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Abstract
Finding the optimal pass sequence of compila-
tion can lead to a significant reduction in program
size. Prior works on compilation pass ordering
have two major drawbacks. They either require
an excessive budget (in terms of the number of
compilation passes) at compile time or fail to gen-
eralize to unseen programs. In this work, instead
of predicting passes sequentially, we directly learn
a policy on the pass sequence space, which out-
performs the default -Oz flag by an average of
4.5% over a large collection (4683) of unseen
code repositories from diverse domains across 14
datasets. To achieve this, we first identify a small
set (termed coreset) of pass sequences that gen-
erally optimize the size of most programs. Then,
a policy is learned to pick the optimal sequences
by predicting the normalized values of the pass
sequences in the coreset. Our results demonstrate
that existing human-designed compiler passes can
be improved with a simple yet effective technique
that leverages pass sequence space which contains
dense rewards, while approaches operating on the
individual pass space may suffer from issues of
sparse reward, and do not generalize well to held-
out programs from different domains. Website:
https://rlcompopt.github.io.

1. Introduction
For more efficient execution with fewer resources (e.g.,
memory, CPU, and storage), applying the right ordering for
compiler optimization passes to a given program, i.e., pass
ordering, is an important yet challenging problem. Manual
efforts require expert knowledge and are time-consuming,
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Figure 1. A depiction of our main contributions. (Top) Coreset
Optimization: A process for discovering a small set of pass se-
quences (coreset) that generalizes. (Bottom) Normalized Value
Prediction: A process where our model learns to predict the nor-
malized value of pass sequences from the coreset.

error-prone, and often yield sub-par results, due to the huge
size of the search space. For example, the LLVM compiler
has 124 different compilation passes. If the pass sequences
have a length of 45, then the possible number of sequences
(12445 ∼ 1094) is already more than the atoms in the uni-
verse (∼ 1080 (Planck Collaboration et al., 2016)).

To address this problem, optimization-based approaches
(e.g., MLGO (Trofin et al., 2021), MLGoPerf (Ashouri
et al., 2022)) run adaptive search algorithms to optimize
a set of programs for many hours. While this achieves
strong performance gain, the procedure can be slow and
does not distill knowledge from past experience and requires
searching from scratch for unseen programs.

Recently, machine learning (ML)-guided pass ordering has
emerged as an interesting field to replace this laborious pro-
cess (Wang & O’Boyle, 2018). Along this line, many works
show promising results using language modelling (Cum-
mins et al., 2017), evolutionary algorithms (Kulkarni &
Cavazos, 2012), and reinforcement learning (Haj-Ali et al.,
2020a) to achieve better specific ordering for given pro-
grams. To handle unseen programs, Autophase (Haj-Ali
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et al., 2020b) learns a pass selection policy via reinforce-
ment learning, and applies it to unseen programs without
further search procedure, and GO (Zhou et al., 2020) fine-
tunes the models for unseen programs. While these ap-
proaches show promosing results for unseen programs from
the same/similar domain, they can be quite slow in the
training stage, and have not shown good generalization to
programs from very different domains, due to the fact that
for different programs, the benefits are manifested only after
a cleverly designed long pass ordering path (i.e., sparse
reward in reinforcement learning).

In such cases, applying sequential search techniques, even
guided with SoTA machine learning techniques, can be
ineffective and may lead to overfitting of local noisy reward
signals. To deal with these issues, we propose a novel pass
ordering optimization pipeline to reduce the code size of a
program. The key idea is the following: instead of searching
good passes sequentially, we directly find a universal core
set of pass sequences (termed coreset) from the training set,
and make decision on top of this different action space to
avoid the challenge of sparse reward.

Construction of the coreset. Specifically, the coreset is con-
structed by approximately optimizing a submodular objec-
tive with a greedy approach that has approximation guaran-
tees. The resulting coreset contains 50 pass sequences of
varying lengths, each of which has an average number of
12.5 passes. Surprisingly, despite the huge search space of
compiler passes, the small coreset gives strong performance
across programs from diverse domains, ranging from the
Linux Kernel to BLAS. Specifically, the 50 pass sequences
in the coreset lead to an average code size reduction of 5.8%
compared to the default -Oz setting, across 10 diverse code-
bases (e.g. Cbench (Fursin, 2014), MiBench (Guthaus et al.,
2001), NPB (Bailey et al., 1995), CHStone (Hara et al.,
2008), and Anghabench (Da Silva et al., 2021)) of over one
million programs in total.

Picking good pass sequences from the coreset. While it is
still time-consuming to find an optimal pass sequence from
the coreset with exhaustive search, we find that the (near)
optimal pass sequence can be directly predicted with high
accuracy via a graph neural network (GNN) architecture
adapted to encode the augmented ProGraML (Cummins
et al., 2021) graphs of programs. Therefore, we can run
a few pass sequences selected by the model on an unseen
program to obtain a good code size reduction. This enables
us to find a good pass configuration that leads to 4.5% im-
provement on average, with just 45 compilation passes, a
reasonable trade-off between the cost of trying compilation
passes and the resulting performance gain.

We compare our approach with extensive baselines, includ-
ing reinforcement learning (RL) -based methods such as
PPO, Q-learning, and behavior cloning. We find that RL-

based approaches operating on the original compiler pass
space often suffer from unstable training (due to inaccurate
value estimation) and sparse reward. As a result, they fail
to generalize to unseen programs at inference. In compar-
ison, our approach transforms the vast action space into a
smaller one with much more densely distributed rewards.
In this transformed space, approaches as simple as behav-
ior cloning can be effective and generalizable to unseen
programs.

2. Related Work
Recently, many methods have been proposed to use deep
learning to perform compiler optimization.

CodeBERT (Feng et al., 2020) pre-trained language mod-
els on program languages with different pre-training de-
signs, and finetuned the pre-trained models in downstream
tasks including code document generation and code search.
GraphCodeBERT (Guo et al., 2020) further extended Code-
BERT to leverage data flows in pre-training with more
pre-training objectives such as edge prediction and node
alignment. Their main contribution is learning program
representations, while our main contribution is compiler
optimization with a manipulated search space. Their repre-
sentation is at the source code level, while our representation
is at the Intermediate Representation (IR) level.

Cereda et al. (2020) used similarity matching, an idea from
recommender systems, to select optimization passes for
programs. However, they only considered 7 optimization
passes and only considered whether to apply them without
considering their orders (thus making it a binary decision for
each pass). Moreover, their approach needs to compare an
input program with all the programs in the dataset for simi-
larity matching, which may not scale up to a large dataset
consisting of thousands of programs. Note that the inference
overhead of our approach is insensitive to the size of the
training set.

