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Figure 1. We propose a motion generation pipeline where pre-defined keyjoints approach user-specified positional goals. The goals are
shown as green spheres, and our pipeline can adapt to the customized conditions including novel scenes and goal conditions. We can
generate motions that reach for an object in cluttered scenes, climb a wall, or sit with specified hand positions.

Abstract

We propose a framework for goal-driven human motion001
generation, which can synthesize interaction-rich scenar-002
ios. Given the goal positions for key joints, our pipeline003
automatically generates natural full-body motion that ap-004
proaches the target in cluttered environments. Our pipeline005
solves the complex constraints in a tractable formulation006
by disentangling the process of motion generation into two007
stages. The first stage computes the trajectory of the key008
joints like hands and feet to encourage the character to nat-009
urally approach the target position while avoiding possi-010
ble physical violation. We demonstrate that diffusion-based011
guidance sampling can flexibly adapt to the local scene con-012
text while satisfying goal conditions. Then the subsequent013
second stage can easily generate plausible full-body mo-014
tion that traverses the key joint trajectories. The proposed015
pipeline applies to various scenarios that have to concur-016
rently account for 3D scene geometry and body joint con-017
figurations.018

1. Introduction 019

A goal-driven motion generation can streamline designing 020
diverse interactive full-body motion. For example, when 021
designing a character motion for grasping an item, setting 022
a hand goal first allows user to efficiently formulate the de- 023
sired functionality. Similarly, the users may describe the 024
climbing motion by defining target positions or control the 025
sitting posture by specifying contact points on a chair. In 026
this paper, we propose a framework for generating natural 027
full-body motion when the goal is simply the position of the 028
key joints within a 3D scene. After a user intuitively defines 029
the desired interactions by providing the target positions for 030
the critical body parts, such as hands or feet, the system 031
can generate natural full-body motion that is adaptive to the 032
given condition. 033

Goal-driven motion requires satisfying part-wise goals 034
while maintaining plausible full-body motion that is adap- 035
tive to unseen scene layouts. Such interaction is a highly 036
challenging motion to generate. As the goals are defined on 037
the input 3D scene, only a few existing captured motion data 038
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precisely follow the required movement defined at the test039
time. We take inspiration from the recent advances in diffu-040
sion models, which have shown impressive performance in041
generative modeling, not only in image synthesis but also in042
human motion generation. These models learn continuous043
data distributions without collapsing and exhibit promising044
capabilities for control, such as compositionality [8, 33] or045
conditioning [66]. Another inspiration for enhanced con-046
trol in diffusion models is guidance functions [4, 6, 47],047
which successfully endow customized properties into the048
outcomes via flexible sampling. We incorporate these tech-049
niques to formulate a diffusion model that generates motion050
approaching user-specified goals while avoiding collisions051
in diverse scenes.052

We construct a two-stage diffusion model, solving sim-053
pler sub-problems to effectively tackle the overall complex-054
ity. We first generate a key joint trajectory that is adaptive to055
a customized goal position in a novel scene. Next, we gen-056
erate natural full-body poses based on the predicted partial057
key joints. The key joint trajectories serve as an intermedi-058
ate representation that detaches the complexity of scene per-059
ception and full-body generation. Both stages follow condi-060
tional diffusion formulation. The first stage employs a guid-061
ance function to sample the key joint trajectories that sat-062
isfy the goal conditions while preventing collisions. Here,063
our lightweight scene features provide the necessary spatial064
context, and the full body layouts are estimated as bounding065
boxes. The subsequent second stage composites the intri-066
cate full-body motion that matches the sampled trajectories067
of the partial key joints.068

We demonstrate that our proposed method can accom-069
plish the task even in unseen scenarios or newly defined070
goals without additional training. Our approach generally071
applies to a wide range of tasks, such as climbing or contact-072
designated sitting, where the precise control requirement is073
provided as goal positions for the key joints. In Fig. 1, we074
show various tasks that we could perform, with goals em-075
phasized as colored spheres. In summary, our contributions076
are as follows.077

• We propose a two-stage pipeline that efficiently generates078
motion that follows the goal positions of key joints while079
adapting to the target scene.080

