufficient to change a poly-
nomial number of vertices (i.e. O(n®) for some o > 0)
at each iteration in order to slow consensus speed down to
factor x. Moreover, if a logarithmic number of edges is
changed (i.e. O(logn)), the consensus is slowed down to
x/ log x. Finally, our results suggest that a partial consen-
sus acceleration (i.e. dependency on ) in power between
1/2 and 1) is possible if the number of changes is bounded
by a constant.

Table 1. Known lower communication complexity bounds for de-
centralized optimization and our results. Here o > 0 is a scalar
and d € N is a constant. The complexity depends on the maxi-
mum number of changes in links allowed at each iteration.

g:;?:;:: of Lower bound Reference

no

changes Q (X1/2/€£1,/2 log é) (Scaman et al., 2017)
O(n) Q (Xn;/Q log é) (Kovalev et al., 2021a)
O(n%) Q (X/{;/Z log %) This paper, Th. 3.1
O(logn) Q (IO:,X ném log %) This paper, Th. 3.3
12(d-1) | ()(Gl/(d'*'l)/{gl,/2 log 1 This paper, Th. 3.5

In the setting where a constant number of edges changes
at each iteration, our results allow to establish the known

lower bounds for static graphs and time-varying graphs
with arbitrary changes. The corresponding results are pre-
sented in the last line of Table 1. Putting d = 1 leads to the
static case and the lower bound coincides with the one in
(Scaman et al., 2017). In the opposite case, taking d — oo
leads to the scenario with arbitrary changes, and the corre-
sponding lower bound approaches the results in (Kovalev
et al., 2021a). In other words, our results suggest an inter-
polation between two edge cases: static graphs and time-
varying graphs with arbitrary changes.

In the second part of our paper, we address a multi-step
consensus technique for time-varying graphs. More pre-
cisely, we apply Nesterov acceleration technique to time-
varying consensus. The acceleration is attained under an
additional assumption: we assume that all graphs have a
common connected subgraph that we call a skeleton. On
the one hand, this assumption is more strict then requiring
the network to stay connected all the time. On the other
hand, we think that such an assumption may be realistic in
practical scenarios.

The consensus procedure for graphs with connected skele-
ton is slightly modified: the two nodes stop communicating
to each other if the connection between them has been lost
at least once. In other words, the active links in the com-
munication graph are not restored after they have failed at
least once, and therefore the network is monotonically de-
creasing”.

Summing up, this paper makes a step in the direction of op-
timization over special classes of time-varying networks.
Our lower bounds show that acceleration communication
protocol is hard to be designed even over slowly time-
varying graphs. On the other hand, we show a specific class
of networks over which accelerated consensus is reachable.

The paper is organized as follows. In Section 2 we intro-
duce notation, definitions and assumptions. In Section 3,
we present our main results on lower bounds. After that, in
Section 4 we describe the accelerated gossip protocol over
time-varying networks with connected skeleton.

2. Definitions and Assumptions

We denote Kronecker product by ®. The nullspace of
matrix A is denoted ker A and the range of A is de-
noted range A. Moreover, if A is symmetric and positive
semi-definite, we denote its largest eigenvalue Ayax(A),
its minimal nonzero eigenvalue A*. (A) and its condi-
tion number Y(A) = Apax(A)/AD. (A). For vectors
Z1,...,%, € R? we introduce a column stacked vector
x = col[ry,...,x,) = (z] ...z})" € R". We also

denote N = {1, 2, ...} to be the set of positive integers.
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2.1. Objective Functions

Let H be an arbitrary Hilbert space, let ||-|| be the norm on
H and let ||-||, denote the conjugate norm.

Definition 2.1. Function h(x) : H — R is called L-
smooth if for any =,y € H it holds

IVA(y) = Vh(@)||, < Llly — =]

Definition 2.2. Function h(z) : H — R is called p-
strongly convex if for any z,y € H it holds

h(y) = h@) + (Vh(@).y —2) + &y — o]

Throughout the paper we only work with H = [5. Al-
though the lower bounds are met for optimization in a fi-
nite dimension, they are derived for [o, as it is typically
done in optimization of strongly convex smooth functions
(Nesterov, 2004).

2.2. Decentralized Communication

We assume that distributed communication is performed
via a series of communication rounds. In each of the
rounds, the nodes interact through a network represented
by an undirected communication graph G, = (V,&),
where £ € N is the current iteration number. The nodes
can only communicate to their immediate neighbors in the
corresponding network.

Note that the set of nodes V does not change over time.
Throughout the paper we only consider the case when all
graphs Gy, are connected.

In the literature, analysis of optimization algorithms in the
decentralized setting as well as the lower bounds are usu-
ally based on the condition number of gossip matrices.

Assumption 2.3. Matrix W), € R"*" is called a gossip
matrix of undirected graph G, = (V, &) if the following
properties are satisfied:

1. W}y is symmetric positive semi-definite,
2. [Wili; = 0if i # jand (4, ) & &,

3. ker Wi, = {(z1,...,2,) ER" 12y = -+ - =z, }.
Given a gossip matrix Wy, we define W, = W ®1,;. Then
W, is also symmetric and positive semi-definite, multi-
plication by W, represents one communication round and
ker Wy, = {x = col[zy,...,z,] €ER™: 2y +. ..+, =
0}.

For a given gossip matrix W, introduce its condition num-
ber x (W) = )‘maX(W)/AI—;in(W)

A common example of a communication matrix is the
graph Laplacian L(Gy) = D(Gy) — A(Gk), where

A(Gy) denotes the adjacency matrix of G and D(Gy) =
diag(}, Ai;) is a diagonal matrix with degrees of the
nodes at diagonal. Laplacian matrix L(Gy) satisfies As-
sumption 2.3.

Further in the paper we will use only Laplacian matrices,
therefore by slight abuse of notation we denote x(G) =

X(L(@)).

2.3. Decentralized Problem and Slowly-Changing
Setup

The main results of our work are lower bounds for decen-
tralized optimization problems. We formalize the definition
of decentralized problem and its characteristics.

Definition 2.4. Let us define DP (decentralized time-
varying problem) as a pair ({Gx}32,, {fi}}o;). Firstly,
DP includes a sequence of undirected connected graphs
{Gr}72, with a common set of vertices V = {1,2,...,n}
and edge sets {Ex}72,. Let n(DP) = n, x(DP) =
supen X(Gk). Secondly, DP includes a set of objective
functions {f;}7,. We refer to f(z) = L 3" | fi(z) asa
global function.

Definition 2.5. Decentralized time-varying problem D7P is
called L-smooth if global function f is L-smooth.

Definition 2.6. Decentralized time-varying problem DP
is called convex (u-strongly convex) if global function f is
convex (p-strongly convex).

