
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING ABSTRACTIONS FOR HIERARCHICAL
PLANNING IN PROGRAM-SYNTHESIS AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans learn abstractions and use them to plan efficiently to quickly generalize
across tasks—an ability that remains challenging for state-of-the-art large
language model (LLM) agents and deep reinforcement learning (RL) systems.
Inspired by the cognitive science of how people form abstractions and intuitive
theories of their world knowledge, Theory-Based RL (TBRL) systems, such as
TheoryCoder, exhibit strong generalization through effective use of abstractions.
However, they heavily rely on human-provided abstractions and sidestep the
abstraction-learning problem. We introduce TheoryCoder-2, a new TBRL agent
that leverages LLMs’ in-context learning ability to actively learn reusable ab-
stractions rather than relying on hand-specified ones, by synthesizing abstractions
from experience and integrating them into a hierarchical planning process. We
conduct experiments on diverse environments, including BabyAI and VGDL
games like Sokoban. We find that TheoryCoder-2 is significantly more sample-
efficient than baseline LLM agents augmented with classical planning domain
construction, reasoning-based planning, and prior program-synthesis agents such
as WorldCoder. TheoryCoder-2 is able to solve complex tasks that the baselines
fail, while only requiring minimal human prompts, unlike prior TBRL systems.

1 INTRODUCTION

A hallmark of human intelligence is the ability to plan hierarchically by combining abstract rep-
resentations with a low-level world model (Koedinger & Anderson, 1990; Balaguer et al., 2016;
Tomov et al., 2020; Correa et al., 2023). At an early age, infants understand abstract predicates like
containment and support (Casasola & Cohen, 2002); these representations form the foundation of
later skill development that enables humans to predict, manipulate, and plan in complex domains.
For example, a representation of containment is essential for constructing an abstract plan to pour
juice into a cup, which can then be combined with a low-level model of biomechanics and physics
to construct a concrete plan grounded in the physical world.

Despite impressive progress, modern artificial intelligence (AI) systems still struggle to achieve
comparable fluency with abstract planning. Taking inspiration from cognitive science (Gopnik &
Meltzoff, 1997; Gerstenberg & Tenenbaum, 2017; Lake et al., 2017), recent work on “theory-based
reinforcement learning” (TBRL) systems have sought to close this gap by endowing AI agents with
human-like world models (“theories”) that are object-oriented, relational, and causal (Tsividis et al.,
2021; Tang et al., 2025). The most advanced system of this kind, TheoryCoder (Ahmed et al.,
2025), learns a low-level world model, which is then combined with high-level abstractions to
support hierarchical planning. The performance and sample efficiency of TheoryCoder on com-
plex video games dramatically outstrips both deep reinforcement learning (RL) and large language
model (LLM) agents. By harnessing LLMs to translate past experience into inferred world models,
TheoryCoder also achieves high computational efficiency.

The main limitation of TheoryCoder is its reliance on hand-coded abstractions, which substantially
limits its scope of application. Here we address this core limitation by implementing automated
learning of abstract concepts. Our approach allows the agent not only to form and manipulate ab-
stractions, but also to ground them effectively in new domains, enabling hierarchical planning for
rapidly solving complex, novel tasks—emulating key algorithmic aspects of human learning and ab-
straction. The resulting method, TheoryCoder-2, is a TBRL agent capable of synthesizing high-level

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

abstractions in the form of “planning domain definition language” (PDDL; Ghallab et al. (1998)) op-
erators, while requiring minimal human guidance in the form of initial prompts and examples.

We conduct experiments on several tasks based on video game description language (VGDL) games
(Schaul, 2013), including Sokoban, as well as BabyAI (Chevalier-Boisvert et al., 2019). We compare
our method to several baselines based on LLMs augmented with classical planning domain construc-
tion (Liu et al., 2023a; Guan et al., 2023; Smirnov et al., 2024) and reasoning-based planning (Yao
et al., 2023b; Wei et al., 2022; Yao et al., 2023a), as well as previously proposed program-synthesis
agents such as WorldCoder (Tang et al., 2025).

We demonstrate that TheoryCoder-2 achieves substantial improvements in both sample-efficiency
and generalization over the baselines: it can successfully solve complex versions of the tasks that
the baselines fail. Overall, this represents a significant improvement in the applicability of TBRL,
and an important step towards building AI systems that learn like humans.

2 BACKGROUND

2.1 THEORY-BASED REINFORCEMENT LEARNING

Theory-Based Reinforcement Learning (TBRL) is a paradigm in which an agent uses an explicit,
program-like model of its environment and search algorithms to plan and solve problems. Unlike
traditional model-based RL methods, which either encode dynamics of the environment as tabular
transition models (Sutton, 1990; Kaelbling et al., 1996; 1998) or approximate them with deep neural
networks (Schmidhuber, 1990; 2015; Pascanu et al., 2017; Weber et al., 2017; Ha & Schmidhuber,
2018; Hafner et al., 2020), TBRL systems represent the causal interactions between objects directly
in the form of symbolic programs that describe how the environment works. TBRL is inspired by
the cognitive theory in the sense that these programs are the theories corresponding to the abstract
intuitive theories of the world that people learn and use for planning and problem solving. These
systems are able to solve problems without having to rely on random exploration, since they try to
uncover the causal relationships that have not been captured by their model. We provide a more
concrete and formal description in the next Sec. 2.2.

The earliest concrete TBRL system, EMPA (“Exploring, Modeling, and Planning Agent”; Tsividis
et al. (2021)), represented the environment using a domain-specific language, VGDL (Schaul, 2013),
and employed Bayesian inference to generate them. EMPA was computationally slow due to the cost
of inference; and VGDL itself was limiting, since it only allows expressing pairwise collision rules,
making it difficult to scale beyond simple Atari-style domains.