Mammadli et al. (2020) aimed for program runtime reduc-
tion via pass ordering, while we aim for program size reduc-
tion. Moreover, they used a tiny dataset - 109 single-source
benchmarks from an LLVM test suite, while we use a much
larger dataset set. The small size of their datasets and the
lack of test sets may make their method prone to overfit-
ting. The core learning algorithm in Mammadli et al. (2020)
is deep Q learning (Mnih et al., 2015). We compared our
method against another reinforcement learning (RL) algo-
rithm PPO (Schulman et al., 2017).

Mammadli et al. (2021) proposed LoopLearner, which,
given the source code of a loop, suggests a semantically
invariant transformation that will likely allow the compiler
to produce more efficient code. Their method applies only
to loops in programs for program speedup.
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Autophase (Haj-Ali et al., 2020b) proposed to extract statis-
tics of IR instructions and use PPO to find a sequence of
compilation passes that minimizes program execution time.
They used 100 randomly generated programs as the train-
ing set and nine real benchmark programs as the test set,
while we used a much large real-world training set and
test set. MLGO (Trofin et al., 2021) integrated machine
learning techniques, including policy gradient and evolution
strategies, in an industrial compiler LLVM, which used the
inlining pass to reduce program size, while we use a much
larger set of compiler passes for program size reduction.
MLGoPerf (Ashouri et al., 2022) used the inlining pass to
optimize program speed with reinforcement learning.

Zhou et al. (2020) proposed the GO framework, targeting
the optimization of the compilers for computational graphs
in deep learning. Brauckmann et al. (2020) used abstract
syntax trees and control flow graphs for learning compiler
optimization goals. They show that using such graphs allows
them to outperform state-of-the-art in the task of heteroge-
neous OpenCL mapping.

Cummins et al. (2021) proposed a graph-based represen-
tation for IR, called ProGraML, encoding the data flows,
control flows, and function calls in programs. Cummins et al.
(2022) provided a Python library CompilerGym for com-
piler optimization, supporting the construction of various
program features and convenient interactions with compilers.
Our work is based on both ProGraML and CompilerGym.

3. Method
3.1. Action space

The CompilerGym framework (Cummins et al., 2022) pro-
vides a convenient interface for the compiler pass ordering
problem. The default environment allows choosing one of
124 discrete actions at each step corresponding to running
a specific compiler pass. In this work we will use the term
pass interchangeably with action. We fix the maximum num-
ber of passes to compile a program to 45 to match the setup
in Haj-Ali et al. (2020b); Cummins et al. (2022). Given that
our trajectories have a length of 45 steps, this means we have
12445 ∼ 1.6× 1094 possible pass sequences to explore. To
find an optimal pass sequence for a program, we can apply
some existing reinforcement learning methods including Q
learning like DQN (Mnih et al., 2015) and policy gradient
like PPO (Schulman et al., 2017).

Pass Sequences. However for this problem it turns out
that certain pass sequences are good at optimizing many
different programs (where “good” is defined as better than
the compiler default -Oz). We found that constraining the
action space to a learned set of pass sequences enables state
of the art performance and also significantly reduces the
challenge of exploration. This allows us to cast the problem

Figure 2. An exemplar reward matrix for 67 programs and 50 pass
sequences. The values plotted are the pre-normalized values. Most
of the pass sequences do not lead to strong rewards, except for a
few. On the other hand, certain pass sequences (i.e., columns) can
lead to high rewards for multiple programs simultaneously and
thus are good candidates for the coreset.

as one of supervised learning over this set of pass sequences.
We use the following algorithm to find a good set of pass
sequences.

Suppose we have N programs and M promising pass se-
quences. Let R = [rij ] ∈ RN×M be the reward matrix, in
which rij > 0 is the ratio of the codesize of i-th program if
applied with j-th pass sequence, compared to -O0 (i.e., the
code size without compiler optimization). rij > 1 means
that the j-th pass sequence does better than -O0 in codesize
reduction for i-th program, and rij < 1 means it performs
worse. The reward matrix is normalized per row, by the
maximum reward for each program, so that the optimal pass
sequence has reward of 1 for each program.

Then we aim to pick a subset S of K pass sequences, called
the coreset, from all M pass sequences, so that the overall
saving J(S) is maximized:

max
|S|≤K

J(S) =

N∑
i=1

max
j∈S

rij (1)

Finding M candidate pass sequences. Note that there can
be an exponential number of pass sequences, and we cannot
construct the entire reward matrix, instead we seed a list
of candidate pass sequences. For this, we run a random
policy on a subset of M (17500) selected training programs.
In applying the random policy, we uniformly sample a se-
quence of 45 passes in each episode, run E (200) episodes
on a program, and pick the best pass sequence as the can-
didate sequence of the program, resulting in M candidate
sequences in total. If part of the best pass sequence leads
to the same state (the state is a 40-digit SHA1 checksum of
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the program’s IR, which can be obtained from the IrSha1
observation in CompilerGym), they are truncated so that the
sequence becomes shorter. If multiple pass sequences yield
the same reward we only retain the first after ordering them
length-lexicographically. On average these last two steps
reduce the length of the candidate pass sequences by 80%.
We then construct the reward rij by applying the j-th pass
sequence to program i, and comparing it with -O0.

Finding the best coreset S with a greedy algorithm. As
a function defined in subsets, J(S) can be proven to be a
nonnegative and monotone submodular function (See Ap-
pendix). While maximizing a submodular function is NP-
hard (Ward & Živnỳ, 2016), the following greedy algorithm
is proven to be an efficient approximate algorithm that leads
to fairly good solutions (Nemhauser et al., 1978). Start-
ing from S0 = ∅, at each iteration t, it picks a new pass
sequence jt as follows:

jt := arg max
j /∈St−1

J(St−1 ∪ {j}) (2)

And St ← St−1 ∪ {jt} until we pick K pass sequences.
We set K = 50 in this paper as a larger coreset showed
diminishing improvement (a coreset with 50 sequences al-
ready accounted for 95% of the improvement of using all
M candidate sequences).

Given the discovered coreset S, we define a generalized
action as a pass sequence in S. Applying a generalized
action to a program means that we roll out the corresponding
pass sequence on the program and return the best program
state (i.e., having the highest cumulative reward), which can
be done by caching the program state at each step.

Obtaining this coreset took 641 CPU core-hours. Less than
1% of time was spent on minimizing the size of the coreset.
Most of the time was spent on random exploration on the
training set to generate a promising set of pass sequences.
Generating the coreset is an upfront cost that is paid only
once. What was surprising to us is how well this generalized
to unseen programs (as can be seen in the performance of
our method on the held-out test set in Table 3).

