
Hadamax Encoding: Elevating Performance in
Model-Free Atari

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural network architectures have a large impact in machine learning. In reinforce-1

ment learning, network architectures have remained notably simple, as changes2

often lead to small gains in performance. This work introduces a novel encoder3

architecture for pixel-based model-free reinforcement learning. The Hadamax4

(Hadamard max-pooling) encoder achieves state-of-the-art performance by max-5

pooling Hadamard products between GELU-activated parallel hidden layers. Based6

on the recent PQN algorithm, the Hadamax encoder achieves state-of-the-art model-7

free performance in the Atari-57 benchmark. Specifically, without applying any8

algorithmic hyperparameter modifications, Hadamax-PQN achieves an 80% per-9

formance gain over vanilla PQN and significantly surpasses Rainbow-DQN. For10

reproducibility, the full code will be available after the author notification.11
12

1 Introduction13

1 2 3
Median Human-Normalized Score

1

8

64

Ru
nt

im
e

(G
PU

 h
ou

rs
) Rainbow

C51
DDQNDQN

PQN

Hadamax-PQNPQN (Resnet-15)

Figure 1: Performance versus GPU hours in the full Atari-
57 domain at 200M environment frames. The application
of our Hadamard max-pooling encoder on PQN yields
significant performance improvements over a current state-
of-the-art model-free method, Rainbow, while remaining
more than an order of magnitude faster.

Ever since reinforcement learning (RL)14

algorithms [51] surpassed human play-15

ers on the Atari-57 benchmark [6, 36,16

37], progress has been driven mainly17

by various algorithmic innovations [15,18

48].19

Compared with the field of supervised20

learning (SL), the deep learning compo-21

nents of RL have remained relatively22

simple, usually consisting of a few23

convolutional layers (for image-based24

tasks) followed by fully connected lay-25

ers [37, 27]. So far, the most common26

encoder modification in image-based27

RL tasks has been the integration of28

a ResNet encoder [13], inspired by its29

wide use in supervised learning architec-30

tures [25]. Several further approaches31

have been explored to scale the deep learning architecture, but findings indicate that scaling pixel-32

based RL remains a significant challenge [40, 41], and finds greater success in either low-dimensional33

state-based continuous control [34, 24] or complex model-based architectures [45, 23].34

In this work, we revisit the assumption that modifications to baseline network architectures corre-35

spond with instabilities in RL. We build on top of the recent Parallelised Q-Network (PQN), which36

reinvented DQN to function without the replay buffer and target network, while profoundly increasing37

Submitted to the 18th European Workshop on Reinforcement Learning (EWRL 2025). Do not distribute.

performance [17]. This is done by combining recent advances in Hadamard representations [30]38

with max-pooling found in the ResNet encoder structures [25, 13]. Specifically, we augment the39

state-of-the-art PQN algorithm with a Hadamard-maxpooling (Hadamax) encoder. This paper’s40

contributions can be summarized as follows:41

• A novel deep learning architecture is proposed to improve usual pixel-based convolutional42

encoder architectures for model-free RL. This design shows an alternative direction of43

encoder synthesis in RL, as compared to the widely used deeper ResNet architectures.44

• Without applying any algorithmic or hyperparameter modifications, Hadamax-PQN achieves45

an 80% performance gain in the full Atari-57 suite over the recent PQN baseline [17].46

Additionally, the proposed encoder changes allow Hadamax-PQN to significantly surpass47

Rainbow-DQN [27] while remaining more than an order of magnitude faster, setting a48

stronger baseline for model-free RL on Atari.49

2 Related Work50

Different neural network architectures are applied in RL to enhance the performance in online51

settings [36, 5, 13, 27, 17, 34] as well as offline limited data settings [7, 47, 10, 48, 38]. In this52

work, we focus on agents in the high-dimensional Atari-57 domain [6], a diverse and commonly-used53

challenging benchmark with discrete actions and pixel-based input.54

Network development in RL for Atari: Deep Q-learning (DQN) [36, 37] achieves human-level55

performance on Atari games for the first time in the RL history by using three convolution layers56

(with ReLU) followed by fully-connected layers. Due to its simplicity and efficiency, this classic57

architecture is used for many later works, such as Double DQN (DDQN) [52], Dueling DQN [55],58

Noisy DQN [14], Categorical DQN (C51) [5] and Rainbow-DQN [27]. The recent Parallel Q-59

learning (PQN) [17] algorithmically simplifies DQN and uses LayerNorm [4] to provably stabilize60

optimization. C51 [5] and R2D2 [29] enhance the output layer using categorical distributions61

and a recurrent network, respectively. In the context of model-based RL, Recurrent State-Space62

Models (RSSM) [20, 21, 23], image augmentation [33], forward prediction [47, 39], residual63

architectures [13, 44] and transformers [1] have also been explored to solve Atari. Impala [13]64

introduces a deeper ResNet-15 encoder structure with 6 residual blocks, allowing for high data65

efficiency under distributional training. BBF [48] further widens the Impala encoder, achieving66

state-of-the-art performance on the Atari-100k benchmark. SPR [47], using DQN’s architecture67

with a self-prediction objective, also improves data efficiency. For model-based methods, residual68

architectures [57, 54], transformers [58] and diffusion models [3] are being increasingly leveraged to69

boost sample efficiency. Our work focuses on model-free agents in the Atari-57 benchmark, where70

relatively modest algorithmic architectures are used, and a large amount of environment interactions71

is allowed.72

Vectorized RL: Since the development of JAX [9], parallel and vectorized training of reinforcement73

learning (RL) agents has become a promising area of research, offering significant performance and74

scalability improvements. Physics simulation engines and tools that are compatible with JAX have75

emerged to support this paradigm, including Brax [16], a physics simulation engine optimized for76

high-speed differentiable environments; Gymnax [32], a lightweight, JAX-based version of classic77

Gym environments; Jumanji [8], a suite of combinatorial and decision-making environments tailored78

for JAX; and EnvPool [56], a high-throughput environment execution engine with up to 20x speedup79

compared to Python. To complement these environments, a growing ecosystem of reinforcement80

learning libraries built entirely in JAX has been developed. PureJaxRL [35] implements standard RL81

algorithms entirely end-to-end in JAX, enabling parallel execution across thousands of environments.82

JaxMARL [43] focuses on multi-agent reinforcement learning, demonstrating strong acceleration83

of existing algorithms. Additionally, cleanrl [28], a library providing high-quality and reproducible84

RL implementations, also includes several JAX-based implementations. Our work builds upon PQN,85

which leverages EnvPool and PureJaxRL, achieving greater efficiency compared to conventional86

PyTorch-based implementations. With the Hadamax encoder, we further architecturally improve87

PQN to the point that it significantly surpasses Rainbow-DQN, while remaining more than an order88

of magnitude faster.89

2

3 Preliminaries90

As a background, we briefly explain general value-based RL and the recent PQN algorithm, which is91

extended with our proposed encoder.92

3.1 Reinforcement Learning and Value-based Methods93

We consider a Markov Decision Process (MDP), defined by the tuple < S,A,P,R, γ >, with state94

space S, action space A, transition function P , reward function R and discount factor γ ∈ [0, 1).95