More recently, TheoryCoder (Ahmed et al., 2025) advanced the TBRL paradigm by representing the-
ories as Python programs—a general-purpose programming language, unlike VGDL—synthesized
using large language models (LLMs; Brown et al. (2020)). LLMs enabled fast approximate infer-
ence in TheoryCoder, thereby also resolving the slowness issue of EMPA. TheoryCoder interacts
with environments to collect inductive examples and use these to guide program synthesis. Impor-
tantly, it has introduced hierarchical (bi-level) planning by pairing low-level theories with high-level
abstractions, which are themselves high-level theories. These abstractions were expressed in the
Planning Domain Definition Language (PDDL; Ghallab et al. (1998); McDermott (2000)). These
abstractions could be transferred across tasks, enabling rapid generalization and often enabling new
levels of a game to be solved in just one or two interactions, resembling the efficiency of human
learners. TheoryCoder has effectively achieved remarkable sample efficiency and generalization
compared to other LLM agents on multiple 2D grid games, including Baba is You (Oy, 2019; Cloos
et al., 2024). Further technical details of TheoryCoder are provided in the next Sec. 2.2.

Despite these promising results, the applicability of the current generation of TheoryCoder is still
limited in that it i) is only applicable to environments that can be encoded through object-oriented
coordinate-based representations, and ii) heavily relies on hand-engineered abstractions, limiting
scalability.

The main technical contribution of our method (Sec. 3) is to address the latter, by enabling the TBRL
system to learn abstractions automatically in a few-shot manner. This capability allows TBRL agents
not only to reuse abstractions across different games but also to expand its repertoire of theories
in entirely new domains—capturing the human ability of gradually growing a library of reusable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

structured concepts—without manual intervention. We show our approach substantially improves
computational efficiency (in terms of tokens used) over the baselines of existing LLM-based agents,
and accelerates learning speed, making it a stronger step toward scalable, human-like abstraction
learning and problem solving through TBRL.

2.2 THEORYCODER

Here we describe the mathematical details of TheoryCoder (Ahmed et al., 2025), which we directly
build on. The problem is formulated as follows. The environment is modeled by a transition function
T : S ×A → S over state space S and action space A. Let K denote a positive integer. The agent’s
objective is to find a plan π = (a1, . . . , aN) with ai ∈ A for all i from 1 to N , that minimizes
cumulative cost

∑N
n=1 c(sn, an), where c(s, a) = K for non-goal states and c(s∗, a) = 0 at the

goal state s∗. Thus, an optimal plan corresponds to the shortest action sequence from the start state
to the goal.

System overview. TheoryCoder is an agent consisting of five components: an LLM, two planners
(for high-level and low-level planning, respectively) and a set of PDDL program files representing
a library of abstract states and actions (which are used by the high-level planner), as well as a
Python program file representing the world model which approximates the transition function of
the environment (which is used by the low-level planner). The LLM and planner components are
pre-specified when defining the system, and remain fixed. Essentially, learning in TheoryCoder
consists in synthesizing these program files (using the LLM) while interacting with the environment;
planning consists in executing the classic PDDL planning system and search algorithms using these
program files. The complementary roles of these program files are further described below.

High-level abstractions. The PDDL program files in TheoryCoder contain the agent’s current
library of high-level abstract domain theories. To be more specific about their structure, these PDDL
program files consist of a “domain” file and a “problem” file. The domain file specifies abstract
actions (called “operators”, e.g., “open door”) and their preconditions/effects, as well as abstract
states (e.g., “door unlocked”) which are summarized through Boolean predicates that capture task-
relevant features. The problem file specifies the initial state and goal conditions for a particular task.
Together, these files are consumed by a classic PDDL planner (we use Fast Downward (Helmert,
2006)), which outputs a plan (a sequence of operators, i.e., high-level actions) that achieves the goal
from the initial state, if one exists. In the original TheoryCoder, these PDDL files are assumed to be
given by the human engineer. Similarly, EMPA depended on a set of VGDL abstractions that it was
provided. This dependency on unlearned abstractions is the limitation we address here.

Low-level dynamics world model. TheoryCoder maintains an additional Python program T̂ gen-
erated by prompting the LLM, representing the environment’s transition function (world model),
which fully predicts the effects of low-level actions in the raw state space. Python programs are
generated using zero-shot prompting, where the instructions are to revise the current code to correct
a set of prediction errors, which are provided in the prompt. Proposed revisions are evaluated against
ground truth from the replay buffer, and if any errors remain, the LLM is re-prompted until they are
fixed (up to a fixed budget). The agent is always prompted to revise its code whenever prediction
errors occur. Observations are generated whenever the agent takes actions, and these are stored in a
replay buffer. When an agent first begins a new task, it is allowed a small amount of random explo-
ration in the low-level action space (e.g. “up”, “down”, “left”, “right”), which generates an initial
set of observations. The low-level world model is initialized as an empty function, which predicts
no changes in state as a result of any action.

Bi-level planning. Once the PDDL domain and problem files are generated, the high-level planner
(Fast Downward; Helmert, 2006) generates a symbolic plan in terms of abstract operators. The
low-level planner (in this case breadth-first search) uses the learned transition function T̂ to map
each operator to a sequence of primitive actions. A bridging “checker” function ensures consistency
by verifying that the low-level states indeed satisfy the intended high-level predicate effects. This
hierarchical framing mirrors how humans plan: abstract operators (e.g., “open door”) and predicates
(e.g., “door unlocked”) guide planning at the symbolic level, while grounding them requires concrete
motor actions (e.g., “up”, “left”, etc.).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD: THEORYCODER-2

We extend TheoryCoder by enabling it to autonomously learn abstractions (i.e., synthesize the
PDDL files) and grow a library of abstract concepts/skills through a sequence of episodes inter-
acting with various environments. We refer to this improved TBRL system as TheoryCoder-2. Here
we describe the details of the abstraction learning process of TheoryCoder-2 via LLM in-context
learning (Sec. 3.1) and the overall idea of gradually growing the library of abstractions through a
curriculum (Sec. 3.2).

3.1 LEARNING ABSTRACTIONS

Unlike the original TheoryCoder, which relied on hand-engineered PDDL files defining abstract
operators and predicates, TheoryCoder-2 leverages LLMs’ in-context learning ability to synthesize
such files on its own. In this process, the only system input we need to hand-engineer is the initial
prompt—a natural language description of the final goal of the environment and very simple exam-
ples illustrating what it means to learn abstract operators (e.g., eat with the precondition not eaten
and the effect eaten) based on a toy problem; the corresponding example can be found in Box 4 and
the complete initial prompt in Box 2 in the Appendix.