3.2. Normalized Value Prediction

After discovering the “good” pass sequences (i.e., the core-
set), we can turn the problem of the sequential decision-
making on compiler passes into a problem of supervised
learning. We aim to train a model to predict the best pass
sequence conditioned on the program, where the training
target is the index of the pass sequence that results in the
greatest code size reduction. However, one important ob-
servation we have is that there are typically multiple pass
sequences in the coreset that lead to the greatest code size
reduction (see Figure 3 for the examples). Therefore, in-
stead of predicting a single class label, we leverage the fact

that we have access to the values for all pass sequences
and predict the softmax normalized values of the pass se-
quences detailed below. This approach is similar to behavior
cloning (Pomerleau, 1988) but with soft targets over the
coreset.

For a program with an index i, we use rij to denote the
reward (i.e., the code size reduction) when it is applied with
j-th sequence, which forms a value vector ri = [rij ]

K
j=1.

Then, the normalized values of the pass sequences are de-
fined by

vi = Softmax(ri/T ) (3)

where T is a temperature parameter.

For an initial observation oi of the program, our model
outputs a probability distribution, ai = f(oi), over the pass
sequences. The target of the training is to make ai close to
the normalized values of the pass sequences. To this end, we
use the Kullback–Leibler (KL) divergence to supervise the
model, which can be reduced to the following cross entropy
loss up to a constant term.

L(vi,ai) = −
K∑
j=1

vij log aij (4)

3.3. Program Representations

Since we use the CompilerGym (Cummins et al., 2022) envi-
ronments for program optimization, we exploit the program
representations from CompilerGym, where program source
code is converted to LLVM IR (Lattner & Adve, 2004)
and several representations are constructed from the IR, in-
cluding the ProGraML graph (Cummins et al., 2021), the
Autophase feature (Haj-Ali et al., 2020b), and the Inst2vec
feature (Ben-Nun et al., 2018).

Autophase We use the Autophase features (Haj-Ali et al.,
2020b) to build some baseline models, which will be de-
tailed in Section 4.2. The Autophase feature is a 56-
dimension integer feature vector summarizing the LLVM
IR representation, and it contains integer counts of various
program properties such as maximum loop depth. we use
an MLP to encode it and output a program representation.

ProGraML In addition to the Autophase features, we also
leverage ProGraML (Cummins et al., 2021) graphs for train-
ing GNN models. ProGraML is a graph-based represen-
tation that encodes semantic information of the program
which includes control flow, data flow, and function call
flow. This representation has the advantage that it is not a
fixed size - it does not oversimplify large programs - and yet
it is still a more compact format than the original IR format.
Each node in a ProGraML graph has 4 features described
in Table 1. The “text” feature is a textual representation
and the main feature that captures the semantics of a node.
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For example, it tells us what an “instruction” node does
(e.g., it can be alloca, store, add, etc). Each edge in a
ProGraML graph has 2 features described in Table 1.

Extending ProGraML with type graphs There is an is-
sue with the ProGraML graph. Specifically, a node of type
variable/constant node can end up with a long textual rep-
resentation (for the “text” feature) if it is a composite data
structure. For example, a struct (as in C/C++) containing
dozens of data members needs to include all the members
in its “text” feature. In other words, the current ProGraML
representation does not automatically break down compos-
ite data types into their basic components. Since there is an
unbounded number of possible structs, this prevents 100%
vocabulary coverage on any IR with structs (or other com-
posite types). To address this issue, we propose to expand
the node representing a composite data type into a type
graph. Specifically, a pointer node is expanded into this type
graph:[variable] <- [pointer] <- [pointed-type],
where [] denotes a node and <- denotes an edge con-
nection. A struct node is expanded into a type graph
where all its members are represented by individual nodes
(which may be further expanded into their components) and
connected to a struct node. An array is expanded into
this type graph: [variable] <- [array] <- [element-
type]. The newly added nodes are categorized as type
nodes and the edges connecting the type nodes are type
edges. The type nodes and type edges constitute the type
sub-graphs in the ProGraML graphs. In this manner, we
break down the composite data structures into the type
graphs that consist of only primitive data types such as
float and i32.

3.4. Network Architecture

Since the Autophase feature can be encoded by a simple
MLP, we discuss only the network architectures for encod-
ing the ProGraML graphs in this section.

We use a graph neural network (GNN) as the backbone
to encode the ProGraML graphs and output a graph-level
representation. The GNN encodes the graph via multiple
layers of message passing and outputs a graph-level repre-
sentation by a global average pooling over the node features.
The goal of graph encoding is to use the structure and re-
lational dependencies of the graph to learn an embedding
that allows us to learn a better policy. To this end, we ex-
perimented with several different GNN architectures such
as Graph Convolutional Network (GCN) (Kipf & Welling,
2017), Gated Graph Convolutions Network (GGC) (Li et al.,
2015), Graph Attention Network (GAT) (Brody et al., 2022),
Graph Isomorphism Network (GIN) (Xu et al., 2019). To
better capture the rich semantics of node/edge features in
the ProGraML graphs, we propose Graph Edge Attention
Network (GEAN), a variant of the graph attention net-

Feature Description

N
od

e type One of {instruction, variable, constant, type}
text Semantics of the node
function Function index
block IR basic block index

E
dg

e flow Edge type. One of {call, control, data, type}
position Integer edge position in flow branching

Table 1. Features in the ProGraML graph representation which we
augment with type information (changes highlighted). We ablate
the augmentations in Section 4.5.

work (Veličković et al., 2017). These GNNs leverage both
the node and edge features, so we start by presenting how
to embed the node and edge features.

Node embedding For the “text” features of the nodes, we
build a vocabulary that maps from text to integer. The
vocabulary covers all the text fields of the nodes in the
graphs in the training set. The final vocabulary consists of
117 unique textual representations, and we add an additional
item “unknown” to the vocabulary which denotes any text
features that may be encountered at inference time and we
have not seen before. The i-th textual representation is
embedded using a learnable vector xi ∈ Rd, where d is
the embedding dimension. The “type” feature is not used
because it can be inferred from the “text” feature.

Edge embedding The edge embedding is the sum of three
types of embedding as the following.

• Type embedding We have 4 types of edge flows, so
we use 4 learnable vectors to represent them.

• Position embedding The “position” feature of an edge
is a non-negative integer which does not have an upper
bound. We truncate any edge positions larger than 32
to 32 and use a set of 32 learnable vectors to represent
the edge positions.

• Block embedding We use the block indices of the
two nodes connected by the edge to construct a new
edge feature. The motivation is that whether the edge
goes beyond an IR basic block can influence program
optimization. Suppose the block indices of the source
node and the target node of an edge are respectively bi
and bj . We get the relative position of the two nodes
with respect to IR basic blocks in the following way:
pblock = sign(bi− bj). If the edge connects two nodes
in the same IR basic block, then pblock is 0. And
pblock = ±1 indicates the edge goes from a block
to the next/previous block. There are 3 possible values
for pblock, so it is embedded using 3 learnable vectors.