An agent in state st ∈ S at timestep t, taking action at ∈ A observes a reward rt ∼ R(st, at) and96

next state st+1 ∼ P(st, at). The goal is to learn an optimal policy π∗ : S → A that can maxmize97

the expected return G(st) = E
[∑∞

k=0 γ
krt+k | st = s

]
over all possible trajectories. Unlike policy-98

based or actor-critic methods [46, 19] that optimize the policy, value-based methods [36] learn a99

state-action value function Q(s, a). Once the optimal Q-function is learned, the optimal policy is100

implicitly defined by selecting greedy actions π∗(s) = argmaxaQ
∗(s, a). Q-learning is the most101

widely used value-based algorithm. It learns Q(s, a) through temporal difference (TD) learning. The102

update rule is:103

Q(st, at)← Q(st, at) + α[r + γmaxa′∈AQ(st+1, a
′)−Q(st, at)], (1)

where α is the learning rate. Over time, this iterative process allows the Q-function to converge to the104

optimal value function Q∗(s, a), from which the optimal policy can be derived.105

Deep Q-Network (DQN) [36] extends Q-learning by using a deep neural network to approximate the106

Q-function. The network is trained to minimize the difference between the predicted Q-values and107

the target values, typically using a loss function such as mean squared error:108

L(θ) = Est,at,rt,st+1∼D[(rt + γmaxa′∈AQ(st+1, a
′; θ−)−Q(st, at; θ))

2] (2)

where θ and θ− are the parameters of the Q-network and are the parameters of a target network that109

is periodically updated. D is the experience replay buffer from which mini-batches are sampled.110

3.2 Parallelised Q-Network111

PQN is a simplified deep online Q-learning algorithm. By parallelizing vectorized environments112

and normalizing neural networks (LayerNorm), PQN can stabilize the training even without a target113

network and replay buffer. Moreover, it is compatible with pure-GPU training, leading to efficient114

training on Atari tasks. More specifically, PQN makes the following modifications compared to the115

original DQN:116

λ-return: Unlike the original DQN uses 1-step return, PQN leverages a more stable λ-return. The117

loss in Equation (2) thus becomes:118

L(θ) = Etrajs[(rt + γ(λGλ
t+1 + (1− λ)maxa′∈AQ(st+1, a

′; θ))−Q(st, at; θ))
2], (3)

where Gλ is the λ-return. When λ = 0 it will be similar to Q-learning, and if λ = 1 it is equivalent119

to the Monte Carlo update, which uses the full return until the episode ends.120

LayerNorm: PQN adds LayerNorm for the output of convolution / MLP layers before the ReLU121

activation functions, which helps stabilize the training process.122

Vectorized Environments: Vectorization enables fast collection of parallel trajectories from indepen-123

dent environments. It enhances exploration and stabilizes the training [17].124

Removal of replay buffer and target network: Since the whole training process happens on GPU,125

removing the replay buffer can largely reduce memory and thereby accelerate training. As a result of126

the training stability, the target network is also eliminated.127

4 Hadamax Encoder128

The first human-level performance in the Atari-57 domain was achieved with the ’Nature’ DQN129

encoder design [37]. The general effectiveness of this architecture, as well as the problems with130

scaling in deep RL, has led to this architecture’s use even in the modern state-of-the-art algorithms131

3

Figure 2: Encoder architectures of DQN, PQN , the proposed Hadamard max-pooling (Hadamax)
encoder and the Impala ResNet-15 encoder (from left to right). In the Hadamax encoder, down-
sampling is facilitated by max-pooling operators. Furthermore, we apply a Hadamard product
between parallel representation layers. The implementation is straightforward and can be found in
Appendix B. These changes allow for a substantial increase in algorithm performance, while keeping
general encoder structure, convolutional depth and algorithmic hyperparameters unchanged.

such as PQN [17]. In this section, we provide the reasoning and implementation of the proposed132

Hadamard max-pooling augmentation of the original DQN encoder. For reproducibility purposes,133

we refer the reader to a detailed implementation of the proposed architecture in Appendix B.134

4.1 Design Choice 1: Down-sampling by Max-pooling135

As pixel-based observations are high-dimensional, the encoder must effectively compress the state136

representation to enable the downstream RL algorithm to converge within a reasonable number137

of updates. In the conventional DQN encoder, this compression is achieved by the convolutional138

operations (See Fig. 2), where the compression is determined by the convolutional kernel size and139

stride. In contrast, when examining the well-known and widely used Impala ResNet-15 encoder140

in RL [13], max-pooling is responsible for the bulk of feature compression. The resulting effect is141

that minimizing convolutional strides and adding max-pooling allows for the selection of a more142

dense representation of convolutional features, and subsequently emphasizes the strongest signals.143

Additionally, the use of max-pooling adds a slight translation invariance to the important features.144

We therefore hypothesize that the use of max-pooling in RL is, although widely implemented in145

supervised learning, relatively overlooked. In the Hadamax encoder, convolutional down-sampling is146

therefore replaced by max-pooling operators. Furthermore, in contrast to the average-pooling used147

by the original supervised learning ResNet architecture [25], the Hadamax encoder max-pools the148

final features before flattening to the linear layer. Since value functions in RL should be able to show149

strong correlations with the most important features, average-pooling before the linear layer will150

achieve the opposite, as it smoothens out feature importance.151

The max-pooling design choices; max-pooling and downsampling instead of convolutional down-152

sampling, followed by max-pooling without down-sampling before flattening, are thus respectively153

influenced by the ResNet-15 (Impala) RL encoder and the original ResNet. However, in stark contrast154

to both residual encoders mentioned, the Hadamax encoder remains shallow (3 convolutional layers),155

and therefore no residual connections need to be applied.156

4.2 Design Choice 2: Application of Hadamard Representations157

Although multiplicative interactions have been commonly used in Deep Learning architectures158

[50, 53, 11], their application in RL remains limited. Recent work however has shown that the159

effective rank (ER [31, 18]) and downstream performance improved when training deep RL in the160

4

Atari domain, by defining hidden layers as Hadamard products [30]. Hadamard products between161

hidden layers enable richer high-dimensional interactions within the representation space, without162

increasing hidden layer dimensionality. This leads to more network capacity without explicitly scaling163

the network, which is often unstable in RL. Specifically, any hidden layer zj ∈ Z , with layer depth j,164

will be the Hadamard product of two parallel layers connected to the preceding hidden layer zj−1:165

zj = f(zj−1Aj−1
1)⊙ f(zj−1Aj−1

2), (4)

where A is a weight matrix, f(∗) is a nonlinear activation and the bias layers are left out for simplicity.166

As PQN employs layer normalization for training stability, and every representation is max-pooled,167

the final Hadamax representation layers can be defined as:168

zj = MP

(
f
(
LN(zj−1Aj−1

1)
)
⊙ f

(
LN(zj−1Aj−1

2)
))

. (5)

Where LN and MP represent layer normalization and max-pooling, respectively. It is worth noting169

that contrary to recent work on Hadamard representations [30], we show the possibility of successfully170

applying Hadamard products to zero-saturating activation functions such as ReLU or GELU [26]. We171

believe this is possible due to the relative training stability increase of PQN over DQN, as a result of172

applying LayerNorm and the removal of the target network and replay buffer. This training stability173

correlates with a minimal amount of dead neurons in the representation [49], which even leads to the174

ability to do element-wise multiplication of zero-saturating (sparse) neurons without increasing dead175

neurons.176

4.3 Design Choice 3: Gaussian Error Linear Unit177

The Gaussian Error Linear Unit (GELU) is used in various neural network architectures, the most178

notable applications being in transformer-based architectures such as BERT [12] and GPT [42].179

