Under review as a conference paper at ICLR 2026

LEARNING ABSTRACTIONS FOR HIERARCHICAL
PLANNING IN PROGRAM-SYNTHESIS AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans learn abstractions and use them to plan efficiently to quickly generalize
across tasks—an ability that remains challenging for state-of-the-art large
language model (LLM) agents and deep reinforcement learning (RL) systems.
Inspired by the cognitive science of how people form abstractions and intuitive
theories of their world knowledge, Theory-Based RL (TBRL) systems, such as
TheoryCoder, exhibit strong generalization through effective use of abstractions.
However, they heavily rely on human-provided abstractions and sidestep the
abstraction-learning problem. We introduce TheoryCoder-2, a new TBRL agent
that leverages LLMs’ in-context learning ability to actively learn reusable ab-
stractions rather than relying on hand-specified ones, by synthesizing abstractions
from experience and integrating them into a hierarchical planning process. We
conduct experiments on diverse environments, including BabyAl and VGDL
games like Sokoban. We find that TheoryCoder-2 is significantly more sample-
efficient than baseline LLM agents augmented with classical planning domain
construction, reasoning-based planning, and prior program-synthesis agents such
as WorldCoder. TheoryCoder-2 is able to solve complex tasks that the baselines
fail, while only requiring minimal human prompts, unlike prior TBRL systems.

1 INTRODUCTION

A hallmark of human intelligence is the ability to plan hierarchically by combining abstract rep-
resentations with a low-level world model (Koedinger & Anderson, 1990; Balaguer et al., 2016;
Tomov et al., 2020; Correa et al., 2023). At an early age, infants understand abstract predicates like
containment and support (Casasola & Cohen, 2002); these representations form the foundation of
later skill development that enables humans to predict, manipulate, and plan in complex domains.
For example, a representation of containment is essential for constructing an abstract plan to pour
juice into a cup, which can then be combined with a low-level model of biomechanics and physics
to construct a concrete plan grounded in the physical world.

Despite impressive progress, modern artificial intelligence (Al) systems still struggle to achieve
comparable fluency with abstract planning. Taking inspiration from cognitive science (Gopnik &
Meltzoff, 1997; Gerstenberg & Tenenbaum, 2017; Lake et al., 2017), recent work on “theory-based
reinforcement learning” (TBRL) systems have sought to close this gap by endowing Al agents with
human-like world models (“theories”) that are object-oriented, relational, and causal (Tsividis et al.,
2021; Tang et al., 2025). The most advanced system of this kind, TheoryCoder (Ahmed et al.,
2025), learns a low-level world model, which is then combined with high-level abstractions to
support hierarchical planning. The performance and sample efficiency of TheoryCoder on com-
plex video games dramatically outstrips both deep reinforcement learning (RL) and large language
model (LLM) agents. By harnessing LLMs to translate past experience into inferred world models,
TheoryCoder also achieves high computational efficiency.

The main limitation of TheoryCoder is its reliance on hand-coded abstractions, which substantially
limits its scope of application. Here we address this core limitation by implementing automated
learning of abstract concepts. Our approach allows the agent not only to form and manipulate ab-
stractions, but also to ground them effectively in new domains, enabling hierarchical planning for
rapidly solving complex, novel tasks—emulating key algorithmic aspects of human learning and ab-
straction. The resulting method, TheoryCoder-2, is a TBRL agent capable of synthesizing high-level

Under review as a conference paper at ICLR 2026

abstractions in the form of “planning domain definition language” (PDDL; Ghallab et al. (1998)) op-
erators, while requiring minimal human guidance in the form of initial prompts and examples.

We conduct experiments on several tasks based on video game description language (VGDL) games
(Schaul, 2013), including Sokoban, as well as Baby Al (Chevalier-Boisvert et al., 2019). We compare
our method to several baselines based on LLMs augmented with classical planning domain construc-
tion (Liu et al., 2023a; Guan et al., 2023; Smirnov et al., 2024) and reasoning-based planning (Yao
et al., 2023b; Wei et al., 2022; Yao et al., 2023a), as well as previously proposed program-synthesis
agents such as WorldCoder (Tang et al., 2025).

We demonstrate that TheoryCoder-2 achieves substantial improvements in both sample-efficiency
and generalization over the baselines: it can successfully solve complex versions of the tasks that
the baselines fail. Overall, this represents a significant improvement in the applicability of TBRL,
and an important step towards building Al systems that learn like humans.

2 BACKGROUND

2.1 THEORY-BASED REINFORCEMENT LEARNING

Theory-Based Reinforcement Learning (TBRL) is a paradigm in which an agent uses an explicit,
program-like model of its environment and search algorithms to plan and solve problems. Unlike
traditional model-based RL methods, which either encode dynamics of the environment as tabular
transition models (Sutton, 1990; Kaelbling et al., 1996; 1998) or approximate them with deep neural
networks (Schmidhuber, 1990; 2015; Pascanu et al., 2017; Weber et al., 2017; Ha & Schmidhuber,
2018; Hafner et al., 2020), TBRL systems represent the causal interactions between objects directly
in the form of symbolic programs that describe how the environment works. TBRL is inspired by
the cognitive theory in the sense that these programs are the theories corresponding to the abstract
intuitive theories of the world that people learn and use for planning and problem solving. These
systems are able to solve problems without having to rely on random exploration, since they try to
uncover the causal relationships that have not been captured by their model. We provide a more
concrete and formal description in the next Sec. 2.2.

The earliest concrete TBRL system, EMPA (“Exploring, Modeling, and Planning Agent”; Tsividis
etal. (2021)), represented the environment using a domain-specific language, VGDL (Schaul, 2013),
and employed Bayesian inference to generate them. EMPA was computationally slow due to the cost
of inference; and VGDL itself was limiting, since it only allows expressing pairwise collision rules,
making it difficult to scale beyond simple Atari-style domains.

More recently, TheoryCoder (Ahmed et al., 2025) advanced the TBRL paradigm by representing the-
ories as Python programs—a general-purpose programming language, unlike VGDL—synthesized
using large language models (LLMs; Brown et al. (2020)). LLMs enabled fast approximate infer-
ence in TheoryCoder, thereby also resolving the slowness issue of EMPA. TheoryCoder interacts
with environments to collect inductive examples and use these to guide program synthesis. Impor-
tantly, it has introduced hierarchical (bi-level) planning by pairing low-level theories with high-level
abstractions, which are themselves high-level theories. These abstractions were expressed in the
Planning Domain Definition Language (PDDL; Ghallab et al. (1998); McDermott (2000)). These
abstractions could be transferred across tasks, enabling rapid generalization and often enabling new
levels of a game to be solved in just one or two interactions, resembling the efficiency of human
learners. TheoryCoder has effectively achieved remarkable sample efficiency and generalization
compared to other LLM agents on multiple 2D grid games, including Baba is You (Oy, 2019; Cloos
et al., 2024). Further technical details of TheoryCoder are provided in the next Sec. 2.2.

