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ABSTRACT

Computational de novo protein design allows the exploration of uncharted areas
of the protein structure and sequence spaces. Classical approaches to de novo pro-
tein design involve an iterative process where the desired protein shape is outlined,
then sampled for structural backbones and designed with low energy amino acid
sequences. Despite numerous successes, inaccuracies within energy functions and
sampling methods often lead to physically unrealistic protein backbones yielding
sequences that fail to fold experimentally. Recently, deep neural networks have
successfully been used to design novel protein folds from scratch by iteratively
predicting a structure and optimizing the sequence until a target protein structure
is reached. These methods work well under circumstances where distributions of
physically realistic target protein backbones can be readily defined, but lack the
ability to de novo design loosely specified protein shapes. In fact, a major chal-
lenge for de novo protein design is to generate “designable” protein structures for
defined folds, including native and artificial (“dark matter”) folds that can then
be used to find low energetic sequences in a generic manner. Here, we automate
the task of creating designable backbones using a variational autoencoder frame-
work, termed GENESIS, to denoise sketches of protein topological lattice models
by sharpening their 2D representations in distance and angle feature maps. In con-
junction with the trRosetta design framework, large pools of diverse sequences for
different protein folds were generated for the maps. We found that the GENESIS-
trDesign framework generates native-like feature maps for known and dark matter
protein folds. Ultimately, the GENESIS framework addresses the protein backbone
designability problem and could contribute to the de novo design of structurally
defined artificial proteins that can be tailored for novel functionalities.

1 INTRODUCTION

Evolution is a slow and gradual process that has only sampled a very small fraction of the possible
protein amino acid (AA) sequence space (Grant et al., 2004; Kolodny et al., 2013). In order to
explore new sequences that fold into well-defined three-dimensional (3D) conformations outside the
natural repertoire and are amenable to tailored functionalities, de novo protein design strategies have
been developed (Huang et al., 2016a; Marcos & Silva, 2018). Established de novo protein design
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methods employ an iterative process where (1) the protein shape is outlined and corresponding
backbones are sampled, and (2) low energy AA sequences are fitted onto the generated backbones.

Despite numerous successes (Thomson et al., 2014; Huang et al., 2016b; Marcos et al., 2017; Dou
et al., 2018), the stochastic nature of sampling methods and inaccuracies within current energy func-
tions frequently drive the design simulations towards incorrect solutions, hence a significant number
of design trajectories are needed (2,000–20,000 trajectories) in order to sufficiently probe the se-
quence and conformational landscape and to select potential low energy solutions (Rocklin et al.,
2017; Chevalier et al., 2017; Bonet et al., 2018; Sesterhenn et al., 2020; Yang et al., 2021). In fact,
many design failures arise from frustrated backbones that are a priori non-“designable”. Designable
backbones have optimal secondary structure configurations with favored tertiary structure symme-
tries such that they are physically realizable with the 20 natural AAs (Li et al., 1996; England &
Shakhnovich, 2003; Wingreen et al., 2004; Grigoryan & Degrado, 2011).

Quantifying designability is challenging as it includes properties that are difficult to measure, such
as fold specificity (Govindarajan & Goldstein, 1996; Wingreen et al., 2004), or native-like structural
arrangements (Simons et al., 1997). It has been observed that highly designable backbones can
accommodate a large variety of energetically favorable sequences (Govindarajan & Goldstein, 1996;
Zhang et al., 2014; Helling et al., 2001). To craft designable backbones, empirical rules have been
derived from analysis of protein databases and simulations (Koga et al., 2012), and, together with
small structural protein backbone fragment (3-mers and 9-mers) assembly protocols (Rohl et al.,
2004), have led to the design of “ideal” protein folds. These rules are based on loop lengths that
embed the packing of local tertiary motifs such as β/β-, β/α-, and α/β-units to secondary structure
elements (SSEs). Since, the design rules have been steadily updated, for instance, loops can be
structurally defined to bridge non-local motifs (Lin et al., 2015; Marcos et al., 2018), cavities can
be created by inducing strong curvatures into β-strands through controlling resisters shifts and β-
bulges (Huang et al., 2016b; Marcos et al., 2017), and strategically placed residues relieving strain
from the backbone allow the design of β-barrels (Dou et al., 2018; Vorobieva et al., 2021).