• We introduce an effective diffusion-based pipeline, which081
can generate plausible key joint trajectories that satisfy082
complex constraints, even in novel scenarios.083

• We demonstrate an effective 3D collision avoidance084
method with lightweight scene features extracted around085
sampled trajectories and bounding box estimates of the086
body.087

• Our approach broadly applies to the various interaction-088
rich scenes requiring precise control to generate natural089
full-body motions.090

2. Related Work 091

2.1. Human Motion Generation 092

Recent progress in data-driven approaches for generative 093
models has witnessed remarkable advancements in human 094
motion generation. In addition to the quality and natural- 095
ness, many practical applications require generating mo- 096
tions adaptive to diverse conditions. For example, several 097
works allow user to define the input conditions for motion 098
synthesis, such as text [12, 13, 32, 39, 40, 53, 63, 65, 67], 099
music [30, 42, 46, 54] or paired object trajectories [3, 10, 100
28, 29, 61]. 101

We focus on generating human motions fulfilling practi- 102
cal tasks requiring interaction with diverse geometric lay- 103
outs. Previous works have long considered motion syn- 104
thesis in 3D environments. They investigate methods to 105
find plausible root trajectories and complete motions that 106
perform atomic actions such as sitting, walking, and ly- 107
ing [15, 31, 36, 36, 44, 55–57, 69, 70]. Many works mainly 108
consider extracting collision-free paths against cluttered en- 109
vironments. Some frameworks utilize space occupancy [34] 110
or physics simulation [2, 27, 37, 60, 64] to avoid artifacts 111
like penetration, but it is only applicable to a certain range 112
of simple geometries. 113

More recently, another line of works attempts to gener- 114
ate natural full-body motion especially when grasping an 115
object [49–52]. However, acquiring motion data is chal- 116
lenging in such scenarios, since it is hard to capture the de- 117
tailed body movements and the paired objects concurrently. 118
Therefore, previous attempts with existing grasping datasets 119
are prone to generate only a limited range of samples due to 120
the insufficient number of reference motions. 121

Our method especially focuses on generating a human 122
motion that requires a precise goal position for the specific 123
set of body segments. For example, CIRCLE [1] dataset 124
contains various full-body motions reaching for objects in 125
complex spaces. More datasets contain tasks requiring so- 126
phisticated controls, such as climbing [62], sitting with pro- 127
vided contact points against chair [68], and motion with 128
contact points with pre-scanned scene [19]. However, the 129
datasets cannot extensively cover intervened constraints in 130
real-world environments. 131

2.2. Diffusion Models and Controllability 132

Due to the capability to model complex distribution, 133
diffusion-based techniques have demonstrated exceptional 134
performance for generative modeling [7, 16–18]. Motion 135
generation can also benefit from the flexibility of diffusion 136
models that allow sophisticated control of the distribution. 137
Some works [45, 58] employ inpainting techniques to gen- 138
erate motion given joint trajectories, while others [23, 43] 139
proposes a diffusion structure that can modify motion based 140
on root trajectories. AGROL [9] demonstrates a diffusion- 141
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Figure 2. Overall pipeline of our method. Given a 3D scene S with a set of goal positions g and initial pose X̂1, our goal is to generate
smooth and natural full-body motion that reaches the specified goal. We first sample key joint trajectories {Cn} satisfying goal conditions
using guidance sampling on a diffusion model. Then we feed key joint trajectories {Cn} into full-body diffusion model and finally obtain
full-body motion {Xn}.

based framework that reconstructs full-body motion from142
tracking signals of sparse wearable sensors. Because our143
task requires creating and matching the desired joint trajec-144
tory in an unseen environment, we could also benefit from145
the flexibility of diffusion models to control the distribution.146