Despite these promising results, the applicability of the current generation of TheoryCoder is still
limited in that it 1) is only applicable to environments that can be encoded through object-oriented
coordinate-based representations, and ii) heavily relies on hand-engineered abstractions, limiting
scalability.

The main technical contribution of our method (Sec. 3) is to address the latter, by enabling the TBRL
system to learn abstractions automatically in a few-shot manner. This capability allows TBRL agents
not only to reuse abstractions across different games but also to expand its repertoire of theories
in entirely new domains—capturing the human ability of gradually growing a library of reusable

Under review as a conference paper at ICLR 2026

structured concepts—without manual intervention. We show our approach substantially improves
computational efficiency (in terms of tokens used) over the baselines of existing LLM-based agents,
and accelerates learning speed, making it a stronger step toward scalable, human-like abstraction
learning and problem solving through TBRL.

2.2 THEORYCODER

Here we describe the mathematical details of TheoryCoder (Ahmed et al., 2025), which we directly
build on. The problem is formulated as follows. The environment is modeled by a transition function
T :S8 x A — S over state space S and action space A. Let K denote a positive integer. The agent’s
objective is to find a plan 7 = (a1,...,ay) with a; € A for all ¢ from 1 to N, that minimizes

cumulative cost ZnNzl ¢(8n,an), where ¢(s,a) = K for non-goal states and ¢(s*,a) = 0 at the
goal state s*. Thus, an optimal plan corresponds to the shortest action sequence from the start state
to the goal.

System overview. TheoryCoder is an agent consisting of five components: an LLM, two planners
(for high-level and low-level planning, respectively) and a set of PDDL program files representing
a library of abstract states and actions (which are used by the high-level planner), as well as a
Python program file representing the world model which approximates the transition function of
the environment (which is used by the low-level planner). The LLM and planner components are
pre-specified when defining the system, and remain fixed. Essentially, learning in TheoryCoder
consists in synthesizing these program files (using the LLM) while interacting with the environment;
planning consists in executing the classic PDDL planning system and search algorithms using these
program files. The complementary roles of these program files are further described below.

High-level abstractions. The PDDL program files in TheoryCoder contain the agent’s current
library of high-level abstract domain theories. To be more specific about their structure, these PDDL
program files consist of a “domain” file and a “problem” file. The domain file specifies abstract
actions (called “operators”, e.g., “open door”) and their preconditions/effects, as well as abstract
states (e.g., “door unlocked”) which are summarized through Boolean predicates that capture task-
relevant features. The problem file specifies the initial state and goal conditions for a particular task.
Together, these files are consumed by a classic PDDL planner (we use Fast Downward (Helmert,
2006)), which outputs a plan (a sequence of operators, i.e., high-level actions) that achieves the goal
from the initial state, if one exists. In the original TheoryCoder, these PDDL files are assumed to be
given by the human engineer. Similarly, EMPA depended on a set of VGDL abstractions that it was
provided. This dependency on unlearned abstractions is the limitation we address here.

Low-level dynamics world model. TheoryCoder maintains an additional Python program T gen-
erated by prompting the LLM, representing the environment’s transition function (world model),
which fully predicts the effects of low-level actions in the raw state space. Python programs are
generated using zero-shot prompting, where the instructions are to revise the current code to correct
a set of prediction errors, which are provided in the prompt. Proposed revisions are evaluated against
ground truth from the replay buffer, and if any errors remain, the LLM is re-prompted until they are
fixed (up to a fixed budget). The agent is always prompted to revise its code whenever prediction
errors occur. Observations are generated whenever the agent takes actions, and these are stored in a
replay buffer. When an agent first begins a new task, it is allowed a small amount of random explo-
ration in the low-level action space (e.g. “up”, “down”, “left”, “right”), which generates an initial
set of observations. The low-level world model is initialized as an empty function, which predicts
no changes in state as a result of any action.

Bi-level planning. Once the PDDL domain and problem files are generated, the high-level planner
(Fast Downward; Helmert, 2006) generates a symbolic plan in terms of abstract operators. The
low-level planner (in this case breadth-first search) uses the learned transition function T to map
each operator to a sequence of primitive actions. A bridging “checker” function ensures consistency
by verifying that the low-level states indeed satisfy the intended high-level predicate effects. This
hierarchical framing mirrors how humans plan: abstract operators (e.g., “open door”) and predicates
(e.g., “door unlocked”) guide planning at the symbolic level, while grounding them requires concrete
motor actions (e.g., “up”, “left”, etc.).

Under review as a conference paper at ICLR 2026

3 METHOD: THEORYCODER-2

We extend TheoryCoder by enabling it to autonomously learn abstractions (i.e., synthesize the
PDDL files) and grow a library of abstract concepts/skills through a sequence of episodes inter-
acting with various environments. We refer to this improved TBRL system as TheoryCoder-2. Here
we describe the details of the abstraction learning process of TheoryCoder-2 via LLM in-context
learning (Sec. 3.1) and the overall idea of gradually growing the library of abstractions through a
curriculum (Sec. 3.2).

3.1 LEARNING ABSTRACTIONS

Unlike the original TheoryCoder, which relied on hand-engineered PDDL files defining abstract
operators and predicates, TheoryCoder-2 leverages LLMs’ in-context learning ability to synthesize
such files on its own. In this process, the only system input we need to hand-engineer is the initial
prompt—a natural language description of the final goal of the environment and very simple exam-
ples illustrating what it means to learn abstract operators (e.g., eat with the precondition not eaten
and the effect eaten) based on a toy problem; the corresponding example can be found in Box 4 and
the complete initial prompt in Box 2 in the Appendix.

These examples are designed to be minimal; they are unrelated to the actual environment the agent
interacts with, serving only as templates for how abstractions can be represented. They are crucial
for guiding the LLM to synthesize abstractions at the appropriate level—neither too granular nor
too coarse (a challenge for current LLMs when given full autonomy). In practice, we found that no
more than one example is necessary for the agent to then form abstractions in new environments.

