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Abstract
Machine learning (ML) is a powerful tool to model the com-

plexity of communication networks. As networks evolve, we
cannot rely on a train-once-and-deploy strategy. Retraining
models regularly—known as continual learning—is neces-
sary. Networks often generate massive amounts of data, too
much to train on regularly. Yet, to date, there is no established
methodology to answer the following key questions:
With which samples to retrain? When should we retrain?

We address these questions with Memento, a sample selec-
tion system for networking ML models. Memento maintains a
training set with the “most useful” samples to maximize sam-
ple space coverage. This approach benefits rare patterns—the
notoriously long “tail” in networking—without hurting the
average. Moreover, it allows assessing rationally when it may
be helpful to retrain, i.e., when the space coverage changes.

We deployed Memento on Puffer, the live-TV streaming
project, and achieve a 14 % reduction of stall time, 3.5× the
improvement of random sample selection, without signifi-
cantly impacting video quality. While this paper focuses on
Puffer as a case study, Memento’s design does not depend on
a specific model architecture; it is likely to yield benefits in
other ML-based networking applications.

1 Introduction

In video streaming, Adaptive Bit Rate (ABR) algorithms
aim to avoid video stalls while maximizing image quality.
This entails modeling the network dynamics, a complex task
for which researchers have started to use machine learning
(ML) [37, 60, 61]. As the field progresses, achieving good
average performance is feasible: Current ML-based ABR
algorithms achieve high average image quality while largely
avoiding stalls [33, 61]. Stalls are the rare distribution tail.

Deploying ML-based ABR faces two important challenges:
maintaining performance over time–known as continual
learning—and providing good tail performance. Continual
learning [10, 26, 42, 50] is fundamental as networks change
(e.g., new protocols get deployed) and new traffic patterns
arise (e.g., streaming video over satellite networks). The first
key question is not if, but when should we retrain the models?

The Puffer project [1] perfectly illustrates these two chal-
lenges. To date, it is one of the best longitudinal studies of
ML in networking, monitoring ABR performance for real
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Figure 1: On Puffer [1], retraining daily with a random mem-
ory does not consistently outperform a model never retrained.
While daily differences are noisy, image quality and stream-
time spent stalled differ by less than 0.2 % and 4.2 % overall.
Mean and 90% CI over a one-month sliding window. Data published by [1].

users streaming live TV with randomly-assigned algorithms.
Puffer’s authors proposed their own ML-based ABR and re-
trained it daily using random samples from the past two weeks.
To the author’s surprise [61], retraining every day brought es-
sentially no benefits. Over almost 900 days, a daily-retrained
model improved image quality by 0.17 % over a static—never
retrained—one (Fig. 1). On the tail, daily retraining re-
duced the fraction of stream time spent stalled by 4.17 %.
In short, daily retraining mostly wasted resources. But why?

Significantly improving tail performance is challenging due
to the heavy-tailed nature of network data: by definition, there
are few tail samples, and they are tricky to identify as such.
Yet, they matter. For ABR, underestimating path delay may
lead to stalls, which are known to impact user experience far
more than image quality [15, 31]. To improve a model’s tail
performance, we must address this training dataset imbalance.
Fig. 1 suggests that retraining can improve tail performance—
since one model is performing better—but selecting a random
set of relatively recent samples is not reliable. Some days the
selection got lucky, and retraining improved the tail; some
days, it got much worse. Thus, the second key question is,
with which samples should we retrain?

In summary, to improve tail performance,i.e., reduce video
stalls, we should retrain with “right samples,” and only
once we gathered sufficiently many to warrant benefits.
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Figure 2: We present Memento, a sample selection system
based on coverage maximization, i.e., selecting training sam-
ples that maximize the sample space’s coverage. It improves
tail performance while rationalizing when to retrain: one
should only retrain when there is enough change in coverage.

Existing approaches Arzani et al. [6] also suggest using
the “right samples” to retrain AutoML systems [22]. They
use the disagreement among a set of models to identify “the
tail” and guide the user to collect more tail samples and add
them to the training set. However, this does not apply to ABR.
We cannot “enforce” streaming sessions to come from rare
network paths or experience particular congestion patterns
over the Internet: we must do with the samples available.

One could get more tail samples by simply training on more
samples. But this requires more resources and may bring little
to no benefits. As we show (Appendix A, Fig. 19), naively
using more samples can fail to improve performance because
it does not address the imbalance of the training set.

One strategy to address this imbalance is to optimize
the training algorithm. One example is Just Train Twice
(JTT) [35], which trains a model, uses it to identify misclas-
sified samples, upsamples those, and trains again. This ap-
proach performs well, but provides a different trade-off than
Memento: it improves tail performance through additional
training efforts and does not help to decide when to retrain.

Conversely, DriftSurf [53] is designed to detect when to re-
train and switches to an entirely new training set when it does.
This approach is too coarse-grained for networking: Network
traffic is composed of many different patterns (Appendix A,
Fig. 9), and not all patterns get outdated at once.

For networking, Matchmaker [36] proposes a more incre-
mental adaptation by maintaining multiple models in parallel
and “matching” each sample to the best model to make a pre-
diction for that sample. Fundamentally, this does not address
the sample selection problem: If all models perform poorly at
the tail, combining them will not help. Alike JTT, it also does
not help to decide when to retrain the models. Our evaluation
shows that a single model with better sample selection out-
performs Matchmaker at the tail, even with a perfect oracle
selecting the optimal model for each sample §4.4.

The Problem In this work, we study these two critical
questions for the deployment of ML-based ABR solutions:

1. From a continuous flow of new samples, with which
samples should we retrain to reduce video stalls while
maintaining high video quality?

2. From an updated set of training samples in memory,
when should we retrain the model? Given the large re-
source costs, can we avoid retraining “for nothing”?

Our solution We address both questions with Memento,
a sample selection system based on coverage maximization,
i.e., prioritizing samples from low-density areas of the sam-
ple space. Fig. 2 illustrates how Memento integrates with an
ML-based video streaming system, which typically transmits
videos in chunks. In ML-based ABR, a sample encompasses
telemetry data for a video chunk combined with a trace of
telemetry data for previous chunks. The video server collects
samples as it streams videos to clients. Memento estimates the
sample-space density from both new and in-memory samples.
Based on this density, prioritizes rare low-density samples
over common ones: this addresses dataset imbalance and
improves tail performance. Moreover, Memento uses the dif-
ference in coverage to assess whether the memory has quali-
tatively changed, i.e., whether it contains samples from which
there is something new to learn. If so, it triggers retraining.

Main contributions
• We propose a density-based sample selection system for

continual learning called Memento (Fig. 2). We imple-
ment Memento and make it publicly available [5].

• We deployed Memento on Puffer: Over more than 9
months and 10 stream-years of real-world data, Memento
achieves a 14 % smaller fraction of stream-time spent
stalled than the static model; 3.5× the improvement of
Puffer’s daily retraining with random samples in the past.
Image quality is only degraded by 0.13 % and we retrain
just 3 times after the first 8 days (7 times in total, §4).

• In additional simulations, we demonstrate that Memento:
– improves the tail with a small average impact;
– has easy-to-tune parameters;
– works with classification and regression problems;
– and picks up new patterns quickly.