These examples are designed to be minimal; they are unrelated to the actual environment the agent
interacts with, serving only as templates for how abstractions can be represented. They are crucial
for guiding the LLM to synthesize abstractions at the appropriate level—neither too granular nor
too coarse (a challenge for current LLMs when given full autonomy). In practice, we found that no
more than one example is necessary for the agent to then form abstractions in new environments.

3.2 REUSING AND GROWING THE LIBRARY OF ABSTRACTIONS

Once the mechanism for learning abstractions is in place (Sec. 3.1), another crucial ability of ab-
straction learners is to reuse such abstractions and, if necessary, to continually generate and add new
ones to the existing library of abstractions, while interacting with new environments.

TheoryCoder-2 gradually learns and grows a library of abstract concepts through a sequence of
“episodes” interacting with different environments. Each episode can contain one or more environ-
ments that are grouped together by similarity. We assume access to a curriculum in which the agent
begins with the easiest environment and progresses to increasingly harder ones. Nevertheless, our
ablation shows that while such a curriculum improves sample efficiency, it was not essential for the
success of the abstraction-learning process itself in the domains studied here.

The agent starts with the simplest game and generates a PDDL domain and problem file for it.
Given that the curriculum is ordered and similar games are grouped together, once the agent has
successfully generated useful abstractions in the current environment, it may reuse them to quickly
solve the next few games. For example, if the main skill required to solve the first environment is
navigating to a goal, the agent may synthesize the PDDL operator move to and use it to generate
high-level plans for moving to the goal. If the environments in the next episode require the same
skill, it can reuse it, while learning new skills needed for the new environments, and so forth.

Within each episode, once the agent has learned the operators, it then learns a Python world model
exactly as in the original TheoryCoder (Sec. 2.2). In addition, it learns how to connect the Python
transition function and the PDDL abstractions by writing Python functions to map the PDDL predi-
cates onto the low-level (raw) state. That is, the agent learns the predicate classifiers using Python.
These classifiers are crucial because they are used to check whether an observation satisfies a given
predicate. If the agent encounters a similar environment where an abstraction can be reused then
only the low-level transition dynamics model is continually refined from experience. As we will
show empirically for some of the VGDL games, TheoryCoder-2 is also able to reuse the dynamics
model. Once all the main files are generated, the high-level planner will return a high-level plan and
for each high-level plan the low-level planner will find the action sequence to be directly executed
in the environment. We provide all of our prompts in the appendix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Observation PDDL + Python Policy

LLM Planner

Observation Policy

LLM

Observation PDDL

High Level Plan

LLM Planner LLM

Policy

Observation Abstractions +
High Level Plan

LLM LLM

Policy

TheoryCoder-2

LLM + π

LLM + P

TC - P

Planner

Plan

Figure 1: Comparison of agent–environment interaction between methods. WorldCoder goes
through the same process as LLM + P except it synthesizes a Python file instead of PDDL files.

4 EXPERIMENTS

Our experiments aim to answer the following set of questions: Can TheoryCoder-2 successfully
learn abstract states and actions? Are learned abstractions reusable across different environments?
Does reuse improve sample efficiency on new problems? How well does the resulting system per-
form on challenging tasks that are nontrivial for existing LLM agents?

To answer these questions, we evaluate various properties of TheoryCoder-2 and other agents in two
experimental settings: VGDL-based games: Labyrinth, Maze, and Sokoban (Sec. 4.1) and BabyAI
environments (Sec. 4.2)—each designed to evaluate a key capability of TheoryCoder-2 in isolation.

Evaluation metrics. We use the following metrics to evaluate agents: token cost (the number of
tokens consumed by each agent measures sample efficiency), compute time (Wall-clock compute
time measures the practical runtime of each agent), and solution rate (the proportion of tasks (game
levels) successfully solved on the first attempt measures agent performance).

We compare TheoryCoder-2 against the following baselines, including variation of TheoryCoder-2
in which we ablate certain components. A visual comparison between these systems can be found
in Figure 1. All of these agents use LLMs in some capacity (either the non-reasoning model 4o or
the reasoning model o4-mini).

LLM + π. A reasoning-only model that generates plans directly in terms of primitive actions,
without explicit abstractions or an executable world model. Here, we test o4-mini (OpenAI, 2025),
with high, medium, and low reasoning effort (when not indicated, we use the ‘high’ variant).

LLM + P (Liu et al., 2023a). Uses an LLM to generate PDDL domain and problem files for each
task given the current observation and a few-shot prompt. A planner produces a plan, which an LLM
then converts into a sequence of actions that are executable in the environment. We use o4-mini with
high reasoning effort as the PDDL synthesizer model, since lower-effort modes struggled even on
the earlier levels—likely because LLMs are less reliable at producing PDDL than Python code.

WorldCoder (Tang et al., 2025).The agent synthesizes a Python program representing the transition
function (therefore, this could have been denoted as “LLM + Py” in our terminology). This program

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

move_to pickup unlock

Env 1:
Labyrinth

Env 2:
Maze

Env 3:
Sokoban

Env 4:
Pickup

Env 5:
Unlock

Env 6:
Boss Level

Figure 2: An illustration of the curriculum used in our experiments. A curriculum is a sequence
of episodes in which each episode contains one or more environments/games. The sequence of
the first episode (Labyrinth) and the second one (Maze, and Sokoban) is studied in Experiment 1
(Sec. 4.1), while the entire sequence is used in Experiment 2 (Sec. 4.2). The blue arrows indicate
the abstractions that TheoryCoder-2 learned.

is used by a low-level planner to generate actions. Just as for TheoryCoder-2, we use GPT-4o as the
synthesizer and BFS as the planner. WorldCoder differs from TheoryCoder-2 in that planning and
world modeling is not done hierarchically. WorldCoder is more similar to LLM + P in that aspect,
as LLM + P is also modeling the world at a low-level only.

TheoryCoder-2. Our full system, which synthesizes PDDL operators using GPT-4o for high-level
planning, along with Python versions of the predicates and a Python transition function for low-level
dynamics, enabling grounded abstraction learning and reuse across environments. TheoryCoder-2
is different from the other agents since it models the world hierarchically by synthesizing high level
abstractions in PDDL and a low-level Python transition model. It uses the PDDL operators for
high-level planning and the low-level model for low-level planning.