The final embedding of an edge is the sum of its type, posi-
tion, and block embedding vectors.
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Graph mixup We note that the ProGraML graphs of two
programs can be composed into a single graph without af-
fecting the semantics of the two programs. And their value
vectors can be added up to correctly represent the value vec-
tor of the composite graph. In this manner, we can enrich
the input space to the GNNs and mitigate model overfitting
for the normalized value prediction method.

Graph Edge Attention Network We introduce the GEAN
in this paragraph and defer its mathematical details to the
Appendix. There are two main differences between the GAT
and GEAN. 1) GEAN adopts a dynamic edge representa-
tion. Specifically, GAT uses the node-edge-node feature to
calculate the attention for neighborhood aggregation, while
GEAN uses the node-edge-node feature to calculate not
only the attention but also a new edge representation. Then,
the updated edge representation is sent to the next layer for
computation. Note that GAT uses the same edge embedding
in each layer. We conduct an ablation study showing that
the edge representation in GEAN improves the generaliza-
tion of the model. 2) GAT treats the graph as an undirected
graph while GEAN encodes the node-edge-node feature to
output an updated node-edge-node feature, where the two
updated node features represent the feature to be aggregated
in the source node and the target node, respectively. This
ensures that the directional information is preserved in the
neighborhood aggregation.

3.5. Dataset Preparation

Overfitting issues could happen if training is performed
on a small subset of programs, or the set of programs is
not diverse enough. To mitigate this we find it helpful to
create an aggregate dataset that uses many different public
datasets as curated by CompilerGym, selecting the program
benchmarks with a maximum of 10k IR instruction counts.
CompilerGym gives us access to 14 different datasets con-
structed using two different methods, where a benchmark
program in the datasets is a single translation unit (i.e. object
file).

• Curated These are small collections of hand-picked
programs. They are curated to be distinct from one
another without overlap and are not useful for training.
Typically programs are larger as they may comprise
multiple source files combined into a single program.
These are commonly used for evaluating compiler op-
timization improvements.

• Uncurated These are comprised of individual com-
piler IRs from building open source repositories such
as Linux and Tensorflow. We also include synthetically
generated programs, targeted for compiler testing (not
optimization).

Type Dataset Train Val Test

Uncurated

anghabench-v1 707,000 1,000 2,000
blas-v0 133 28 29
github-v0 7,000 1,000 1,000
linux-v0 4,906 1,000 1,000
opencv-v0 149 32 32
poj104-v1 7,000 1,000 1,000
tensorflow-v0 415 89 90
clgen-v0 697 149 150
csmith-v0 222 48 48
llvm-stress-v0 697 149 150

Curated

cbench-v1 0 0 11
chstone-v0 0 0 12
mibench-v1 0 0 40
npb-v0 0 0 121

Total - 728,219 4,495 4,683

Table 2. CompilerGym dataset types and training splits. The hand-
curated datasets are used solely to evaluate generalization to real-
world program domains at test time. The units of the numbers
are “benchmarks” as in the CompilerGym, where a benchmark
represents a particular program that is being compiled.

For our aggregate dataset we decided to holdout the entirety
of the four curated datasets for use as an out-of-domain test
set. This is important because they represent the types of
programs we expect to see in the wild. We also split the
uncurated datasets into train, validaton, and test programs.

We limited the size of the programs by setting the maximum
IR instruction counts of a program to 10k for two reasons.
First, we need to consider the GPU memory constraints.
Second, it may not be optimal to embed a very large program
like the Linux kernel to obtain a single embedding, for
which our model will output a few pass sequences. This is
because we want to perform fine-grained optimization over
the program units because each part of a large program may
react differently to optimization pass sequences.

3.6. Evaluation

For all our metrics and rewards we leverage the IR instruc-
tion count as value we are trying to minimize. We also
report metrics on each CompilerGym dataset as well as
the mean over datasets to get a single number to compare
overall results.

• The mean percent improved over -Oz
(MeanOverOz) (Haj-Ali et al., 2020b) defined
as following:

ĪOz = MeanOverOz :=
1

|P|
∑
p

IOz
p − Iπθ

p

IOz
p

, (5)

where p is a specific program from the set of programs
P in the dataset. IOz

p is the number of IR instructions
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in the program after running the default compiler pass
-Oz. Iπθ

p is the number of IR instructions in the pro-
gram after applying the policy under consideration.
We can think of this as a simple average of the percent
improvement over -Oz.

• We also compare the geometric mean
(GMeanOverOz) (Cummins et al., 2022) of fi-
nal sizes across all programs relative to -Oz to give a
weighted comparison that is insensitive to outliers.

ĪOz
G = GMeanOverOz :=

(∏
p

IOz
p

Iπθ
p

) 1
|P|

(6)

4. Experiments
4.1. Experimental Setup

The experiments are based on the CompilerGym (Cummins
et al., 2022) environment. Given the source code of a pro-
gram, an optimization policy proposes a sequence of 45
compiler passes. Although the compiler can accept multi-
ple passes in a single invocation, we apply the 45 passes
with 45 invocations of the compiler in our setting so that
we can cache the intermediate IR between passes. At each
invocation, the program size (measured by the IR instruc-
tion counts) is recorded. The smallest program size during
this process is used to calculate the performance metrics.
For our method and the baseline methods, we search over
a set of hyper-parameters, including the temperature T in
Eq. 3, number of layers, the embedding dimension of the
node/edge features, and the output dimension in the hid-
den layers in the MLPs. We select the best configuration
for each method based on the validation metric (validation
MeanOverOz in 45 steps). Then, we run the training and
testing with the best configuration of a method for 3 times
with different random seeds.

4.2. Baseline Methods

-Oz This is the Clang compiler’s default optimization for
program size reduction, and the passes sequence of -Oz is
always the same for all programs. The number of passes
applied by -Oz is 97, which are all exposed through Com-
pilerGym as actions. -Oz also runs additional analyses that
are not included in CompilerGym. Our approach is limited
to 45 passes, using fewer passes then -Oz.

Oracle We consider a brute-force search over the coreset
in order to find the best pass sequence for a given program.
This gives us an upper-bound of the downstream policy
network. In our case the coreset has 50 sequences and a
sequence has an average number of 12.5 passes, resulting in
a total of 625 passes in the coreset. The brute-force search
is to roll out each sequence in the coreset and use the result
from the best one.

Top-45 We also consider how well we would do if the oracle
is only allowed to use the first few pass sequences in the
coreset but limited to 45 passes. By the construction of the
coreset, the first few sequences are the ones that are most
popular. Any passes after the first 45 passes are truncated.