The best of both worlds We discussed that better training
methods (e.g., JTT [35]) or model architectures (e.g., Match-
maker [36]) are not sufficient to address all continual learning
challenges in ML-based ABR. Still, those ideas are useful
and complementary to our work on sample selection.

We show in §4.4 that combining Memento with JTT or
Matchmaker improves performance further: once Memento
decides to retrain, we train better with JTT, and MatchMaker
benefits from an ensemble of Memento-trained models. How-
ever, optimizing training or model architectures is beyond
the scope of this work, which focuses on identifying the most
valuable samples for retraining and deciding when to retrain.
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2 A case for density

This section provides intuition why using density as a se-
lection metric makes sense. We then detail how Memento
uses density to maximize sample-space coverage (§3) and
demonstrate its effectiveness on Puffer as a case study (§4).

Density for sample selection “The tail” is not a single pat-
tern that rare traffic follows, but rather many patterns with
only a few samples each. A random sample selection mir-
rors any imbalance in the underlying distribution, e.g., over-
represented common traffic patterns. This leads to dimin-
ishing returns as we sample more and more from common
patterns and little from the tail. As illustrated by Fig. 1, this
yields good average performance but is unreliable at the tail.
We need to address the imbalance of the training set.

To correct dataset imbalance, we need a sample-aware
selection. Traditional approaches use the model performance
(e.g., loss or reward) to select samples [10, 26]. We found
that this does not work well on Puffer because it fails to
differentiate rare patterns from noise.1 It focuses too much
on the high-loss patterns and forgoes the rest of the traffic.

Instead, we propose to select samples based on the density
of their neighborhood, which considers the whole sample
space. That is, a sample-space-aware selection that aims to
maximize coverage of the sample space. The key insight to
maximize coverage is to retain samples where few similar
samples exist. Instead, we remove samples from high-density
areas with the most similar samples. This decreases the den-
sity and we naturally stop removing further samples.

Fig. 3 illustrates the benefits of samples-space-aware den-
sity versus sample-aware loss as a selection metric. In this
experiment, we use the static model from Puffer’s authors and
5 M samples collected by Puffer over a few days. We create
batches of 256 samples and compute their loss and density
(as detailed in §3). The top row of Fig. 3 shows the mean loss
and density per batch. We then use each metric to select 1 M
samples and retrain the model. The bottom row compares
the effect of each selection metric over the 5 M samples by
showing the mean prediction improvement per batch.

The left column shows that loss-based selection focuses
too much on the tail, i.e., high-loss batches. It yields good
improvements there but does not preserve enough average
samples and degrades performance on most other batches.

Conversely, the right column illustrates that density-based
selection is more holistic, focusing on the tail while covering
the entire sample space. Performance is improved at the tail,
i.e., on low-density batches, without much degradation on
the high-density ones. One may object that the loss selection
could be tuned to maintain more “low-loss samples.” We tried
this and our evaluation shows that it does not perform as well
as density and can easily get much worse (§4.4 and Fig. 6).

1Consider this analogy of computer vision: the image of an oddly-parked
car is rare but learnable, whereas an utterly blurry picture is just noise. Yet
both are at “the tail” and have a high model loss.
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Figure 3: Loss improvement obtained by retaining with 1M sam-
ples over a dataset of 5M. The same batches of 256 samples are used
for the loss-based (left) and density-based selection (right).
To improve tail performance, we need many low-density
batches because they are all different. To maintain average
performance, we need only a few high-density batches, as
they are similar. Selecting based on density (right) achieves
both. Conversely, loss-based selection (left) is too specific. It
suffers from diminishing returns by selecting too many high-
loss batches and catastrophically forgets the average.

Density for shift detection Continual learning aims to
adapt when the data distribution changes. These changes
can be broadly categorized into covariate shift [52], i.e., pre-
viously unseen traffic patterns emerge or the prevalence of
patterns changes and concept drift [57], i.e., the underlying
network dynamics change. Density-based sample selection is
an effective tool to capture both kinds of changes.

When new traffic patterns appear, e.g., users starting to
stream over satellite networks, they populate a previously-
empty area of the sample space, resulting in a low density
and, thus, a high probability of being selected for retraining.
Similarly, patterns becoming less prevalent results in low
density, and a high probability of remaining selected.

When the underlying network dynamics change, e.g., a
new congestion control gets deployed, we should forget old
samples that are no longer relevant. However, detecting those
changes is difficult, and being wrong risks forgetting useful
information such as hard-to-gather tail samples.

Using density for sample selection correlates the probabil-
ity of forgetting samples with how important it is to remember
them. Samples from dense regions are discarded readily, as
we will likely get more of those samples. Conversely, low-
density batches are less likely discarded as we only encounter
these samples infrequently. This makes the selection more
conservative at the tail, allowing to remember tail patterns; the
model will perform well on similar traffic if it recurs. If it does
not, i.e., it was essentially noise, then it will eventually be
forgotten. We provide some empirical evidence of recurring
patterns in the tail of the Puffer traffic in Appendix A.

3
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3 Coverage maximization

The core of Memento is Algorithm 1: the sample selection
algorithm designed to maximize the sample-space coverage.
Memento achieves this by estimating the sample space density
from the distances between samples: the higher the density
of a point in sample space (i.e., the more samples are close
to it) the better the memory covers this part of sample space.
Memento approximates optimal coverage by iteratively dis-
carding samples, assigning a higher discard probability to
high-density regions. It proceeds in five steps:

1. It considers input and output spaces separately, and ad-
dresses high-dimensional inputs by comparing them in
the low-dimensional prediction space (§3.2);

2. For scalability, it computes pairwise distances between
distributions of sample batches (§3.3);

3. It estimates input- and output-space density using kernel
density estimation (KDE, §3.4).

4. It discards batches probabilistically until fitting the mem-
ory constraints. It maps density to discard probability,
balancing tail-focus and noise rejection (§3.5).

5. Once new samples are selected, it approximates how
much the memory coverage has increased to decide
whether retraining might be beneficial (§3.6).

Memento’s sample selection relies on three internal param-
eters: the batch size b, the KDE bandwidth h, and the prob-
ability mapping temperature T . We provide default choices
for these parameters in §4.2 and analyze the impact of each
parameter on Memento’s performance in §4.4.

3.1 Definitions

Process We consider a process y = f (x) that maps inputs
x ∈ X = Rn to outputs y ∈ Y , where Y = R in regression or
{1,2, . . . ,k} in classification problems. In the context of ABR,
f models the network dynamics mapping traffic features x
(e.g., video chunk size, TCP statistics, transmission times of
past packets) to a prediction for the next chunk y (e.g., the
current bandwidth or expected chunk transmission time).

Predictions We consider a model f̂ that is trained to pre-
dict ŷ = f̂ (x) from a set of training samples S, where
S = {(x1,y1), . . . ,(xN ,yN))}, i.e., a supervised setting.

Replay memory To account for concept drift or covariate
shift, we retrain f̂ with an updated set of samples S∗, stored in
a replay memory with capacity C. A sample selection strategy
decides how to update this memory.

Sample selection strategy Given a set Snew of new samples
available and a set Smem of samples currently stored in mem-
ory, with |Snew|+ |Smem|>C, a selection strategy must select
S∗ ⊂ (Snew∪Smem), such that |S∗| ≤C.