Definition 2.7. Let A(DP) denote the maximum
amount of edges that change between consequent
communication rounds. Particularly, A(DP) =

maXgeN {Zi<j Li; (&, 5k+1)}, where

1, if(i,5) € (ENENU(E\E),

0, otherwise.

L;(E,&) :{

The introduced quantity A(DP) expresses the maximum
change in edges between two consequent time steps. Later
in the paper we show that the value of A(DP) regulates the
magnitude of network changes and determines the depen-
dence of the lower bounds on condition number Y.

Example 1. Consider a static graph and denote its corre-
sponding problem DPg;41ic. All of the graphs in DPsiqt4c
are the same, therefore, we have A(DPgiqatic) = 0.

Example 2. Consider the example used in lower bounds
in (Kovalev et al., 2021a). The authors proposed a star
graph which center changes at each iteration (denote the
corresponding problem DP;,,). In such a setting, at ev-
ery iteration every edge in the graph changes. We have
A(DPstar) = 2(n —1).
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Figure 1. Example of a time-varying network with all edges
changing at each iteration (Kovalev et al., 2021a)

3. Lower Bounds

This section presents three results corresponding to differ-
ent constraints on the rate of change of the communica-
tion graph: a polynomial constraint on the change of edges
per iteration, a logarithmic constraint, and a constant con-
straint. We show that each of these regimes leads to a dif-
ferent complexity dependency on the condition number of
the gossip matrix.

3.1. First-order Decentralized Algorithms

Let us first formalize the procedure for which we derive the
lower bounds. Following the definitions of (Kovalev et al.,
2021a) and (Scaman et al., 2017), we consider time steps
k € N and introduce local memory #;(k) for each of the
agents at time step k. At each time step, the agents can ei-
ther communicate or perform local computations. For each
time step k, denote the last preceding communication time

as q(k).

1. If nodes perform a local computation at step k, local
information is updated as

Hi;(k+1) Cspan ({z,Vfi(z), VI (x): © € Hi(k)})

foralli=1,...,n.

2. If the nodes perform a communication round at time step
k, local information is updated as

Hi(k+ 1) C span U H,;(k)
FENTF UL}
foralli = 1,...,n. Here ./\/Z.q(k) is a set of neighbors of

agent 4 at time step ¢(k), i.e. at the time of last communi-
cation.

3.2. Main Results

The following theorem discusses the polynomial constraint
on the change of edges per iteration; it turns out that such
a constraint leads to the same lower bound as in the uncon-
strained mode studied in (Kovalev et al., 2021a).

Theorem 3.1. Forany L > 24y >0, a >0, ¢ >0, M >
0 there exists a constant K(a,c) > 0 and L-smooth p-
strongly convex decentralized problem DP with n(DP) =

n > M,x(DP) = x > M, A(DP) < cn®, such that for
any first-order decentralized algorithm for all p € N we
have

o =l = (125, %)

Corollary 3.2. Forany L > 24 > 0, a > 0,¢ > 0 there
exists L-smooth p-strongly convex decentralized problem
DP with sufficiently large x(DP) = x, n(DP) = n, such
that A(DP) < cn®, and for any first-order decentralized
algorithm the number of communication rounds to find an
e-accurate solution of the problem 1 is lower bounded by

9) (;Mﬂlog i) .

K(a,e)p
X +2

o — 2.1

The following theorem corresponds to the case where the
number of edges that can change per iteration is at most
logarithmic in the number of nodes.

Theorem 3.3. For any L > 10u > 0, M > QO there
exists L-smooth -strongly convex decentralized problem
DP withn(DP) =n > M, x(DP) = x > M, such that
A(DP) < 121logy(n) and for any first-order decentralized
algorithm for all p € N we have

1210@2(></2)p+2
X
oy =l 2 (1= vI0, /%) o — 2. 2.

Corollary 3.4. For any L > 10 > O there exists L
smooth and p-strongly convex decentralized problem DP
with sufficiently large x(DP) = x, n(DP) = n, such that
A(DP) < 12log, n, and for any first-order decentralized
algorithm the number of communication rounds to find an
e-accurate solution of the problem I is lower bounded by

X 1
Q —~——+/L/ulog-].
(logx /n 0g€>

As we can see, although the logarithmic constraints are
tighter than the polynomial ones, the problem cannot be
solved much faster. The benefit we get from logarithmic
constraints is only the logarithmic factor log x, which is
typically small compared to the main term Y.

The following theorem describes the case when the con-
straints on changes for sequential iteration are constant.

Theorem 3.5. Forany L > 24 > 0, M > 0,d € N
there exists a constant K (d) > 0 and L-smooth p-strongly
convex decentralized problem DP with n(DP) = n >
M, x(DP) = x > M, A(DP) < 12(d — 1), such that
for any first-order decentralized algorithm for all p € N we
have

d

K(d)px T 42
> Y I (d)px )
oy — el > (1-2v6, /2 o — ..



Slowly Time-Varying Networks

Corollary 3.6. For any L > 24y > 0, d € N there
exists L-smooth p-strongly convex decentralized problem
DP with sufficiently large x(DP) = x and n(DP) = n,
such that A(DP) < 12(d — 1), and for any first-order de-
centralized algorithm the number of communication rounds
to find an e-accurate solution of the problem 1 is lower

bounded by
1
Q (Xdil v/ L/ulog 5) .

This result shows that even with constant constraints, the
lower estimates approach the estimates without constraints.
This indicates that the criterion based on the Laplacian ma-
trix condition number is very sensitive to the degree of
graph variability.

3.3. Discussion

As a result, we obtained lower bounds on the number of
communications for decentralized optimization problems
with smooth and strongly convex functions with different
constraints on the rate of network change. In particular,
three modes differing in the rate of change of the commu-
nication graph were considered.

The first mode assumes a polynomial change in the num-
ber of edges in the graph; as it turned out, the lower bounds
in this case coincide with the lower bounds when no addi-
tional conditions are imposed on the graph change.

The second mode considers a logarithmic change in the
number of edges in the graph. In this case the lower bounds
are close to the lower bounds in the case of time-varying
networks without restrictions.

The third mode considers a constant change in the num-
ber of edges; here, for each value of the constant d, an
individual estimate is obtained. When d = 1, we restore
the lower bound for static graphs (Scaman et al., 2017) and
when d — oo, we approach a lower bound for time-varying
networks with no restrictions on the speed of changes (Ko-
valev et al., 2021a). In other words, the lower bounds for
the last mode can be seen as an interpolation between static
and time-varying networks without restrictions.