We incorporate recent formulations for conditional dif-147
fusion to enhance the control for the user-defined task fur-148
ther. ControlNet [66] architecture has emerged as a power-149
ful framework for modeling and sampling high-dimensional150
data distributions conditioned on input variables. It pro-151
poses an additional neural network designed specifically to152
control image diffusion models such that the results adapt to153
task-specific control signals. OmniControl [59] pioneered154
using the ControlNet architecture to generate full-body mo-155
tion given pre-defined joint trajectory. OMOMO [29] gen-156
erates hand and body movements step-by-step based on the157
motion of objects using conditional diffusion formulation.158
Our work further provides intuitive yet flexible control as159
the system automatically finds plausible key-joint traces in160
more challenging environments.161

Another way to control the output of a diffusion model is162
leveraging guidance functions or guided loss functions for163
flexible sampling [11, 21, 22, 24, 48]. One can use a differ-164
entiable loss function to define the necessary constraints for165
the sampled results. Then, injecting the gradient of this loss166
steers the output towards the desired form, generating flexi-167
ble and controllable results. Leveraging guidance and prior168
knowledge from pre-trained diffusion models, research has169
made strides in solving linear inverse problems with loss170
functions akin to the square form [4], or handling non-linear171
generic loss functions [5]. Recent approaches [47] improve172
the accuracy of gradients by utilizing multiple Monte Carlo173
samples to estimate, thereby achieving a more precise ap-174

proximation of the gradient. Works such as NIFTY [26] 175
demonstrate that guidance functions can generate more ac- 176
curate motion. However, such approaches only find the root 177
trajectory with a single object and do not achieve the deli- 178
cate level of control we propose. By combining conditional 179
diffusion modeling with ControlNet architecture and flexi- 180
ble sampling techniques, and by structuring a two-stage dif- 181
fusion model, our proposed approach facilitates the genera- 182
tion of natural motions with fine-grained spatial control. 183

3. Method 184

Given an initial pose of a human X̂1 and 3D goal positions 185
indicated g within a space S, our objective is to generate a 186
sequence of full-body poses {Xn} that eventually reach the 187
specified goal positions g. Key joints are manually selected 188
for each task, and goal positions are assigned per episode 189
to indicate the task-specific objective. The significant chal- 190
lenge here is to generate plausible and natural motions that 191
satisfy goal conditions while avoiding collisions with sur- 192
roundings at the same time. 193

To mitigate these complexities, we propose a two-stage 194
diffusion-based framework. Our framework employs a hi- 195
erarchical structure that initially generates key joint trajec- 196
tories {Cn} adhering to scene constraints, followed by the 197
creation of full-body motion {Xn} based on these trajec- 198
tories. In addition to the start and end positions of the key 199
joint trajectories, our diffusion process provides a guidance 200
about the potential scene obstructions by encoding the local 201
free space and approximate body configurations given the 202
key joint positions. Based on our lightweight scene fea- 203
tures, our model in the first stage finds the 6-DoF paths 204
for the key joint trajectory that effectively avoids collision 205
against cluttered scenes while smoothly approaching the 206
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goal. Then, the next stage can complete a full-body se-207
quence with frame-wise assistance of the key joint trajec-208
tory. Our entire pipeline is shown in Figure 2.209

Data Representation We select K joints from the total210
joint set and compose our key joint trajectories {Cn} ∈211
RN×d, where N denotes the length of the generated mo-212
tion sequence. These trajectories Cn contain global xyz213
position and global 6D rotation [71] of selected key joints,214
making d = K × 9. For example, if we choose hands215
and feet for the key joints, then d = 36. This global rep-216
resentation enables more direct gradient calculation with217
spatial constraint-based guidance in Stage 1, without any218
additional computation, resulting in more accurate sam-219
pling [47].220

Our full-body motion representation {Xn}Nn=1 includes221
N full-body poses Xn ∈ RD, where D represents the222
dimension of human pose representation. For the object-223
reaching scenario and the sitting with contact points task,224
which involves walking motions, we utilized the Hu-225
manML3D [12] representation by converting the root in-226
formation into global coordinates, following the approach227
in [23], where D = 263. For tasks requiring more nat-228
ural transitions, such as climbing and contact-aware mo-229
tion generation, we leverage the parametric human model,230
SMPL [35], to reconstruct the human mesh at the end of231
the generation process. The pose vector Xn ∈ RD contains232
6 DoF pose of all the joints J and global root translation,233
where rotations are represented as 6D vectors [71], there-234
fore D = J × 6 + 3.235