Algorithm 1: Memento Coverage Maximization
Parameters: Capacity C, threshold τ,

batch size b, bandwidth h, temperature T
Input: In-memory Smem and incoming Snew samples
Output: Selected samples S∗, decision retrain

1 begin
2 S∗← Snew∪Smem
3 B′←{} ; // or last train batches
4 retrain← False

// §3.2: Dimensionality reduction
5 SBBDR← BBDR(S∗) ; // (x,y)→ (ŷ,y)

// §3.3: Distance measurement
6 B← BatchSamples(SBBRD,b)
7 (Dpred ,Dout)← DistributionDistances(B)

// §3.4: Density estimation

8 ρ̂k← KDE(Dk,h) ∀k ∈ {pred,out}
9 ρ̂←min(ρ̂ pred , ρ̂out)

// §3.5: Sample selection
10 while |S∗|>C do
11 pdiscard ← softmax(ρ̂/T )
12 i←WeightedRandomChoice(pdiscard)
13 S∗,B← DiscardBatch(S∗,B, i)
14 ρ̂,D← UpdateDensities(ρ̂,D, i)

// §3.6: Retraining decision
15 if RCI(B,B′)≥ τ then
16 retrain← True
17 B′← B ; // remember train batches

3.2 Dimensionality reduction

It is not clear a priori whether coverage in the sample input
or output space is most important for tail performance. Thus,
in supervised classification or regression problems—where
outputs are available—Memento considers both equally. First,
it computes distances and densities for input and output space
separately; then, it combines these densities to prioritize sam-
ples that maximize coverage across both spaces (§3.4).

While outputs are typically one- or low-dimensional, inputs
tend to be high-dimensional; e.g., the ML model in Puffer [61]
predicts the transmission times of video chunks and has over
60 input dimensions. In high dimensions, distance compu-
tation becomes difficult [3, 67]. Manually weighing inputs
is unreliable, as it is unclear which dimensions matter most
for the model. We address this problem using black-box
dimensionality reduction (BBDR), an approach inspired by
research on dataset shift detection [34] that has been found
to outperform alternatives like PCA [46]. The idea is sim-
ple: Use the existing model—trained to identify important
feature combinations—to predict ŷ (the predicted transmis-
sion time), then compute distances in the low-dimensional
prediction space. In essence, BBDR leverages prediction as
dimensionality reduction tailored to the task at hand.

4
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3.3 Distance measurement
Batching Puffer [1] currently collects over 1 M samples
daily. A simple approach distance measure, such as comput-
ing pairwise euclidean distances, does not scale to such a
large dataset. Memento addresses this scalability issue using
batching. Instead of computing distances between individual
samples, we pool them into batches and compute distances
between the empirical distributions of sample batches.2 With
a batch size n, we divide the distance computations by O(n2).

While batching improves scalability, it reduces the flexibil-
ity of sample selection. For example, if a common and a rare
sample are pooled in the same batch, they can only be kept or
discarded together. To avoid suboptimal pooling, samples are
first grouped by outputs, then by predictions, and finally split
into batches of specified size b; this pools samples spatially to
create homogeneous batches. We found this batching to work
best, but Memento also supports batching based on sampling
time or application-specific criteria.

Distribution distances There are many ways to compute
distances between distributions, each giving larger weights to
certain types of differences (e.g., in location or spread). In our
case, to capture tail performance, we consider the difference
in information, which gives large weight to rare samples—
those with low probabilities in the distributions.

A commonly used measure of information difference is
the Kullback-Leibler Divergence [32] (KL). However, it is
ill-suited to estimate density as it is not a distance metric, is
asymmetrical, and can grow infinitely large. Instead, we use
the closely related Jensen-Shannon Distance (JSD), which is
a symmetrical and bounded distance metric [18].

Definition 1 (Jensen-Shannon Distance). Let P and Q be
probability distributions, and let M = 1

2 (P+Q). The Jensen-
Shannon Distance between P and Q is defined by:

JSD(P,Q) =
√

1
2 (KL(P,M)+KL(Q,M))

where KL(P,M) = ∑
x∈X

P(x) log2

(
P(x)
M(x)

)

if P and Q are discrete distributions in the space X ; or

KL(P,M) =
∫

∞

−∞

p(x) log2

(
p(x)
m(x)

)
dx

if P and Q are continuous probability distributions with prob-
ability density functions p and q, and m = 1

2 (p+q).

Probabilistic predictions During batching, Memento
leverages probabilistic predictions; e.g., the transition time
predictor in Puffer [61] outputs a probability distribution over
21 transition time bins. This probability distribution captures

2This may also be interpreted as replacing distances between observations
(samples) with distances between the underlying processes (distributions).

whether predictions are somewhat uncertain—thus indicat-
ing a need for training using more such samples—or certain.
However, we must handle probabilistic estimates differently
than point estimates: (i) When batching samples, Memento
groups probabilistic predictions first by the distribution mode,
then by their probability; (ii) The batch distribution is com-
puted as a mixture distribution, i.e., the prediction distribution
for batch bi is Pi(x) = (1/|bi|) ·∑Pj(x), where Pj is the prob-
abilistic prediction for sample j.

3.4 Density estimation
Now that we have sample distances, we can proceed to com-
pute the prediction- and output-space densities. Since we
do not know the topology of the sample space, we cannot
use simple density approximations, such as the fraction of
samples per cluster. In such cases, a common approach is to
use kernel density estimation (KDE) [43].

Definition 2 (KDE). Let b be a sample batch and B a set
of sample batches, and let dk(b, b′) = JSD(Pk, Pk ′) with
k ∈ {pred,out} be the prediction or output distance between
batches b and b′ with distributions Pk, Pk ′. Then, using a
Gaussian kernel with bandwidth h, the kernel density estimate
ρ̂ at the location of batch b is defined as:

ρ̂
k
B(b) =

1√
2π |B| ∑

b′∈B
exp

(
− dk(b, b′)2

2h2

)
(1)

Intuitively, the kernel density estimate of b is inversely pro-
portional to the distances to other batches, with diminishing
weights for more distant ones. The bandwidth h, the “smooth-
ing factor”, determines how quickly this drop-off occurs.

Density aggregation Memento considers the prediction and
output space as equally important. Thus, we aggregate den-
sities using the minimum: we regard the batch as rare if its
density is low in either the prediction or output space:

ρ̂B(b) = min
(

ρ̂
pred
B (b), ρ̂

out
B (b)

)
(2)

If necessary, this approach can be generalized to fewer or more
densities: for unsupervised learning without ground truth,
Memento can only consider ρ̂ pred . For models with multiple
outputs and thus multiple predictions, we can compute the
minimum in Eq. (2) across all respective densities.

3.5 Sample selection
Memento optimizes the sample-space coverage by iteratively
discarding high-density batches. It computes the densities for
all samples in S∗ = Snew∪Smem, randomly discards batches
with a density-dependent probability (Algorithm 1, Lin. 10–
14) until |S∗| ≤C, and updates densities after each discard.

Intuitively, Memento assigns a high discard probability to
batches with high density—batches for which many similar

5
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samples exist—thereby protecting rare low-density samples.
However, because noisy samples also seem “rare,” we must
retain some probability of discarding rare samples. Memento
achieves this by mapping densities to probabilities using soft-
max with temperature scaling [21]:

pdiscard = softmax(ρ̂B/T ) (3)

where ρ̂B is a vector of densities for all batches b ∈ B, and
pdiscard is a corresponding vector of discard probabilities.