It is defined as:180

GELU(x) = xΦ(x)

2 1 0 1 2
x

0.5

0.0

0.5

1.0

1.5

2.0

y

ReLU
GELU

Figure 3: ReLU and GELU.

where Φ(x) is the cumulative distribution function of the181

standard normal distribution. Equivalently, it can be expressed182

using the error function as:183

GELU(x) = 0.5x

(
1 + erf

(
x√
2

))
In contrast to the ReLU, which converts negative inputs to184

zero, GELU permits small negative values to pass through in185

a softened form (See Fig. 3), allowing more stable gradient186

flow for negative inputs. Overall, GELU has been shown to187

improve performance in various deep learning tasks, including188

computer vision and natural language processing [26]. In the189

Hadamax encoder, we therefore replace all the original ReLU activation functions with the GELU.190

5 Experiments191

We compare our agent against widely used model-free RL baselines across 57 Atari games. Through192

experiments, we aim to answer: (i) do agents equipped with Hadamax encoders outperform those193

using conventional encoders? (ii) what are the reasons behind Hadamax’s superior performance?194

(iii) what is the impact of each proposed design choice?195

Baselines: We compare our method with the following baselines: (1) DQN [36], a pioneer RL196

method that uses a deep neural network to play Atari, achieving human performance. (2) C51 [5],197

Rainbow [27], a state-of-the-art model-free method, combining various algorithmic and architectural198

techniques together. (3) PQN [17], a recent novel parallel Q-learning network without a replay199

buffer and target network. In terms of performance, PQN is on par with C51, while remaining200

algorithmically less complex than DQN. Our final baseline is (4) PQN (ResNet-15), which combines201

5

PQN with the more complex Impala CNN architecture, used throughout modern state-of-the-art RL202

algorithms as a drop-in replacement for the conventional Nature encoder [13, 48].203

Figure 4: The Atari-57 domain.

Environments: The full 57-game Atari domain204

[6] is used as a standardized benchmark for eval-205

uating our algorithm’s performance. In line with206

best practices in the field, we focus on the me-207

dian human-normalized score over all 57 games208

[37, 27, 21, 17]. To manage computational load,209

ablations are done on 40M frames, while compar-210

ison with baselines is done at the official 200M211

frame scores. Note that there can be relative dif-212

ferences between performances in 40M and 200M213

frames, as the epsilon-greedy coefficient ϵ is scaled214

down over the total training time. An algorithm seed initialized to run for 40M frames will therefore215

have a different convergence curve towards 40M than the same algorithm initialized for a 200M216

frames seed. We refer the reader to more detailed descriptions of environments and implementations217

of baseline agents in Appendix C.3.218

5.1 Hadamax-PQN: Results219

The full 200M frame training curves for PQN, PQN (ResNet-15) and Hadamax-PQN are shown in220

Fig. 5 (left). The Hadamax encoder clearly yields benefits over the widely used Impala ResNet-15221

encoder [13], and causes PQN to significantly surpass Rainbow-DQN [27]. Although the original222

paper shows that PQN is able to beat Rainbow-DQN when training for around 260M environment223

frames [17], Hadamax-PQN reaches this score at around 90M frames. Another commonly used224

scoring method, the Atari-57 score profile, can be seen in Fig. 5 (right). Note that the scores used225

in this research for DDQN, C51 and Rainbow have been taken from the original papers, and are226

generally higher than their practical implementations on various GitHub repositories. For details on227

how to compute the median human-normalized score and the Atari score profile, we refer the reader228

to Appendix D.229

0.0 0.5 1.0 1.5 2.0
Env Frames 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ed

ia
n

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

Rainbow

DDQN

C51

Atari (57 Games, 200M)

PQN
Hadamax PQN
PQN (ResNet-15)

1 2 3 4
Normalized Score ()

20

30

40

50

60

70

80

90

100

%
 >

Atari (57 Games, 200M)

Hadamax PQN
PQN
PQN (ResNet-15)
Rainbow

Figure 5: Median Human-Normalized performance training PQN, PQN (Resnet-15) and Hadamax-
PQN in the Atari domain over 57 games, 200M frames and 5 seeds (left), and the Atari-57 score profile
(right). The Atari-57 score profile illustrates the percentage of games that exceed the normalized
score threshold on the x-axis.

The effect of the Hadamax encoder on the baseline PQN on a per-game basis can be seen in Fig. 6.230

The results show a significant performance increase over the baseline, with over 17 games having231

more than 100% improvement, compared to only one single game having more than a 50% decrease232

in performance. The per-game improvements over the Rainbow-DQN baseline can be seen in233

Appendix E.3. For each individual game’s training curve and the final 200M frame score table, we234

6

refer the reader to Appendix F. To the best of our knowledge, the implementation of the Hadamax235

encoder is one of the biggest recorded non-algorithmic improvement over a recent competitive RL236

baseline, and it does not involve any complex hyper-parameter tuning.237

Bo
wl

in
g

So
la

ris
Up

ND
ow

n
At

la
nt

is
Ka

ng
ar

oo
Ba

nk
He

ist
As

te
rix

W
iza

rd
Of

W
or

Ku
ng

Fu
M

as
te

r
Do

ub
le

Du
nk

Fr
ee

wa
y

Po
ng

Sk
iin

g
M

on
te

zu
m

aR
ev

en
ge

Fis
hi

ng
De

rb
y

En
du

ro
Bo

xi
ng

De
m

on
At

ta
ck

Pi
tfa

ll
Ro

bo
ta

nk
Tu

ta
nk

ha
m

Kr
ul

l
Vi

de
oP

in
ba

ll
Qb

er
t

Su
rro

un
d

Cr
az

yC
lim

be
r

Pr
iv

at
eE

ye
Ri

ve
rra

id
Br

ea
ko

ut
Na

m
eT

hi
sG

am
e

Fr
os

tb
ite

Sp
ac

eI
nv

ad
er

s
M

sP
ac

m
an

Gr
av

ita
r

Ti
m

eP
ilo

t
Go

ph
er

He
ro

Za
xx

on
As

sa
ul

t
As

te
ro

id
s

St
ar

Gu
nn

er
Te

nn
is

Ba
ttl

eZ
on

e
Ja

m
es

bo
nd

Ph
oe

ni
x

Am
id

ar
Ro

ad
Ru

nn
er

Ce
nt

ip
ed

e
Be

am
Ri

de
r

Ice
Ho

ck
ey

Ya
rs

Re
ve

ng
e

De
fe

nd
er

Al
ie

n
Be

rz
er

k
Se

aq
ue

st
Ch

op
pe

rC
om

m
an

d
Ve

nt
ur

e

Game

103

102

101

101

102

103

104

%
 Im

pr
ov

em
en

t

Improvement over PQN (200M Frames) - Log Scale

Figure 6: Per-game improvement of Hadamax-PQN over PQN (Log Scale).