3.1. Stage 1: Key Joint Diffusion Model236

Stage 1 generates key joint trajectories that is conditioned237
on the body shape of the character and the 3D scene layout.238
A typical denoising diffusion model Dθ depends on time t239
and the additional conditioning feature c in the input data.240
We employ a network architecture based on U-Net, which241
learns to recursively sample to recover the original data dis-242
tribution p0(x0) from a noisy version xt = x0 + σtϵ with243
ϵ ∼ N (0, I). Plugging our formulation into the diffusion244
model Dθ, the generated sample x corresponds to the se-245
quence of key joint locations {Cn}Nn=1 and the input condi-246
tion c is the SMPL shape parameter β and the scene S.247

3.1.1 Guidance Function248

Our diffusion process employs guidance functions to gener-249
ate samples that precisely satisfy the given goal conditions250
while avoiding collisions in complex environments. While251
sampling from naı̈ve diffusion model may not flexibly adapt252
to novel conditions, we introduce two guidance functions to253
assist the sampling process (Figure 3): trajectory-control254

Figure 3. Illustration of guidance functions. We measure the
distance between the goal position and corresponding joint for
Trajectory-Control Guidance. Also, we approximate the body
model into a union of the upper and lower body and calculate
Collision-Avoidance Guidance.

and collision-avoidance guidance. More details on the dif- 255
fusion process and the calculation of guidance can be found 256
in the preliminary section of the supplementary material. 257

Trajectory-Control Guidance Trajectory-control guid- 258
ance ensures the generated key joint trajectory smoothly in- 259
terpolates between the start and the goal position. We for- 260
mulate the start and the goal guidance, respectively. The 261
start guidance is 262

Gstart({Cn}, X̂1) =

K∑
k=1

∥∥∥Tk(C1)− Tk(X̂1)
∥∥∥
2
, (1) 263

where Tk(·) is the operation to retrieve global xyz position 264
and 6D rotation of a k-th key joint from the input vector. 265
The guidance calculates the pose deviation of key joints in 266
the initial frame to ensure starting from the specified initial 267
pose. In a similar context, the goal guidance encourages the 268
model to generate plausible trajectories regarding the goal 269
condition g ∈ RK×3 as following 270

Ggoal({Cn}, g) =
K∑

k=1

∥Pk(CN )− gk∥2, (2) 271

where Pk(·) is operation to retrieve global xyz position of 272
k-th key joint from the data. Applying the two guidance 273
functions, our diffusion model can generate key-joint tra- 274
jectories that precisely match the user-defined positions. 275

Collision-Avoidance Guidance In order to prevent po- 276
tential collisions within the final generated motion, 277
Collision-Avoidance guidance is applied to assist the key 278
joint trajectory {Cn}. To generate collision-free full-body 279
movement, the guidance has to foresee the entire body 280
movement induced from the key joint configurations in re- 281
lation to the 3D scene. We provide a guidance by testing 282
collision on points sampled from a geometric proxy of the 283
body volume. Given the canonicalized key joint locations 284
and 6DoF pose in each frame and the body shape parameter 285
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β, we train a two-layer MLP architecture that estimates the286
parameters of two bounding boxes, each covering the upper287
and lower body, as shown in Figure 3. Then, we sample a288
set of points {v} ∈ V from the estimated geometries and289
penalize if a point v incurs collision against the surrounding290
scene S. We identify the possible collision using the signed291
distance field (SDF) ΦS(·) of the scene, by measuring the292
value at the queried points V . As a result, the guidance293
function is written by294

Gcollision({Cn},S, β) = −
∑
v∈V

1(ΦS(v) < 0), (3)295

where 1 is 1 if ΦS(v) is negative, i.e., colliding with the296
scene, and 0 otherwise.297

In summary, our final guidance function is defined as a298
weighted sum of aforementioned guidance terms λ1Gstart +299
λ2Ggoal + λ3Gcollision.300