RL-PPO We reproduce the Autophase (Haj-Ali et al.,
2020b) pipeline by using the state-of-the-art RL algorithm
PPO (Schulman et al., 2017) to learn a policy model. We
have two program representations for training the RL mod-
els, including the Autophase feature and the ProGraML
graphs (note that Haj-Ali et al. (2020b) only used the
Autophase feature). The Autophase/ProGraML feature
is sent to a GNN/MLP for feature encoding, which out-
puts a program-level embedding. Following Haj-Ali et al.
(2020b), we add an additional action history feature to the
RL pipeline, which is a histogram of previously applied
passes. The vector of the histogram of action history is
divided by 45 (i.e., the number of the total passes in our
budget) for normalization. A 2-layer MLP is used to encode
the action history to obtain a feature vector, which is con-
catenated with the program embedding extracted from the
ProGraML graph or the Autophase feature. The concate-
nated feature is sent to a 2-layer MLP to output the action
probability for the policy network. The value network (i.e.,
the critic) in our PPO pipeline mimics the policy network
(i.e., the actor) in feature encoding and outputs a scalar to es-
timate the state values. The state values are the expectation
of the discounted cumulative rewards where the reward in
each step is the improvement over -O0: (I(t)p − Iπθ

p )/I
(t)
p ,

where I
(t)
p denotes the current IR instruction count of the

program p at time step t. This reward is reasonable since
it makes the value approximation Markovian. At inference,
an action is sampled from the output of the learned policy
network at each time step until the total number of steps
reaches 45.

Q-value-rank We consider each pass sequence in the core-
set as a generalized action and train a Q network to predict
the value of each generalized action. Recall that the value
vector rp is the highest cumulative reward observed during
the rollout of each pass sequence in the coreset on program
p. The Q-value-rank model is trained to approximate the
value vector using a mean squared loss.

BC We consider learning a standard behavior cloning model
to predict the best pass sequences from the coreset, where
the best pass sequence is defined as the following. As in the
previous paragraph, the value vector is denoted by rp. If
there is only one i such that rpi = maxj∈n r

p
j , then the clas-

sification label is i. If there are multiple such i’s (multiple
pass sequences) that achieve the largest reward maxj∈n r

p
j ,

then we order the corresponding pass sequences by length-
lexicographic ordering. The classification label is selected
to be the first one after the ordering. This ensures that our
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Figure 3. GEAN-Q-value-rank: ground truth of rewards and model predictions over the 50 generalized actions for three benchmarks.

definition for the best pass sequence (among the coreset) for
a program is unique and consistent. We use a standard cross
entropy loss to train the single-class classification model.

NVP This is the normalized value prediction method de-
scribed in Section 3.2.

The last three methods (i.e., Q-value-rank, BC, and NVP)
share the same inference protocol. Note that they all output
a vector a of length 50 whose entries correspond to the
pass sequences in the coreset. At inference, we roll out
the pass sequences with the highest values in a one by one
until our budget of 45 passes is reached. Since the pass
sequences have an average length of 12.5, typically 3 or
4 pass sequences are applied (anything beyond 45 passes
will be truncated). For BC and NVP, we also tried sampling
pass sequences using the model output probabilities, but
that resulted in worse performance. So, we simply selected
sequences with the maximum values/probabilities.

4.3. Main Results

In Table 3 we present the main results of our experiments
comparing our proposed method -NVP to various base-
lines. The test programs were completely held-out during
both data-driven learning phases (pass sequence search and
model training).

The results show that our model achieves strong perfor-
mance over the prior method (Autophase-RL-PPO) pro-
posed in (Haj-Ali et al., 2020b). Additionally, we can see
that both the GEAN model and the normalized value pre-
diction over the discovered coreset are needed to achieve
the best performance within 45 passes. See Figure 6 in the
Appendix for a visualization of the improvement in program
size over the 45 passes on programs from the holdout set.

The Oracle shows strong performance but requires a large
number of interactions with the compiler. But, this shows
that the pass sequence search generalizes to new unseen
programs. This is somewhat unsurprising given that the
compiler’s built-in hand-tuned pass list (-Oz) works reason-
ably well for most programs.

Method #passes ĪOz(%) ĪOz
G

Compiler (-Oz) 97 0 1.000

Autophase-PPO 45 -16.3±9.8 0.960±0.036

GCN-PPO 45 -10.3±1.0 0.998±0.003

GGC-PPO 45 -12.3±0.1 0.988±0.001

GIN-PPO 45 -15.1±5.9 0.972±0.029

GAT-PPO 45 -65.7±40.1 0.806±0.132

GEAN-PPO 45 -12.0±0.6 0.997±0.002

Autophase-Q 45 -3.9±0.2 1.006±0.002

GEAN-Q 45 0.7±1.3 1.016±0.012

Autophase-BC 45 2.9±0.1 1.045±0.000

GEAN-BC 45 2.8±0.6 1.045±0.007

Autophase-NVP 45 4.0±0.4 1.056±0.005

GCN-NVP 45 4.3±0.1 1.058±0.001

GGC-NVP 45 4.4±0.2 1.059±0.002

GIN-NVP 45 4.3±0.3 1.058±0.003

GAT-NVP 45 4.5±0.2 1.060±0.001

GEAN-NVP 45 4.5±0.1 1.059±0.000

Top-45 45 -7.5 0.992
Oracle 625 5.8 1.075

Table 3. Evaluation results on held-out test set averaged over all
datasets. All methods except Compiler and Oracle baselines use
45 compiler optimization passes. -PPO denotes RL-PPO, and -Q
denotes Q-value-rank. For each method, we run the training and
testing 3 times with the best configuration selected by validation.

The performance of Top-45 by itself is weak showing that
in order to achieve good results in a reasonable number
of passes (45) we need to leverage a general policy and
search to select the most likely candidate pass sequences to
evaluate.