We additionally evaluate two ablated variations of TheoryCoder-2:

TC - P. Removes the executable abstractions and Python world model. The LLM directly outputs
abstractions and high-level plans, and then is prompted to convert its high level plan into actions.

TC - C. Removes curriculum learning. It starts each episode with blank abstractions and transition
function. It has to synthesize all the abstractions and a transition function for the current level.

Box 1: Example of a learned abstraction (implementing an operator to move to a certain
object)

(:action moveontop
:parameters (?obj1 - object ?obj2 - object)
:precondition (not (ontop ?obj1 ?obj2))
:effect (ontop ?obj1 ?obj2)

)

4.1 EVALUATING ABSTRACTION LEARNING AND REUSING IN SIMPLE ENVIRONMENTS

The goal of this experiment is to evaluate the feasibility of abstraction learning and its reusability in
our agent. Here we evaluate the agents using Labyrinth, Maze, and Sokoban. The first segment of
Figure 2 illustrates this setting. These tasks are navigation-style VGDL games that primarily involve
learning and reusing abstractions to “move to a certain position”.

Results in the top part of Table 1 show the token cost and whether the agents successfully solved
each of the problems. First, we observe that TheoryCoder-2 is able to learn the key abstraction
move to and solve the task. (Note the LLM named this operator moveontop and the corresponding

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Token cost across models (lower is better). Cells are highlighted in blue if the correspond-
ing agent failed to solve the task.

TheoryCoder-2 Baselines

Task (Game) Full TC - P TC - C LLM + π LLM + P WorldCoder

Labyrinth 21,378 24,510 21,378 5,173 28,931 56,360
Maze 19,737 23,186 21,236 3,518 24,396 56,085
Sokoban 7,171 10,373 8,441 2,608 25,919 19,684

BabyAI (Pickup) 8,588 6,660 8,588 2,405 20,589 18,013
BabyAI (Unlock) 33,116 41,734 33,116 5,705 50,071 97,938
BabyAI (Combine Skills 1) 1,961 54,277 44,725 40,960 41,515 119,330
BabyAI (Combined Skills 2) 2,528 53,376 45,175 49,973 59,003 120,200
BabyAI (Combined Skills 3) 2,454 53,064 45,017 29,791 55,078 120,375

Total for All Tasks 96,933 267,180 227,676 140,133 305,502 367,410

code for the abstraction is shown in Box 1 below.) Second, we observe that TheoryCoder-2 was
able to reuse this operator in two new environments, Maze and Sokoban. In terms of efficiency, the
simple LLM + π baseline is the most efficient agent on these simple environments, while the second
best is TheoryCoder-2 outperforming the two advanced LLM agents, LLM + P and WorldCoder.
Finally, we note that all systems were able to solve these simple problems.

4.2 TRANSFERRING LEARNED ABSTRACTIONS TO HARDER PROBLEMS

Figure 3: Success rate as a function of com-
pute time, averaged across all games. The
TC Family represents TheoryCoder-2 and its
variants. TheoryCoder and its ablations are
able to solve more tasks with significantly
less compute time than the reasoning models
that use high reasoning effort. LLM + π is
shown with three different reasoning efforts.

The purpose of this experiment is to test whether
TheoryCoder-2 can gradually learn new abstractions
and reuse them in new environments, and whether
that yields sample efficiency. Continuing the cur-
riculum of Sec. 4.1, we add three BabyAI levels in
sequence: Pickup (single key), Unlock (key + door),
and the Boss level. The two first environments are
named after the abstract skills needed to solve corre-
sponding task, and the last one is a multi-room task
requiring both picking-up and unlocking skills. For
the Boss level, we generate three instantiations with
different layouts (based on three different seeds) in
order to increase the diversity of final combined-skill
environments. Figure 2 provides an illustration of
this curriculum.

The bottom part of Table 1 shows the token cost
and problem solving success. We first observe
that, while all the agents again solve the simple
Pickup and Unlock environments, many of them fail
in the complex Boss level: more specifically, all
agents failed in “Combined Skills 2”, while only
TheoryCoder-2 succeeded at both “Combined Skills
1” and “Combined Skills 3”. TheoryCoder-2 successfully learns abstractions (Pickup and Unlock)
from the two first levels and then composes them to solve the more complex Boss level tasks that
require using both of them.

In terms of sample efficiency, TheoryCoder-2 allocates high computation for the first and the second
levels to learn the abstractions; but its token consumption dramatically drops on the Boss level (from
about 8500 and 33000 to around 2000), as it no longer needs to learn any new abstractions if it reuses
those learned in the previous level. Furthermore, it shows that TheoryCoder-2 is able to compose
these primitive abstractions to solve different variations of the Boss levels that have different win
conditions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Notably, even when the curriculum or planners is removed, TheoryCoder-2 is capable of solving the
task; that is, both components significantly contribute to improving the sample efficiency but not to
the performance. In Table 1, we see that even when curriculum learning is removed and abstraction
files are initialized with blank files, TheoryCoder-2 remains more compute efficient than the other
world modeling approaches: WorldCoder and LLM + P. By contrast, WorldCoder is very costly,
consuming more tokens than the raw LLM approach. On the more difficult environments, we also
observed that the PDDL programs generated by LLM + P frequently contained errors, leading to
invalid or unsolvable plans.

We further compare the runtime of these agents. Fig. 3 shows the success rate averaged over all
games in the curriculum and the average compute time. We observe that the fastest agents are the
low-effort LLM + π baseline and the full TheoryCoder-2 with curriculum and planner. Notably, even
when curriculum learning is removed and TheoryCoder-2 is initialized with blank files, it remains
faster at synthesizing abstractions and solving levels than the o4-mini variants.

5 DISCUSSION

Results summary. The results highlight several key advantages of TheoryCoder-2 over the base-
lines. As shown in Fig. 3, TheoryCoder-2 and its ablations achieve the highest success rate. This
stems from the use of grounded abstractions, which reduce the likelihood of planning errors com-
pared to reasoning-only LLMs. While LLM + π with high reasoning effort sometimes achieve com-
parable solution rates, it does so at a higher token cost and much more compute time cost, making
it impractical for scalable or real-time use. On the BabyAI Boss level, o4-mini with high reason-
ing effort often required around 3 minutes to return an answer. In contrast, TheoryCoder-2 invests
compute in simpler levels to learn a reusable low-level world model, which then acts as a tool for
rapid planning in harder environments. This explains its efficiency in both token cost and runtime:
planner calls typically resolve in under a second once abstractions and dynamics are established.