3.1.2 Suggestive-Path Feature301

We optionally use the suggestive-path feature Ψk for a302
hand trajectory of the task of reaching an object (Task 1303
in Sec. 4). In this case, Stage 1 needs planning to find a304
trajectory within the cluttered scene. The suggestive-path305
feature is designed to provide a reference trajectory for the306
end-effector and the scene information around it.307

Given the initial pose X̂1 and the goal position gj , we308
first find a collision-free path of the end effector using the309
path-finding algorithm [14] within the scene S. Then, we310
compute geometric features along the path. Specifically, we311
sample points on the extracted path at regular intervals and312
extract basis point set (BPS) [41] features, estimating the313
amount of free space. We concatenate the calculated path314
with the BPS features computed along the path to derive315
the suggestive-path features Ψk for k-th key joint. These316
features are lightweight yet capable of observing the local317
scene context, enabling general adaptability. When using318
this feature, we build an additional feature encoder into our319
network inspired by ControlNet [66].320

3.2. Stage 2: Full-Body Diffusion Model321

In the second stage, we generate full-body poses {Xn} from322
the trajectory of key joints {Cn} and body shape parameters323
β. We train another conditional diffusion model, where the324
condition is given as frame-wise key-joint positions gener-325
ated from the previous stage. The key joints provide de-326
tailed guidance, which already takes the scene context and327
the goal conditions into account, and Stage 2 can only fo-328
cus on generating proper full-body motions following the329
trajectory. Our network architecture integrates the Con-330
trolNet [66] structure into the U-Net architecture proposed331
in [23].332

Figure 4. We visualize selected key joint trajectories (blue, red
coordinates) from Stage 1, and overlay with the initial and last
full-body pose generated from Stage 2. We visualize only a subset
of selected key joints for better visualization. Our method success-
fully synthesizes plausible motions that match the goal conditions
as well as the scene context.

4. Experiments 333

Given the initial pose and a 3D scene, our pipeline gener- 334
ates full-body motion that avoids collision and reaches the 335
goal positions for the pre-defined set of key joints of the 336
task. All motion sequences are sampled at 30 FPS. We im- 337
plement our pipeline using PyTorch [38]. We use the Adam 338
optimizer [25] with a learning rate of 10−4 for all the ex- 339
periments. Training requires approximately 24 hours on a 340
single NVIDIA RTX 3090 GPU to cover both Stage 1 and 341
2. Further details including model architecture and hyper- 342
parameters are available in the supplementary material. 343

We provide a set of metrics to assess the success of the 344
task, physical plausibility, and similarity to the ground truth 345
motion. 346

• Success of the task. At a high level, the task succeeds 347
when a character reaches the goal position without colli- 348
sions. The Success rate indicates that (1) the final position 349
of the key joint is within a predefined distance threshold 350
from the specified goal, and (2) the maximum collision 351
between the generated body model and the scene is within 352
4 cm. We also calculate the average Distance to the goal. 353

• Physical plausibility. For each time step n, we calculate 354
the maximum collision distance between the human mesh 355
model from Xn and the given 3D scene S. If this distance 356
exceeds 5 cm, we consider that the collision occurred at 357
the frame. Then, we report the ratio of frames with colli- 358
sions out of all generated frames as the Collision rate. 359

• Motion quality. We assess the motion quality by simi- 360
larity to the ground truth motion. Frechet Inception Dis- 361
tance (FID) evaluate overall motion quality by measuring 362
the distributional distance between ground truth motions 363
and generated motions on the test set. We use four kinds 364
of distance-based metrics to evaluate the difference from 365
the ground truth test data. HandJPE quantifies the mean 366
hand joint position errors. MJPE is the mean joint po- 367
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Method FID ↓ Success
rate (%)

Dist. to
goal (cm)

Collision
(%)

Hand JPE
(cm)

MJPE
(cm)

Root trans.
error (cm)

R
an

do
m

CIRCLE [1] 0.338 67.06 7.97 11.77 12.93 8.03 13.15
OmniControl [59] 0.372 62.40 8.03 19.43 15.84 10.59 12.09
Ours single-stage 0.391 61.55 7.55 23.81 16.05 11.57 13.54
Ours w/o collision 0.355 56.16 7.09 26.16 20.70 12.18 16.97
Ours w/o feature 0.331 66.28 7.63 13.88 15.68 9.57 11.56
Ours 0.319 69.07 7.22 11.62 13.24 8.39 10.38

Table 1. Quantitative evaluation on the reaching an object scenario. The diffusion network is trained with random splits for the training
and the test data.