4.4. Why Did the RL-PPO Baseline Fail?

We provide an empirical analysis of why the RL-PPO ap-
proaches obtain much lower performance compared to our
NVP approaches. We hypothesize two possible reasons for

8
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the failures of RL-PPO. 1) Inaccurate state-value estima-
tion results in a high variance in training. In the PPO algo-
rithm, we have a policy network (the actor) to output a prob-
ability distribution over the actions. And we have a value
network (the critic) for estimating the state values, where the
approximation is based on regressing the cumulative reward
of trajectories sampled from the current policy (Schulman
et al., 2017). The update of the policy network is based on
the state value outputted by the value network. Inaccurate
state value estimation results in a high variance in training
the policy network. Due to the stochastic nature of the value
estimation that stems from the Monte Carlo sampling in
cumulative reward regression, it is difficult to analyze how
accurately the value network approximates the ground truth
state values (which are unknown even for the programs in
the training set). We alleviate this issue by analyzing the
Q-value-rank approach (as introduced in Section 4.2),
which can be seen as a simplified version of the value ap-
proximation in PPO. The Q-value-rank approach is
simpler because the values to estimate are deterministic (i.e.,
the value vector rp is fixed for a program p). Moreover,
since we consider the 50 pass sequences in our coreset as 50
generalized actions, the Q-value-rank approach can be
seen as the value approximation in a PPO pipeline where a
trajectory consists of only a single step over the 50 general-
ized actions. In this sense, the Q-value-rank approach
is a simplified version of the regular value estimation in PPO.
Figure 3 shows that the value estimation is inaccurate for
programs in the held-out test set even for Q-value-rank
approach. Therefore, it is even more challenging to esti-
mate the state values in PPO. The inaccuracy leads to a high
variance in training the policy network. 2) The reward is
very sparse. As shown in Figure 2, the rewards are very
sparse. Therefore, the good states (i.e., the program states
with a higher chance to be optimized in code size reduction)
are rarely seen by the value/policy network during rollouts.
Then, the value network does not have a good value estima-
tion for those good states, and the policy network does not
converge to output a good policy for them. We conjecture
these two issues are the main reason for why the RL-PPO
methods obtain the worst performance as shown in Table 3.

4.5. Ablation Studies

Ablation for GEAN-NVP We perform 3 ablation exper-
iments for GEAN-NVP, where we remove graph mixup,
mask the edge embedding, and remove the type graph,
respectively. The results in Table 4 show that the test
MeanOverOz metric drops after removing any of the three
components. Specifically, the performance drops signifi-
cantly after removing the type graph, which validates its
importance.

The effect of the temperature The temperature parameter
T in Eq. 3 controls how sharp the target distribution is. The

Figure 4. The effect of temperature on GEAN-NVP. Each point is
obtained in a single run.

Method Test MeanOverOz

GEAN-NVP 4.7% (0.0%)

- graph mixup 4.4% (-0.3%)
- edge embedding 4.4% (-0.3%)
- type graph -5.3% (-10.0 %)

Table 4. Ablation on GEAN-NVP components. Each number is
obtained in a single run.

distribution tends to be sharper as the temperature decreases.
To analyze the influence of the temperature on the general-
ization of the model, We vary the temperature T in training
the GEAN-NVP model and report the results in Figure 4.

5. Conclusions
In this paper, we develop a pipeline for program size re-
duction under limited compilation passes. We find that it is
a great challenge to approximate the state values (i.e., the
maximum code size reduction) for a diverse set of programs,
so existing state-of-the-art methods such as proximal policy
optimization (PPO) fail to obtain good performances. To
tackle this problem, we propose a search algorithm that dis-
covers a good set of pass sequences (i.e., the coreset), which
generalizes well to unseen programs. Moreover, we propose
to train a GNN to approximate the normalized state values
of programs over the coreset, for which we propose a variant
of the graph attention network, termed GEAN. Our pipeline
of coreset discovery and normalized value prediction via
GEAN perform significantly better than the PPO baselines.
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A. Proofs
Lemma A.1. The objective J(S) defined in Eqn. 1

max
|S|≤K

J(S) =

N∑
i=1

max
j∈S

rij (7)

(with the additional definition J(∅) = 0), is a nonnegative and monotone submodular function.

Proof. Since rij > 0, it is clear that J(S) ≥ 0 is nonnegative.

To incorporate the special case J(∅) = 0, note that J(S) can be written as

max
|S|≤K

J(S) =

N∑
i=1

max

(
max
j∈S

rij , 0

)
. (8)

Let r̂ij = rij and r̂i,0 = 0, then in order to prove J(S) is monotone and submodular, by additivity, we only need to prove
Ji(S) := maxj∈S∪{0} r̂ij is monotone and submodular.

For any A ⊆ B, it is clear that
Ji(A) = max

j∈A∪{0}
r̂ij ≤ max

j∈B∪{0}
r̂ij = Ji(B) (9)

So Ji(S) is monotone.

To prove submodularity, for any A ⊆ B, we comare the quatity of Ji(A ∪ {j}) − Ji(A) and Ji(B ∪ {j}) − Ji(B) for
j /∈ B.

Case 1: r̂ij is a maximum over the subset B. In this case, then r̂ij is also a maximum over the subset A. Then
Ji(A ∪ {j}) = Ji(B ∪ {j}) = r̂ij , since Ji(A) ≤ Ji(B), we have:

Ji(A ∪ {j})− Ji(A) ≥ Ji(B ∪ {j})− Ji(B) (10)

Case 2: r̂ij is a maximum over A but not in B. Then Ji(A ∪ {j}) − Ji(A) ≥ 0, but Ji(B ∪ {j}) − Ji(B) = 0. So
Eqn. 10 still holds.

Case 3: r̂ij is neither a maximum in A or in B. Then both Ji(A ∪ {j})− Ji(A) = 0 and Ji(B ∪ {j})− Ji(B) = 0. So
Eqn. 10 still holds.

By definition of submodularity (Eqn. 10), we know Ji(S) is submodular and so does J(S).

B. GEAN Encoding
Our Graph Edge Attention Network (GEAN) has the following key features.

Attention with edge features We modify the attention mechanism in GAT to output an edge embedding and two node
features for neighborhood aggregation. For clarity, we show a table containing the notations used in the GNN in Table 5. The
feature update process can be mathematically defined by the following equations, where Mi, i = 1, . . . , 5 is an encoding
fully connected layer.

X
′(t+1)
ij = M1(X

(t)
i , E

(t)
i→j , X

(t)
j ), (11)

a
′(t+1)
ij = M2(X

(t)
i , E

(t)
i→j , X

(t)
j ), (12)

X
(t+1)
ji = M3(X

(t)
i , E

(t)
i→j , X

(t)
j ), (13)

a
(t+1)
ji = M4(X

(t)
i , E

(t)
i→j , X

(t)
j ), (14)

E
(t+1)
i→j = M5(X

(t)
i , E

(t)
i→j , X

(t)
j ), (15)
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Figure 5. Graph attention. Circles denote nodes and solid arrows denote edges. Squares are the calculated features, and dash arrows
represent feature aggregation. The orange/green squares denote the features to be aggregated in the target/source nodes of the edges. The
edge embedding and the attention are not shown.