With the ablation TC-P, we observed that o4-mini (high reasoning effort) produced abstractions at
a different level of granularity than our system, often interleaving high-level operators with unnec-
essary low-level details. While the LLM-generated abstractions were often reasonably high-level,
they still tended to include unnecessary low-level details. Our results suggest that the mixing in of
low-level detail may be why TC-P takes longer to map out plans, whereas TheoryCoder-2 invests
just enough compute up front to synthesize an appropriate world model. Once this model captures
the “right” abstractions, it can serve as an adaptive compute resource, allowing the agent to flexibly
balance fast, reactive reasoning with slower, more deliberate planning depending on the situation.

Limitations and future directions. Despite the significant advances, TheoryCoder-2 and TBRL
architectures still have limitations, which we plan to address in future work. First, our approach
assumes access to an object-oriented, text-based state representation. While vision-language mod-
els have shown mixed results for planning, they may serve as perception modules for extracting
such representations in simple environments; scaling to more complex settings will require robust
methods for object discovery, tracking, and attribute inference. Second, extending beyond discrete
domains to continuous ones introduces new challenges such as modeling physics (e.g., predicting
velocities and contacts). Third, we noticed issues related to brittleness when learning the predicate
classifiers, which were critical for linking high and low levels of representation in the planner, or
edge cases not covered by the learned abstractions. In particular, we observed these problems in
the boss levels of BabyAI, which included multiple doors, where TheoryCoder-2 occasionally failed
(see Table 1, “Combine Skills 2”). BabyAI’s “Combined Skills 2” is challenging because it requires
traversing a multi-room layout to reach a room on the opposite side. Along the way, the agent must
correctly infer that boxes and balls should be picked up and moved aside to clear each doorway.
This can be evaluated further by giving our agent more iterations to revise its world model.

Finally, we note an important direction of ongoing work. The experiments we presented here were
limited in that agents generated abstractions for each domain once, at the beginning of their interac-
tions in a particular domain, and did not revise them in light of new observations. We are currently
developing methods for revising abstractions through trial-and-error. One technique we are develop-
ing is to use previously learned operators, such as move to, as a bootstrapping method to generate
informative observations. Exploration patterns produced using high-level abstractions are likely to
be much more informative than completely random exploration, even if those abstractions are not

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

adequate for solving the domain. We predict that augmenting TheoryCoder-2 in this way will further
enhance agents’ ability to solve complex tasks.

6 RELATED WORK

LLMs for Planning and Synthesizing Policies. Many recent works have explored how LLMs can
be used for planning (Yao et al., 2023b; Hao et al., 2023; Zhao et al., 2024; Liu et al., 2023b). A
common approach is to provide the LLM with a text-based description of the environment state as
input and then query it to produce an action. After executing the action, the resulting text-based
state is fed back into the model, creating an interactive loop. Vision-language models have also
been applied in a similar manner (Waytowich et al., 2024; Paglieri et al., 2024; Ruoss et al., 2025;
Cloos et al., 2024), except that they are prompted with images of the environment state rather than
text-based descriptions.

Despite these advances, many frontier LLMs still struggle with spatial reasoning and are prone to
hallucinations, which limit their reliability in planning settings. To mitigate these issues, some ap-
proaches augment LLM agents with external modules or tools (Cao et al., 2025), fine-tune models on
trajectory data Gaven et al. (2024), incorporate memory modules, or prompting techniques enabling
the agent to better structure its reasoning over time. We compared TheoryCoder-2 with agents that
use the LLM as the implicit planner (Yao et al., 2023b; Wei et al., 2022; Yao et al., 2023a). We
found that while such methods can enhance reasoning, they often suffer from high compute costs,
as reasoning models take considerable time to generate answers (Hassid et al., 2025).

Program Synthesis. Several works have used program synthesis to build explicit world models of
the environment (Tang et al., 2025; Ahmed et al., 2025; Piriyakulkij et al., 2025), demonstrating
improved reasoning capabilities (Gupta & Kembhavi, 2023) compared to standard large language
models. EMPA (Tsividis et al., 2021) also uses program synthesis, though it represented the envi-
ronment in VGDL rather than a general-purpose programming language. Wong et al. (2024) showed
that LLMs can be used to learn operators for simple language-instruction domains. Liu et al. (2023a)
used LLMs to generate PDDL files and showed that in-context learning examples are important for
quality generation. Other work has investigated using vision-language models to learn predicates
(Liang et al., 2025), but these methods relied on labeled images to guide object identification, lim-
iting their autonomy. In contrast, our approach targets the end-to-end problem of generating both
the goals and the abstractions needed for hierarchical planning (assuming access to a text-based
observation of the environment’s frame).

Abstraction Learning in RL. While our focus is on program-synthesis agents and directly com-
parable LLM-based agents, abstraction learning and hierarchical planning have also been a long-
standing research topic in general reinforcement learning. Key concepts introduced in the options
framework (Sutton et al., 1999; Bacon et al., 2017), Feudal RL (Dayan & Hinton, 1992; Vezhnevets
et al., 2017), and sub-goal generation (Schmidhuber & Wahnsiedler, 1993; Bakker & Schmidhuber,
2004) remain central in modern deep RL research, including in the offline imitation learning setting
(Shiarlis et al., 2018; Kipf et al., 2019; Lu et al., 2021; Gopalakrishnan et al., 2023). Similarly, many
recent methods have pushed the sample efficiency of purely neural network model-based RL (Schrit-
twieser et al., 2020; Hafner et al., 2023), matching human learners’ efficiency in certain domains (Ye
et al., 2021). However, in general, deep RL methods still remain much less sample efficient, and
have lower generalization abilities, compared to neurosymbolic and program synthesis-based agents
as have been reported by prior work (Tang et al., 2025; Tsividis et al., 2021). Here, our contribution
was to push the current limitation of such a neurosymbolic approach.