The temperature T allows balancing tail-focus with noise
rejection. A low temperature assigns a higher discard prob-
ability to the highest-density batch(es). Conversely, a high
temperature assigns more uniform discard probabilities, in-
creasing the probability of discarding low-density batches. At
the extreme, the discard probability with T → 0 is a point
mass; if Memento is configured with T=0, we thus determin-
istically discard the highest-density batch. With T → ∞, the
probability becomes uniformly random.

3.6 Retraining decision
Intuitively, retraining is beneficial if we collect new infor-
mation, i.e., samples in areas of the sample space that were
previously not covered. That is, we should retrain only when
the coverage of sample space increases. Memento’s density
estimation allows estimating this increase in information to
guide the retraining decision.

Definition 3 (Coverage increase). Let B be a set of batches
with density estimates ρ̂B. We can approximate the region of
the sample space covered by the samples in B:

Coverage(B) = ∑
b∈B

ρ̂B(b) (4)

Let B′ be a second set of sample batches. We can approximate
the coverage increase, short CI, of B with respect to B′, i.e.,
the region of sample space covered by B but not by B′:

CI(B, B′) = ∑
b∈B

min(ρ̂B(b)− ρ̂B′(b), 0) (5)

The relative coverage increase RCI from B′ to B is then

RCI(B, B′) =CI(B, B′)/Coverage(B) (6)

where RCI(B, B′) ∈ [0,1]; 0 means that the same area of
sample space is covered, while 1 indicates that B covers an
entirely different region of the sample space than B′.

Hence, with B the current memory batches and B′ those
used for the last model training, RCI(B, B′) estimates the
coverage increase since the last training. If it exceeds the
user-defined threshold τ, Memento triggers retraining. This
approach presents a rational trade-off: the larger τ, the longer
we wait for changes to accumulate before retraining. With a
small τ, the model compensates for changes quicker at the cost
of more retraining. Memento’s training decision is sample-
aware, it gives a rational argument that retraining is likely to
be beneficial (even if there is no guarantee).

4 Evaluation: Real-world benefits

We use Puffer [1] to evaluate Memento’s benefits in the real
world. This experiment aims to show that Memento improves
the tail performance of existing models reliably without signif-
icantly impacting the average. Puffer provides both a public
dataset with data collected daily over several years and a pub-
licly available model that we can retrain with Memento and
compare against the original. This makes Puffer a perfect
case study to investigate the following questions:
Q1 Does Memento improve the tail predictions? Yes

Over years of live and replay video data, Memento sig-
nificantly improves the 1st percentile prediction score.

Q2 Does it improve the application performance? Yes
On live Puffer, over 10 stream-years of data, Memento
achieves a 14 % smaller fraction of stream-time spent
stalled with only 0.14 % degradation in image quality.

Q3 Does Memento avoid unnecessary retraining? Yes
Memento retrains 4 times in the first 8 days, and only 3
times in the following 9 months (7 times in total).

Q4 Are our improvements replicable? Most likely
Memento benefits appear replicable over different time
periods of Puffer data. Moreover, its design parameters
are intuitive and easy to tune.

Q5 Can Memento benefit existing solutions? Yes
Memento further improves tail predictions achieved by
more advanced training or prediction strategies.

4.1 The Puffer project
The Puffer project is an ongoing experiment comparing ABR
algorithms for video streaming [1]. Puffer streams live TV
with a random assignment of ABR algorithms to video ses-
sions and collects Quality-of-Experience (QoE) data for each
transmitted chunk of video data: the mean image quality
measured in SSIM [66] and the time spent with stalled video.

Fugu is the ABR algorithm proposed by Puffer’s authors;
it features a classical control loop built around a Transmis-
sion Time Predictor (TTP), a neural network predicting the
probabilities for a set of discretized transmission times. The
predictor was retrained every day with 1 M samples drawn
randomly from data over the past 2 weeks: ∼130 k “fresh”
samples from the last day and ∼10 % fewer samples for each
day further into the past. FuguFeb is a static version of the
same algorithm, trained in February 2019 and never retrained.

Fugu was discontinued only 17 days after Memento’s cur-
rent deployment. Hence, we can only compare Memento’s
long-term performance to FuguFeb. As discussed in §1, Fugu
and FuguFeb achieve similar performance: Over almost three
years, Fugu showed an SSIM improvement of 0.17 % and a
reduction in the time spend stalled of 4.17 %. Thus, improve-
ments over FuguFeb would likely translate to similar—yet
slightly lesser—improvements over the daily-retrained Fugu.

6
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Figure 4: Memento achieves its goal: it improves the tail prediction quality with minimal impact on the average (Fig. 4a). This
requires little retraining (Fig. 4b) and translates into modest but notable QoE improvements (Figs. 4c and 4d).

4.2 Retraining with Memento

We use Memento to retrain Fugu’s TTP: every day, we use
Memento to select the training samples and decide whether
to retrain. We assess Memento’s benefits in two experiments:

Deployment We deploy on Puffer two Memento variants, i.e.,
two variants of Fugu using Memento for retraining the
TTP. One uses Memento’s default parameters (see be-
low), and the other deterministic sample selection (i.e.,
using temperature T = 0, §3.5). We collected data over
292 days (from Oct. 2022 to Jul. 2023), totaling around
10.8 stream-years of video data per variant. This experi-
ment allows answering Q1, Q2, and Q3.

Replay To confirm the deployment observations, evaluate
design choices, and benchmark the impact of Memento’s
parameters, we replay Puffer data collected since 2021.
To reduce the bias from a particular starting day, we
replay 3 instances with 6 months of video data each and
a total of 90 stream-years of video data. This experiment
allows answering Q4 and Q5.

Metrics We access Memento along three dimensions:

• Prediction quality is measured with the logarithmic score
logscore(y) = log p(y) [20], where y is the transmission
time of a video chunk, and p(y) its probability predicted
by the TTP;3 Available in deployment and replay.

• Application performance is measured with user QoE;
Only available for the deployment experiment, where
real user streams are impacted by the predictions and the
resulting QoE can be measured.

• Training resource utilization is measured by the number
of retraining events in deployment and replay.

3The logarithmic score is a commonly used metric for probabilistic pre-
dictions [20] like those produced by the Puffer TTP model. It is closely
related to the cross entropy loss used to train the TTP: this is also known as
the logarithmic loss and is the negative logarithmic score.

Parameters We set Memento’s memory capacity C to 1 M
samples (same as the original Fugu model). Default parame-
ters are a retraining threshold τ of 0.1, batching size b of 256,
kernel bandwidth h of 0.1, and temperature T of 0.01. We
evaluate the impact of different parameter values in §4.4.

4.3 Deployment results
In this section, we show that Memento effectively improves
the tail prediction quality with little retraining and that this
translates into QoE improvements over FuguFeb.

In Appendix A, we provide additional plots with the evo-
lution of QoE and predictions over time, and aggregate plots
like those published on the Puffer paper and website [1, 61].4

Prediction quality Fig. 4a shows the ECFD of the score
difference between Memento and FuguFeb in median and 1st-
percentile scores on the whole deployment (higher is better).