Notation Meaning

E The set of edges in the graph
(i, j) Edge from node i pointing to node j

X
(t)
i Representation of node i at layer t

E
(t)
i→j Representation of the edge (i, j) at layer t

X
(t)
ij Representation for node i associated with edge (i, j)

X
′(t)
ij Representation for node i associated with edge (j, i)

a
(t)
ij Raw attention associated with representation X

(t)
ij

a
′(t)
ij Raw attention associated with representation X

′(t)
ij

α
(t)
ij Normalized attention associated with a

(t)
ij

α
′(t)
ij Normalized attention associated with a

′(t)
ij

Ti Target neighbors of node i: {j|(i, j) ∈ E}
Si Source neighbors of node i: {j|(j, i) ∈ E}

Table 5. The notations in GEAN.

In words, the node-edge-node triplet, (X(t)
i , E

(t)
i→j , X

(t)
j ), associated with edge (i, j), is encoded by fully connected layers

to output 5 features, including X
′(t+1)
ij and a

′(t+1)
ij (a representation and attention to be aggregated in node i), and X

(t+1)
ji

and a
(t+1)
ji (a representation and attention to be aggregated in node j), and the updated edge representation E

(t+1)
i→j . Note

that the features to be aggregated to a target node are marked with the ′, and those to a source node are without the ′ (see
Figure 5). After the feature encoding, we perform an attention-weighted neighborhood aggregation for each node, which
can be mathematically described by the following equations.[[

α
(t+1)
ij

]
j∈Ti

∥∥∥∥[α′(t+1)
ij

]
j∈Si

]
= Softmax

[[
a
(t+1)
ij

]
j∈Ti

∥∥∥∥[a′(t+1)
ij

]
j∈Si

]
(16)

X
(t+1)
i =

∑
j∈Ti

α
(t+1)
ij X

(t+1)
ij +

∑
j∈Si

α
′(t+1)
ij X

′(t+1)
ij (17)

where ∥ denotes concatenation.
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In comparison, GAT only outputs an attention score by encoding the node-edge-node triplet: a(t+1)
ij = (X

(t)
i , E

(t)
i→j , X

(t)
j ),

and the feature for neighborhood aggregation is only conditioned on the neighbors: X(t+1)
ij = MLP(X

(t)
j ). To summarize,

our encoding approach can ensure that the GNN model is aware of the direction of the edge and that the edge embedding is
updated in each layer, which helps improve the performance (as shown in Table 3).

C. Detailed Results
We report the detailed performance of some of the models in Table 6. The results are obtained from a single run with the
best model configuration.

Dataset Oracle Top-45 Autophase-RL-PPO Autophase-NVP GEAN-RL-PPO GEAN-NVP

anghabench-v1 0.7%/1.011 -1.0%/0.996 -15.9%/0.974 -0.2%/1.002 -0.8%/0.996 -0.0%/1.003
blas-v0 2.6%/1.028 -0.4%/0.997 -1.7%/0.984 2.1%/1.023 -1.0%/0.990 2.4%/1.026
cbench-v1 3.5%/1.041 -2.4%/0.984 -10.1%/0.925 -0.1%/1.008 -1.6%/0.998 2.2%/1.028
chstone-v0 9.3%/1.106 1.2%/1.016 1.3%/1.018 8.3%/1.095 5.4%/1.060 8.8%/1.101
clgen-v0 5.4%/1.060 3.1%/1.034 -0.5%/0.998 4.6%/1.051 0.3%/1.005 5.0%/1.056
csmith-v0 21.2%/1.320 -96.3%/0.851 -116.0%/0.954 21.1%/1.320 -124.6%/0.965 21.1%/1.320
github-v0 1.0%/1.011 0.2%/1.002 0.1%/1.001 0.9%/1.010 -0.2%/0.999 0.9%/1.010
linux-v0 0.6%/1.007 -0.4%/0.998 -0.5%/0.997 0.6%/1.006 -2.3%/0.989 0.6%/1.007
llvm-stress-v0 6.3%/1.087 -18.9%/0.885 -67.0%/0.731 0.7%/1.035 -17.5%/0.888 2.1%/1.045
mibench-v1 1.7%/1.020 0.0%/1.003 -2.8%/0.976 -5.8%/0.963 -0.3%/1.000 -0.1%/1.003
npb-v0 9.8%/1.159 5.7%/1.085 0.9%/1.035 5.1%/1.079 3.7%/1.068 5.5%/1.085
opencv-v0 5.2%/1.061 1.0%/1.013 0.5%/1.007 4.2%/1.051 0.3%/1.004 4.8%/1.057
poj104-v1 7.8%/1.105 3.9%/1.055 -17.5%/0.876 6.1%/1.080 -0.7%/1.008 6.3%/1.082
tensorflow-v0 6.1%/1.077 -0.2%/0.998 0.2%/1.004 5.9%/1.075 -0.2%/0.998 5.9%/1.075

Average 5.8%/1.075 -7.5%/0.992 -16.3%/0.960 3.8%/1.054 -10.0%/0.997 4.7%/1.062

Table 6. Detailed evaluation results on held-out test sets.
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D. Trajectory comparison

Figure 6. Program optimization example over many steps comparing the Autophase-RL-PPO (blue) approach with our GEAN-NVP
(orange) approach. The dashed line represents the compiler default -Oz performance and higher is better. The results are obtained from a
single run with the best model configuration.
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E. Compiler passes

Index Flag Index Flag Index Flag

0 -add-discriminators 42 -globalsplit 84 -lower-expect
1 -adce 43 -guard-widening 85 -lower-guard-intrinsic
2 -aggressive-instcombine 44 -hotcoldsplit 86 -lowerinvoke
3 -alignment-from-assumptions 45 -ipconstprop 87 -lower-matrix-intrinsics
4 -always-inline 46 -ipsccp 88 -lowerswitch
5 -argpromotion 47 -indvars 89 -lower-widenable-condition
6 -attributor 48 -irce 90 -memcpyopt
7 -barrier 49 -infer-address-spaces 91 -mergefunc
8 -bdce 50 -inferattrs 92 -mergeicmps
9 -break-crit-edges 51 -inject-tli-mappings 93 -mldst-motion