Method Success
rate (%)

Dist. to goal
(cm)

MJPE
(cm)

Root trans.
error (cm)

OmniControl [59] 32.2 30.05 25.54 26.41
Ours single-stage 16.1 47.31 29.27 24.88
Ours 54.8 21.21 23.89 27.18

Table 2. Quantitative evaluation on the rock-climbing scenario.

sition errors in centimeters. We also compute the Root368
translation error using Euclidean distance, measured in369
centimeters.370

To demonstrate the applicability of our motion genera-371
tion approach, we show successful motion generation on372
several goal-driven interaction tasks (Figure 1). While the373
training set-up and constraints vary for different tasks, our374
two-stage pipeline finds plausible key joint trajectories fol-375
lowed by the natural full-body motion (Figure 4). We pro-376
vide additional tasks and further task details on supplemen-377
tary materials.378

Task 1: Reaching an Object Goal in a Cluttered Indoor379
Scene The first task includes the indoor scenes, where380
the objective is to avoid collisions against the environment381
while right-hand reaches a specific goal location. Specifi-382
cally, the right wrist should be within 10 cm of the specified383
goal to be counted as a success. We designate the root and384
right hand as the set of key joints. This scenario is trained385
with the CIRCLE dataset, which contains 3138 sequences386
for the task with diverse scene layouts.387

We use the algorithm in CIRCLE [1] as a baseline for the388
experiments. The quantitative evaluations are summarized389
in Table 1. The training and test datasets are chosen ran-390
domly regardless of the scene types in the dataset, and our391
approach outperforms the baseline in terms of Success rate.392

Task 2: Rock Climbing Guided by Multiple Goals As393
a second task, we show performance on a climbing scenario394
using the dataset of CIMI4D [62], where multiple key joint395
goal positions are provided. Here, the task is to generate396
plausible climbing motions that satisfy multiple positional397
goals simultaneously. We designate both feet, and hands as398

Method Dist. to goal
(cm)

MJPE
(cm)

Root trans. error
(cm)

OmniControl [59] 15.38 14.90 12.57
Ours single-stage 21.58 19.66 25.08
Ours 14.11 13.88 10.55

Table 3. Quantitative evaluation on the contact-aware motion gen-
eration scenario.

the key joint set. The success is defined by the positions of 399
both hands and feet at the start and end frames being within 400
20 cm of the designated rock location. Note that there are 401
eight locations for initial and final conditions to succeed in 402
the task. 403

The dataset contains only 156 sequences, and we use 404
125 sequences for training. The task demonstrates that our 405
pipeline can adapt to complex scene constraints and gener- 406
ate natural motion with a limited amount of motion data. 407
Since the 3D scenes in the dataset do not contain clutters 408
with narrow passages, we did not use the suggestive-path 409
features in this task. Table 2 compares our two-stage for- 410
mulation against a variation employing single-stage gener- 411
ation. Our two-stage pipeline demonstrates superior results 412
in terms of success rate and distance to goals. Due to the 413
lack of sufficient test data to compare distributions, we did 414
not report the FID score. Instead, we visualize overall mo- 415
tion quality in the supplementary videos. 416

Note that CIRCLE cannot perform the climbing task to 417
reach multiple goals simultaneously because of its initial- 418
ization scheme. CIRCLE first translates the given initial 419
human body to align with a specific goal point, allowing 420
only a single goal, and subsequently refines the motion. In 421
contrast, our Stage 1 effectively accommodates constraints 422
on multiple key joints that can constitute a unified full-body 423
motion. 424