Figure 1: GENESIS neural de novo protein design pipeline. A: The trRosetta structure prediction
method. B: The trRosetta method used for fixed backbone design maximizing the predicted proba-
bilities towards the given target inter-residue distances and orientations. C: Our developed GENE-
SIS-trRosetta framework for de novo protein design. We use the trRosetta design strategy to generate
sequences for the refined feature maps produced by the GENESIS neural network from the naively
sketched protein folds.

Recent advances within deep neural networks (DNNs) combined with the availability of large-scale
protein structure data in the protein data bank (PDB) (Berman et al., 2000) have enabled highly ac-
curate structure prediction from sequence (Yang et al., 2020; Baek et al., 2021; Jumper et al., 2021)
(Fig. 1A). Interestingly, the trained structure prediction DNNs can be “reversed” for the protein
design task. A good example is the transform-restrained Rosetta (trRosetta) neural network that
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was used to hallucinate novel proteins by using a specific loss that maximizes the contrast between
random (background) and native distance predictions (Anishchenko et al., 2021). TrRosetta can
also be employed for fixed backbone design via backpropagating gradients from the target structure
to the sequence, which has the effect of implicitly optimizing over the full sequence and structure
landscape (Norn et al., 2021) (Fig. 1B). In the latter case, the method searches for the lowest-energy
sequence while maximizing the probability of the target structure relative to all other conforma-
tions. Encouragingly, the trRosetta design framework is able to design new sequences for a target
structure within minutes on modern graphical processing units (GPUs), enabling multi-state and
high-throughput sampling of the design space.

Inspired by these recent advances, this work puts forth the hypothesis that trRosetta can also facilitate
tailored de novo design, where the shape and secondary structure element composition is controlled
(Fig. 1C). To achieve this, we implemented a framework that uses a simple string description of a
protein fold (termed “Form”) and auto-generates realistic designed proteins. The framework first
creates a 3D representation of the Form termed “Sketch”. We trained a variational autoencoder
(VAE) termed GENESIS to encode the inter-residue distances and orientations of a Sketch to a latent
representation, sampled and then decoded close-native distance and orientation probabilities from
this representation ready for the trRosetta sequence design task. Our approach circumvents the need
to create designable 3D backbones and is, unlike conventional de novo design methods, not directly
based on energy functions. This allows the de novo design process to be fast and efficient biasing
the search towards productive sequence spaces.

2 PROTEIN FOLD SKETCHING

We define the overall shape of a protein through a string specifying the SSE types, lengths, and
relative positions on a lattice, termed “Form” (Taylor et al., 2008). In a Form, each level or layer
of the lattice can be populated by an arbitrary number of SSEs. The layers are equally spaced from
each other by 8 Å for β-β layers and 10–11 Å for α-α or helix-β layers (Chothia & Finkelstein,
1990). A Form can be expanded into a 3D representation that we call a “Sketch”. A Sketch is a
rough 3D approximation of a native protein structure albeit lacking loops, native-like irregularities
within SSEs, and AA side chains.

To address these limitations, we employ a DNN to automatically learn to decipher important struc-
tural features and incorporate native-like patterns into the Sketches. The DNN takes the form of a
VAE that is trained to transform a large dataset of Sketches into their respective native structures.
The dataset was built by generating different sets of “Sketches” and mapping them to their native
counterparts (Fig. 2A) (Appendix A.3). The Sketches have small idealized SSEs (5 residues for
β-strands and 9 residues for α-helices), no sequence information, and dummy backbone residues
along the shortest path between end- and starting points of the SSEs representing the loops. The
loops were modeled in this way because we do not have information about their potential confor-
mations. The sets encompass many 2- and 3-layer fully β-, fully α- and mixed α/β topologies and
capture a large scope of possible protein folds (Appendix A.1). The Sketches do not resemble their
native counterparts having a median template modeling (TM)-score of below 0.5 indicating that
they are not classified as the same protein fold (Fig. 2B). Importantly, although Sketches can fit onto
multiple native structures the majority only map to 1 or 2 conformations (Fig. 2C). Since not all
protein domains can be formulated as a Form (e.g., β-barrels), we augment our data set by adding
corrupted backbone structures, where the loops are replaced by dummy residues as done on the
Sketches (Sup. Fig. 5A). The corrupted backbones add architectural and structural diversity to our
data set by retaining tertiary motif dispositions and secondary structure irregularities, respectively
(Sup. Fig. 5B).