5.2 Does Hadamax Generalize Beyond PQN?238

0 1 2 3 4
Env Frames 1e7

0

20

40

60

80

100
At

ar
i-1

0
Sc

or
e

C51 (Atari-10, 40M)
w/ Hadamax
Original

Figure 7: C51 with and without a
Hadamax encoder on Atari-10.

The Hadamax encoder not only enhances the performance of239

PQN, but also works effectively with other reinforcement learn-240

ing agents. To showcase this, the C51 algorithm is evaluated241

on the Atari-10 benchmark for 40M environment frames. As242

shown in Figure 7, a direct implementation of the Hadamax en-243

coder to the C51 algorithm boosts the performance by approx-244

imately 70% on Atari-10 [2]. Similar to PQN, the algorithmic245

hyperparameters for Hadamax-C51 remain exactly the same as246

for the C51 baseline from cleanrl [28]. These improvements247

suggest that the Hadamax encoder is able to be implemented248

as a strong default encoder for multiple algorithms in the Atari249

domain. For more information on the Atari-10 benchmark and250

the corresponding score normalization metrics, we refer the251

reader to Appendix D.3.252

5.3 Effective Rank and Dead Neurons253

In order to obtain clues about the stabilizing effects of the proposed Hadamax encoder, the effective254

rank of the hidden layers is investigated during training [31, 18], as well as the amount of dead neurons255

[49]. The effective rank of a feature matrix for a threshold δ (δ = 0.01), denoted as srankδ(Φ),256

is given by srankδ(Φ) = min
{
k :

∑k
i=1 σi(Φ)∑d
i=1 σi(Φ)

≥ 1− δ
}

, where {σi(Φ)} are the singular values of257

Φ in decreasing order, i.e., σ1 ≥ · · · ≥ σd ≥ 0. The effective rank portrays a measure of network258

capacity i.e. the amount of information that can be approximated in a certain hidden layer.259

We investigate the differences in effective rank between the baseline PQN and Hadamax-PQN. To260

find clues for Hadamax’s strong improvements on certain environments, the differences are visualized261

on a random subset of 5 high-improvement environments from Fig. 6. The effective rank of the262

encoder’s representation layers while training for 200M frames can be seen in Fig. 8. The plots show263

that there are minimal differences in effective rank in the first and last hidden layer of the encoder.264

However, in the baseline PQN encoder, the deeper convolutional layers show a more prominent decay265

in rank during training, as well as a reduced initial effective rank. As mentioned in Section 4, the266

7

0 1 2
Env Frames 1e8

20

24

28

32

Ef
fe

ct
iv

e
Ra

nk

Conv1

0 1 2
Env Frames 1e8

36

42

48

54

60

Ef
fe

ct
iv

e
Ra

nk

Conv2

0 1 2
Env Frames 1e8

30

35

40

45

50

55

Ef
fe

ct
iv

e
Ra

nk

Conv3

0 1 2
Env Frames 1e8

60

80

100

120

Ef
fe

ct
iv

e
Ra

nk

MLP

PQN Hadamax-PQN

Figure 8: Effective rank [31] of the 4 hidden layers for both the baseline PQN and the Hadamax-
PQN setting. Although there is no visible difference between the first and final layer, the deeper
convolutional layers show a lower effective rank in the baseline setting, as well as a stronger rank
decay during training.

increase in effective rank in the deeper convolutional layers can largely be credited to the use of267

Hadamard representations.268

0 1 2
Env Frames 1e8

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 D

ea
d

Ne
ur

on
s

Dead Neuron Fraction (MLP)
PQN
Hadamax-PQN

Figure 9: Fraction of dead neurons
over 200M frames.

Further investigation into the penultimate layer’s fraction of269

dead neurons shows a small decrease from the baseline (see270

Fig. 9). The percentage of dead neurons in the final hidden271

layer is calculated by finding neurons that have a variance272

of less than 10−4 over the batch dimension. In practice, this273

metric generalizes well to any activation function (ReLU,274

GELU, Tanh). After training for 200M frames, both the275

baseline PQN and Hadamax-PQN have less than 8% dead276

neurons, which remains extremely low compared to DQN277

[49]. We therefore do not expect a substantial correlation278

between the small reduction in dead neurons and the perfor-279

mance. However, in contrast to recent work on Hadamard280

representations [30], who showed that the DQN algorithm281

exhibits instability when multiplying ReLU-activated neu-282

rons, we show that it is possible to use Hadamard products283

on zero-saturating activations. We believe the inherent stabil-284

ity of the PQN algorithm and its corresponding low fraction285

of dead neurons allows for successful Hadamard multiplica-286

tion of linear-unit activations like ReLU or GELU.287

5.4 Which Design Choice is most Important?288

As described in Section 4, the Hadamax encoder differs from PQN’s conventional Nature CNN289

encoder in three areas: (1) applying max-pooling (2) using Hadamard representations and (3) GELU-290

activated hidden layers. The precise influence of each component of the Hadamax encoder remains to291

be determined. An ablation analysis over these areas is therefore done on 40M environment frames292

in the full Atari-57 suite. The ablations are defined as implementation subtractions from the original293

Hadamax architecture in Fig. 2. The result of the ablation study is shown in Fig. 10a. Next to the294

ablations, the effects of direct additions of our design choices on the baseline PQN are investigated.295

The results of the addition analysis can be seen in Fig. 10b.296

Over a training period of 40M frames, the subtraction of max-pooling leads to the largest decay297

in performance. Note that when max-pooling is subtracted from our architecture, we return the298

convolutional strides to their original values, in order to still retain feature compression. The299

importance of down-sampling with max-pooling strengthens our hypothesis that a selection of the300

most prominent features is key when working with high-dimensional observation spaces in the Atari301

domain. The use of convolutional Hadamard representations is also an important component, showing302

that the increase in effective rank paired with other benefits such as high-order interactions [11],303

have a strong correlation with downstream performance. Finally, the GELU activation has the lowest304

8

0.6 0.8 1.0 1.2 1.4 1.6
Median Human-Normalized Score

Hadamax PQN

No GELU

No Hadamard

No Max-pool

PQN

Ab
la

ti
on

(a) Hadamax ablations.

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Median Human-Normalized Score

PQN + Hadamard

PQN + Max-pool

PQN + GELU

PQN

Ad
di

ti
on

(b) Naive PQN additions.