We observe that Memento improves tail predicition perfor-
mance as intended, with a slight—yet expected—degradation
on average: as memory is finite and Memento purposefully
prioritizes “rare” samples, it must remove samples for the
most common cases. The deterministic version of Memento
prioritizes the tail more aggressively, which leads to slightly
better tail improvements and worse median degradation.

Retraining count Fig. 4b shows the relative coverage in-
crease RCI between the current memory and the one last used
to retrain the model, as well as the RCI retraining threshold
τ = 0.1. We observe about eight “warm-up” days where Me-
mento retrains four times. Afterward, RCI remains low and
retraining due to changes in the data (RCI peaks) happens
three times. This shows that there are fewer “new patterns” to
learn from over time; retraining daily is unnecessary.

4Our results per algorithm differ from official Puffer plots, as Puffer
excludes some sessions in an attempt to exclude effects such as “client
decoder too slow,” while we consider all data points. As the filtering is
ABR-independent, it does not impact relative results between ABRs.
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(b) A kernel bandwidth around 0.1 gives the
results. Extreme values nullify benefits.
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(c) T = 0.01 is a good trade-off between tail
prioritization, randomness, and robustness.

Figure 5: Each marker shows the median prediction improvement of Memento over Fugu (random selection) over a 6-month
replay, measured as median and 1st perc. improvement each day. Results are consistent across replays.

Conversely, the deterministic variant of Memento keeps
accumulating samples, exhibiting a different RCI pattern.
After training five times during “warm-up,” it trained 9 more
times. Where RCI for default Memento stabilizes, the RCI
of the deterministic variant slowly but steadily increases over
time while it accumulates rarer and rarer samples, as it does
not reject noise. Essentially, this variant “never forgets.”

Application performance Figs. 4c and 4d show the relative
QoE improvements achieved over FuguFeb for the SSIM and
the time stalled (higher is better), respectively.5

First, we observe that Memento only marginally affects the
SSIM; the average SSIM is 17.12 and 17.14 for Memento and
FuguFeb, resp. (not shown). Memento’s deterministic variant
affects the SSIM more; its average is 16.39 (not shown) and
the SSIM is consistently worse than FuguFeb (Fig. 4c).

Second, Fig. 4d shows that the improvement in stalls com-
pared to FuguFeb is almost the same for both variants of Me-
mento, even though there are large day-to-day variations:
some days, FuguFeb stalls much less than Memento, and vice
versa. Over the entire 292 days of deployment, Memento
spent a fraction of 0.2 % of stream-time stalled, compared to
0.24 % for FuguFeb. In relative terms, Memento spent a 14 %
smaller fraction of stream time stalled than FuguFeb.

In the results above, we already see that Memento performs
slightly worse without noise rejection (i.e., with T = 0). In a
previous deployment, we observed that never forgetting ulti-
mately prevented enough average samples to remain in mem-
ory, which destroyed the average performance (Appendix A).
The latest version of Memento made the deterministic vari-
ant more robust but we see the signs of noise accumulation
(more frequent retraining, steadily rising RCI). By contrast,
the probabilistic default Memento naturally forgets noise and
stabilizes, as can be seen in the RCI in Fig. 4b.

Finally, we observe that Memento reduces stalls by 3.5
times as much as retraining daily with random samples. In
Appendix A, Fig. 11 we show Fig. 4a overlaid with the score

5To avoid bias towards either Memento or Fugu, we show the symmetric
percent difference using the maximum: 100 · (x− y)/max(x, y).

improvements of Fugu in the past.6 We observe that random
retraining improved the tail prediction scores significantly
less and even worsened them on 20 % of days.

From predictions to QoE One may wonder why the aver-
age prediction degradation (Fig. 4a) does not seem to strongly
impact image quality (Fig. 4c), and, conversely, why signifi-
cant prediction improvements at the tail yield only a modest
reduction in stalls (Fig. 4d). Our results illustrate the complex
relationship between prediction quality and QoE, including
the closed-loop control logic between the predictions and the
chosen chunk size, which aims to keep the video buffer at the
receiver sufficiently full to avoid stalling.

Looking closer, we noticed that the transmission time of
most chunks is very small, and most prediction errors are
also small time-wise. Hence, slightly worse predictions have
little effect on the buffer fill level; the controller has time
to compensate and maintain image quality. Moreover, since
most prediction errors overestimate the transmission time (not
shown), it makes the closed-loop control more conservative.
Thus, it manages to keep stalls low but struggles to maintain
high image quality (compare Figs. 4c and 4d). Further in-
vestigations of the interplay between prediction quality and
application performance would be interesting but are beyond
the scope of this work. To facilitate further research, we pub-
lish all our retrained models including their training sample
selection alongside the Puffer QoE data.

4.4 Replay results

In this section, we confirm that Memento’s benefits are replica-
ble, i.e., they are not just an artifact from deploying at an “easy
time,” its design decisions are justified, and it complements
existing techniques. To do this, we replay 3 non-overlapping
instances of 6 months, containing 25, 39 and 26 stream-years
of video-data respectively.

6Appendix A, Fig. 11 must be considered with caution, as the underlying
data comes from different time periods and may not be comparable.
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To monitor the memory quality over time, we disable
threshold-based retraining and retrain every 7 days: one must
retrain and test the model to assess whether the right samples
were selected. We evaluate each day in terms of prediction
improvement over retraining with random samples (Fugu)
and report the mean over each 6-month period.7

Replicability All plots in Fig. 5 show three data points
per setting, which are average performance numbers over
the entire 6 month period. We observe that all results are
fairly stable, which gives reasonable confidence about the
replicability of Memento’s benefits on this use case.

Batch size Fig. 5a shows Memento’s prediction perfor-
mance over the batch size; larger sizes improve scalability but
make sample selection more coarse-grained, which should
hurt performance (§3.3). We observe a slight tail performance
drop for larger batch sizes with little change on average.

Regarding scalability, differences are more pronounced:
using a single CPU core to process 2 M samples8 takes on
average 200 s with a batch size of 128, 48 s with 256 (the
default), and 7 s with 1024. Benefits flatten out for larger
batch sizes. Overall, computation is dominated by distance
computation; batching the samples takes only about 2.5 s.

Bandwidth For each batch, Memento estimates how close
nearby batches are; the kernel bandwidth h determines
what “nearby” means (§3.4). As the computed distances
JSD(P,Q) ∈ [0,1], bandwidths > 1 over-smooth (all batches
are always “nearby”), and bandwidths≪ 1 under-smooth (no
other batches are ever “nearby”). Both cases nullify the idea
of estimating density, effectively making the sample selection
random. Fig. 5b confirms this intuition: at the extremes, Me-
mento performs like a random selection. We obtain the best
tail improvement with a bandwidth around 1×10−1.

Temperature Fig. 5c shows Memento’s prediction perfor-
mance over the temperature T ; a low temperature strongly
prioritizes rare samples at the risk of accumulating noise,
while a high temperature rejects noise by making the sample
selection more random (§3.5). As expected, a lower tempera-
ture yields better tail performance but degrades the average.
The trade-off is not linear, though; we can select a temper-
ature that provides tail benefits with minimal impact on the
average. The best trade-off is a temperature around 1×10−2.