We split our data set into a series of training and test sets with different structural properties based on
the Structural Classification of Proteins — extended (SCOPe) scheme (Andreeva et al., 2020). We
then optimize GENESIS for a training set consisting of a particular type of structure and test the va-
lidity of its predictions on proteins with increasingly different structural properties (Appendix A.2).
Our evaluation procedure quantitatively assesses the extent to which our framework generalizes be-
yond the distribution induced by a given training set. We argue that any method that facilitates de
novo design should generalize to unknown subsets (“dark matter”) of the protein space.
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Figure 2: Data generation. A: Examples of Sketches (red) and a corresponding native structure
(grey) for the major protein structure classes (HH H: 3 α-helical bundle, H EEE: mixed α/β sand-
wich, EEE EEE: β sandwich). B: Similarities between the Sketches and their corresponding native
structures based on RMSD and the TM-score for major protein structure classes. C: The number
of native structures that can be represented by an individual Sketch across the three major protein
structure classes.

3 RESULTS

3.1 NEURAL BACKBONE REFINEMENT

We developed a convolutional variational autoencoder (VAE) that operates on inter-residue distance
and orientations rather than atomistic coordinates (Fig. 3A) (see Appendix A.4). Importantly, dis-
tances and orientations are invariant with respect to translation and rotation which ensures stable
and predictable performance in the presence of transformations of the data input under the spe-
cial Euclidean group. Our VAE is conditioned on the real-valued distances and orientations of the
Sketches, and from the latent conditional distribution predicts distance- and orientation probabilities
of native-like conformations.

We train the VAE in a supervised manner by minimizing the 1st Wasserstein distance between the
true feature maps and the distribution predicted by the VAE. In contrast to the previously utilized
cross-entropy loss (Senior et al., 2020; Yang et al., 2020), the Wasserstein distance enables weight-
ing individual errors between the distributions, i.e., penalizing large differences between the true
and predicted distributions more than small differences (see Appendix A.5 for details). We follow
a standard pre-train—fine-tune regimen (Fig. 3A): (1) We pre-train the VAE on the corrupted back-
bones with a learning rate set to 1e-3 over 300 epochs. During this phase, the VAE is conditioned
on real backbones with loops that have been corrupted with noise. (2) We fine-tune the VAE for 500
epochs on the Sketches. The pre-training slightly improves the performance on the test set when
compared to directly training the VAE on the Sketches (Sup. Fig. 6).

We coupled the fine-tuned VAE (called GENESIS) with the trRosetta framework. We use the tr-
Rosetta design method to optimize sequences for our generated distance- and orientation probabil-
ities. We subsequently used the generated sequences and constraints from trRosetta to minimize
the energy with gradient descent and generate 3D models using PyRosetta (see Appendix A.7). In
summary, the GENESIS-trRosetta de novo design framework uses a Form to build a Sketch that is
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Figure 3: Pipeline and performance. A: General architecture and training scheme of GENESIS. The
VAE is first pretrained with corrupted feature maps and subsequently fine-tuned with Sketch feature
maps. B: Different pipelines and their performances for the different classes of proteins (“H”: fully
α-helical, “E”: fully β, and “HE”: mixed α/β). The number of optimization steps is 101 if not
differently indicated. “Sketch” represents the input feature maps from the Sketch, “GENESIS” is
the module to optimize the feature maps, “trR” is the trRosetta design for sequence design module
and “PyR” is the PyRosetta script to output 3D models from the generated features and sequences.
The first pipeline is an ablation of the trRosetta module, where restraints are derived directly from
the GENESIS generated feature maps using a poly-Valine AA chain for the 3D model generation.
The second pipeline is an ablation of the GENESIS module where the trRosetta module is directly
used to optimize the Sketch feature maps. The three subsequent pipelines are variations of the full
pipeline, including additional relaxation steps (PyR relax) and adding an AA composition loss with
301 optimization steps to the trRosetta module (trR AAcomp 301x).