3.2 REUSING AND GROWING THE LIBRARY OF ABSTRACTIONS

Once the mechanism for learning abstractions is in place (Sec. 3.1), another crucial ability of ab-
straction learners is to reuse such abstractions and, if necessary, to continually generate and add new
ones to the existing library of abstractions, while interacting with new environments.

TheoryCoder-2 gradually learns and grows a library of abstract concepts through a sequence of
“episodes” interacting with different environments. Each episode can contain one or more environ-
ments that are grouped together by similarity. We assume access to a curriculum in which the agent
begins with the easiest environment and progresses to increasingly harder ones. Nevertheless, our
ablation shows that while such a curriculum improves sample efficiency, it was not essential for the
success of the abstraction-learning process itself in the domains studied here.

The agent starts with the simplest game and generates a PDDL domain and problem file for it.
Given that the curriculum is ordered and similar games are grouped together, once the agent has
successfully generated useful abstractions in the current environment, it may reuse them to quickly
solve the next few games. For example, if the main skill required to solve the first environment is
navigating to a goal, the agent may synthesize the PDDL operator move_to and use it to generate
high-level plans for moving to the goal. If the environments in the next episode require the same
skill, it can reuse it, while learning new skills needed for the new environments, and so forth.

Within each episode, once the agent has learned the operators, it then learns a Python world model
exactly as in the original TheoryCoder (Sec. 2.2). In addition, it learns how to connect the Python
transition function and the PDDL abstractions by writing Python functions to map the PDDL predi-
cates onto the low-level (raw) state. That is, the agent learns the predicate classifiers using Python.
These classifiers are crucial because they are used to check whether an observation satisfies a given
predicate. If the agent encounters a similar environment where an abstraction can be reused then
only the low-level transition dynamics model is continually refined from experience. As we will
show empirically for some of the VGDL games, TheoryCoder-2 is also able to reuse the dynamics
model. Once all the main files are generated, the high-level planner will return a high-level plan and
for each high-level plan the low-level planner will find the action sequence to be directly executed
in the environment. We provide all of our prompts in the appendix.

Under review as a conference paper at ICLR 2026

Observation PDDL + Python High Level Plan Policy
N
TheoryCoder-2 |:> < / >
LLM Planner Planner
Observation Policy
LLM + T @ |:> ' |
LLM
Observation PDDL Plan Policy
AN
LLm+P |:> </> |::> ' l
LLM Planner LLM
" Abstractions + .
Observation High Level Plan Policy
AN
TC-P |:> |::> ' l
LLM LLM

Figure 1: Comparison of agent—environment interaction between methods. WorldCoder goes
through the same process as LLM + P except it synthesizes a Python file instead of PDDL files.

4 EXPERIMENTS

Our experiments aim to answer the following set of questions: Can TheoryCoder-2 successfully
learn abstract states and actions? Are learned abstractions reusable across different environments?
Does reuse improve sample efficiency on new problems? How well does the resulting system per-
form on challenging tasks that are nontrivial for existing LLM agents?

To answer these questions, we evaluate various properties of TheoryCoder-2 and other agents in two
experimental settings: VGDL-based games: Labyrinth, Maze, and Sokoban (Sec. 4.1) and BabyAl
environments (Sec. 4.2)—each designed to evaluate a key capability of TheoryCoder-2 in isolation.

Evaluation metrics. We use the following metrics to evaluate agents: foken cost (the number of
tokens consumed by each agent measures sample efficiency), compute time (Wall-clock compute
time measures the practical runtime of each agent), and solution rate (the proportion of tasks (game
levels) successfully solved on the first attempt measures agent performance).

We compare TheoryCoder-2 against the following baselines, including variation of TheoryCoder-2
in which we ablate certain components. A visual comparison between these systems can be found
in Figure 1. All of these agents use LLMs in some capacity (either the non-reasoning model 40 or
the reasoning model o4-mini).

LLM + 7. A reasoning-only model that generates plans directly in terms of primitive actions,
without explicit abstractions or an executable world model. Here, we test 04-mini (OpenAl, 2025),
with high, medium, and low reasoning effort (when not indicated, we use the ‘high’ variant).

LLM + P (Liu et al., 2023a). Uses an LLLM to generate PDDL domain and problem files for each
task given the current observation and a few-shot prompt. A planner produces a plan, which an LLM
then converts into a sequence of actions that are executable in the environment. We use o4-mini with
high reasoning effort as the PDDL synthesizer model, since lower-effort modes struggled even on
the earlier levels—likely because LLMs are less reliable at producing PDDL than Python code.

WorldCoder (Tang et al., 2025).The agent synthesizes a Python program representing the transition
function (therefore, this could have been denoted as “LLM + Py” in our terminology). This program

Under review as a conference paper at ICLR 2026

Env 6:

Env 4: Env 5: Boss Level
Pickup Unlock

Env 1:
Labyrinth

move_to

- pickup unlock
[[[V]

Env 3:
Sokoban

Figure 2: An illustration of the curriculum used in our experiments. A curriculum is a sequence
of episodes in which each episode contains one or more environments/games. The sequence of
the first episode (Labyrinth) and the second one (Maze, and Sokoban) is studied in Experiment 1
(Sec. 4.1), while the entire sequence is used in Experiment 2 (Sec. 4.2). The blue arrows indicate
the abstractions that TheoryCoder-2 learned.

is used by a low-level planner to generate actions. Just as for TheoryCoder-2, we use GPT-40 as the
synthesizer and BFS as the planner. WorldCoder differs from TheoryCoder-2 in that planning and
world modeling is not done hierarchically. WorldCoder is more similar to LLM + P in that aspect,
as LLM + P is also modeling the world at a low-level only.

TheoryCoder-2. Our full system, which synthesizes PDDL operators using GPT-40 for high-level
planning, along with Python versions of the predicates and a Python transition function for low-level
dynamics, enabling grounded abstraction learning and reuse across environments. TheoryCoder-2
is different from the other agents since it models the world hierarchically by synthesizing high level
abstractions in PDDL and a low-level Python transition model. It uses the PDDL operators for
high-level planning and the low-level model for low-level planning.

We additionally evaluate two ablated variations of TheoryCoder-2:

TC - P. Removes the executable abstractions and Python world model. The LLM directly outputs
abstractions and high-level plans, and then is prompted to convert its high level plan into actions.