7 CONCLUSION

We expanded the scope and efficiency of TBRL by enabling abstraction induction and reuse—a
critical step towards making TBRL free of human engineering. We experimentally demonstrated
that a novel TBRL system, TheoryCoder-2, is capable of gradually learning reusable abstractions,
yielding both improved sample efficiency and solution rates over several baseline LLM agents based
on LLMs. Future work will extend TBRL further to make it applicable to environments beyond those
with object-oriented, text-based state representations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

After the discussion forums open, we will make a comment directed to the reviewers and area chairs
with a link to our anonymous code repository. We will clean up the code and release it in a public
GitHub repository upon acceptance, including all the prompts used in our experiments (which are
also provided in Appendix A). Our codebase builds on the publicly available code of the original
TheoryCoder (Ahmed et al., 2025).

REFERENCES

Zergham Ahmed, Joshua B. Tenenbaum, Chris Bates, and Samuel J. Gershman. Synthesizing world
models for bilevel planning. Transactions on Machine Learning Research (TMLR), 2025.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proc. AAAI Conf.
on Artificial Intelligence, San Francisco, California, USA, 2017.

Bram Bakker and Jürgen Schmidhuber. Hierarchical reinforcement learning based on subgoal dis-
covery and subpolicy specialization. In Proc. Conf. on Intelligent Autonomous Systems, pp. 438–
445, Amsterdam, Netherlands, March 2004.

Jan Balaguer, Hugo Spiers, Demis Hassabis, and Christopher Summerfield. Neural mechanisms of
hierarchical planning in a virtual subway network. Neuron, 90(4):893–903, 2016.

Tom B Brown et al. Language models are few-shot learners. In Proc. Advances in Neural Informa-
tion Processing Systems (NeurIPS), Virtual only, December 2020.

Pengfei Cao, Tianyi Men, Wencan Liu, Jingwen Zhang, Xuzhao Li, Xixun Lin, Dianbo Sui, Yanan
Cao, Kang Liu, and Jun Zhao. Large language models for planning: A comprehensive and sys-
tematic survey. Preprint arXiv:2505.19683, 2025.

Marianella Casasola and Leslie B Cohen. Infant categorization of containment, support and tight-fit
spatial relationships. Developmental Science, 5:247–264, 2002.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In Int. Conf. on Learning Representations (ICLR), 2019.

Nathan Cloos, Meagan Jens, Michelangelo Naim, Yen-Ling Kuo, Ignacio Cases, Andrei Barbu, and
Christopher J Cueva. Baba is AI: Break the rules to beat the benchmark. In ICML 2024 Workshop
on LLMs and Cognition, 2024.

Carlos G Correa, Mark K Ho, Frederick Callaway, Nathaniel D Daw, and Thomas L Griffiths.
Humans decompose tasks by trading off utility and computational cost. PLoS Computational
Biology, 19(6):e1011087, 2023.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), pp. 271–278, December 1992.

Loris Gaven, Clement Romac, Thomas Carta, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Sac-glam: Improving online rl for llm agents with soft actor-critic and hindsight rela-
beling. Preprint arXiv:2410.12481, 2024.

Tobias Gerstenberg and Joshua B. Tenenbaum. Intuitive theories. In The Oxford Handbook of
Causal Reasoning. Oxford University Press, 06 2017.

Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, David Christianson, Mark Fried-
man, Clement Kwok, Keith Golden, Steve Penberthy, David Smith, Yixin Sun, and Daniel Weld.
PDDL - the planning domain definition language. Technical report, AIPS, 1998.

Anand Gopalakrishnan, Kazuki Irie, Jürgen Schmidhuber, and Sjoerd van Steenkiste. Unsupervised
learning of temporal abstractions with slot-based transformers. Neural Computation, 35(4):593–
626, 2023.

A Gopnik and AN Meltzoff. Words, Thoughts, and Theories. MIT Press, 1997.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. Advances in Neural Information Processing Systems, 36:79081–79094, 2023.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Proc.
Advances in Neural Information Processing Systems (NeurIPS), December 2018.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In Int. Conf. on Learning Representations (ICLR), Virtual
only, April 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. Preprint arXiv:2301.04104, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), Singapore, December 2023.

Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don’t overthink it. preferring
shorter thinking chains for improved llm reasoning. Preprint arXiv:2505.17813, 2025.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinı́cius Flores Zambaldi, Alvaro Sanchez-Gonzalez, Edward
Grefenstette, Pushmeet Kohli, and Peter W. Battaglia. CompILE: Compositional imitation learn-
ing and execution. In Proc. Int. Conf. on Machine Learning (ICML), pp. 3418–3428, Long Beach,
CA, USA, June 2019.

Kenneth R Koedinger and John R Anderson. Abstract planning and perceptual chunks: Elements of
expertise in geometry. Cognitive Science, 14(4):511–550, 1990.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017.

Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B. Tenenbaum, Tom Silver,
João F. Henriques, and Kevin Ellis. Visualpredicator: Learning abstract world models with neuro-
symbolic predicates for robot planning. In International Conference on Learning Representations
(ICLR), 2025.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LLM+ P: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Rea-
son for future, act for now: A principled framework for autonomous LLM agents with provable
sample efficiency. Preprint arXiv:2309.17382, 2023b.

Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron Courville, Joshua B. Tenenbaum, and Chuang Gan.
Learning task decomposition with ordered memory policy network. In Int. Conf. on Learning
Representations (ICLR), Virtual only, May 2021.

Drew M McDermott. The 1998 AI planning systems competition. AI Mgazine, 21(2):35–35, 2000.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. Openai o3 and o4-mini system card. System card, OpenAI, April 2025. URL https:
//openai.com/index/o3-o4-mini-system-card/.

Hempuli Oy. Baba is you. Game released on PC, Nintendo Switch, and other platforms, 2019.
Available at https://hempuli.com/baba.

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Bench-
marking agentic llm and vlm reasoning on games. arXiv preprint arXiv:2411.13543, 2024.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racanière, David
Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning
from scratch. Preprint arXiv:1707.06170, 2017.

Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, and Kevin Ellis.
PoE-world: Compositional world modeling with products of programmatic experts. Preprint
arXiv:2505.10819, 2025.

Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein. LMAct:
A benchmark for in-context imitation learning with long multimodal demonstrations. In Proc.
Int. Conf. on Machine Learning (ICML), 2025.