then refined by GENESIS, designed through trRosetta, and finally assembled and minimized with a
full atomistic energy function in PyRosetta.

Our ablation studies showed the importance of both GENESIS and trRosetta modules. First, we
removed the trRosetta design module by gathering structural restraints directly from the GENESIS
distance- and orientation probabilities and using a poly-Valine AA sequence. We see a low perfor-
mance with the median TM-score (Zhang & Skolnick, 2005) below 0.5 and the median root-mean-
squared-deviations (RMSDs) around 4 Å between the predicted 3D model and the native structure
on the training and test set examples across all major classes (Fig. 3B). Second, we removed GEN-
ESIS resulting in a framework where trRosetta is challenged to directly design sequences for a given
Sketch. On the training examples, we obtained a TM-score median around 0.6 and an RMSD median
around 2 Å for the 3-helical bundle architectures, while for the fully-β and mixed α/β architectures
the results were rather modest with a median TM-score around 0.4 and the median RMSD around
3.5 Å. The few selected test examples follow the same trend as the train examples: GENESIS alone
is not sufficient to build native-like poly-Valine backbones, and simply using trRosetta to design
sequences from Sketches resulted in a poor performance with sequences and constraints that do not
recapitulate the target fold described by the Sketch. Thus, our experiments support that, while GEN-
ESIS cannot solve the backbone design problem by itself, its predicted features can guide sequence
generating engines (trRosetta) towards the sequences that are more likely to adopt the specified
folds. On the other hand, a naively assembled Sketch lacks native-like features are required by
trRosetta to use and design fold-specific sequences.

We assess the performance of different variations of the GENESIS pipeline. Using the basic frame-
work Sketch→ GENESIS → trRosetta→PyRosetta, we achieved a TM-score of 0.8 and a median
RMSD of 2 Å for fully α-helical proteins, a median TM-score of 0.55 and median RMSD 3.5 Å for
fully-β proteins, and a median TM-score of 0.5 with a median RMSD 4 Å for mixed α/β proteins.
We saw an improvement when adding a simple structural relaxation step that favors SSE pairing and
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packing after the gradient descent minimization with median TM-scores of approximately 0.8, 0.6,
0.55 and RMSDs of 2 Å, 3 Å, and 3.5 Å for α-, β-, and mixed α/β-proteins from the training set,
respectively. We also tested the pipeline using the trRosetta hybrid-design protocol, where, instead
of optimizing for a single sequence, the algorithm optimizes for multiple sequences from which a
position-specific scoring matrix (PSSM) is generated and used to guide the sequence design task.
The results were comparable to the standard pipeline in terms of TM-scores and RMSDs (Sup. Fig.
7).

In order to evaluate the generalization capability of GENESIS, we trained and tested GENESIS on
the series of data splits given by SCOPe (see Appendix A.2). The SCOPe database hierarchically
classifies proteins based on structural similarities: The top level (Class) divides proteins into ma-
jor classes: fully-α, fully-β and mixed α/β. The Fold-level arranges the structures according to
SSE disposition and connectivity. The Superfamily and Family-levels further classify the structures
according fine-grained structural and functional features.