Visualizing communication complexity. One can also
consider a graphical interpretation of the first and second
mode. In the proof of Theorem 3.1, three quantities are
presented: number of nodes n, number of changed edges
per iteration A and information flow T". For large graphs
(when n is large enough) we have x ~ n (multiplicative
constants omitted). Quantity 7'/n is the coefficient under
Q-notation in the lower bound Q2(x log 1/¢). Lower bounds
are obtained for networks that have a structure of a Bethe
tree By k. A Bethe tree By has a single root, k levels,
and each non-leaf node has d children (see Figure 3). The-
orem 3.1 covers the case £k = const,d — oo and Theo-

rem 3.3 describes the case d = const, k — oco.

However, the relation between quantities n, A, T" is wider
then only asymptotic. In fact, we have n = %,

A= (k—-1)(d+1)and T = 5. We can plot the
mutual dependence between 7', A and n. It is convenient
to visualize quantity T'/n in coordinates (logn,A). We

plot the corresponding heatmap in Figure 2.

— 100

—— Theorem 3.1
—-= Theorem 3.3

1071

logn

Figure 2. Heatmap of ¢ = T'/n in coordinates (logn, A). A more
saturated color corresponds to ¢ = T'/n close to 1, i.e. to lower
bound Q(x log1/e). We see that the results of Theorem 3.1 and
Theorem 3.3 are obtained when moving along appropriate trajec-
tories in this heatmap.

The results of Theorems 3.1 and 3.3 are asymptotic. The
asymptotics is taken when moving along an appropriate di-
rection in Figure 2.

For polynomial changes (Theorem 3.1), we have £ =
const, d — oo. In this case logn ~ (k — 1)logd and
A ~ (d+1)(k — 1) (see Appendix B). Since k is fixed, A
has an exponential dependence on log n.

For logarithmic changes (Theorem 3.3), we have d = 2 =
const, k — oo. Therefore, logn ~ klog2and A ~ k—1.
We have that A has a linear dependence on log n.

Meaning of lower bounds. It is worth noting that the inter-
pretation of our lower complexity bounds is different from
previous results in (Kovalev et al., 2021a) and (Scaman
et al., 2017). The mentioned papers build an example of a
optimization problem for any x > 0, while our results sug-
gest that a counterexample exists only if x is sufficiently
large. Let us illustrate how to interpret the lower bounds in
the regime of polynomial change. Theorem 3.1 means that

A decentralized optimization method that solves any de-
centralized problem with polynomial bound on changes in
O(xP+/L/ulog(1/¢e)), p < 1 communication rounds does
not exist.
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In other words, our results are asymptotic, but they are suf-
ficient to restrict the area for future research.

4. Accelerated Gossip for Time-Varying
Graphs with Connected Skeleton

4.1. Time-Varying Graphs with Connected Skeleton

It is known that the number of communications cannot be
enhanced on the class of time-varying graphs that are al-
lowed to change arbitrarily but stay connected at each it-
eration. The corresponding lower complexity bounds have
been proposed in (Kovalev et al., 2021a). However, the
lower bounds in (Kovalev et al., 2021b) are built using a
graph where O(n) edges change at each time step. Namely,
a ”"bad” graph is a star graph where the center of a star
changes at each iteration (see Figure 1).

In practice, a situation where O(n) edges change at every
iteration may not always occur. The amplitude of network
malfunctions may be not so large. We let all of the graphs
in the sequence have a common subgraph (a skelefon) that
remains connected through time.

Assumption 4.1. Graph sequence {G, = (V, &) }72, has

a connected skeleton: there exists a connected graph Q =
(V, &) such that for all k = 0,1, ... we have £ C &.

Assumption 4.2. For each £k = 0,1,... we have
Amax(L(Gk)) < Amax. Moreover, we have /\mm <

Ain (9.

Assumption 4.1 is more strict then the assumption on the
graph staying connected at each iteration. However, under
Assumption 4.1 we propose an accelerated consensus pro-
cedure over time-varying graphs.

4.2. Accelerated Gossip with Non-Recoverable Links

A common approach to accelerated consensus over static
graphs is Chebyshev acceleration proposed in (Scaman
et al., 2017). A gossip matrix W with condition number
x(W) can be replaced by a matrix polynomial Py (W)
of degree K = [(x(W))'/?] with condition number
X(Pr(W)) = O(1). The construction of P (W) is based
on Chebyshev polynomials of first type. Then, the con-
dition number of communication matrix is reduced from
x(W) to O(1) at the cost of performing [(x(W))/2]
communication rounds instead of one.

However, Chebyshev method is only known to be applied
to consensus over static networks. In our work, we propose
an accelerated gossip scheme over time varying graphs
based on Nesterov acceleration. The acceleration is possi-
ble because of assumption on connected skeleton (Assump-
tion 4.1) and due to a specific consensus strategy.

We use the following approach to tackle with time-varying

graphs that have a connected skeleton. Let agent ¢ in the
network stop exchanging information to agent j once the
connection between ¢ and j has been lost at any commu-
nication round. In other words, if a link fails once, the
communication through it is not recovered afterwards. This
procedure is referred to as accelerated gossip with non-
recoverable links.

Algorithm 1 Accelerated Gossip with Non-Recoverable
Links
Require: Initial guess x € R™, stepsizes 17, 3 > 0. Set
y'=x=x.
1: Everynode 7 = 1,...,
Ni=N}.
2: fort=0,1,..., 7 —1do
Every node ¢ does
Update the set of nodes to which the node commu-

nicates: NV; = N; N NF

n initializes set of neighbors

s w

5yt =k —p(NileF =3 e n 2F)
6:  aftt = (14p)yf - pyf
7: end for

8: return Cr(x) = x — xT

Note that the output of Algorithm 1 is Cp(x). We claim
that Cr(x) is a linear operator that is a time-varying ana-
logue of Py (W)x.

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold. Denote
X = Amax/ )\Iﬁn and set the parameters of Algorithm 1 to

N = 1/Amax, B = (VX — 1)/(\/X + 1). Then operator
Cr(x) defined in Algorithm I has the following properties.

1. Cp(x) is linear.
2.rangeCr(x) = LT = {x e R™: 21+... 4+, = 0}.

3. For T = /xlog(4x) we have that for any x € L7 it
holds (1 —1/v/2) [x[ly < [Cr(x)]ly < (1+1/v2) [|x]5-

The meaning of Theorem 4.3 is the following: for “mono-
tone” graphs we can replace W¥ with condition number y
by Cr(-) with condition number O(1). The payment for
reduction of condition number is /X log(4x) communica-
tion rounds.

4.3. Accelerated Gossip as Accelerated Method over
Time-Varying Function

Algorithm 1 can be viewed as a gossip algorithm over
a ”monotonic” network where the edges only vanish
and do not appear Namely, introduce a sequence of
graphs {G,, = (V, ﬁj 0€i) 12, corresponding Laplacians

(W* = L(G1)}32 , and denote W* = W* @ 1,,. Then Al-
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gorithm 1 writes as

{yt+1 —xk _ anxk’

xF = (14 B)y* ! — By*. @

As can be seen from (2), on each time step a multiplication
by WF is performed, which corresponds to one commu-
nication over G. The edges in sequence {Qk}zozo only
vanish and do not appear.