10 -simplifycfg 52 -instsimplify 94 -sancov
11 -callsite-splitting 53 -instcombine 95 -name-anon-globals
12 -called-value-propagation 54 -instnamer 96 -nary-reassociate
13 -canonicalize-aliases 55 -jump-threading 97 -newgvn
14 -consthoist 56 -lcssa 98 -pgo-memop-opt
15 -constmerge 57 -licm 99 -partial-inliner
16 -constprop 58 -libcalls-shrinkwrap 100 -partially-inline-libcalls
17 -coro-cleanup 59 -load-store-vectorizer 101 -post-inline-ee-instrument
18 -coro-early 60 -loop-data-prefetch 102 -functionattrs
19 -coro-elide 61 -loop-deletion 103 -mem2reg
20 -coro-split 62 -loop-distribute 104 -prune-eh
21 -correlated-propagation 63 -loop-fusion 105 -reassociate
22 -cross-dso-cfi 64 -loop-guard-widening 106 -redundant-dbg-inst-elim
23 -deadargelim 65 -loop-idiom 107 -rpo-functionattrs
24 -dce 66 -loop-instsimplify 108 -rewrite-statepoints-for-gc
25 -die 67 -loop-interchange 109 -sccp
26 -dse 68 -loop-load-elim 110 -slp-vectorizer
27 -reg2mem 69 -loop-predication 111 -sroa
28 -div-rem-pairs 70 -loop-reroll 112 -scalarizer
29 -early-cse-memssa 71 -loop-rotate 113 -separate-const-offset-from-gep
30 -early-cse 72 -loop-simplifycfg 114 -simple-loop-unswitch
31 -elim-avail-extern 73 -loop-simplify 115 -sink
32 -ee-instrument 74 -loop-sink 116 -speculative-execution
33 -flattencfg 75 -loop-reduce 117 -slsr
34 -float2int 76 -loop-unroll-and-jam 118 -strip-dead-prototypes
35 -forceattrs 77 -loop-unroll 119 -strip-debug-declare
36 -inline 78 -loop-unswitch 120 -strip-nondebug
37 -insert-gcov-profiling 79 -loop-vectorize 121 -strip
38 -gvn-hoist 80 -loop-versioning-licm 122 -tailcallelim
39 -gvn 81 -loop-versioning 123 -mergereturn
40 -globaldce 82 -loweratomic
41 -globalopt 83 -lower-constant-intrinsics

Table 7. A list of LLVM compiler pass indices and their corresponding command line flag, which can be obtained from the CompilerGym
LLVM environment.

F. Pass sequences in the coreset
We show the 50 pass sequences in the coreset below, where the index corresponds to Table 7. The order of the sequences
here is the same as the order in which they were added to the coreset.
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(48, 112, 46, 110, 97, 53, 10)
(10, 53, 122, 31, 36, 111, 10, 97)
(39, 31, 53, 36, 47, 30, 33, 9, 10)
(41, 47, 104, 46)
(99, 111, 97, 40, 31, 47, 10, 36, 53)
(29, 72, 55, 103, 36, 122, 59, 30, 65, 53, 10)
(53, 36, 103, 47, 55, 9, 29, 10)
(111, 39, 10, 69, 90, 9, 29, 69, 10, 53)
(104, 39, 41, 97, 53, 10, 26, 78, 55)
(27, 36, 103, 24, 53, 97, 53, 38, 69, 97, 57, 10, 29)
(36, 38, 24, 64, 39, 53, 55, 9, 10, 118, 30)
(47, 53, 111, 57, 120, 10, 38, 21, 39)
(39, 38, 103, 117, 116, 97, 122, 10, 41, 59)
(72, 71, 31, 36, 97, 103, 78, 47, 97, 53, 41, 120, 10, 52, 97)
(31, 63, 29, 39, 93, 41, 74, 103, 120, 10, 55, 114, 55, 68, 57, 53, 95, 78, 97, 10)
(97, 65, 10, 111, 25, 74, 97, 53, 102, 120, 73, 55, 10, 53, 26)
(29, 55, 39, 61, 27, 41, 36, 25, 103, 10)
(27, 39, 64, 55, 53, 38, 122, 31, 111, 64, 10, 39, 21, 105, 36)
(53, 97, 97, 21, 65, 105, 54, 120, 10, 122, 30, 28, 39, 53)
(50, 21, 120, 97, 39, 67, 10, 29, 47, 53, 79, 36, 97, 10)
(65, 9, 55, 27, 105, 57, 103, 38, 120, 8, 29, 53, 116, 55, 39, 10, 63, 97)
(57, 9, 26, 102, 39, 8, 111, 55, 10, 104, 1)
(111, 57, 55, 120, 54, 36, 53, 122, 105, 95, 76, 47, 39, 97, 10)
(29, 103, 102, 30, 36, 61, 29, 41, 71, 10, 61, 41, 52)
(102, 10, 111, 30, 36, 121, 54, 55, 46, 50, 65, 75, 57, 9, 10, 104, 97, 53)
(56, 38, 27, 29, 50, 80, 83, 97, 55, 111, 96, 10)
(10, 64, 31, 10, 52, 111, 116, 36, 40, 48, 54, 30, 53, 114, 29, 120, 10)
(91, 115, 46, 2)
(47, 53, 36, 117, 9, 55, 74, 111, 116, 120, 9, 77, 29, 97, 10)
(27, 104, 55, 57, 26, 103, 10, 29, 31, 36, 120, 102, 53)
(102, 103, 31, 117, 59, 8, 36, 39, 75, 53, 76, 97, 70, 41, 122, 55)
(102, 53, 97, 10, 57, 71, 41, 111, 39, 71, 45, 118, 23, 53)
(30, 48, 29, 120, 103, 96, 47, 29, 78, 21, 122, 41, 36, 10)
(21, 121, 97, 38, 31, 52, 70, 53, 71, 97, 56, 111, 40, 39, 65, 10, 53)
(103, 57, 39, 53, 79, 47, 54, 97, 50, 116, 56, 53, 36, 10)
(71, 29, 111, 102, 53, 120, 38, 47, 21, 10, 120, 39, 23, 71, 40, 52)
(38, 10, 71, 39, 54, 102, 57, 103, 53, 46, 54, 116, 29, 10, 114, 41, 66)
(59, 30, 120, 79, 38, 53, 115, 10)
(99, 41, 31, 122, 36, 120, 29, 21, 111, 117, 48, 30, 10, 53)
(105, 9, 27, 55, 46, 53, 103, 76, 46, 71, 39, 41, 39, 10, 109, 30)
(59, 9, 10, 121, 114, 110, 120, 97, 10, 1, 21, 47, 53, 10, 96, 97)
(39, 99, 66, 111, 23, 25, 45, 10, 53, 75, 102, 74, 40, 105, 52, 71, 30)
(38, 47, 50, 24, 57, 30, 41, 72, 53, 56, 122, 97, 70, 15, 10, 26, 29, 53)
(53, 111, 120, 64, 36, 15, 122, 96, 121, 39, 10)
(46, 23, 120, 91)
(103, 66, 117, 47, 54, 30, 120, 36, 65, 53, 29, 96, 61, 10)
(53, 115, 86, 122, 67, 54, 30, 61, 46, 36, 10, 53)
(45, 48, 23, 91, 41, 54, 2)
(53, 91, 67, 86, 52, 61, 41, 29, 54, 10)
(123, 54, 75, 59, 10, 53, 97, 86, 80, 115, 41, 50, 10)

17