Alternative selection metrics Fig. 6 shows the perfor-
mance of using loss as an alternative selection metric: we
still use temperature-based probabilistic selection but prefer
to discard samples with a low loss rather than high density.
At best, it gives tail improvements about half as Memento,
but it is much harder to tune: the benefits vanish for a slightly
higher temperature. With a lower temperature, i.e., selecting
more strongly based on loss, the model performance decreases
drastically, which mirrors our observations in §2.

7We show the entire time series for each experiment in Appendix A.
8One million in memory, one million new samples on average per day.
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Figure 6: Loss-based selection is worse and less robust.

We evaluate additional metrics in Appendix A: prediction
confidence, label counts, and whether a sample belongs to
a stalled session or not. In summary, these perform worse
or equal to loss-based selection in the best case, and most of
them are as sensitive to tune. Probabilistic selection based on
density performs better and is less sensitive (see Fig. 5c).

Alternative training decision We also compare Memento’s
retraining decision based on the relative coverage increase
RCI with a loss-based decision (not shown). We observe that
for samples selected by Memento, either retraining decision
is effective. Overall, a coverage-based decision provides
greater control over retraining frequency but struggles with
low thresholds (e.g., 5 %). As Memento is probabilistic, the
estimated RCI fluctuates at each iteration, which can also be
observed in Fig. 4b, and the retraining threshold should be
set above these fluctuations. It may be possible to further
improve Memento’s sample selection by smoothing the RCI
or by attempting to remove the random fluctuations. We leave
this challenge for future work.

Combining Memento with better predictions and training
MatchMaker [36] improves predictions by using an ensemble
of models (default is 7) combined with an online algorithm
to select the best model to make a prediction for each sample.
However, this is limited by the performance of the individual
models. Using an ensemble of models trained with a random
selection, even with an oracle choosing the best model, we
can only improve tail performance by half as much as a single
model trained with Memento. However, we can get the best
of both worlds by using MatchMaker with an ensemble of
Memento-trained models, which yields double the tail perfor-
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Figure 7: Memento complements training and prediction im-
provements such as JTT and Matchmaker.
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mance with less decrease in median performance compared to
a single Memento-trained model (‘no upsampling’ in Fig. 7).

JTT [35] improves training by training twice: after the first
training, misclassified samples are upsampled in the second
and final training. Fig. 7 shows the same performance trade-
offs for JTT and Memento: it improves the tail and degrades
the median: a random selection with a JTT upsampling factor
of 3 is roughly equivalent to Memento’s sample selection with
‘normal’ training. Yet this comes at different resource costs:
JTT requires up to double the training time and resources, de-
pending on how long the first training step is. Training models
like Puffer take time in the range of hours [61] and often re-
quire expensive hardware (e.g., GPUs). Memento is more
resource efficient: even on a single CPU core, it can process
millions of samples in a few minutes (see above). However,
JTT and Memento are not in competition, but complementary.
We observe the best performance by combining Memento-
selected samples with JTT’s training, and observe even further
improvements when the resulting models are used in a Match-
Maker ensemble to make predictions (Fig. 7).

5 Evaluation: Synthetic shifts

In the previous section, we showed that Memento provides
significant benefits in a real-world use case, but where net-
work conditions appear relatively stable. Thus, in this section,
we use simulation in ns-3 [49] to illustrate Memento’s per-
formance on other networking tasks and under substantial
distribution shifts. Specifically, we show that Memento:

1. ensures good tail performance by reliably prioritizing
samples from infrequent traffic patterns (§5.2);

2. picks up new patterns quickly (§5.3);

3. is applicable to classification and regression (§5.4).

5.1 Experimental setup
Sample selection strategies We compare Memento with
two baselines: Random (random sampling) and FIFO (keep
recent samples). In addition, we compare it to the state-of-the-
art LARS (Loss-Aware Reservoir Sampling, [10]). LARS uses
several improvements to random sampling for classification,
and has two stages: first, it randomly chooses to keep or dis-
card a new sample, with probability exponentially decreasing
over time; second, it considers both label counts and loss to
decide which in-memory sample to replace.

Parameters For Memento, we use the same default param-
eters as before: a batching size of 256, kernel bandwidth h
of 0.1, and temperature T of 0.01. We reduce the memory
capacity C to 20 k samples (i.e., 1/50 compared to §4) for
two reasons: (i) We aim to show the limitations of different
sample selections strategies, which is easier to do using small
memories; (ii) LARS scales poorly, making comparing per-
formance on larger memory sizes impractical—we optimized

the original LARS implementation to scale to 20 k samples.
Our optimization is available in our artifacts.

Workloads The simulation setup (Appendix B, Fig. 12)
consists of two nodes and applications sending messages
whose sizes follow three empirical traffic distributions from
the Homa project (Fig. 13, [39]): Facebook web server (W1),
DC-TCP (W2), and Facebook Hadoop (W3). W1 and W3 are
similar size-wise, while W2 messages are about an order of
magnitude smaller. For each workload, we generate 20 traffic
traces of 1 min each. During this time several senders trans-
mit a combined 20 Mbps, resulting in an average network
utilization of 66 %. We repeat this process by injecting ad-
ditional cross traffic to reach an average utilization of 100 %
and 133 %, respectively. We use different random initializa-
tions to generate a total of 180 distinct runs that we combine
in various iterations in the following experiments.

Models We compare the selection strategies for two neural
networks; one for classification and one for regression. The
classification model predicts the application workload: Each
input is a trace of the past 128 application packet sizes, and
the model predicts the probabilities for each workload. The
regression model predicts the next transmission time from
past packets: Each input contains a trace of the past 127
packet sizes and transmission times, the current packet size,
and the model predicts the transmission time. See Appendix B
for architecture and hyperparameter details.

Metrics For classification tasks, we measure the balanced
accuracy, i.e., the accuracy obtained over an equal number of
evaluation samples per workload, ensuring equal importance
of each workload. In other words, performance is evaluated
over an equal distribution of overall workloads, regardless
of whether they are present at the current iteration. Good
performance requires both picking up new patterns quickly
and avoiding catastrophic forgetting.

For regression, we investigate changes in traffic distribu-
tion (see below) and measure the 99th percentile absolute
prediction error over the data in the latest iteration. Good
performance requires picking up new patterns quickly.

5.2 Classification: Rare patterns

In the first experiment, we show that Memento successfully
picks up samples from infrequent traffic patterns. To do so,
we use highly imbalanced traffic: W1 and W3 only constitute
≤2 % of overall traffic. Good tail performance implies high
accuracy not only for W2 but also for W1 & W3.

Setup We use the classification model and iterate over sam-
ples from 20 runs. We use W2 at every iteration, representing
a large part of traffic that remains relatively unchanged. On
top of that, we include W1 once every five iterations, and
W3 once every ten iterations; they represent sporadic traffic
patterns that make up for 1.3 and 0.5 % of traffic respectively.
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Figure 8: Memento can handle various traffic patterns and prediction types, outperforming other approaches.

Results Memento and LARS retain sufficient samples from
each workload and show the best accuracy over all itera-
tions (Fig. 8a). On the other hand, FIFO shows good accuracy
only while all workloads are present, as the large number
of samples of W2 quickly overwrites W1 & W3 otherwise.
While Random achieves better results than FIFO, it ultimately
retains too few samples of W1 & W3, as they make of less
than 2 % of samples in memory.