Algorithm 1 can also be interpreted as minimization of
a time-varying functional with an accelerated gradient
method. Consider problem

xIeI%glm hi(x) = %XTW]CX. 3)
Algorithm 1 is accelerated Nesterov method with step-size
7 and momentum term [ applied a time-varying prob-
lem (3).

Remark 4.4. Returning to the case of static networks, it is
worth mentioning that Chebyshev polynomials and accel-
erated gradient methods for quadratic minimization have
a strong connection, see i.e. Chapter 2 of (d’ Aspremont
et al.,, 2021). In fact, Polyak’s momentum can be de-
rived through application of Chebyshev polynomials to a
quadratic minimization problem.

The analysis of accelerated method over a uniformly non-
increasing time-varying function is based on the Lyapunov
function technique.

Lemma 4.5. Let Assumptions 4.1 and 4.2 hold. Denote
T=1/(/X+1 2z =1/1rx -1 =7)/Tye v =
1/(y/X — 1) and introduce potential

2

2 9

where x* is a solution of (3). Then ¥y, — ¥ < 0.

k k >\+' k
= (1) (ely) + e

The proof of Lemma 4.5 is based on the standard analy-
sis proposed in (Bansal & Gupta, 2019) and on the obser-
vation that the objective function in (3) is uniformly non-
increasing, i.e. for any x € R and for any k = 0,1, ...
we have hj,q(x) < hg(x). Indeed, we have W% =
Do gyeé (e —ej)ei — e;)", where e; denotes the i-th
coordinate vector of R™. Therefore, it holds

W}C o Wk+1 — Z (67: o
(4,9)€E\Er 41

ej)(ei — ej)T t 0.

In other words, for any x € R™™ it holds

1 A 1 A
hit1(x) — hi(x) = §XTWk+1X - ixTka <0.
The analysis of accelerated gradient method over time-
varying uniformly non-increasing functions is presented in
Appendix E.

5. Conclusion

In this paper, we study new classes of time-varying net-
works that may be more practical than the scenarios previ-
ously studied in the literature. We propose to look into a
new direction of research — slowly time-varying graphs. In
this work, we formalize several regimes covering the veloc-
ity of graph changes and provide the corresponding lower
bounds for each case. Our results outline the limits of what
communication rates can be achieved over slowly time-
varying graphs. Moreover, we propose a slightly modified
consensus technique that leads to acceleration over time-
varying networks with connected skeleton. Our technique
may be seen as an analogue of Chebyshev acceleration that
is used for time-static graphs.

Moreover, by the time of the publication of this paper,
we had obtained the following result. There exists a se-
quence of graphs such that at each iteration only two edges
are changed and the resulting lower complexity bound is
Q(xv/k, log(1/¢)). We will describe the corresponding re-
sult in a separate work.
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Supplementary material

A. Outline of Proofs of Theorems 3.1, 3.3, 3.5

Proofs of Theorems 3.1, 3.3 and 3.5 are based on similar ideas. Our aim is to build a decentralized problem that is bad
enough, i.e. the complexity of any decentralized first-order algorithm is estimated from below by the corresponding bound.

Each counterexample is built the following way. We introduce two disjoint groups of vertices V; and V5 and change the
graph so that communication between the two groups is interfered. At each time step, information traverses one edge, and
the time of information spread from V; to Vs is made as much as possible. Also, all the nodes hold functions of specific

type.

We use the following terms in our analysis.

* "Bad” vertices: the vertices that hold the information. At initialization, the set of bad vertices equals V;. Every vertex
adjacent to a bad vertex at time step ¢ becomes bad itself on time step ¢ + 1.

* “Good” vertices: vertices that are not bad. At initialization, the set of good vertices equals V\ V.

e Information flow: first moment when one of vertices in Vs becomes bad. In other words, time of information spread
from V; to Vs.

We now present an overview of the proof sketch that will be used in Theorem 3.1, Theorem 3.3, and Theorem 3.5:

1. We begin with the introduction of a counterexample graph and an examination of its Laplacian spectral properties. By
construction, all the graphs in the sequence are isomorphic, so we only need to analyze the spectral properties of one
of them.

2. Subsequently, we construct local functions on the nodes of the graph and establish a relationship between the local
and global condition numbers.

3. We then develop an edge modification algorithm. The edges are changed in such a way that all the graphs in the
sequence are equal up to a renumerating of vertices. Moreover, we compute the information flow.

4. Finally, we summarize the results of items 1-3 and derive a lower bound on the number of communications.

B. Proof of the Theorem 3.1
B.1. Graph Condition Number

Denote as B, a Bethe tree of degree d and depth k, where the root has a degree of d, vertices at levels from 2 to £ — 1
have a degree of d + 1, and vertices at the k’th level have a degree of 1 (see Figure 3). Let n = n(Bg,j) be a number of
d*—1

vertices of By . By simple calculations we get n = “—. Suppose k > 2, d > 3, thus using Theorem 2 and Theorem 3

from (Rojo & Medina, 2006) and considering the asymptotic behavior, we obtain that 3d : Vd > dy

(d—1)*
dF—1

(d- 1)

< < 2—r
< An—1(L(Bag)) <2 1

D N N N
ANNNNNNN/ k /N

Figure 3. Example of B3 4
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Using results from (Stevanovié, 2003) we get d + 2 < A\ (L(Bayx)) < (vV/d + 1), thus we conclude that 3d; : Vd >
dik>2

< x(Bak) < 2n(Ba,k)- )

B.2. Local Functions

Denote V; the set of vertices of type 1, Vs the set of vertices of type 2 (V1 N Vy = &), and let W the set of remaining
vertices. Let d > t > 2. Let V; and Vs consist of [%] subtrees with roots adjacent to the root of By . Therefore

AAAALD

Figure 4. Example of splitting a graph into three sets. The vertices of Vi ("Bad” vertices) are indicated in red. The vertices of V; are
indicated in green.