TC - C. Removes curriculum learning. It starts each episode with blank abstractions and transition
function. It has to synthesize all the abstractions and a transition function for the current level.

Box 1: Example of a learned abstraction (implementing an operator to move to a certain

object)

(:action moveontop
:parameters (?objl - object ?0bj2 - object)
:precondition (not (ontop ?objl ?0b3j2))
:effect (ontop ?0bjl ?0bj2)

4.1 EVALUATING ABSTRACTION LEARNING AND REUSING IN SIMPLE ENVIRONMENTS

The goal of this experiment is to evaluate the feasibility of abstraction learning and its reusability in
our agent. Here we evaluate the agents using Labyrinth, Maze, and Sokoban. The first segment of
Figure 2 illustrates this setting. These tasks are navigation-style VGDL games that primarily involve
learning and reusing abstractions to “move to a certain position”.

Results in the top part of Table 1 show the token cost and whether the agents successfully solved
each of the problems. First, we observe that TheoryCoder-2 is able to learn the key abstraction
move_to and solve the task. (Note the LLM named this operator moveontop and the corresponding

Under review as a conference paper at ICLR 2026

Table 1: Token cost across models (lower is better). Cells are highlighted in blue if the correspond-
ing agent failed to solve the task.

TheoryCoder-2 Baselines
Task (Game) Full TC-P TC-C LLM+7 LLM+P WorldCoder
Labyrinth 21,378 24,510 21,378 5,173 28,931 56,360
Maze 19,737 23,186 21,236 3,518 24,396 56,085
Sokoban 7,171 10,373 8,441 2,608 25,919 19,684
BabyAI (Pickup) 8,588 6,660 8,588 2,405 20,589 18,013
BabyAI (Unlock) 33,116 41,734 33,116 5,705 50,071 97,938
BabyAlI (Combine Skills 1) 1,961 54277 44,725 40,960 41,515 119,330
BabyAlI (Combined Skills 2) 2,528 53,376 45,175 49,973 59,003 120,200
BabyAI (Combined Skills 3) 2,454 53,064 45,017 29,791 55,078 120,375
Total for All Tasks 96,933 267,180 227,676 140,133 305,502 367,410

code for the abstraction is shown in Box 1 below.) Second, we observe that TheoryCoder-2 was
able to reuse this operator in two new environments, Maze and Sokoban. In terms of efficiency, the
simple LLM + 7 baseline is the most efficient agent on these simple environments, while the second
best is TheoryCoder-2 outperforming the two advanced LLM agents, LLM + P and WorldCoder.
Finally, we note that all systems were able to solve these simple problems.

4.2 TRANSFERRING LEARNED ABSTRACTIONS TO HARDER PROBLEMS

The purpose of this experiment is to test whether
TheoryCoder-2 can gradually learn new abstractions
and reuse them in new environments, and whether
that yields sample efficiency. Continuing the cur-

100

Agents
TheoryCoder-2
TC-P

95-
90

§ * u ° : TC-C
riculum of Sec. 4.1, we add three BabyAl levels in =~ & * LM (low)
sequence: Pickup (single key), Unlock (key + door), < 8 —t ﬁm;ﬁ')”m)
and the Boss level. The two first environments are g 7> . 4 LLMtP
named after the abstract skills needed to solve corre- 5 70 e
sponding task, and the last one is a multi-room task S . A .\
requiring both picking-up and unlocking skills. For 60-
the Boss level, we generate three instantiations with 20 40 60 80 100 120

. . . Average Compute Time (seconds)
different layouts (based on three different seeds) in g P

order to increase the diversity of final combined-skill
environments. Figure 2 provides an illustration of
this curriculum.

Figure 3: Success rate as a function of com-
pute time, averaged across all games. The
TC Family represents TheoryCoder-2 and its
The bottom part of Table 1 shows the token cost variants. TheoryCoder and its ablations are
and problem solving success. We first observe able to solve more tasks with significantly
that, while all the agents again solve the simple less compute time than the reasoning models
Pickup and Unlock environments, many of them fail that use high reasoning effort. LLM + 7 is
in the complex Boss level: more specifically, all shown with three different reasoning efforts.
agents failed in “Combined Skills 2”, while only

TheoryCoder-2 succeeded at both “Combined Skills

1”” and “Combined Skills 3”. TheoryCoder-2 successfully learns abstractions (Pickup and Unlock)
from the two first levels and then composes them to solve the more complex Boss level tasks that
require using both of them.

In terms of sample efficiency, TheoryCoder-2 allocates high computation for the first and the second
levels to learn the abstractions; but its token consumption dramatically drops on the Boss level (from
about 8500 and 33000 to around 2000), as it no longer needs to learn any new abstractions if it reuses
those learned in the previous level. Furthermore, it shows that TheoryCoder-2 is able to compose
these primitive abstractions to solve different variations of the Boss levels that have different win
conditions.

Under review as a conference paper at ICLR 2026

Notably, even when the curriculum or planners is removed, TheoryCoder-2 is capable of solving the
task; that is, both components significantly contribute to improving the sample efficiency but not to
the performance. In Table 1, we see that even when curriculum learning is removed and abstraction
files are initialized with blank files, TheoryCoder-2 remains more compute efficient than the other
world modeling approaches: WorldCoder and LLM + P. By contrast, WorldCoder is very costly,
consuming more tokens than the raw LLM approach. On the more difficult environments, we also
observed that the PDDL programs generated by LLM + P frequently contained errors, leading to
invalid or unsolvable plans.

We further compare the runtime of these agents. Fig. 3 shows the success rate averaged over all
games in the curriculum and the average compute time. We observe that the fastest agents are the
low-effort LLM + 7 baseline and the full TheoryCoder-2 with curriculum and planner. Notably, even
when curriculum learning is removed and TheoryCoder-2 is initialized with blank files, it remains
faster at synthesizing abstractions and solving levels than the 04-mini variants.

5 DISCUSSION

Results summary. The results highlight several key advantages of TheoryCoder-2 over the base-
lines. As shown in Fig. 3, TheoryCoder-2 and its ablations achieve the highest success rate. This
stems from the use of grounded abstractions, which reduce the likelihood of planning errors com-
pared to reasoning-only LLMs. While LLM + 7 with high reasoning effort sometimes achieve com-
parable solution rates, it does so at a higher token cost and much more compute time cost, making
it impractical for scalable or real-time use. On the BabyAlI Boss level, o4-mini with high reason-
ing effort often required around 3 minutes to return an answer. In contrast, TheoryCoder-2 invests
compute in simpler levels to learn a reusable low-level world model, which then acts as a tool for
rapid planning in harder environments. This explains its efficiency in both token cost and runtime:
planner calls typically resolve in under a second once abstractions and dynamics are established.