Figure 10: Ablations of Hadamax-PQN, each represented as a subtraction from the full Hadamax
architecture (a), and naive architectural additions to the baseline PQN (b).

importance, although its contribution as compared to the ReLU still remains substantial for such305

a small architectural component. Notably, if the ablations are compared to the effects of directly306

implementing a single design choice on the baseline (see Fig. 10b), it becomes clear that the overall307

combination of all three components is a key factor. For an experimental analysis with two deeper308

Hadamax encoders, we refer the reader to Appendix E.1.309

6 Conclusions and Future Work310

This paper introduced the Hadamax encoder architecture, augmenting the conventional pixel-based311

Nature CNN architecture with Hadamard representations, while down-sampling using max-pooling312

instead of convolutional strides. Furthermore, the Gaussian Error Linear Unit activation was imple-313

mented to improve training stability. The application of these fundamental changes to PQN’s encoder,314

while preserving its original structure, allowed for a profound increase in performance over several315

model-free baselines. Specifically, we reach an almost two-fold performance gain over PQN, and316

surpass Rainbow-DQN’s official 200M frame score after just 90M frames, while remaining an order317

of magnitude faster. Additional results on C51 show that the Hadamax encoder remains effective318

across algorithms.319

Due to computational constraints, limitations of our work include the limited testing of the Hadamax320

encoder on the more complex algorithms such as BBF [48] on the Atari-100k benchmark or on a321

state-of-the-art model-based algorithm such as Dreamer [22]. However, as seen by the performance322

improvement on C51 in Fig. 7, we expect a certain degree of generalization. Another limitation is that323

the Hadamax encoder, due to its higher complexity, accounts for some extra computational overhead324

compared to PQN’s conventional Nature CNN architecture, as seen in Fig. 1.325

This paper takes an important step forward in encoder synthesis for RL, discovering an alternative for326

the more-often used deeper ResNet architectures to optimize performance. An interesting avenue327

for future work is to investigate scaling of the Hadamax encoder, as it already achieves significant328

performance improvements using only 3 convolutional layers. Finding ways to scale Hadamax in329

either width or depth could yield even stronger improvements. Another interesting direction would330

include looking at integrating a MoE-style prediction head in the Hadamax encoder, since MoE does331

not affect the base encoder [41]. Furthermore, as Hadamax-PQN does not come with any algorithmic332

or hyperparameter changes, it can be used as a new baseline to build algorithmic improvements333

upon. Specifically, since hard-exploration games are generally not suited for PQN’s epsilon-greedy334

exploration regime, augmenting PQN-Hadamax with novel exploration techniques might further335

bridge the gap in performance between model-free and complex model-based algorithms such as336

DreamerV3 or Muzero [23, 45].337

9

References338

[1] P. Agarwal, S. Andrews, and S. E. Kahou. Learning to play atari in a world of tokens. arXiv339

preprint arXiv:2406.01361, 2024.340

[2] M. Aitchison, P. Sweetser, and M. Hutter. Atari-5: Distilling the arcade learning environment341

down to five games. In International Conference on Machine Learning, pages 421–438. PMLR,342

2023.343

[3] E. Alonso, A. Jelley, V. Micheli, A. Kanervisto, A. J. Storkey, T. Pearce, and F. Fleuret. Diffusion344

for world modeling: Visual details matter in atari. Advances in Neural Information Processing345

Systems, 37:58757–58791, 2024.346

[4] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,347

2016.348

[5] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement349

learning. In International conference on machine learning, pages 449–458. PMLR, 2017.350

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An351

evaluation platform for general agents. Journal of artificial intelligence research, 47:253–279,352

2013.353

[7] A. Bhatt, D. Palenicek, B. Belousov, M. Argus, A. Amiranashvili, T. Brox, and J. Peters. Crossq:354

Batch normalization in deep reinforcement learning for greater sample efficiency and simplicity.355

arXiv preprint arXiv:1902.05605, 2019.356

[8] C. Bonnet, D. Luo, D. Byrne, S. Surana, S. Abramowitz, P. Duckworth, V. Coyette, L. I.357

Midgley, E. Tegegn, T. Kalloniatis, O. Mahjoub, M. Macfarlane, A. P. Smit, N. Grinsztajn,358

R. Boige, C. N. Waters, M. A. Mimouni, U. A. M. Sob, R. de Kock, S. Singh, D. Furelos-Blanco,359

V. Le, A. Pretorius, and A. Laterre. Jumanji: a diverse suite of scalable reinforcement learning360

environments in jax, 2024.361

[9] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,362

J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of363

Python+NumPy programs, 2018.364

[10] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning365

fast without a model. arXiv preprint arXiv:2101.05982, 2021.366

[11] G. G. Chrysos, Y. Wu, R. Pascanu, P. Torr, and V. Cevher. Hadamard product in deep learn-367

ing: Introduction, advances and challenges. arXiv preprint arXiv:2504.13112, April 2025.368

arXiv:2504.13112v1 [cs.LG].369

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional370

transformers for language understanding. In Proceedings of the 2019 conference of the North371

American chapter of the association for computational linguistics: human language technolo-372

gies, volume 1 (long and short papers), pages 4171–4186, 2019.373

[13] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,374

I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner375

architectures. In International conference on machine learning, pages 1407–1416. PMLR,376

2018.377

[14] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D. Has-378

sabis, O. Pietquin, et al. Noisy networks for exploration. arXiv preprint arXiv:1706.10295,379

2017.380

[15] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau, et al. An introduction to381

deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3-4):219–354,382

2018.383

[16] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax - a384

differentiable physics engine for large scale rigid body simulation, 2021.385

10

[17] M. Gallici, M. Fellows, B. Ellis, B. Pou, I. Masmitja, J. N. Foerster, and M. Martin. Simplifying386

deep temporal difference learning. arXiv preprint arXiv:2407.04811, 2024.387

[18] C. Gulcehre, S. Srinivasan, J. Sygnowski, G. Ostrovski, M. Farajtabar, M. Hoffman, R. Pascanu,388

and A. Doucet. An empirical study of implicit regularization in deep offline RL. Transactions389

on Machine Learning Research, 2022.390

[19] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,391

P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,392

2018.393

[20] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent394

dynamics for planning from pixels. In International conference on machine learning, pages395

2555–2565. PMLR, 2019.396

[21] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.397

arXiv preprint arXiv:2010.02193, 2020.398

[22] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering Atari with Discrete World Models.399

10 2020.400

[23] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world401

models. arXiv preprint arXiv:2301.04104, 2023.402

[24] N. A. Hansen, H. Su, and X. Wang. Temporal difference learning for model predictive control.403

In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings404

of the 39th International Conference on Machine Learning, volume 162 of Proceedings of405

Machine Learning Research, pages 8387–8406. PMLR, 17–23 Jul 2022.406

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In407

Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR408

’16, pages 770–778. IEEE, June 2016.409

[26] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). 2016.410

[27] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,411

M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In412

Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.413

[28] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. Araújo. Cleanrl:414

High-quality single-file implementations of deep reinforcement learning algorithms. Journal of415

Machine Learning Research, 23(274):1–18, 2022.416

[29] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney. Recurrent experience replay417

in distributed reinforcement learning. In International conference on learning representations,418

2018.419

[30] J. E. Kooi, M. Hoogendoorn, and V. François-Lavet. Hadamard representations: Augmenting420

hyperbolic tangents in rl, 2024.421

[31] A. Kumar, R. Agarwal, D. Ghosh, and S. Levine. Implicit under-parameterization inhibits data-422

efficient deep reinforcement learning. In International Conference on Learning Representations,423

2021.424

[32] R. T. Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.425

[33] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for426

reinforcement learning. In International conference on machine learning, pages 5639–5650.427

PMLR, 2020.428

[34] H. Lee, D. Hwang, D. Kim, H. Kim, J. J. Tai, K. Subramanian, P. R. Wurman, J. Choo, P. Stone,429

and T. Seno. Simba: Simplicity bias for scaling up parameters in deep reinforcement learning.430

arXiv preprint arXiv:2410.09754, 2024.431

11

[35] C. Lu, J. Kuba, A. Letcher, L. Metz, C. Schroeder de Witt, and J. Foerster. Discovered policy432

optimisation. Advances in Neural Information Processing Systems, 35:16455–16468, 2022.433