Assign each vertex a function f, : /5 — R that depends on the vertex type:

£ el + 458 [l = 1+ S (=], vV
fol@) = 2 lz))* + 4‘,)5 > oney (Tap—1 — w2r)?, veVs. ®)
2 Jl)l?, vew

Using thatd > t, k > 2,d > 3, we estimate |V;| and |Vs|:

dd—1—1 n
Vi| = |V _— > 6
Mil=Pelz =525 ©)
Estimate the network’s global characteristic number using the local one
L—p | p 4t(L )
I =
Ry = |V1|u - < T = #)+ u*4(“g_1)t+1’
n n H
thus we have 1
R} —
> 1. 7
Fo2 Tt {0

B.3. Edge Modification and Information Flow

Let us now start describing the sequence of graphs {G;}2°;. Next, introduce the following scheme: A graph consists of
”good” and “bad” vertices. At each iteration, each ”good” vertex adjacent to at least one “bad” vertex becomes a bad
vertex. After that, we somehow change the edges in the graph, and the process continues. At initialization all vertices of
V), are “bad” and all vertices of V' \ V; are "good”. Our goal is to make the V5 vertices remain ”good” as long as possible.
The algorithm returns a graph sequence {G;}52,.

The aim of the edge modification algorithm is to dampen the spread of “bad” vertices. At each step of the algorithm, we
determine the vertices that will become bad at the forthcoming iteration, and move this vertices to lower levels of the tree.
Let us describe the required auxiliary procedures.

Firstly, let us introduce a local numbering of the vertices. Namely, let each non-leaf node locally assign numbers 1,...,d
to its children in random order. We assume that the children of root vertex are numbered in such a way that roots of subtrees
in V; have the smallest numbers and roots of subtrees in V5 have the largest numbers.

Let us describe the auxiliary functions used in Algorithm 2.

10
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1. PotentialBadVertices(G, B) computes the set of ”good” vertices which would become “bad” ones at the next itera-
tion. These are the vertices adjacent to at least one vertex at B, i.e. the vertex boundary of B.

2. FindCandidateToSwap(G, ) finds a vertex that will be swapped with the vertex u. Let us start at the root
and move to the lowest numbered child of the vertex until we run into a ’bad” vertex or to a leaf node.
FindCandidateToSwap(G, u) returns the vertex where we stopped.

3. Swap(G, u, v) operation swaps the edges of vertices u and v, but not the vertices themselves. It returns a graph G’
such that the neighbors of u in G’ are the neighbors of v in G and the neighbors of v in G’ are the neighbors of » in G.
Note that Swap(G, u, v) operation changes no more than 2(deg(u) + deg(v)) edges (A < 2(deg(v1) + deg(vz))).

Remark B.1. Consider a graph By j, that initially consists of only ”good” vertices and is endowed with a local numeration of
the vertices. Let  denote the root of the graph. Consider the following procedure: find v = FindCandidateToSwap(G, r)
and mark v as a ”bad” vertex. Repeating this procedure for a sufficient number of times will mark all the nodes of |V; | and
only them as ”bad”.

Now we present the edge modification algorithm.

Algorithm 2 InnerLoopPoly

1: Input: G = Bd,k, Vi, Vo, i

2: Initialize set of ”bad” vertices B = V1.
3: while Vo, N B = @ do

4: U = PotentialBad Vertices(G, B)
5. forwuin U do

6: v = FindCandidateToSwap(G, u)
7: G = Swap(G,u,v)

8: B =BU{v}

9:  end for
10: G, =G
11: 1=4i+1
12: end while

Figure 5. Example of a graph change scheme in the case with poly constraints. Potentially “bad” vertices, i.e. those that will become
”bad” in one move, are indicated in yellow. A square indicates where “bad” vertices will be moved after a Swap operations. The circled
numbers denote the iterations of Algorithm 2.

Lemma B.2. Consider an Algorithm 2, applied to Bg j,. At any moment of this algorithm, the number of new bad vertices
is bounded as follows:
Ul <k-—1. (®)

Proof. Let us define a hierarchy of levels { L;}%_, in the rooted tree, where L; is the root level and Ly, is the deepest level.

11
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The ”bad” vertex invariant property can be defined as follows: if a vertex p is ”bad”, then all vertices in its subtree are also
”bad”.

Firstly, note that U N L, = @. If there were any vertices in U N Ly, this would contradict the invariant property.

Secondly, for each level L;, i < k, we have |UN L;| < 1. To show that, we assume the contrary: let there exist two vertices
v,u € U N L;. These vertices are adjacent to vertices v, v’ € B at the level L; 1. The common ancestor of v, u at level
L; (j < 1), denoted as p, is a "good” vertex with two ”good” successors, v and u, which have “bad” vertices v’ and v/ in
their subtrees. According to Algorithm 2, the entire subtree of p with the least vertex number should be filled with bad”
vertices. This contradicts our assumption that both v and w are ”good” vertices. An example of how this theorem works
can be seen in 5. In Figure 5, vertices in U are marked yellow.

Hence, at any iteration of Algorithm 2 we have |U| < k — 1. O

Let A; denote the number of edges changed at iteration 7. Using Lemma B.2, we get an upper bound on A,;. Keeping in
mind that each node has degree at most (d + 1), we obtain

Ay <4U|(d+1) <4(k—1)(d+1). )
Using that n = % and assuming d > k we get
A; <4k —1)(d+1) < 4kd < 4kn*/ =D, (10)

Let T" be the number of iterations needed for one of the vertices in V5 to become “bad” (it equals the number of iterations
of Algorithm 2). As discussed in Appendix A, quantity 7" equals the information flow. At each iteration, there are at most
k — 1 new “’bad” vertices. Therefore, we get:

W Wi
Tz{k_l vz (an

We estimate the size of the neutral vertex set VW using n = % and the definitions of V1, Vs:

1 i d*—d 2
=n — — > — —-1-2 >|1—-- .
W[ =n— |V |V2\_d_1 (d n )_( t)n

Therefore using 4 we get lower bound on the information flow:

e 121

> 51X (12)

B.4. Lower Bound on the Number of Communications

Now, we are going to define the whole sequence of graphs in {G;} for every ¢ € N. Algorithm 2 only defines the graphs for
i =19,%0+ 1,...,i9 + 7T — 1, where g is the input state number for the Inner algorithm. We run Algorithm 2 iteratively.
After each iteration, at least one vertex of V5 becomes “bad”, then we rearrange the sets V; and Vs, reverse the order of
children for each vertex in G, and run the algorithm again.

The auxiliary procedures used in the algorithm are the following.

1. InnerLoopPoly(G, V1, Vo, %) is Algorithm 2.
2. Rearrange(G, V1, Vs) changes the pointers for variables V; and Vs.

3. ReverseOrders(G) reverses the order of children for each vertex.

12



Slowly Time-Varying Networks

Algorithm 3 OuterLoopPoly

1: Input: G, V1, Vs

2:1=1

3: while True do

4:  InnerLoopPoly(G, V1, Vo, 1)
5:  Rearrange(G, V1, Vs)
6
7

ReverseOrders(G)
: end while

We have found a sequence of graphs in which information flows slowly. Specifically, to get from V; to Vs, it takes T'
iterations. To get back (from Vs to V) it takes 7" iterations as well and so on.