Task 3: Contact-Aware Motion Generation We demon- 425
strate that our pipeline can generate motion when ex- 426
tra conditions for intermediate frames are provided. The 427
dataset [19] includes the human motion along with the 428
vertices-level contact, we convert it into joint-level contact 429
using the human body segmentation [35]. For the joints 430
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(a) CIRCLE (c) Ours w/o collision(b) OmniControl (d) Ours (e) Ground Truth

Figure 5. Qualitative results on the reaching an object, in unseen scenes with different views. Our method faithfully adapts to the unseen
scene geometry in various episodes compared to the presented baselines.

designated as contact joints, we set their global positions as431
conditions, and our goal is to generate motion while satis-432
fying these conditions. Unlike other tasks, these conditions433
are also specified for the intermediate frames. Since con-434
tacts typically occur at the end-effectors, we designate both435
feet and hands as the key joint set. Further details on the436
processing steps are provided in the supplementary mate-437
rials. Table 3 shows that our full pipeline outperforms the438
one-stage pipeline across most metrics. We report the aver-439
age distance between multiple intermediate goals instead of440
the Success rate. Our pipeline can also successfully handle441
multiple intermediate goals.442

4.1. Efficacy of Detaching the Key-Joint Trajectory443

In diffusion models, guidance sampling helps to meet spe-444
cific conditions, but adding additional gradients to the sam-445
ples can lead to unnatural results that deviate from the distri-446
bution. In single-stage models, guidance is directly applied447
during the motion generation process, which can reduce the448
overall quality of the motion. In contrast, our two-stage449
approach applies guidance in Stage 1 which generates key450
joints trajectories only, then completes the motion based on451
Stage 2. This allows us to generate more natural motion452
by avoiding direct guidance during the motion generation453
phase while still satisfying the conditions.454

We compare the results with a single-stage version of455
ours and OmniControl [59] which generates the full-body456
motion directly. To provide similar guidance, we directly457
extract key joint positions from the full-body motion and458
calculate trajectory-control guidance compared to the spec-459
ified goal. For collision-avoidance guidance, we sample460
points on the surface of the full-body mesh model instead461
of approximated body geometries similar to [20].462

The result from the single-stage model demonstrates the463

efficacy of our two-stage design. The results support that 464
our key joint movement successfully extracts valid key joint 465
trajectories that can incur natural full-body motion. Our 466
Stage 1 ensures generating plausible key joint trajectories 467
that guide natural movement for the full body in the sub- 468
sequent stage. The single-stage diffusion model could pro- 469
duce motions that satisfy the given conditions using guid- 470
ance sampling, however, it often generates unnatural mo- 471
tion, as visualized in video results. The errors measured 472
with respect to ground truth motion (MJPE, Root trans. er- 473
ror) indicate that the generated movements agree with the 474
captured movement in our outcome. 475

The advantage of designing a two-stage model is more 476
pronounced when tested with a scarce dataset such as our 477
second task (climbing). In Table 2, the single-stage diffu- 478
sion model suffers from limited data to express full-body 479
motion and severely overfits and struggles to effectively sat- 480
isfy unseen conditions composed of multiple goals. In con- 481
trast, the key joint diffusion model in Stage 1 can generalize 482
with fewer data as we decompose complex full-body motion 483
distribution into models with lower complexity. 484

Further, we report the inference speed of our method, 485
and baseline methods in Table 5. Since we compute guid- 486
ance in stage 1 which is a lightweight 100-step diffusion 487
model, our two-stage diffusion approach achieves faster 488
sampling compared to single-stage diffusion models that 489
calculate guidance for the entire model in the final motion 490
generation phase. Note that CIRCLE [1] is a feed-forward 491
network and handles only single-goal tasks, like Task 1. 492

4.2. Adaptation to Unseen Conditions 493

Our diffusion framework can adapt to a novel scene and can 494
generalize interaction motions beyond the captured setup. 495
Table 4 contains results that deliberately use different scene 496
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Method FID ↓ Success
rate (%)

Dist. to
goal (cm)

Collision
(%)

Hand JPE
(cm)

MJPE
(cm)

Root trans.
error (cm)

Sc
en

e

CIRCLE [1] 0.471 49.75 10.72 16.31 14.23 10.32 13.84
OmniControl [59] 0.394 61.13 8.49 27.43 17.52 13.02 14.88
Ours single-stage 0.423 58.72 9.14 28.14 19.57 13.91 14.28
Ours w/o collision 0.371 52.50 7.94 31.42 22.61 14.84 16.39
Ours w/o feature 0.359 62.16 8.82 15.21 16.52 13.78 14.36
Ours 0.341 66.41 8.34 14.21 15.15 12.86 13.32

Table 4. Quantitative evaluation on the reaching an object scenario tested in novel scenes. We used different scene types for the training
and test data split.