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.434

Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.435

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,436

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,437

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through438

deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.439

[38] M. Nauman, M. Ostaszewski, K. Jankowski, P. Miłoś, and M. Cygan. Bigger, regularized,440

optimistic: scaling for compute and sample-efficient continuous control. arXiv preprint441

arXiv:2405.16158, 2024.442

[39] T. Ni, B. Eysenbach, E. Seyedsalehi, M. Ma, C. Gehring, A. Mahajan, and P.-L. Bacon.443

Bridging state and history representations: Understanding self-predictive rl. arXiv preprint444

arXiv:2401.08898, 2024.445

[40] J. Obando-Ceron, A. Courville, and P. S. Castro. In deep reinforcement learning, a pruned446

network is a good network. arXiv preprint arXiv:2402.12479, 2024.447

[41] J. Obando-Ceron, G. Sokar, T. Willi, C. Lyle, J. Farebrother, J. Foerster, G. K. Dziugaite,448

D. Precup, and P. S. Castro. Mixtures of experts unlock parameter scaling for deep rl. arXiv449

preprint arXiv:2402.08609, 2024.450

[42] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding451

by generative pre-training. OpenAI, 2018.452

[43] A. Rutherford, B. Ellis, M. Gallici, J. Cook, A. Lupu, G. Ingvarsson, T. Willi, A. Khan, C. S.453

de Witt, A. Souly, S. Bandyopadhyay, M. Samvelyan, M. Jiang, R. T. Lange, S. Whiteson,454

B. Lacerda, N. Hawes, T. Rocktaschel, C. Lu, and J. N. Foerster. Jaxmarl: Multi-agent rl455

environments in jax. arXiv preprint arXiv:2311.10090, 2023.456

[44] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-457

hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a458

learned model. Nature, 588(7839):604–609, 2020.459

[45] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-460

hart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering atari, go, chess and shogi by461

planning with a learned model, 2019. cite arxiv:1911.08265.462

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization463

algorithms. arXiv preprint arXiv:1707.06347, 2017.464

[47] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman. Data-efficient465

reinforcement learning with self-predictive representations. arXiv preprint arXiv:2007.05929,466

2020.467

[48] M. Schwarzer, J. S. O. Ceron, A. Courville, M. G. Bellemare, R. Agarwal, and P. S. Castro. Big-468

ger, better, faster: Human-level atari with human-level efficiency. In International Conference469

on Machine Learning, pages 30365–30380. PMLR, 2023.470

[49] G. Sokar, R. Agarwal, P. S. Castro, and U. Evci. The dormant neuron phenomenon in deep471

reinforcement learning. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and472

J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning,473

volume 202 of Proceedings of Machine Learning Research, pages 32145–32168. PMLR, 23–29474

Jul 2023.475

[50] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In C. Cortes,476

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information477

Processing Systems, volume 28. Curran Associates, Inc., 2015.478

12

[51] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second479

edition, 2018.480

[52] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.481

In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.482

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and483

I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,484

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing485

Systems, volume 30. Curran Associates, Inc., 2017.486

[54] S. Wang, S. Liu, W. Ye, J. You, and Y. Gao. Efficientzero v2: Mastering discrete and continuous487

control with limited data. arXiv preprint arXiv:2403.00564, 2024.488

[55] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network489

architectures for deep reinforcement learning. In International conference on machine learning,490

pages 1995–2003. PMLR, 2016.491

[56] J. Weng, M. Lin, S. Huang, B. Liu, D. Makoviichuk, V. Makoviychuk, Z. Liu, Y. Song, T. Luo,492

Y. Jiang, Z. Xu, and S. Yan. EnvPool: A highly parallel reinforcement learning environment493

execution engine. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,494

editors, Advances in Neural Information Processing Systems, volume 35, pages 22409–22421.495

Curran Associates, Inc., 2022.496

[57] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. Mastering atari games with limited data.497

Advances in neural information processing systems, 34:25476–25488, 2021.498

[58] W. Zhang, G. Wang, J. Sun, Y. Yuan, and G. Huang. Storm: Efficient stochastic transformer499

based world models for reinforcement learning. Advances in Neural Information Processing500

Systems, 36:27147–27166, 2023.501

13

502

Appendix503

Table of Contents
504
505

A Impact Statement 15506

B Hadamax Encoder Code 15507

C Experiment Details 16508

C.1 Hyperparameters . 16509

C.2 Environments . 16510

C.3 Baseline Implementations . 16511

C.4 Compute Usage . 17512

D Metrics 17513

D.1 Median Human-Normalized Score . 17514

D.2 Atari-57 Score Profile . 17515

D.3 Atari-3 and Atari-10 . 17516

E Additional Experiments 18517

E.1 Deeper Hadamax Networks . 18518

E.2 Hadamax with Other Agents . 19519

E.3 Per-game improvement over Rainbow-DQN 19520

F Individual Game Scores 20521
522
523524

14

A Impact Statement525

This work shows that architectural innovations like the Hadamax encoder can drive significant526

progress in reinforcement learning. By enabling more efficient and accessible AI, it encourages527

broader adoption and exploration of learning systems across diverse real-world domains.528

B Hadamax Encoder Code529

We provide the full JAX-based code of the Hadamax encoder for reproducibility purposes.530

1 # Input = input_obs , a frame -stacked Atari observation531

2 x = jnp.transpose(input_obs , (0, 2, 3, 1))532

3 x = x / 255.0533

4 # First block534

5 x1 = nn.Conv(32, kernel_size =(8, 8), strides =(1, 1), padding="SAME",535

6 kernel_init=nn.initializers.xavier_normal ())(x)536

7 x2 = nn.Conv(32, kernel_size =(8, 8), strides =(1, 1), padding="SAME",537

8 kernel_init=nn.initializers.xavier_normal ())(x)538

9 x1 = normalize(x1) # Normalize before activation539

10 x2 = normalize(x2) # Normalize before activation540

11 x1 = nn.gelu(x1) # Apply activation541

12 x2 = nn.gelu(x2) # Apply activation542

13 x = x1 * x2 # Hadamard product543

14 x = max_pool(x, window_shape =(4, 4), strides =(4, 4), padding="SAME")544

15 # Second block545

16 x1 = nn.Conv(64, kernel_size =(4, 4), strides =(1, 1), padding="SAME",546

17 kernel_init=nn.initializers.xavier_normal ())(x)547

18 x2 = nn.Conv(64, kernel_size =(4, 4), strides =(1, 1), padding="SAME",548

19 kernel_init=nn.initializers.xavier_normal ())(x)549

20 x1 = normalize(x1) # Normalize before activation550

21 x2 = normalize(x2) # Normalize before activation551

22 x1 = nn.gelu(x1) # Apply activation552

23 x2 = nn.gelu(x2) # Apply activation553

24 x = x1 * x2 # Hadamard product554

25 x = max_pool(x, window_shape =(2, 2), strides =(2, 2), padding="SAME")555

26 # Third block556

27 x1 = nn.Conv(64, kernel_size =(3, 3), strides =(1, 1), padding="SAME",557

28 kernel_init=nn.initializers.xavier_normal ())(x)558

29 x2 = nn.Conv(64, kernel_size =(3, 3), strides =(1, 1), padding="SAME",559

30 kernel_init=nn.initializers.xavier_normal ())(x)560

31 x1 = normalize(x1) # Normalize before activation561

32 x2 = normalize(x2) # Normalize before activation562

33 x1 = nn.gelu(x1) # Apply activation563

34 x2 = nn.gelu(x2) # Apply activation564

35 x = x1 * x2 # Hadamard product565

36 x = max_pool(x, window_shape =(3, 3), strides =(1, 1), padding="SAME")566

37 # Flatten for MLP layer567

38 x = x.reshape ((x.shape[0], -1))568

39 x = nn.Dense (512, kernel_init=nn.initializers.he_normal ())(x)569

40 x = normalize(x)570

41 x = nn.gelu(x)571

42 x = nn.Dense(self.action_dim , name="action_dense")(x) # Final Q-Values572

15

C Experiment Details573

C.1 Hyperparameters574

Table 1: Atari Hyperparameters for PQN, PQN (ResNet-15) and Hadamax-PQN. These hyperparam-
eters are equal to the original hyperparameters from the PQN baseline [17].