With the ablation TC-P, we observed that 04-mini (high reasoning effort) produced abstractions at
a different level of granularity than our system, often interleaving high-level operators with unnec-
essary low-level details. While the LLM-generated abstractions were often reasonably high-level,
they still tended to include unnecessary low-level details. Our results suggest that the mixing in of
low-level detail may be why TC-P takes longer to map out plans, whereas TheoryCoder-2 invests
just enough compute up front to synthesize an appropriate world model. Once this model captures
the “right” abstractions, it can serve as an adaptive compute resource, allowing the agent to flexibly
balance fast, reactive reasoning with slower, more deliberate planning depending on the situation.

Limitations and future directions. Despite the significant advances, TheoryCoder-2 and TBRL
architectures still have limitations, which we plan to address in future work. First, our approach
assumes access to an object-oriented, text-based state representation. While vision-language mod-
els have shown mixed results for planning, they may serve as perception modules for extracting
such representations in simple environments; scaling to more complex settings will require robust
methods for object discovery, tracking, and attribute inference. Second, extending beyond discrete
domains to continuous ones introduces new challenges such as modeling physics (e.g., predicting
velocities and contacts). Third, we noticed issues related to brittleness when learning the predicate
classifiers, which were critical for linking high and low levels of representation in the planner, or
edge cases not covered by the learned abstractions. In particular, we observed these problems in
the boss levels of BabyAl, which included multiple doors, where TheoryCoder-2 occasionally failed
(see Table 1, “Combine Skills 2”’). BabyAI’s “Combined Skills 2 is challenging because it requires
traversing a multi-room layout to reach a room on the opposite side. Along the way, the agent must
correctly infer that boxes and balls should be picked up and moved aside to clear each doorway.
This can be evaluated further by giving our agent more iterations to revise its world model.

Finally, we note an important direction of ongoing work. The experiments we presented here were
limited in that agents generated abstractions for each domain once, at the beginning of their interac-
tions in a particular domain, and did not revise them in light of new observations. We are currently
developing methods for revising abstractions through trial-and-error. One technique we are develop-
ing is to use previously learned operators, such as move_to, as a bootstrapping method to generate
informative observations. Exploration patterns produced using high-level abstractions are likely to
be much more informative than completely random exploration, even if those abstractions are not

Under review as a conference paper at ICLR 2026

adequate for solving the domain. We predict that augmenting TheoryCoder-2 in this way will further
enhance agents’ ability to solve complex tasks.

6 RELATED WORK

LLM:s for Planning and Synthesizing Policies. Many recent works have explored how LLMs can
be used for planning (Yao et al., 2023b; Hao et al., 2023; Zhao et al., 2024; Liu et al., 2023b). A
common approach is to provide the LLM with a text-based description of the environment state as
input and then query it to produce an action. After executing the action, the resulting text-based
state is fed back into the model, creating an interactive loop. Vision-language models have also
been applied in a similar manner (Waytowich et al., 2024; Paglieri et al., 2024; Ruoss et al., 2025;
Cloos et al., 2024), except that they are prompted with images of the environment state rather than
text-based descriptions.

Despite these advances, many frontier LLMs still struggle with spatial reasoning and are prone to
hallucinations, which limit their reliability in planning settings. To mitigate these issues, some ap-
proaches augment LLM agents with external modules or tools (Cao et al., 2025), fine-tune models on
trajectory data Gaven et al. (2024), incorporate memory modules, or prompting techniques enabling
the agent to better structure its reasoning over time. We compared TheoryCoder-2 with agents that
use the LLM as the implicit planner (Yao et al., 2023b; Wei et al., 2022; Yao et al., 2023a). We
found that while such methods can enhance reasoning, they often suffer from high compute costs,
as reasoning models take considerable time to generate answers (Hassid et al., 2025).

Program Synthesis. Several works have used program synthesis to build explicit world models of
the environment (Tang et al., 2025; Ahmed et al., 2025; Piriyakulkij et al., 2025), demonstrating
improved reasoning capabilities (Gupta & Kembhavi, 2023) compared to standard large language
models. EMPA (Tsividis et al., 2021) also uses program synthesis, though it represented the envi-
ronment in VGDL rather than a general-purpose programming language. Wong et al. (2024) showed
that LLMs can be used to learn operators for simple language-instruction domains. Liu et al. (2023a)
used LLMs to generate PDDL files and showed that in-context learning examples are important for
quality generation. Other work has investigated using vision-language models to learn predicates
(Liang et al., 2025), but these methods relied on labeled images to guide object identification, lim-
iting their autonomy. In contrast, our approach targets the end-to-end problem of generating both
the goals and the abstractions needed for hierarchical planning (assuming access to a text-based
observation of the environment’s frame).

Abstraction Learning in RL. While our focus is on program-synthesis agents and directly com-
parable LLM-based agents, abstraction learning and hierarchical planning have also been a long-
standing research topic in general reinforcement learning. Key concepts introduced in the options
framework (Sutton et al., 1999; Bacon et al., 2017), Feudal RL (Dayan & Hinton, 1992; Vezhnevets
et al., 2017), and sub-goal generation (Schmidhuber & Wahnsiedler, 1993; Bakker & Schmidhuber,
2004) remain central in modern deep RL research, including in the offline imitation learning setting
(Shiarlis et al., 2018; Kipf et al., 2019; Lu et al., 2021; Gopalakrishnan et al., 2023). Similarly, many
recent methods have pushed the sample efficiency of purely neural network model-based RL (Schrit-
twieser et al., 2020; Hafner et al., 2023), matching human learners’ efficiency in certain domains (Ye
et al., 2021). However, in general, deep RL methods still remain much less sample efficient, and
have lower generalization abilities, compared to neurosymbolic and program synthesis-based agents
as have been reported by prior work (Tang et al., 2025; Tsividis et al., 2021). Here, our contribution
was to push the current limitation of such a neurosymbolic approach.