Tom Schaul. A video game description language for model-based or interactive learning. In 2013
IEEE Conference on Computational Inteligence in Games (CIG), pp. 1–8. IEEE, 2013.

Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised
neural networks for dynamic reinforcement learning and planning in non-stationary environments.
Technical Report FKI-126-90, Tech. Univ. Munich, 1990.

Jürgen Schmidhuber. On learning to think: Algorithmic information theory for novel combi-
nations of reinforcement learning controllers and recurrent neural world models. Preprint
arXiv:1511.09249, 2015.

Jürgen Schmidhuber and Reiner Wahnsiedler. Planning simple trajectories using neural subgoal
generators. In Proc. Int. Conf. on From Animals to Animats 2: Simulation of Adaptive Behavior,
pp. 196–202, August 1993.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. TACO:
Learning task decomposition via temporal alignment for control. In Proc. Int. Conf. on Machine
Learning (ICML), pp. 4654–4663, Stockholm, Sweden, July 2018.

Pavel Smirnov, Frank Joublin, Antonello Ceravola, and Michael Gienger. Generating consistent
PDDL domains with large language models. Preprint arXiv:2404.07751, 2024.

Richard S. Sutton. Integrated modeling and control based on reinforcement learning. In Proc.
Advances in Neural Information Processing Systems (NIPS), pp. 471–478, Denver, CO, USA,
November 1990.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Hao Tang, Darren Yan Key, and Kevin Ellis. WorldCoder, a model-based LLM agent: Building
world models by writing code and interacting with the environment. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2025.

Momchil S Tomov, Samyukta Yagati, Agni Kumar, Wanqian Yang, and Samuel J Gershman. Dis-
covery of hierarchical representations for efficient planning. PLoS Computational Biology, 16(4):
e1007594, 2020.

12

https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://hempuli.com/baba

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy, Samuel J
Gershman, and Joshua B Tenenbaum. Human-level reinforcement learning through theory-based
modeling, exploration, and planning. Preprint arXiv:2107.12544, 2021.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. FeUdal networks for hierarchical reinforcement learning. In
Proc. Int. Conf. on Machine Learning (ICML), pp. 3540–3549, Sydney, Australia, August 2017.

Nicholas R Waytowich, Devin White, MD Sunbeam, and Vinicius G Goecks. Atari-GPT: Investi-
gating the capabilities of multimodal large language models as low-level policies for Atari games.
Preprint arXiv:2408.15950, 2024.

Theophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter W. Battaglia, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. In Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 5690–5701, Long Beach, CA, USA, December 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Proc. Ad-
vances in Neural Information Processing Systems (NeurIPS), 35:24824–24837, 2022.

Lio Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S. Siegel, Jiahai Feng, Noa Korneev, Joshua B.
Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natural lan-
guage guidance. In International Conference on Learning Representations (ICLR), 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Proc.
Advances in Neural Information Processing Systems (NeurIPS), 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In Int. Conf. on Learning Repre-
sentations (ICLR), Kigali, Rwanda, May 2023b.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp.
25476–25488, Virtual only, December 2021.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Proc. Advances in Neural Information Processing Systems (NeurIPS),
36, 2024.

A LANGUAGE MODEL PROMPTS

Here we provide all the prompts used in our experiments, as follows:

• Box 2: Prompt used to Generate PDDL Files

• Box 3: An example of an in-context example for PDDL generation

• Box 4: Another example of an in-context example for PDDL generation

• Box 5: One more example of an in-context example for PDDL generation

• Box 6: Prompt to generate Python predicates

• Box 7: Prompt for abstraction transfer (to generate only the problem file)

• Box 8: Prompt to generate low-level world model

• Domain descriptions for Labythinth and Maze (Box 11), Sokoban (Box 9), and BabyAI
(Box 10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Box 2: Generate PDDL Files Prompt

You are an agent playing a 2D grid game, whose raw state is shown
below.

Can you give me a minimal PDDL domain and problem file for this
setup that will allow the agent to win the game? Think in terms
of the most minimal abstract files you can.

Each object in your PDDL problem file is named using ONLY the keys
of the raw state dictionary.

DO NOT PROPOSE PREDCIATES THAT IMPLY SPATIAL RELATIONS LIKE FROM OR
TO!!!!!

Domain Description:

{domain_description)

In your PDDL problem file do not represent configuration attributes
when writing objects

for example for unopened_black_jar you can represent it as black_jar
. See example 2 and example 3!!!!!!!

Feel free to propose multiple operators, and predicates at once.
Also you may have two goals in the problem file.

The raw state dictionary keys are considered traversable.

Return your code blocks with
‘‘‘pddl ‘‘‘
markup tags so I can easily extract it.

Do NOT use symbols like "-" for the predicate names. For example,
the predicate "avatar-at" should NOT be proposed since it has a
"-".

Please use all LOWERCASE for the operator names as well!!!!!!!!!!

Do not name your PDDL DOMAIN FILE DO NOT name predicates:
if, else, in, def, or any other typical python name

predicate names should exactly be one word no underscores in it
either

Few shot example of what a nice abstraction domain and problem file
should look like:

{few_shot_PDDL_file_examples}

Raw state of game (generate the files for this):

{raw_state}

YOUR CURRENT DOMAIN FILE YOU HAVE SYNTHESIZED:

{current_domain}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Box 3: Few Shot PDDL Example 1

state is ’table’: [3, 4], ’mug’, [4, 4]

(define (domain toy-domain)
(:requirements :strips :typing)

(:types
object

)

(:predicates
(ontop ?x - object ?y - object)

)

(:action placeontopof
:parameters (?obj1 - object ?obj2 - object)
:precondition (not (ontop ?obj1 ?obj2))
:effect (ontop ?obj1 ?obj2)

)
)

(define (problem toy-problem)
(:domain toy-domain)

(:objects
table mug - object

)

(:init
;; Initially nothing is on top of anything
(not (ontop mug table))

)

(:goal
; mug will overlap with table ’table’: [4, 4], ’mug’, [4, 4]
(ontop mug table)

)
)

Box 4: Few Shot PDDL Example 2

state is ’agent’: [3, 4], ’apple’: [5, 4], ’vines’: [4,4], ’axe
’[1,4], ’unopened_black_jar: [0,1]’

(define (domain toy-domain)
(:requirements :strips :typing)