Let 29 = 0 be the initial point for the first-order decentralized algorithm. Recall the definition of #,(p) from Section 3.1.
For every m > 1, we define l,,, = min{p > 1|3v : 3z € H,(p) : , # 0} as the first moment when we can get a non-zero
element at the m-th place at any node.

Considering the types of functions on vertices of the graph 5, we can conclude that functions on vertices from V; can
“transfer” (by calculating the gradient) information (non-zero element) from the even positions (2,4, 6, ...) to the next
ones, and functions on vertices from Vs can transfer information from the odd positions (1, 3,5, ...) to the next ones.
Therefore, for the network to get a new non-zero element at the next position, a complete iteration of Algorithm 2 is
required, that is 7' communication iterations. In other words, the “information” cannot spread faster than "bad” vertices.

To reach the m-th non-zero element, we need to make at least m local steps and (m — 1)T communication steps to transfer
information from gradients between V; and V, sets. Therefore, we can estimate [,,:

L > (m — )T +m. (13)

. .. . . [ VEg—1 P
The solution of the global optimization problem is (x), = ( NG +1) .
g

For any m, p such that [,,, > p we have

VEg — 1\ 9

ﬁ w0 — @
g

VEi—l S | _ 4y3
VRe Tl =1 T VR

2
o =1 2 @+ 2+ =

Using (13) we can take m = [TLHW + 1. From (7) we conclude that

Therefore using (7), (12) and assign ¢t = 3 we get

1
||'T — X H2 > @ |(p/(G(k_l) X+1)-‘ +1

lzo — 2. |”.

Rearranging it, we get
6(k—1)p

Sk=Dlp 49
lap — 2. 2 <max{o,1 —M,/j.j}) o — . (14)

C. Proof of the Theorem 3.3

C.1. Graph condition number
The proof is very similar to the proof of the Theorem 3.1, but here we fix d = 2 and k — oc.

Let Bj, be a binary tree By ;. Using the lower and upper bounds on algebraic connectivity (A,_1) of such trees from
(Molitierno et al., 1999) and following the same logic as in (4), we can conclude that there exists a kg such that for all
k > kg the following holds:

2n(By) < x(Brk) < 6n(By). (15)

13
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C.2. Local Functions

Denote the set of vertices of type 1 as V), the set of vertices of type 2 as V, (V1 N Vo = &), and the set of remaining
vertices as WW. Suppose that every non-leaf vertex has a “left” and “right” child. Let V; be a subtree with a “left-left” root
vertex (it can be reached from the graph’s root by going to the left child and then back to the left child). V; is defined in
the same way. Therefore |V;| = [V = 2F72 — 1.

Denote the vertex functions f, : {2 — R similarly as in 5.

Estimate V; and Vs through n, using that £ > 4 we get
n
<Vl = s < 1 (16)

n
P =

Estimate global characteristic number of the network through local one

L—p | p 5(L—p)
+4 Bow e g5 )y
V1] n n n Y H
ki = i S I = m =5(kg — 1) +1,
n n
thus we have
1
Kg > g(/ﬂ—l)—l—l. 17

C.3. Edge Modification Algorithm and Information Flow

Next, we will use exactly the same technique to construct a sequence of communication graphs as in the proof of the
Theorem 3.1 (Algorithm 2 and Algorithm 3). As a result, we get something resembling 11 inequality on “information
flow” defined in previous proof

TZH- (18)

Using n = 2% — 1 and the definitions of V1, Vs, we can estimate the size of the neutral vertex set W.

Wi =n—Paf =Pl =25 —1-202"2 - 1) > .
By using (15) and inequality £k — 1 < log, n we derive a lower bound on 7T":
X X
T> > . 19
~12(k—1) T 12logy(x/2) (19
Also we similarly take an upper bound on edge change A; in graph sequence
A; <4U[(241)=12(k —1) < 12logy n. (20)

14
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Figure 6. Example of a graph change scheme in the case with log constraints. Potentially “bad” vertices, i.e. those that will become
”bad” in one move, are indicated in yellow.

C.4. Lower Bound on the Number of Communications
Do the same reasoning with [,,, (defined in the last section).

In order to reach the m-th non-zero element, at least m local steps and (m — 1)7T communication steps are required to
transfer information from gradients between }; and V, sets. Based on this, we can estimate /,,,:

Il > (m—1DT+m. 21
Kg— p . . . .
The solution of the global optimization problem is (z.), = (g Ji) . (In this case, z* is the optimal solution of the

optimization problem, and ), is its coordinates in [5.)

For any m, p such that [,,, > p

2 Ry — 1\ 2
o=l 2 (2 + s+ = () =l
g

S

Using (21) we can take m = [TLH} 4 1. From (17) we conclude that \/‘/g: >1-2 H‘r’

3

Therefore using (17), (19) we get

) 7 v/ (mrasmm 1) [+1 )
lzp — z||” > (max{O,l—Z\/g L}) |20 — 24])” -

Rearranging it, we get

1210g2(x/2)p+2

oy 217 2 (maxfo.1 - 205, [ 1) o — . @)
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D. Proof of the Theorem 3.5
D.1. Graph Condition Number

Firstly, let us define the structure of the graph that will serve as a counter-example in the case under consideration and
study its properties.

We will define the graph Hg ;. through induction. Let H; ;. be a path on the k vertices and call any of its leaf vertices the
root. Then, assuming that we have defined H, j, for all k, we define H41 1 as follows: take a path on & vertices (and call
the leaf vertex of the path the root of the graph) and attach a copy of H, j, to the root of each vertex in the path.

Figure 7. Example of graph H» 4 with vertex numbering.

It can be seen that each tree H ;, consists of paths on k vertices with fixed leafs, which we will refer to as roots. Consider
one such path, with a ”’start” vertex and an “end” vertex, where the “end” vertex is a root, and the “start” vertex is the other
leaf vertex. We will also assign a number from 1 to k to each vertex in the path, corresponding to the distance from the
“start” vertex, increased by 1. That is, the start” and root vertices have the numbers 1 and k respectively.

We will divide the tree Hg y into levels. As the graph was constructed through induction, the first level will consist of
the vertices added in the first iteration of the induction, the second level will consist of the vertices added in the second
iteration of induction, and so on, up to level d.

To move forward, let us assign coordinates to the vertices of H ;, as follows. At the top level, let the vertices be numbered
from 1 to k in increasing order. Consider the vertex v at level g, then its coordinates will be a tuple z = (z1,...,zg),
where x; is the number corresponding to the vertex closest to v at level ¢. That is, the entire graph consists of paths on k
vertices, for which leaf vertices start” and “end” are fixed, where the “end” is the root of the tree. The numbering for H» 4
is presented in Figure 7. Then, the vertex (x1, ..., z,) will be adjacent to the vertices (z1,...,24 — 1), (z1,...,24 + 1),
(@1,...,24,k)if g # k and to the vertex (z1,...,x4-1) if 24 = k.