Method CIRCLE [1] Ours Ours single-stage OmniControl [59]

Time (s) 0.28 ± 0.02 28.32 ± 0.39 52.90 ± 0.57 143.74 ± 0.71

Table 5. Inference time comparision with baselines.

(a) CIRCLE (b) OmniControl (c) Ours

Figure 6. We intentionally added additional obstacles with pink
color, and the model demonstrates the ability to generate motions
reaching a goal while avoiding collision effectively, even in unseen
environments.

types for the training and test split, demonstrating the ability497
to adapt to different scenes during the test time. Compared498
to the conventional setup in Table 1, the performance gap is499
more prominent compared to baseline methods. The scene500
feature encoding of CIRCLE contains the whole scene from501
the start to the goal during the entire movement. However,502
this feed-forward approach performs well only when the503
scene geometry is similar to those used in training and does504
not effectively transfer to different geometry. In contrast,505
our method focuses on localized geometry and performs506
flexible sampling to meet the conditions within the learned507
distribution, leading to improved adaptability to novel scene508
geometries.509

We also implement and compare against two-stage ver-510
sions without collision guidance or suggestive-path fea-511
tures. Motions without collision guidance deteriorate in512
most quantitative measures, indicating that the term is513
critical in generating more physically plausible movement514
within the scene and leading to meaningful improvements515
in task success rates. The ablation on our suggestive-path516
feature shows that the feature is effective in increasing the517
success rates.518

Figure 5 shows qualitative results on the generated mo-519
tion sequences with challenging clutters. Starting from the520
initial pose, the task is to generate a motion sequence reach-521

ing the green dot with the right hand. CIRCLE reaches the 522
target position but cannot refine the motion in the complex 523
scene geometry, resulting in collisions. OmniControl or 524
our diffusion framework with a single stage is insufficient 525
and fails to consider the local geometric context or accom- 526
plish the target task correctly. With the proposed guidance, 527
our two-stage pipeline can resolve the challenging task and 528
generate a smooth full-body motion. Figure 6 demonstrates 529
that our generated motions adapt well to new environments 530
or obstacles, aided by collision avoidance guidance with a 531
two-stage pipeline. 532

5. Conclusions 533

In summary, we introduce a novel approach to generate a 534
goal-driven human motion. Generating motion under pre- 535
defined target positions for specific body joints enables in- 536
tuitive motion synthesis and precise control over character 537
animation. Our two-stage framework can handle a complex 538
goal-driven scenario by solving simpler sub-problems. Es- 539
pecially in cluttered scenarios, our collision avoidance guid- 540
ance and lightweight scene interaction features facilitate the 541
generation of scene-aware motion. We demonstrate the per- 542
formance of our pipeline in diverse scenarios, including 543
cases that require rich interaction with multiple goals. Be- 544
cause our model is capable of flexible sampling with min- 545
imal data, our pipeline can synthesize natural goal-driven 546
motion even with a limited amount of data. 547

Limitations and Future Works Since the datasets we 548
used do not provide detailed hand motions, our model lacks 549
sophisticated interactions such as grasping objects or navi- 550
gating climbing rocks. A potential research direction is in 551
the integration of kinematic body motion priors and hand- 552
object interaction priors [2] learned through physics simula- 553
tors. Also, our method includes task-specific designs, such 554
as manually chosen key joints or toggled features, which 555
are effective for individual tasks but limit its scalability to 556
diverse tasks. This design choice reflects the unique char- 557
acteristics and requirements of each task and dataset, while 558
the development of a more generalized framework is left as 559
future work. 560
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