7 CONCLUSION

We expanded the scope and efficiency of TBRL by enabling abstraction induction and reuse—a
critical step towards making TBRL free of human engineering. We experimentally demonstrated
that a novel TBRL system, TheoryCoder-2, is capable of gradually learning reusable abstractions,
yielding both improved sample efficiency and solution rates over several baseline LLM agents based
on LLMs. Future work will extend TBRL further to make it applicable to environments beyond those
with object-oriented, text-based state representations.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

After the discussion forums open, we will make a comment directed to the reviewers and area chairs
with a link to our anonymous code repository. We will clean up the code and release it in a public
GitHub repository upon acceptance, including all the prompts used in our experiments (which are
also provided in Appendix A). Our codebase builds on the publicly available code of the original
TheoryCoder (Ahmed et al., 2025).

REFERENCES

Zergham Ahmed, Joshua B. Tenenbaum, Chris Bates, and Samuel J. Gershman. Synthesizing world
models for bilevel planning. Transactions on Machine Learning Research (TMLR), 2025.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proc. AAAI Conf.
on Artificial Intelligence, San Francisco, California, USA, 2017.

Bram Bakker and Jiirgen Schmidhuber. Hierarchical reinforcement learning based on subgoal dis-
covery and subpolicy specialization. In Proc. Conf. on Intelligent Autonomous Systems, pp. 438—
445, Amsterdam, Netherlands, March 2004.

Jan Balaguer, Hugo Spiers, Demis Hassabis, and Christopher Summerfield. Neural mechanisms of
hierarchical planning in a virtual subway network. Neuron, 90(4):893-903, 2016.

Tom B Brown et al. Language models are few-shot learners. In Proc. Advances in Neural Informa-
tion Processing Systems (NeurIPS), Virtual only, December 2020.

Pengfei Cao, Tianyi Men, Wencan Liu, Jingwen Zhang, Xuzhao Li, Xixun Lin, Dianbo Sui, Yanan
Cao, Kang Liu, and Jun Zhao. Large language models for planning: A comprehensive and sys-
tematic survey. Preprint arXiv:2505.19683, 2025.

Marianella Casasola and Leslie B Cohen. Infant categorization of containment, support and tight-fit
spatial relationships. Developmental Science, 5:247-264, 2002.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAl: First steps towards grounded language learning
with a human in the loop. In Int. Conf. on Learning Representations (ICLR), 2019.

Nathan Cloos, Meagan Jens, Michelangelo Naim, Yen-Ling Kuo, Ignacio Cases, Andrei Barbu, and
Christopher J Cueva. Baba is Al: Break the rules to beat the benchmark. In ICML 2024 Workshop
on LLMs and Cognition, 2024.

Carlos G Correa, Mark K Ho, Frederick Callaway, Nathaniel D Daw, and Thomas L Griffiths.
Humans decompose tasks by trading off utility and computational cost. PLoS Computational
Biology, 19(6):e1011087, 2023.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), pp. 271-278, December 1992.

Loris Gaven, Clement Romac, Thomas Carta, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Sac-glam: Improving online rl for llm agents with soft actor-critic and hindsight rela-
beling. Preprint arXiv:2410.12481, 2024.

Tobias Gerstenberg and Joshua B. Tenenbaum. Intuitive theories. In The Oxford Handbook of
Causal Reasoning. Oxford University Press, 06 2017.

Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, David Christianson, Mark Fried-
man, Clement Kwok, Keith Golden, Steve Penberthy, David Smith, Yixin Sun, and Daniel Weld.
PDDL - the planning domain definition language. Technical report, AIPS, 1998.

Anand Gopalakrishnan, Kazuki Irie, Jiirgen Schmidhuber, and Sjoerd van Steenkiste. Unsupervised
learning of temporal abstractions with slot-based transformers. Neural Computation, 35(4):593—
626, 2023.

A Gopnik and AN Meltzoff. Words, Thoughts, and Theories. MIT Press, 1997.

10

Under review as a conference paper at ICLR 2026

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. Advances in Neural Information Processing Systems, 36:79081-79094, 2023.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953-14962, 2023.

David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. Proc.
Advances in Neural Information Processing Systems (NeurIPS), December 2018.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In Int. Conf. on Learning Representations (ICLR), Virtual
only, April 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. Preprint arXiv:2301.04104, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), Singapore, December 2023.

Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don’t overthink it. preferring
shorter thinking chains for improved llm reasoning. Preprint arXiv:2505.17813, 2025.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191-246, 2006.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237-285, 1996.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99—-134, 1998.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Flores Zambaldi, Alvaro Sanchez-Gonzalez, Edward
Grefenstette, Pushmeet Kohli, and Peter W. Battaglia. CompILE: Compositional imitation learn-
ing and execution. In Proc. Int. Conf. on Machine Learning (ICML), pp. 3418-3428, Long Beach,
CA, USA, June 2019.

Kenneth R Koedinger and John R Anderson. Abstract planning and perceptual chunks: Elements of
expertise in geometry. Cognitive Science, 14(4):511-550, 1990.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:¢253, 2017.

Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B. Tenenbaum, Tom Silver,
Joao F. Henriques, and Kevin Ellis. Visualpredicator: Learning abstract world models with neuro-
symbolic predicates for robot planning. In International Conference on Learning Representations
(ICLR), 2025.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LLM+ P: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477,2023a.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Rea-
son for future, act for now: A principled framework for autonomous LLM agents with provable
sample efficiency. Preprint arXiv:2309.17382, 2023b.

Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron Courville, Joshua B. Tenenbaum, and Chuang Gan.
Learning task decomposition with ordered memory policy network. In Int. Conf. on Learning
Representations (ICLR), Virtual only, May 2021.

Drew M McDermott. The 1998 Al planning systems competition. AI Mgazine, 21(2):35-35, 2000.

11

Under review as a conference paper at ICLR 2026

OpenAl. Openai 03 and 04-mini system card. System card, OpenAl, April 2025. URL https:
//openai.com/index/03-04-mini-system-card/.

Hempuli Oy. Baba is you. Game released on PC, Nintendo Switch, and other platforms, 2019.
Available at https://hempuli.com/baba.

Davide Paglieri, Barttomiej Cupial, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
Khan, Eduardo Pignatelli, Lukasz Kuciriski, Lerrel Pinto, Rob Fergus, et al. Balrog: Bench-
marking agentic llm and vim reasoning on games. arXiv preprint arXiv:2411.13543, 2024.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racaniere, David
Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning
from scratch. Preprint arXiv:1707.06170, 2017.

Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, and Kevin Ellis.
PoE-world: Compositional world modeling with products of programmatic experts. Preprint
arXiv:2505.10819, 2025.

Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein. LMAct:
A benchmark for in-context imitation learning with long multimodal demonstrations. In Proc.
Int. Conf. on Machine Learning (ICML), 2025.