Parameter Value
NUM_ENVs 128
NUM_STEPS 32
EPS_START 1.0
EPS_FINISH 0.001
EPS_DECAY 0.1
NUM_EPOCHS 2
NUM_MINIBATCHES 32
NORM_INPUT False
NORM_TYPE layer_norm
LR 0.00025
MAX_GRAD_NORM 10
LR_LINEAR_DECAY False
GAMMA 0.99
LAMBDA 0.65
OPTIMIZER RAdam

C.2 Environments575

We run experiments on the Atari-57 suite, where there are 57 different games in total. No per-game576

tuning is allowed and the same agent architecture, hyper-parameters and pre-processing needs to run577

on every game. The suite contains varying games that can be used to examine different properties of578

RL agents, e.g. long-horizon credit assignment, partial observability, hard exploration, etc.579

Each observation consists of 4 grayscale images of the game state stacked together, i.e. (4, 64, 64).580

The action space is discrete, and each action represents a different operation in the game. The581

reward function depends on the environment chosen. More details on each game can be found at582

https://ale.farama.org.583

Atari-3 and Atari-10: We examine C51, DQN and Rainbow on Atari-3 or Atari-10 [2], which are a584

small but representative subset of the full Atari-57 suite. Atari-3 includes Battle Zone, Name This585

Game and Phoenix. Atari-10 includes Amidar, Bowling, Frostbite, Kung Fu Master, River Raid,586

Battle Zone, Double Dunk, Name This Game, Phoenix and Q*Bert.587

C.3 Baseline Implementations588

PQN: We use the official codebase 1 of PQN and default hyper-parameter settings.589

Rainbow, C51, DQN:For the Fig. 12 training results we use implementations from cleanrl 2 and590

default hyper-parameter settings. The scores for DDQN, C51 and Rainbow in figures 1 and 5 have591

been taken from their respective official papers.592

Hadamax encoder: Since the whole PQN codebase is in Jax, we implement the Hadamax encoder593

for PQN in Jax as well. As Implementations of Rainbow, C51 and DQN from cleanrl are in PyTorch,594

we also implement the Hadamax encoder for these agents in PyTorch.595

1https://github.com/mttga/purejaxql
2https://github.com/vwxyzjn/cleanrl

16

https://ale.farama.org
https://github.com/mttga/purejaxql
https://github.com/vwxyzjn/cleanrl

C.4 Compute Usage596

We run all our experiments on a HPC cluster equipped with A100 GPUs. Each run of Hadamax-PQN597

needs around 45 minutes for 40 millions frames and PQN needs around 20 minutes.598

D Metrics599

D.1 Median Human-Normalized Score600

For each game, compute the average score xi across multiple independent seeds. Then compute the601

normalized score Zi as:602

Zi =
xi − ri
hi − ri

where xi is the raw score, and ri and hi are the random and human scores for game i, respectively603

(see Table 2 for values). After computing the normalized scores for all 57 games * seeds, they are604

sorted and the median value is computed.605

D.2 Atari-57 Score Profile606

x-axis:(τ - Normalized Score). Represents the threshold score (e.g., Human-Normalized Score).607

Higher values mean better performance.608

y-axis: τ% = fraction of games above τ . Shows the fraction of games for which the agent’s normalized609

score is greater than τ . For example, at τ = 1, the y-value represents what fraction of games the610

agent beats τ = 1 human performance on. In other words, it represents the percentage of games that611

has scores higher than τ .612

D.3 Atari-3 and Atari-10613

The Atari-3 and Atari-10 scores approximate the median normalized score across the full 57-game614

Atari benchmark using subsets of 3 and 10 games, respectively [2]. The computation involves the615

following steps:616

1. For each game in the subset, compute the normalized score Zi as:617

Zi = 100× xi − ri
hi − ri

where xi is the raw score, and ri and hi are the random and human scores for game i,618

respectively (see Table 2 for values).619

2. Apply the log transform:620

ϕ(Zi) = log10(1 + max(0, Zi))

3. Compute the weighted sum f =
∑

i∈I ciϕ(Zi), where I is the subset of games and ci are621

the subset-specific coefficients.622

4. Obtain the predicted median score as:623

t̂ = 10f − 1

For Atari-3, the subset comprises Battle Zone, Name This Game, and Phoenix, with coefficients624

ci = [0.3706, 0.5133, 0.1015].625

For Atari-10, the subset includes Amidar, Bowling, Frostbite, Kung Fu Master, River Raid,626

Battle Zone, Double Dunk, Name This Game, Phoenix, and Q*Bert, with coefficients ci =627

[0.0825, 0.0559, 0.0691, 0.0986, 0.0486, 0.1888, 0.0852, 0.1287, 0.1643, 0.0592].628

17

E Additional Experiments629

E.1 Deeper Hadamax Networks630

As network scaling has become a topic of interest in the field of RL [34, 48, 41], we provide631

experiments using deeper versions of our encoder: 5-layer and 7-layer Hadamax-PQN. Specifically,632

the second and third convolutional layers in the original 3-layer encoder are duplicated, and we633

refrain from max-pooling the duplicates to avoid excessive compression. Similar to the ablations, the634

deep networks are tested on the full 57-game Atari suite for 40M environment frames. The results635

can be seen in Fig. 11.636

0.6 0.8 1.0 1.2 1.4 1.6
Median Human-Normalized Score

Hadamax-PQN

Depth 5

Depth 7

Atari (57 Games, 40M Frames)

Figure 11: Hadamax encoder depth Ablations.