At the Family-, Superfamily- and Fold-level test sets, α-helical proteins reach TM-scores and
RMSDs are around 0.6 and 3 Å, respectively, whereas for fully-β and mixed α/β proteins, a degra-
dation in performance is observed (Sup. Fig. 8B). At the Superfamily-level test set, 2 out of 25 test
proteins cross the critical 0.5 TM-score threshold for fully-β structures (Sup. Fig. 8B). For mixed
α/β proteins, around 3 test proteins are predicted with a TM-score above 0.5 for both Superfamily-
and Fold-level test sets (Sup. Fig. 8B). These results indicate that GENESIS shows some ability for
generalization across families, while proteins with different connectivities and structural features are
more challenging to (re-)generate successfully.

3.2 CONDITIONED SAMPLING AND DESIGN OF NATIVE PROTEIN TOPOLOGIES

To showcase the GENESIS-trRosetta de novo design framework, we conditionally sample 5 different
topologies. We sample a 2-layer mixed α/β Ubiquitin-like fold, where 4 strands are packed against
a helix, and a 3-layer mixed α/β Rossmann fold with a central 4 stranded β-sheet and 2 exterior
packing helices on both sides. We additionally challenge the framework by generating 2 different
2-layer β-sandwiches, an Immunoglobulin (Ig)-like fold and a Jelly-roll fold. Finally, we design
sequences that adopt the Top7 fold (Kuhlman et al., 2003), a novel fold not observed in the natural
repertoire and representing a challenging generalization test for our method.

As we do not have prior knowledge about SSEs and loop lengths, we first sampled 20–30 combina-
tions and generated a small set of sequences for these. We then used AlphaFold (AF) Jumper et al.
(2021) to predict a structure for the initial set of sequences and realigned the AF onto the GENESIS
models and selected the combinations achieving a TM-score above 0.5. Using the top combinations,
we designed up to 10,000 sequences and predict AF models for each of them. We assessed the qual-
ity of the designed sequences and models by comparing the TM-score between the GENESIS (Gen)
and AF model (TM-score(Gen,AF)) and the AFs’ median confidence score (median plDDT) (Fig.
4A). We saw that with a stringent threshold of TM-score(Gen,AF) > 0.6 and median plDDT > 70
around 10% or more of the designed sequences and models were selected as a success (red area in
Fig. 4A). These results indicate that the GENESIS-trRosetta framework is able to successfully yield
backbone conformations that can harbor sequences with strongly encoded native structural features.

3.3 PROBING THE “DARK MATTER” OF PROTEIN FOLDS

The ultimate goal of de novo protein design methods is to generate protein folds non-existent in na-
ture. We asked the question if our framework based on DNNs and trained on natural derived structure
data is capable of (besides the Top7 fold) generalizing outside the distribution of natural folds e.g., if
our framework is able to generate out-of-distribution. To this end, we sought to sample protein folds
not included in the training set, nor observed in nature. Previously, Taylor and colleagues (Taylor
et al., 2009) computationally analyzed possibly unexplored regions of the 3-layer mixed α/β fold
space through Cα-traces that obey constraints of natural protein structures, such as handedness of
connection and loop-crossing. We further reduced the set by discarding Cα-traces that have mixed
secondary structure types on the same layer, disembodied SSEs (unpacked) or nearly crossing loops.
We selected three distinct folds to design with the GENESIS-trRosetta method.
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Figure 4: Computational design results. The TM-scores between the GENESIS models and the
AlphaFold models versus the median predicted lDDT (plDDT) confidence metric. Each point rep-
resents a designed model and the red area represents the selection according to the selection criteria
of TM-score > 0.6 and a plDDT > 70. An example for each is given on the right side. A: Native
folds. B: A previously de novo designed fold. C: Novel folds not existent or discovered in the natural
repertoire (dark matter).

We used the GENESIS-trRosetta framework to sample sequences using as input different Forms
varying in the loop and SSE lengths and selected the top models (by TM-score between the GENESIS
model and the Cα-trace) to up-sample sequences. All sequences were then fed into AF and the
predictions aligned to the initial GENESIS model. By assessing the sequence-to-structure qualities
of the designed models via the TM-score(Gen,AF) and the AFs’ median plDDT (Fig. 4B,C), we
observe that the GENESIS-trRosetta framework is capable of resolving blurry feature maps towards
native-like distributions even for novel folds (Fig. 4B,C).