5.3 Classification: Incremental learning

Next, we show that Memento quickly picks up new patterns
and avoids catastrophic forgetting in an ‘Incremental Learn-
ing’ setting, which is known for its challenging nature [19].

Setup We use the same model and setup as §5.2, but iterate
over samples from each workload sequentially; first W1, then
W2, and finally W3, for 10 iterations each.

Results We find that overall, Memento exhibits the best
performance. Both Random and LARS struggle because of
their sample selection rate (Fig. 8b); these two flavors of ran-
dom memory avoid forgetting by decreasing the probability
of selecting new samples over time. When W3 is introduced,
they are slow to incorporate new samples (Appendix B, ??).9

By manually tuning the sampling rate of LARS to be much
more aggressive, we were able to achieve the same perfor-
mance as Memento (not shown). This highlights the benefit
of the self-adapting nature of Memento’s sample-space-aware
approach: If a new label appears, Memento discovers that this
part of the sample space is not well covered yet. It quickly
prioritizes discarding common in-memory samples to retain
samples from the new label.

9While both LARS and Random are slow to react, the fact that the bal-
anced accuracy of LARS is worse than Random’s is mostly an artifact of the
similarity of W1 and W3: LARS has (desirably) retained more samples of
W1, yet this causes its model to mistake W3 for W1 more often than Random,
which has forgotten most of W1 and is consequently less biased.

5.4 Regression

In this experiment, we show that Memento is applicable to
regression and handles complex traffic changes. We iterate
from 66 to 133 % network utilization, which presents more
complex gradual changes in traffic patterns than the abrupt
changes in workload distributions (§5.2 and §5.3).

Setup We iterate over traffic from all workloads using runs
with increasing congestion. For the first 10 iterations, we use
runs with 66 % network utilization, followed by 10 iterations
of 100 %, and finally 10 iterations of 133 %. We report the
99th percentile error under the current traffic conditions.

Results Memento generally shows the lowest 99th per-
centile prediction error (Fig. 8c). Random is slow to react
to the new patterns and requires several iterations to adjust
to the new traffic conditions. Perhaps surprisingly, FIFO per-
forms well up to 100 % utilization but shows very unstable
performance for 133 %. LARS is not applicable to regression.

6 Related work & Discussion

Generalization Memento could be applied to other ML-
based networking applications, including congestion con-
trol [2, 27, 41, 58], traffic optimization [11], routing [54], flow
size prediction [16, 45], MAC protocol optimization [28, 63],
traffic classification [9,56], network simulation [65], or DDoS
detection [56]. Networking has proven to be a challenging
environment for ML, and many proposed systems have only
delivered modest or inconsistent improvements in real net-
works [7, 8, 61, 62]. In response, research has focused on
providing better model architectures [2, 27, 61] and training
algorithms [60], model ensembles for predictions and active
learning [22, 36], real-world evaluation platforms [61, 62],
uncertainty estimation [51] and model verification [17].
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A better sample selection is beneficial to all these advances.
Memento is orthogonal to and complements these works,
opening an exciting potential. For example, our evaluation
showed that combining Memento with MatchMaker outper-
forms each of the individual solutions (§4.4). We look for-
ward to future research investigating, e.g., how to design ML
models to maximize coverage maximization benefits.

Continual learning Fundamentally, continual learning suf-
fers from the stability-plasticity dilemma [14]: a stable mem-
ory consolidates existing information yet fails to adapt to
changes, while a plastic memory readily integrates new in-
formation at the cost of forgetting old information. Forget-
ting old-yet-still-useful information is known as catastrophic
forgetting [38]. Continual learning approaches aim to be
as plastic as possible while minimizing catastrophic forget-
ting. They can be broadly categorized as either prior-based
or rehearsal-based [10]. Prior-based methods aim to pre-
vent catastrophic forgetting by protecting model parameters
from later updates [30, 42, 64]. Rehearsal-based methods
collect samples over time in a replay memory and aim to pre-
vent forgetting by learning from both new and replayed old
data [10,26,47]. Hybrid methods combine both, e.g., training
with a replay memory and an additional loss term penalizing
performance degradation on old samples [50].

Memento builds on previous rehearsal-based approaches,
incorporating ideas such as coverage maximization [13]. It
extends existing approaches ideas by considering both pre-
diction and output spaces, leveraging temperature scaling to
control the tail-focus, as well as introducing a novel coverage
increase criterion to reason about when to retrain.

Distribution shift detection Continual learning closely re-
lates to a branch of research aiming to keep models up-to-date
upon changes in the data-generating process—known as dis-
tribution shifts. State-of-the-art methods rely on statistical
hypothesis testing [24] or changes in empirical loss [53], plus
a time-based window (or multiple parallel windows) [14].
When a change is detected, these algorithms advance the time
window(s), discard “outdated” samples whose timestamp falls
outside of the window(s), and retrain.

Shift detection algorithms make sample-aware retraining
decisions yet lack a sample-aware selection strategy. Once a
change is detected, they discard all old samples, ill-suited to
the diversity of networks, where only a small subset of traffic

may change at any given time. Memento’s sample selection
based on coverage maximization is sample-aware for both
sample selection and retraining decisions. To do so, it lever-
ages an idea originating from shift detection: BBDR [34].

Experience replay for reinforcement learning While we
evaluate Memento in the context of supervised learning, it
may also be used for reinforcement learning (RL), which is
popular approach to ML-based ABR [37, 60]. In fact, RL
commonly uses a replay memory [48, 55], and it has been
shown that it can greatly improve RL performance [4, 50].

Data processing Data validation & augmentation are im-
portant steps of any ML pipeline. Especially in ML systems
that are evolving over time, new bugs may be introduced any
time the model or data collecting system are updated. These
bugs may lead to erroneous data, and data validation is neces-
sary to prevent such data from becoming part of the training
data [44]. Furthermore, collected data is often augmented to
address dataset imbalance by generating additional synthetic
samples or upscaling existing ones (e.g., JTT [35]), which
can improve performance and reduce overfitting [59]

As a replay memory, Memento operates between the vali-
dation and augmentation steps, and complements them. For
example, we showed in §4.4 that JTT’s upsampling is more
effective when Memento has identified tail samples first. Only
validated data should be considered by the sample selection,
and selected samples may be augmented. In particular, the
memory should only store non-augmented samples, as aug-
menting the data before passing it to the memory can result
in the sample selection to overfit to the augmentation [10].

Limitations Let us first address the elephant in the room:
Memento cannot do anything with a bad model or dataset. It
helps identify the most useful samples for training, but those
samples must be present in the dataset in the first place, and
the model must be capable of learning from them.

We find that density-based selection performs well, but it
is probably not optimal. It addresses the problem of dataset
imbalance well, but it is less effective to differentiate “hard-to-
learn” from “easy-to-learn” samples, which is better captured
by the model loss. Combining both would be likely beneficial.

Finally, Memento’s scalability is limited by its density com-
putations. Batching helps, but would not be enough to process
data streams with billions of samples daily.

Ethical issues This work does not raise any ethical issues.
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A Puffer: Supplemental Results

Recurring patterns Fig. 9 illustrates that the Puffer traffic
does contain patterns that recur at the tail. Each line in this
plot corresponds to one batch in the memory assembled by
Memento after three weeks of sample selection. The lines
show the density of batches with respect to the daily samples
over the next 200 days; this captures “how similar the batches
in memory are to the traffic of the current day.” It shows that
some tail batches (the lines with the lowest densities) are
sometimes more represented in the daily traffic for a couple
of days (see e.g., the step around week 7), then fade away.