Tom Schaul. A video game description language for model-based or interactive learning. In 2013
IEEE Conference on Computational Inteligence in Games (CIG), pp. 1-8. IEEE, 2013.

Jirgen Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised
neural networks for dynamic reinforcement learning and planning in non-stationary environments.
Technical Report FKI-126-90, Tech. Univ. Munich, 1990.

Jirgen Schmidhuber. On learning to think: Algorithmic information theory for novel combi-
nations of reinforcement learning controllers and recurrent neural world models. Preprint
arXiv:1511.09249, 2015.

Jirgen Schmidhuber and Reiner Wahnsiedler. Planning simple trajectories using neural subgoal
generators. In Proc. Int. Conf. on From Animals to Animats 2: Simulation of Adaptive Behavior,
pp. 196-202, August 1993.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
g0, chess and shogi by planning with a learned model. Nature, 588(7839):604—609, 2020.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. TACO:
Learning task decomposition via temporal alignment for control. In Proc. Int. Conf. on Machine
Learning (ICML), pp. 4654—4663, Stockholm, Sweden, July 2018.

Pavel Smirnov, Frank Joublin, Antonello Ceravola, and Michael Gienger. Generating consistent
PDDL domains with large language models. Preprint arXiv:2404.07751, 2024.

Richard S. Sutton. Integrated modeling and control based on reinforcement learning. In Proc.
Advances in Neural Information Processing Systems (NIPS), pp. 471-478, Denver, CO, USA,
November 1990.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181—
211, 1999.

Hao Tang, Darren Yan Key, and Kevin Ellis. WorldCoder, a model-based LLM agent: Building
world models by writing code and interacting with the environment. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2025.

Momchil S Tomov, Samyukta Yagati, Agni Kumar, Wanqgian Yang, and Samuel J Gershman. Dis-
covery of hierarchical representations for efficient planning. PLoS Computational Biology, 16(4):
€1007594, 2020.

12

https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://hempuli.com/baba

Under review as a conference paper at ICLR 2026

Pedro A Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy, Samuel J
Gershman, and Joshua B Tenenbaum. Human-level reinforcement learning through theory-based
modeling, exploration, and planning. Preprint arXiv:2107.12544, 2021.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. FeUdal networks for hierarchical reinforcement learning. In
Proc. Int. Conf. on Machine Learning (ICML), pp. 3540-3549, Sydney, Australia, August 2017.

Nicholas R Waytowich, Devin White, MD Sunbeam, and Vinicius G Goecks. Atari-GPT: Investi-
gating the capabilities of multimodal large language models as low-level policies for Atari games.
Preprint arXiv:2408.15950, 2024.

Theophane Weber, Sébastien Racaniere, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter W. Battaglia, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. In Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 5690-5701, Long Beach, CA, USA, December 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Proc. Ad-
vances in Neural Information Processing Systems (NeurlPS), 35:24824-24837, 2022.

Lio Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S. Siegel, Jiahai Feng, Noa Korneev, Joshua B.
Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natural lan-
guage guidance. In International Conference on Learning Representations (ICLR), 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Proc.
Advances in Neural Information Processing Systems (NeurIPS), 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In Int. Conf. on Learning Repre-
sentations (ICLR), Kigali, Rwanda, May 2023b.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp.
25476-25488, Virtual only, December 2021.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Proc. Advances in Neural Information Processing Systems (NeurIPS),
36, 2024.

A LANGUAGE MODEL PROMPTS

Here we provide all the prompts used in our experiments, as follows:

* Box 2: Prompt used to Generate PDDL Files

* Box 3: An example of an in-context example for PDDL generation

* Box 4: Another example of an in-context example for PDDL generation

* Box 5: One more example of an in-context example for PDDL generation
* Box 6: Prompt to generate Python predicates

* Box 7: Prompt for abstraction transfer (to generate only the problem file)
* Box 8: Prompt to generate low-level world model

* Domain descriptions for Labythinth and Maze (Box 11), Sokoban (Box 9), and BabyAl
(Box 10)

13

Under review as a conference paper at ICLR 2026

Box 2: Generate PDDL Files Prompt

You are an agent playing a 2D grid game, whose raw state is shown
below.

Can you give me a minimal PDDL domain and problem file for this
setup that will allow the agent to win the game? Think in terms
of the most minimal abstract files you can.

Each object in your PDDL problem file is named using ONLY the keys
of the raw state dictionary.

DO NOT PROPOSE PREDCIATES THAT IMPLY SPATIAL RELATIONS LIKE FROM OR

Domain Description:
{domain_description)
In your PDDL problem file do not represent configuration attributes

when writing objects
for example for unopened_black_jar you can represent it as black_jar

Feel free to propose multiple operators, and predicates at once.
Also you may have two goals in the problem file.

The raw state dictionary keys are considered traversable.

Return your code blocks with

\\\pddl AN NAY

markup tags so I can easily extract it.

Do NOT use symbols like "-" for the predicate names. For example,

the predicate "avatar-at" should NOT be proposed since it has a
n_mn

Do not name your PDDL DOMAIN FILE DO NOT name predicates:
if, else, in, def, or any other typical python name

predicate names should exactly be one word no underscores in it
either

Few shot example of what a nice abstraction domain and problem file
should look like:

{few_shot_PDDL_file_examples}

Raw state of game (generate the files for this):
{raw_state}

YOUR CURRENT DOMAIN FILE YOU HAVE SYNTHESIZED:

{current_domain}

14

Under review as a conference paper at ICLR 2026

Box 3: Few Shot PDDL Example 1

state is ’table’: [3, 4], 'mug’, [4, 4]

(define (domain toy-domain)
(:requirements :strips :typing)

(:types
object
)

(:predicates
(ontop ?x — object ?y - obiject)

(:action placeontopof
:parameters (?objl - object ?0bj2 - object)
:precondition (not (ontop ?objl ?0b3j2))
:effect (ontop ?0bjl ?0bj2)

)

(define (problem toy-problem)
(:domain toy-domain)

(:objects
table mug - object
)

(:init
;; Initially nothing is on top of anything
(not (ontop mug table))

(:goal
; mug will overlap with table ’'table’: [4, 4], 'mug’, [4, 4]
(ontop mug table)

Box 4: Few Shot PDDL Example 2

state is ’"agent’: [3, 4], ’'apple’: [5, 4], ’'vines’: [4,4], "axe
"[1,4], ’"unopened_black_jar: [0,1]’