4 DISCUSSION

We show that a specialized VAE termed GENESIS is able to encode representations of idealized
protein folds and decode native-like conformations. By basing ourselves on distance- and orientation
representations, we are able to alleviate the need of generating designable protein backbones in 3D
space with fold-specific restraints and energy functions, and thereby also bypassing the need for
designable backbones. We couple GENESIS to the trRosetta design engine to generate multiple
sequences for the sampled distance- and orientation representations for a set of known and novel
folds.
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Our results demonstrate that the GENESIS-trRosetta framework is capable of designing new proteins
adopting known folds and novel folds non-existent in nature. By changing secondary structure and
loop lengths the overall size can be adjusted and different conformations sampled. The generaliza-
tion capability of GENESIS is significant and can guide the trRosetta-Rosetta hybrid design method
to sequences with strong fold signatures. Using AlphaFold as an orthogonal test shows that many
of these sequences adopt the intended target shape. Additionally, our framework is considerably
fast, within minutes to generate a sequence and a 3D model for a given target protein shape even
on a CPU. This demonstrates the usage of DNNs can leverage the automated generation of proteins
normally only accessible through large-scale simulations.

Our work opens exciting new horizons for de novo protein design where control over the shape is
desired. For example, our method could be harvested to generate custom protein backbones such
that they fit onto non-canonically structured protein interfaces. Often nanomaterials exhibit highly
regular patterns, and could therefore be engaged by secondary structures that are placed respecting
the regularity constraints. Another example where our method could be used is for the design of
larger molecular assemblies that are constructed from smaller protein domains. Often, the overall
shape of the assembly is controlled by the shape of the individual subunits. Hence, we expect that
the versatility and speed of the GENESIS-trRosetta method together with other potential deep neural
network tools for protein design and engineering to explore the protein universe should be broadly
useful.
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A APPENDIX

A.1 DATASET GENERATION

We created two distinct datasets from the scope (v2.07 stable) Fox et al. (2014) domains of medium
sizes (40–128 residues).

1. The pre-training data set was created by corrupting existing protein structures by remov-
ing the loops based on the DSSP (hydrogen bond estimation algorithm) Kabsch & Sander
(1983) assignments. We remodel the loops as done in a Sketch, e.g. we add dummy
residues (Nitrogen (N), Carbon (C), Carbon (Cα), Oxygen (O) backbone atoms with ran-
domized torsion angles) along the shortest path between the two endpoints Cα atoms of
the consecutive SSEs. We add as many dummy residues as in the native structure, hence
the corrupted structure has the same length as its native counterpart. This procedure leaves
the native SSE dispositions that may incorporate important native structural features for the
pre-training. In total, we created 40,726 pairs.

2. We developed a program that creates small fold Sketches obeying simple topological
rules such as non-crossing loops and loop distance restraints from the architecture types:
EE EEE, EEE EEE, H EEE, H EEEE, H EEE H, HH EE, HH EEE, HH EE H, HHH,
HHH EE (where “ ” represents a layer separation and E: β-strand and H: α-helix). We
searched the SCOPe domains for partial structural matches within 3 Å RMSD using MAS-
TER Zhou & Grigoryan (2015; 2020) for each of the generated Sketches. Importantly, a
Sketch can partially match onto a native domain. We crop the overlapping regions of the
native domain at the first and the last residue of the matching Sketch. SSEs within the
cropped domain that do not map to SSEs in the Sketch are assigned as loops. Furthermore,
we remove domains larger than 128 residues and identical matches for the mapping to the
same Sketch. This resulted in a total of 35,435 Sketch - native domain pairs.

A.2 DATA SPLITS

Within SCOPe, protein structures are hierarchically classified into groups where the “Class” groups
proteins based on secondary structure content and organization (fully-α, fully-β, mixed-α/β),
“Fold” divides them based on SSE disposition and connectivity, “Superfamily” is based on structural
features and “Family” contains the structures with similar sequences.