Let us introduce a linear order relation on these vertices: if the coordinate of the first vertex is the prefix of the second one,
then the second one is smaller, otherwise the one with the smallest element, which has the first difference from left to right,
is smaller.

Consider a graph H, j.. The number of nodes in this graph is n = k + k% + ... + k%. Let D be the diameter of this graph,
it can be easily seen that D = (2d — 1)k — 1. According to Theorem 4.1.1 in (Das, 2004), we can obtain an estimation of

)\n—l (L(Hdk))

Mt (LHL) > 5 > e 23)
Using results from (Stevanovi¢, 2003) we get
4 < A (L(Hgp)) <3+2vV2 <6. (24)
As aresult, using 23 and 24 we can obtain an upper bound for x (Hy 1)
X(Hy ) < 6d(2d — 1)k < 6d(2d — 1)n" T . (25)
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D.2. Local Functions

Let V; and Vs be disjoint sets of vertices of type 1 and type 2, respectively, and let V¥ be the set of remaining vertices. V;
consists of vertices that have a coordinate of at most ([g] ), and V, consists of vertices that have a coordinate of at least
(k — [£]). Therefore, [Vi| = |Vo| = [£] (k+ k> + ...+ k471,

Denote the vertex functions f, : /o — R depending on vertex type:

2 — oo
70 1zl + f\vf\ [(xl -1)2+ D pe (T2p — $2k+1)2} , VEW
folz) =< 4 l]|* + ﬁ S (Tak—1 — m2p)?, veEVs. (26)

L 2
QLnH‘r” 3 veEW

Let £ > 3 and estimate V; and V, through n

k n
|V1|:\V2|26(k+k2+...+kd‘1):ﬁ. (27)

Estimate the network’s global characteristic number using the local one

Lop 4 p 6(L—p)
+ RS 12(L — pu) +
V1] n n n M H
thus we have
wkp— 1
kg > 112 +1. (28)

D.3. Edge Modification Algorithm and Information Flow

Let us now describe the sequence of graphs {G;}52,. Similar to the proof of Theorem 3.1, we will construct an algorithm
that generates a sequence of graphs that works under the same conditions as Algorithm 2 and Algorithm 3. In this scheme,
we will refer to vertices in V; as ”“bad” and the remaining vertices as ”good”. After each iteration, a "good” vertex that is
adjacent to a "bad” vertex becomes “bad”, and the graph is modified in some way. The goal is to keep the vertices in Vs
”good” for as long as possible.

We will maintain the invariant that after each graph change, a ”good” vertex cannot be less than a ”bad” vertex.

Auxiliary procedures in the edge changing algorithm work as follows.

1. FindCandidateToSwap finds a vertex that would be swapped with the input vertex. It finds the smallest ”good”
vertex in the graph. It is simple to check that the invariant is preserved.

2. AtLastLevel checks if there is a vertex at the last level, makes it ”’bad”, and removes it from U.

3. Swap works the same as in Algorithm 2.

4. PotentialBadVertices works the same as in Algorithm 2.
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Algorithm 4 InnerLoopConstant
Input: G, V1, Vs, @
B=V
while NoBadVertices(Vz, B) do
U = PotentialBadVertices(5)
AtLastLevel(U, B)
for v in U do
v = FindCandidateToSwap(u, BB)
G = Swap(G,u,v)
B=BU{v}
end for
Gi=6
i=1i+1
end while

Then we apply Algorithm 3, but using Algorithm 4 as the inner algorithm, thus obtaining a sequence of graphs.

Lemma D.1. Consider an Algorithm 4, applied to H, j,. At any moment of this algorithm, the number of new bad vertices
is bounded as follows:

U| < d. (29)

Proof. We consider the set U and show that it can contain at most one element from each level. Suppose the converse,

let the vertices v, u € U and belong to level g. Let vertex v have coordinates (z1, ..., z4) and vertex u have coordinates
(y1,...,yg) and v < u. The vertex u is adjacent to the “bad” vertex b, and b < w, so it can be (y1,...,y, — 1)
or (y1,...,Yg,d). The second case is impossible because the “bad” vertex (y1,...,¥y,d) is greater than v, and this
contradicts the invariant. Consider the first case when b has coordinates (y1,...,y, —1). v < u, so v < b, but they cannot
be equal, since at the given iteration, v is only potentially ”bad” (i.e. ”good”) so far, so we are led to the same contradiction
when the "bad” vertex is greater than the ”good” one. O

Note that either U contains no vertices on the last level, in which case |U| < d — 1 (as can be proved similarly to
Lemma D.1), or there is a vertex on the last level, but it need not be swapped. Therefore, we can obtain an upper bound on
the number of edges changed at iteration 7, that we denote A;.

A; <12(d—1). (30)

Let T be the number of iterations, needed for one of the vertices in V5 to become bad (i.e. the “information flow”). It
equals to the number of iterations of Algorithm 4. According to Lemma D.1 at each While iteration there are not more
than d new bad vertices, therefore we get

T>|— 1>—. 31
> { 7 T1= (€29)
Using [V1| = [V2| < % to estimate the size of the neutral vertex set JV, we get

n
W =n—W1]-Ve| = 3.

Therefore using (25) we get lower bound on the information flow:

d
Xd+1

3d(6d(2d — 1)) 7T

r>_—-2= (32)

n
3d
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D.4. Lower Bound on the Number of Communications
To proceed further, we apply a similar approach to determine /,,, (defined in the the proof of the Theorem 3.1).

To reach the m-th non-zero element, we need to make at least m local steps and (m — 1)T communication steps to transfer
information from gradients between V; and V, sets. Therefore, we can estimate [,,:

Ilm > (m—1DT +m. (33)

1\ P
The solution of the global optimization pro blem is (z.), = (% +i) .

For any m, p such that [,,, > p

2 g — 1\™ 2
o = 2l 2 o+ @ o= (Y2 )l =l
g

Using 33 we can take m = [ 745 ] + 1. From 28 we conclude that \/‘/gﬁ >1- %

Let C(d) = 3d(6d(2d — 1))ﬁil Therefore using 28, 32 we get

o/ (c@ i) [+
||xp—x*||2 > <max{0,1—4\/§1/’2}> 2o — 2. |? -

Rearranging it, we get

0 C(d)px ﬁjﬂ—ﬂ
lap - . > <max{o,1 - m\/L}) o — 2. 2. (34)

E. Accelerated Method over Time-Varying Function

In this section, we show the convergence of accelerated Nesterov method over a uniformly non-increasing time-varying
function. The proof is based on potential analysis in (Bansal & Gupta, 2019), and a similar proof technique was used in
(Rogozin et al., 2019).