0 3 6 9 12 15 18 21 24
Weeks

0

max

Figure 9: Coverage of batches in the daily samples

Aggregate performance Fig. 14 shows the aggregated
SSIM and percent of stream-time spent stalled on a 2D grid
in the style of the Puffer [61] publication and website [1].
Concretely, we show two sets of ABRs. First Memento (de-
fault and T = 0) and FuguFeb, aggregated since the latest
version of Memento was deployed on September 19th 2022
until February 13th, the cutoff for our current evaluation. We
cannot aggregate over the deployment duration Fugu as it was
discontinued on October 5th. thus, we additionally include a
second set consisting of Fugu and FuguFeb, aggregated from
2020 until Fugu was discontinued.

Timeseries (real-world) Fig. 15 shows QoE results per day
over time for Memento with default parameters, Memento
(T = 0) and for FuguFeb since September 19th.

Fig. 16 shows the same results, but the mean and boot-
strapped 90% CI over a two-week sliding window.

Fig. 17 shows the prediction improvements over FuguFeb
for Memento with default parameters and with T = 0.

Past degradation of Memento (T = 0) over time In a pre-
vious deployment, we observed Memento (T = 0) to degrade
over time, as shown in Fig. 10. Without forgetting, it kept
accumulating noise and retraining. At first, the Puffer control
loop around the TTP was able to compensate for this degra-
dation, but as the model became too bad, it failed. Over time,
the Image quality degradated of over 30 %.

However, we later discovered an issue in this deployment
that prevented Memento from using the deployed models’ pre-

diction, effectively disabling BBDR. After fixing this issue,
we observed that the performance of Memento (T = 0) recov-
ered, highlighting the benefits of considering both prediction
and output space. nevertheless, we are again beginning to
see the signs of noise accumulation, in particular stronger
coverage increase and frequent retraining, and are monitoring
the current Memento (T = 0) deployment closely.
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Figure 10: Long-term degradation of Memento (T = 0) over
time in a previous deployment on Puffer.)

Prediction score improvements compared to the past
Fig. 11 shows Fig. 4a overlayed with the prediction score im-
provements of Fugu compared to FuguFeb in the past. These
curves are not directly comparable, as they come from dif-
ferent periods of time and the underlying data may have
shifted. However, we can see that daily retraining with ran-
dom samples did not consistently improve the TTP tail score;
it even worsened the tail score for 20 % of days. This may
explain why daily retraining yields significantly smaller tail
QoE improvements than retraining with samples selected by
Memento, which consistently improves the tail predictions.
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Figure 11: Retraining with daily samples did not consistently
improve the tail prediction score in the past.
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Figure 12: Simulation setup.

Alternative selection metrics Fig. 18 shows further alter-
native sample selection metrics in addition to loss (§4.4).

Fig. 18a shows the results for model confidence, i.e., the
probability of the predicted transmission time bin (Puffer sep-
arates the transmit time into 21 bins ranging from 0.125 s to
10 s). With this metric, Memento prefers to discard samples
with high confidence to keep ‘difficult’ samples with low con-
fidence. For high temperatures, performance improvements
are small. For low temperatures, we observe strong variation
between runs, with more performance degradation than im-
provement. In summary, this selection metric is unreliable
and fails to consistently improve performance.

Fig. 18b shows the results for label counts, a simplified
version of density that is often used for classification data. We
use the transmission time bin of each sample as the label. With
this metric, Memento prefers to discard samples with high
label counts to keep ‘rare’ samples with low label counts. We
observe this approach to drastically reduce performance. In
the Puffer environment, the majority of samples are assigned
to the lowest transmit time bins. Going by label counts alone
removes too many of these samples and the model forgets
common patterns, similar to the loss metric.

Finally, Fig. 18c shows the results for stalled sessions. With
this metric, Memento prefers to discard samples if they belong
to a session that did not stall to keep samples from sessions
that did stall. We observe consistent improvements, but they
are small. It does not provide a fine-grained enough selection
to significantly improve tail performance.

Increased memory capacity Fig. 19 shows the results for
Memento compared to a random memory with the same ca-
pacity (both 1 M) and to a random memory with a double
capacity (2 M). The random memory is set up like Fugu, se-
lecting samples randomly over the last two weeks. We can
see that simply increasing the capacity fails to address dataset
imbalance, and performance is virtually identical at double
the training effort.

Timeseries (replay) Fig. 20 shows the evolution of each
benchmark experiment over the whole 6-month duration.
Fig. 21 and Fig. 22 show the same time series for the experi-
ments with alternative selection metrics, and for combining

Memento with MatchMaker and JTT, respectively.
For temperature-related benchmarks, we observe that a

high temperature (uniformly random selection) performs
slightly worse at the tail than Fugu. This may be because
Fugu keeps samples from the past 14 days, while a uniformly
random selection phases samples out more quickly.

B Simulation: Supplemental Results

Simulation setup Fig. 12 illustrates the setup we used for
the evaluation of Memento in simulation.

Model Architecture We use the following parameters for
the classification and regression models used in our simu-
lation experiments. We use supervised training and select
the number of layers, neurons, and training parameters via
hyperparameter optimization [23].

Model

Parameter Classification Regression

Hidden Layers 3 4
Hidden Units 512 362
Learning Batchsize 512 512
Learning Rate 5.91×10−5 0.382

Table 1: Model parameters.

We have implemented both models using Keras [12]. For
all layers, we use batch normalization [25] and ReLU ac-
tivation [40]. We train both networks with the Adam opti-
mizer [29] using the default decay parameters β1 = 0.9, β2 =
0.999. We train for up 200 epochs with early stopping.
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Figure 13: Message size distributions [39].

Workload distributions Fig. 13 shows the message size
distribution for the workloads we use, published by the
HOMA project [39]): Facebook web server (W1), DC-TCP
(W2), and Facebook Hadoop (W3). Messages are generated
with Poisson-distributed inter-arrival times.
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Figure 14: Aggregate performance. Mean and bootstrapped 90% confidence intervals from the deployment of the current version
of Memento on September 19th, 2022 until February 13th, 2023. ABRs annotated with ‘past’ indicate past data from April 9th,
2020 until October 5th, 2022, when Fugu was discontinued.
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Figure 15: Evolution of QoE metrics over time. Absolute Values for each ABR.
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Figure 16: Evolution of QoE metrics over time. Absolute Values for each ABR. Mean and bootstrapped 90% confidence interval
over two-week sliding windows.
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Figure 17: Logscore improvements compared to FuguFeb.
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Figure 18: Additional alternative selection metrics.
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We compute the mean over all three 6-month replays, and plot again the mean of this value and bootstrapped 90% confidence
intervals over two-week windows.
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Figure 20: Logscore improvements compared to Fugu (see Fig. 19) for all selection metric experiments.
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Figure 21: Logscore improvements compared to Fugu (see Fig. 19) for all selection metric experiments.
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(a) JTT with random sample selection.
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(b) JTT with Memento’s sample selection.
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(c) JTT with Memento’s sample selection and MatchMaker predictions.

Figure 22: Logscore improvements compared to Fugu (see Fig. 19) for all combination experiments.
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