(define (domain toy-domain)
(:requirements :strips :typing)

(:types
object
)

(:predicates
(eaten ?x — object ?y — object)

(:action eat
:parameters (?0bjl - object ?0obj2 - object)
:precondition (not (eaten ?objl ?20bj2))
:effect (eaten ?0objl ?0bj2)

15

Under review as a conference paper at ICLR 2026

)

(define (problem toy-problem)
(:domain toy-domain)

(:objects
agent apple black_jar - object
)

(:init
(not (eaten agent apple))

(:goal
(eaten agent apple)

Box 5: Few Shot PDDL Example 3

BEGIN EXAMPLE 3

state is ’'agent’: [6, 3], ’'blocked_gold_window’: [4,4], '
unblocked_silver_window’: [1,4]

(define (domain toy-domain)
(:requirements :strips :typing)

(:types
object
)

(:predicates
(unblocked ?x - object)

(:action clear
:parameters (?x — object)
:precondition (not (unblocked ?7x))
:effect (unblocked ?x)

)

(define (problem toy-problem)
(:domain toy-domain)

(:objects
agent apple gold_window - object
)

(:init
; the end goal is to eat the apple
(not (unblocked gold_window))

(:goal
(unblocked gold_window)

16

Under review as a conference paper at ICLR 2026

Box 6: Python Predicate Generate Prompt

You are a software engineer that must write python predicates. These
python predicates have to be python versions of the PDDL
operators that are functions which take the states and arguments
and returns either True or False. You will need to write Python
predicates for all the predicates you see in the domain file.
The problem file, and Raw State is also given to help guide you.

Return your code blocks with
‘Y'python
markup tags so I can easily extract it.

ARNRY

BEGIN EXAMPLE
predicate: predicate: isLeftOfop(argl, arg2)

def isLeftOf (state, argl, arg2):
nmnn
Returns True if argl is to the left of arg2, based on their x-—
coordinates.

Parameters:

— state: dict with keys as object names and values as [x, V]
positions

- argl: object name (e.g., "book’)

- arg2: object name (e.g., ’'lamp’)

Returns:

— bool: True if argl’s x-coordinate is less than arg2’s, False
otherwise

nmnn

posl = state.get (argl)

pos2 = state.get (arg2)

if posl is None or pos2 is None:
return False

return posl[0] < pos2[0]

END EXAMPLE

Make sure that you always have state as one of the arguments!

Only synthesize the predicate you see in the domain file and make
sure

to give it the same name!

Domain File:

{domain_file}

Problem File:

{problem_file}

Raw State:

{raw_state}

Current Python Low Level World Model:

{world_model}

Game Description:

17

Under review as a conference paper at ICLR 2026

{game_description}

Box 7: Transfer Abstraction (Generate Only Problem File)

You are an agent playing a 2D grid game, whose raw state is shown
below.

Can you give me a PDDL problem file for this given PDDL domain file
that will allow the agent to win the game?
Each object in your PDDL problem file is named using ONLY the keys

of the raw state dictionary.

You are allowed to specify multiple goals in your problem file!
Please think about the preconditions and effects carefully.

MAKE SURE TO DOUBLE CHECK AT THE END THAT YOU SPECIFIED MULTIPLE
GOALS IN THE PROBLEM FILE

JUST BECAUSE YOU HAVE ONE MISSION DOESN’T MEAN YOU WILL USE THAT
MISSION AS THE SINGLE GOAL

for example you would maybe need to do a subgoal in order to achieve
the mission!! DO NOT JUST ASSUME ONE GOAL in problem file

Return your code blocks with

\\\pddl AN

markup tags so I can easily extract it.
{few_shot_PDDL_file_examples}

Domain file you need to use (generate the problem file for this):
{domain_file}

Raw state of game (generate the problem file for this):
{raw_state}

MISSION:

{mission}

Domain Description:

{domain_description}

Box 8: Generate Low level World Model

You are an AI agent that must come up with a transition model of the
game you are playing.

A BFS low-level planner that will use your synthesized transition
model to find the low-level actions that will allow you to win

levels of the game.

You are also given state transition after executing random actions
that will help as well.

18

Under review as a conference paper at ICLR 2026

Note that if there is no change returned after doing that action, it
means that moving was prevented somehow such as by an obstacle.

DESCRIPTION OF DOMAIN:

{domain_description}

CURRENT STATE:

{current_state}

ACTION SPACE:

{actions_set}

Replay Buffer (last {num_random_actions} transitions):
{errors_from_world_model}

UTILS:

{utils}

RESPONSE FORMAT:

- Make sure you use .get() to access the dictionary to avoid key
errors!

For example:

avatar_pos = new_state.get ("avatar’) to get avatar pos

cake_pos = new_state.get ('cake’) to get cake pos

‘Y'Ypython

make sure to include these import statements
from utils import directions

def transition_model (state, action):

Return State

Box 9: Sokoban Domain Description

In this domain, you have to push the boxes into the holes to win. If
you push the box into the hole, the box will disappear.

Box 10: BabyAI Domain Description

The agent needs to navigate the maze to win. If the agent is facing
a key, it can pick it up.

The agent can also unlock doors in which case the door will become

open_COLORNAME_door in the state.

For this environment the state key ‘agent_carrying' is a list of
object names the agent currently holds (e.g., ‘[’red_key’]?').

Under review as a conference paper at ICLR 2026

When a door is unlocked it will turn from locked_ to open_ (e.g., '
locked_blue_door’ -> ’open_blue_door’).

When a closed door is opened it will turn from closed_ to open_ (e.g
., "closed_blue_door’ -> ’'open_blue_door’).

You can toggle any closed doors to open them and locked ones when
you have their COLOR_key

You cannot move forward through closed_ doors unless they are _open
So you will need to toggle them
so closed_ doors are essentially similar to grey walls in that they

block you

In the game you cannot overlap with any objects, to pickup the key
you need to be adjacent to it and facing it.

Box 11: Maze and Labyrinth Domain Description

In this domain, you control the avatar and need to reach the goal.
If you touch a trap you will die.

20

	Introduction
	Background
	Theory-based Reinforcement Learning
	TheoryCoder

	Method: TheoryCoder-2
	Learning Abstractions
	Reusing and Growing the Library of Abstractions

	Experiments
	Evaluating Abstraction Learning and Reusing in Simple Environments
	Transferring learned abstractions to harder problems

	Discussion
	Related Work
	Conclusion
	Language Model Prompts