We pick protein families that represent compact structures with small loops for our family test set.
The test set includes the SCOPe families b.1.22.1, b.11.1.6, b.69.2.3, b.70.2.1, b.82.1.22, b.114.1.1,
a.7.2.0, a.7.2.1, a.7.8.2, a.7.12.1, a.8.11.1, a.24.10.3, a.24.13.1, a.60.9.0, a.160.1.2, c.2.1.7, c.25.1.2,
c.118.1.0, c.93.1.0, c.56.5.6, d.110.4.3, e.51.1.1, c.97.1.5, d.17.1.5, d.58.3.2, d.58.10.0, d.58.23.1,
d.92.1.13, d.230.1.1, d.240.1.0. We generate higher-level test sets (Fold and Superfamily) by remov-
ing all corresponding groups from the picked structures in the Family test set, e.g. for the Family
b.1.22.1 the Superfamily is b.1.22 and the Fold is b.1.. Importantly, identical structures and Sketches
in the training set were removed in order to avoid any biases during testing.

A.3 DATA ENCODING

The coordinates of the Sketches and their native counterparts are encoded into a total of four 2D
distance- and orientation feature maps as done by trRosetta. Briefly, the first feature map is all-
against-all Cβ distances. The second feature map is the dihedral “ω” that measures the rotation
along the virtual axis of two connecting Cβ residues. The distances and ω angles are symmetric,
e.g. measuring from residue i to residue j will give the same result as measuring from residue j to
residue i. The third and fourth feature map are the “θ” dihedrals and the “ϕ” angles specifying the
direction of Cβ of residue i with respect to residue j. Both, θ and ϕ are asymmetric metrics. Together
the four feature maps fully define a protein backbone in 3D space.

While we use real valued feature maps as input to GENESIS, we bin the true feature maps according
to the trRosetta scheme. The distances from 2 to 20 Å are binned into 36 equally spaced segments
(0.5 Å each) and a 37th bin to indicate that pairs are not in contact. The dihedral (ω, θ) and angular
(ϕ) features are binned into 15° segments yielding 24, 24, and 12 with an additional bin indicating

13



Published at the MLDD workshop, ICLR 2022

no contact, respectively. Therefore, we have encoded the true feature maps into tensors of shape
128x128x1x37 for the distances, 128x128x1x25 for the dihedrals and 128x128x1x13 for the angles.
Thus, at each “pixel” (each residue pair) we have an additional dimension that can be seen as a Dirac
distribution with a score of one for the bin with the distance and zero everywhere else.

A.4 GENESIS ARCHITECTURE

The VAE includes an encoder, a decoder, and a loss function. The input Sketchs’ feature maps (real-
valued) of shapes 128x128x4 are processed by the encoder that is a sequence of four convolutional
blocks. A single block includes a 2D convolution, an instance norm and ELU activation followed by
a 40% dropout. From the compressed data representation, two multilayer perceptrons (MLPs) are
used to predict predict means and covariances vectors (of sizes 128). Using the reparametrization
trick, a latent variable z from a normally distributed p(z|x) is sampled. The decoder q(y|z) passes z
through three blocks of 2D transposed convolution, instance norm, ELU activation and 40% dropout
to create a decompressed representation. The final layer of the decoder branches into four different
output heads. Each head is a convolutional block with a final softmax activation over each pixel
yielding distance outputs of shape 128x128x1x37, two dihedral outputs of sizes 128x128x1x25 and
an angular output of shape 128x128x1x13.

A.5 LOSS FUNCTION

Our loss function is composed of five individual losses (four reconstruction losses, and a loss on the
latent space).