Consider a sequence of functions { fi(z)}72, such that the following assumptions hold.

Assumption E.1. Forevery k = 0,1,2,..., function fy(x) is L-smooth and p-strongly convex, that is, for any z,y € RY
we have

By — 2 < 7o) — F(a) — (V@) y — o) < & ly .

Assumption E.2. Sequence {f; ()}, is uniformly non-increasing: for each z € R? and for any k = 0,1,2,... we
have

fer1(x) < fr(x).

Assumption E.3. Functions of sequence { fi(x)}72, have a common minimizer z*.

Let an accelerated method be run over { fi,(z)}72,.

1
Yk+1 = Tk — zvfk(-fk)7 (35a)
B VE—1 VE—1
Tht1 = (1 + NGRS Yr+1 Tt Yk (35b)

where k = L/p. Then we have the following convergence result.
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Theorem E4. Let accelerated Nesterov method be run over sequence { fi,} 72, and let Assumptions E.1 and E.2 hold. We
have

(1—1/vm)",
(1= 1R,

In(yn) = f* < %

* (12 (L+M)R2
lyn —y*ll5 < R

Before passing to proof of Theorem E.4, we need the following auxiliary lemma.

Lemma E.5. Consider updates in (35) and define
1—7

1 1
T = m, and 241 = ;xk-&-l - Yk+1-

! _ 1
T 2k T ﬁxk - mek(iEk); where v = =y

Then, z4+1 =

Proof. By the update rule for z;, given in (35) and the definition of 7, we have that

i1 i1
gy = (14 Y22 A
ket ( NCESY AL L

=(2—=27)yp+1 — (1 — 27)ys.

Moreover, by the definition of zy 1, it follows that

1 1—71
Zk4+1 = —Tk4+1 —
+ ~ Tkt

Yk+1

1—71

1
== (2=27)ypg1 — (1 = 27)y) — Yk+1

B % (T =7)yk+1 — (1 —27)yx) -

Now we use the update rule for yx1 given in (35) and also note that z, = (1 — 7))y, + T2k:

1 1 1—-2
st = —|(1= ) (@x = 7 Viulaw) = T (ox = 721)

1-27 T 1—7

N 1—7'Zk+1—7$k7 Lt v filwe)

-1 1 1
2 v 2+ =T —
VE VE T /e

@ 1 Y Y

= 2k + Ty — V fr(xk),
[ e fi(zr)

where @ is obtained by using the definitions of 7 and «, and @ is obtained by using the definition of . O

Lemma E.6. Ler {fi(z)}32, be a sequence of functions for which Assumptions E.1 and E.2 hold. Introduce potential
function

U= (L * - (fuly) = £+ Sllae = 2"113) (36)

Then, it holds that
AV = Vg — U <0. 37
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Proof. The proof is analogous to the proof in Section 5.4 in (Bansal & Gupta, 2019). We use the definitions of 7, z; given
in Lemma E.5. We have

AT (149) 7 = (14 9) (Firr) = £+ Sllzmnn — 2 [3)
= (F) = £ + Sz — 2" |3)
= (1+79) (for1 (Wrt1) — fror1 (@) = (folyr) — fu(@®))
n

IR EE LR P H (38)

Note that from Assumption E.2 and from basic gradient step inequality we have
1 2
Te(yr) < fr(yrsr) < fr(on) — ﬁ”vfk(ka)Hz,

We bound th first term in (38) as follows:

(1 + %) (frt1(Yrt1) — fk+1( ) = (frlyr) — fu(z®))

(1+7)(fk($k)—*Hka( W3 =) = (frelye) — F7)

< (Viulan),on = yi) + 7 (Velan) o — o) - guxk ~a"[13)

1
IV )l (39)

Let us employ Lemma E.5 to get rid of references to y;. We have

2k = (% — 1)@k — yr) + Te = VE(TK — Yi) + Tk

Yz — a*) = Viey(zr — ye) + (2K — ).

Note that /K7y = 1 + . We have

(@ =)+ 2w =) = 7= - [l =) + 9% —a)].

After that, we rewrite the expression on the right hand side of (39) as follows:

1

1+~ ——(Vfi(zr),v(2k — 2*) + 7 (zp — 2*))—

1+7
e

—7 IV fu(@n)l3: (40)

We bound the second term in (38) similarly to (Bansal & Gupta, 2019). By Lemma E.5:
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N’ * *
21+l =15 = 1z — 211

1Y 1 * Y * 2 2 H * (|2
=—(1+ H zp— )+ T —2°) — ———Vfi(x H —=llzk — =
5 (1+7) 1+7( k ) 1+’y( k ) 1+ ) Fel@r)||, = Slla 12
po 1 . a2 L
= S [l =2 + 0%l = 271 + 5 felan)I

2
+29(zp — ¥,z — ) — %(zk — ",V fr(xp))

2
= S ton = Vi) = Gl — a1, o

Adding (40) yields a bound on AW;. Moreover, note that terms involving (V fi(x), xx — «*) and (V fi(zk), 21 — )
cancel out.

AT (147)7"
2

1+~ vy
. (_ to, 2u(1+v)> IV a2

* 1 *
() - (s 1) -l

2 \1+~v 1+~

Y * *
+ 2k — X , T — T

1+7< r F )

< — o (lak — 2713 + 126 — 271 - 203 — 2%, 2, — 27))
2(1+7)

1284 * *\ (12

=———|(xp — 2") — (2 — x <0,

sty N =) = (e = a3 <
and the proof is complete. ]

Now we can prove Theorem E.4 using the potentials technique.

Proof of Theorem E.4. Following the definition of W, and using the Lemma E.6, we obtain

T+ NY(fnlyn) = f) S Uy <Py < (L +2N)R27
2 2
fn(yn) — f < (QL(1++“7))]‘}V _ +2u)R a1/,

F. Missing Proofs from Section 4

F.1. Proof of Theorem 4.3
Statement 1 follows directly from Algorithm 1. To see why statement 2 holds it is sufficient to note that range W* = £T.

For statement 3, denote X = %11T ® I let us apply Theorem E.4 to see that
2 12
" =], < 2x[Jx” — =], (1 - 1/v3)"-
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Taking T' = /x log(4x) we obtain HxT — i”i <1/2 ||x0 — i“i If x € LT, then X = 0 and following the definition

Cr(x) = x — xT, we write
IC ()l = [ = x|, < [lx =%l + [[x" = %]
< (L+1/v2)|lx =, ,
1C2(x) =[x — %7, = lx — ], — %" — %],

> (1-1/v2) |x - x|,

F.2. Proof of Lemma 4.5

The proof directly follows from Lemma E.6 applied to problem (3).
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