(:types
object

)

(:predicates
(eaten ?x - object ?y - object)

)

(:action eat
:parameters (?obj1 - object ?obj2 - object)
:precondition (not (eaten ?obj1 ?obj2))
:effect (eaten ?obj1 ?obj2)

)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

)

(define (problem toy-problem)
(:domain toy-domain)

(:objects
agent apple black_jar - object

)

(:init
(not (eaten agent apple))

)

(:goal
(eaten agent apple)

)
)

Box 5: Few Shot PDDL Example 3

BEGIN EXAMPLE 3

state is ’agent’: [6, 3], ’blocked_gold_window’: [4,4], ’
unblocked_silver_window’: [1,4]

(define (domain toy-domain)
(:requirements :strips :typing)

(:types
object

)

(:predicates
(unblocked ?x - object)

)

(:action clear
:parameters (?x - object)
:precondition (not (unblocked ?x))
:effect (unblocked ?x)

)
)

(define (problem toy-problem)
(:domain toy-domain)

(:objects
agent apple gold_window - object

)

(:init
; the end goal is to eat the apple
(not (unblocked gold_window))

)

(:goal
(unblocked gold_window)

)
)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Box 6: Python Predicate Generate Prompt

You are a software engineer that must write python predicates. These
python predicates have to be python versions of the PDDL
operators that are functions which take the states and arguments
and returns either True or False. You will need to write Python
predicates for all the predicates you see in the domain file.

The problem file, and Raw State is also given to help guide you.

Return your code blocks with
‘‘‘python ‘‘‘
markup tags so I can easily extract it.

BEGIN EXAMPLE

predicate: predicate: isLeftOfop(arg1, arg2)

def isLeftOf(state, arg1, arg2):
"""
Returns True if arg1 is to the left of arg2, based on their x-

coordinates.

Parameters:
- state: dict with keys as object names and values as [x, y]

positions
- arg1: object name (e.g., ’book’)
- arg2: object name (e.g., ’lamp’)

Returns:
- bool: True if arg1’s x-coordinate is less than arg2’s, False

otherwise
"""
pos1 = state.get(arg1)
pos2 = state.get(arg2)
if pos1 is None or pos2 is None:

return False
return pos1[0] < pos2[0]

END EXAMPLE

Make sure that you always have state as one of the arguments!

Only synthesize the predicate you see in the domain file and make
sure

to give it the same name!

Domain File:

{domain_file}

Problem File:

{problem_file}

Raw State:

{raw_state}

Current Python Low Level World Model:

{world_model}

Game Description:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

{game_description}

Box 7: Transfer Abstraction (Generate Only Problem File)

You are an agent playing a 2D grid game, whose raw state is shown
below.

Can you give me a PDDL problem file for this given PDDL domain file
that will allow the agent to win the game?

Each object in your PDDL problem file is named using ONLY the keys
of the raw state dictionary.

You are allowed to specify multiple goals in your problem file!
Please think about the preconditions and effects carefully.

MAKE SURE TO DOUBLE CHECK AT THE END THAT YOU SPECIFIED MULTIPLE :
GOALS IN THE PROBLEM FILE

JUST BECAUSE YOU HAVE ONE MISSION DOESN’T MEAN YOU WILL USE THAT
MISSION AS THE SINGLE GOAL

for example you would maybe need to do a subgoal in order to achieve
the mission!! DO NOT JUST ASSUME ONE GOAL in problem file

Return your code blocks with
‘‘‘pddl ‘‘‘
markup tags so I can easily extract it.

{few_shot_PDDL_file_examples}

Domain file you need to use (generate the problem file for this):

{domain_file}

Raw state of game (generate the problem file for this):

{raw_state}

MISSION:

{mission}

Domain Description:

{domain_description}

Box 8: Generate Low level World Model

You are an AI agent that must come up with a transition model of the
game you are playing.

A BFS low-level planner that will use your synthesized transition
model to find the low-level actions that will allow you to win
levels of the game.

You are also given state transition after executing random actions
that will help as well.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Note that if there is no change returned after doing that action, it
means that moving was prevented somehow such as by an obstacle.

DESCRIPTION OF DOMAIN:

{domain_description}

CURRENT STATE:

{current_state}

ACTION SPACE:

{actions_set}

Replay Buffer (last {num_random_actions} transitions):

{errors_from_world_model}

UTILS:

{utils}

RESPONSE FORMAT:

- Make sure you use .get() to access the dictionary to avoid key
errors!

For example:
avatar_pos = new_state.get(’avatar’) to get avatar pos
cake_pos = new_state.get(’cake’) to get cake pos

‘‘‘python

make sure to include these import statements
from utils import directions

def transition_model(state, action):

Return State

‘‘‘

Box 9: Sokoban Domain Description

In this domain, you have to push the boxes into the holes to win. If
you push the box into the hole, the box will disappear.

Box 10: BabyAI Domain Description

The agent needs to navigate the maze to win. If the agent is facing
a key, it can pick it up.

The agent can also unlock doors in which case the door will become
open_COLORNAME_door in the state.

For this environment the state key ‘agent_carrying‘ is a list of
object names the agent currently holds (e.g., ‘[’red_key’]‘).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

When a door is unlocked it will turn from locked_ to open_ (e.g., ’
locked_blue_door’ -> ’open_blue_door’).

When a closed door is opened it will turn from closed_ to open_ (e.g
., ’closed_blue_door’ -> ’open_blue_door’).

You can toggle any closed doors to open them and locked ones when
you have their COLOR_key

You cannot move forward through closed_ doors unless they are _open
So you will need to toggle them
so closed_ doors are essentially similar to grey walls in that they

block you

In the game you cannot overlap with any objects, to pickup the key
you need to be adjacent to it and facing it.

Box 11: Maze and Labyrinth Domain Description

In this domain, you control the avatar and need to reach the goal.
If you touch a trap you will die.

20

	Introduction
	Background
	Theory-based Reinforcement Learning
	TheoryCoder

	Method: TheoryCoder-2
	Learning Abstractions
	Reusing and Growing the Library of Abstractions

	Experiments
	Evaluating Abstraction Learning and Reusing in Simple Environments
	Transferring learned abstractions to harder problems

	Discussion
	Related Work
	Conclusion
	Language Model Prompts