We use the Wasserstein distance (for details see Panaretos & Zemel (2019)) as reconstruction loss.
Let us define x P and y Q and the corresponding densities as p and q, respectively. We assume
that (x, y) ∈ Rd . Additionally, let us denote J (P,Q) all joint distributions J for (x, y) that have
marginals P and Q. Then the general Wasserstein distance can be written as

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
∥x− y∥p dJ(x, y)

)1/p

(1)

In the discrete case, when P and Q are distributions (x1, . . . , xn) and (y1, . . . , yn) the formulation
becomes

Wp(P,Q) =

(
n∑

i=1

∥xi − yi∥p
)1/p

(2)

In the case of 1D discrete distributions (p = 1), the 1-Wasserstein (W1) distance is also called Earth
mover’s distance (EMD) and is efficiently computable. The main advantage of the 1-Wasserstein
distance compared to other measures such as the binary cross-entropy and the Kullback-Leibler (KL)
divergence is that it takes into account the metric space. This means that larger deviations from the
predicted to the true distributions are more penalized while small errors are less penalized.

We define the reconstruction loss as the sum over the 1-Wasserstein distances between the predicted
distributions (D̂) and the true distributions (D) of each pixel normalized by the length of the protein
(NAA). Each pixel is defined as (i, j) where i = 1, . . . , nw and j = 1, . . . , nh with nw being the
width and nh the height.

Lrec =
1

NAA

nw∑
i=1

nh∑
j=1

W1(Di,j , D̂i,j) (3)

Note that the true distribution is modeled as a Dirac distribution supported by the true values,
whereas the predicted distribution (D̂) is parametrized by the VAE decoder. We additionally use
the Kullback-Leibler (KL) divergence on the latent space normalized by the length of the protein
to penalize latent vectors not following a Normal distribution KLD = 1

NAA
KL(p(z|x)∥p(z)), with

p(z) Normal(0, 1). Thus the final loss is defined as

Ltot = Ld
rec + Lω

rec + Lθ
rec + Lϕ

rec +
1

NAA
KL(p(z|x)∥p(z)). (4)
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A.6 TRAINING REGIMEN

We use a batch size of 64 Sketches, the Adam optimizer with a starting learning rate of 0.001 for the
pre-training and fine-tuning. We reduce the learning rate with a step of 0.97 at each epoch during
pre-training and every second epoch during fine-tuning.

A.7 MODELING AND DESIGN

The trRosetta design framework is utilized to design a set of 1,000 sequences matching GENESIS
refined maps. A position-specific scoring matrix (PSSM) is generated from the library of sequences
and used within the PyRosetta protocol. In a first stage, the PyRosetta protocol first generates
a coarse-grained model using gradient descent with the optimized restraints and a single sequence
from trRosetta design. In a second stage we remove the restraints assuming that the generated coarse
grain model has adopted the target shape. We further optimize the coarse grain structure with a full
atom protocol. We use the Rosetta FastDesign with layer and PSSM sequence constraints during the
design task and topological secondary structure energy bonuses during the relaxation task. In this
way, the full atom protocol improves the quality of the final sequence and structure model.

A.8 SUPPLEMENTARY FIGURES

Figure 5: Data engineering. A: Loops on the Sketch and corrupted structure are approximated
by adding backbone residue atoms with random backbone dihedral angles along the shortest path
between two consecutive SSEs. B: Comparison of the different feature maps (Sketch, corrupted
Structures, and native Structure).
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Figure 6: Comparison of the loss function between training only on the Sketches (train) and pre-
training on the corrupted Structures followed by fine-tuning on Sketches (fine-tune).
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Figure 7: GENESIS-trRosetta with PSSM design. A: Training set: different pipelines and their
performances for the different classes of proteins (“H”: fully α helical, “E”: fully β, and “HE”:
mixed α/β) using the hybrid trRosetta design approach. B: Test set performances over different
protein classes using the hybrid trRosetta design approach. C: Performance of the GENESIS pipeline
using the hybrid trRosetta design across different difficulty levels according to the SCOPe structure
classification
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Figure 8: A: Comparison between the Sketch maps - trRosetta (trR) / 3D model (3DModel) maps
and the GENESIS refined maps - trRosetta (trR) / 3D model (3DModel) using the first Wasserstein
distance metric. B: Performance of the standard GENESIS pipeline across different difficulty levels
according to the SCOPe structure classification.
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