Simply using deeper convolutional Hadamax encoders does not seem to improve performance.637

Although there are more promising ways to scale the Hadamax encoder both in depth and width, the638

computational cost was the limiting factor in pursuing this in more detail. As discussed in the main639

paper, we leave this as a promising research area for future work.640

18

E.2 Hadamax with Other Agents641

We modify the encoders of the widely-used cleanrl [28] implementations of C51, DQN, and Rain-642

bow to demonstrate that the Hadamax encoder can generalize across various model-free agents.643

See Figure 12, on Atari-10, Hadamax improves the performance of the original C51 by 70%, and644

on Atari-3, it boosts DQN and Rainbow by 20% and 30%, respectively. These substantial gains,645

achieved by simply replacing the encoder, suggest that Hadamax could serve as a new default encoder646

for model-free reinforcement learning methods on Atari.647

0 1 2 3 4
Env Frames 1e7

0

40

80

120

160

At
ar

i-3
 S

co
re

DQN (Atari-3, 40M)
w/ Hadamax
Original

0 1 2 3 4
Env Frames 1e7

0

20

40

60

80

100

At
ar

i-1
0

Sc
or

e

C51 (Atari-10, 40M)
w/ Hadamax
Original

0.0 0.5 1.0 1.5 2.0
Env Frames 1e7

0

40

80

120

160

At
ar

i-3
 S

co
re

Rainbow (Atari-3, 20M)
w/ Hadamax
Original

Figure 12: Performance gains of DQN, C51 and Rainbow with Hadamax encoders on a subset of
Atari-57.

E.3 Per-game improvement over Rainbow-DQN648

Pr
iv

at
eE

ye
Sk

iin
g

So
la

ris
Am

id
ar

He
ro

As
te

rix
Ku

ng
Fu

M
as

te
r

Qb
er

t
Fr

os
tb

ite
Pi

tfa
ll

At
la

nt
is

Ka
ng

ar
oo

Do
ub

le
Du

nk
Ba

nk
He

ist
Bo

wl
in

g
Go

ph
er

Vi
de

oP
in

ba
ll

Su
rro

un
d

Fr
ee

wa
y

M
on

te
zu

m
aR

ev
en

ge
Bo

xi
ng

Po
ng

Tu
ta

nk
ha

m
En

du
ro

Gr
av

ita
r

Fis
hi

ng
De

rb
y

Ro
bo

ta
nk

Sp
ac

eI
nv

ad
er

s
Cr

az
yC

lim
be

r
W

iza
rd

Of
W

or
De

m
on

At
ta

ck
Kr

ul
l

M
sP

ac
m

an
Za

xx
on

Br
ea

ko
ut

Ba
ttl

eZ
on

e
Ti

m
eP

ilo
t

Na
m

eT
hi

sG
am

e
As

sa
ul

t
Te

nn
is

Al
ie

n
Ice

Ho
ck

ey
Ph

oe
ni

x
Ce

nt
ip

ed
e

Be
am

Ri
de

r
Ro

ad
Ru

nn
er

St
ar

Gu
nn

er
Ya

rs
Re

ve
ng

e
De

fe
nd

er
Se

aq
ue

st
Ch

op
pe

rC
om

m
an

d
As

te
ro

id
s

Be
rz

er
k

Ve
nt

ur
e

Game

103

102

101

101

102

103

104

%
 Im

pr
ov

em
en

t (
No

rm
al

ize
d)

Improvement over Rainbow - Log Scale

19

F Individual Game Scores649

0

1

2

3

4

5
Alien-v5

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Amidar-v5

0

20

40

60

Assault-v5

0

20

40

60

80

100
Asterix-v5

0.0

0.5

1.0

1.5
Asteroids-v5

0

10

20

30

40

50

Atlantis-v5

0.0

0.5

1.0

1.5

2.0

BankHeist-v5

0

1

2

3

BattleZone-v5

0

1

2

3

4
BeamRider-v5

0

5

10

15

20

25
Berzerk-v5

0.2

0.1

0.0

0.1

0.2

0.3

0.4
Bowling-v5

4

2

0

2

4

6

8

Boxing-v5

0

5

10

15

20

25

Breakout-v5

0.0

0.5

1.0

1.5

2.0

2.5

Centipede-v5

0

20

40

60

ChopperCommand-v5

0

2

4

6

8

CrazyClimber-v5

0

5

10

15

20

Defender-v5

0

20

40

60

DemonAttack-v5

2

0

2

4

6

8

DoubleDunk-v5

0

1

2

Enduro-v5

0.0

0.5

1.0

1.5

2.0

2.5

FishingDerby-v5

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Freeway-v5

0.0

0.5

1.0

1.5

2.0

Frostbite-v5

0

10

20

30

40
Gopher-v5

0.0

0.2

0.4

0.6

Gravitar-v5

0.0

0.2

0.4

0.6

0.8

1.0

Hero-v5

0.5

0.0

0.5

1.0

1.5

2.0

2.5
IceHockey-v5

0

5

10

15

20

25
Jamesbond-v5

0

1

2

3

4

5
Kangaroo-v5

2

0

2

4

6

8

10
Krull-v5

0.0

0.5

1.0

1.5

2.0

KungFuMaster-v5

0.005

0.000

0.005

0.010

0.015

0.020

0.025
MontezumaRevenge-v5

0.0

0.5

1.0

1.5

2.0

2.5
MsPacman-v5

0

1

2

3

NameThisGame-v5

0

10

20

30

40

50

60
Phoenix-v5

0.02

0.01

0.00

0.01

0.02

0.03

0.04
Pitfall-v5

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pong-v5

0.05

0.00

0.05

0.10

PrivateEye-v5

0.0

0.5

1.0

1.5

2.0

Qbert-v5

0.0

0.5

1.0

1.5

2.0
Riverraid-v5

0

10

20

30

40

RoadRunner-v5

0

2

4

6

8
Robotank-v5

0

1

2

3

4

5

Seaquest-v5

1

0

1

Skiing-v5

0.1

0.0

0.1

0.2

Solaris-v5

0

5

10

15

20

25

30
SpaceInvaders-v5

0

10

20

30

40

50

60
StarGunner-v5

0.00

0.25

0.50

0.75

1.00

1.25
Surround-v5

0

1

2

3

Tennis-v5

2.5

0.0

2.5

5.0

7.5

10.0

TimePilot-v5

0.0

0.5

1.0

1.5

Tutankham-v5

0

5

10

15

20

25

UpNDown-v5

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Venture-v5

0

100

200

300

400

VideoPinball-v5

0.0 0.5 1.0 1.5 2.0

1e8

0

2

4

6

8

WizardOfWor-v5

0.0 0.5 1.0 1.5 2.0

1e8

0

2

4

6

8

10

YarsRevenge-v5

0.0 0.5 1.0 1.5 2.0

1e8

0

1

2

3

4
Zaxxon-v5

Hadamax PQN
PQN
PQN (ResNet-15)

Environment Frames

No
rm

al
ize

d
Sc

or
e

20

Table 2: Final 200M frame scores.
Game Hadamax-PQN PQN (Resnet-15) PQN
Alien-v5 20045.4 16935.0 2916.3
Amidar-v5 1774.5 944.1 740.3
Assault-v5 26426.7 11160.5 15089.7
Asterix-v5 274915.0 95400.0 287697.6
Asteroids-v5 39328.0 4232.7 21047.6
Atlantis-v5 715750.0 516357.8 831884.7
BankHeist-v5 1260.2 1446.1 1336.2
BattleZone-v5 92951.2 55106.5 44130.8
BeamRider-v5 49480.9 16315.8 18131.7
Berzerk-v5 57497.4 19597.8 6061.3
Bowling-v5 29.7 30.2 42.5
Boxing-v5 99.8 96.3 98.3
Breakout-v5 607.4 470.3 489.6
Centipede-v5 17901.7 9266.5 8178.2
ChopperCommand-v5 203593.5 26974.7 11688.8
CrazyClimber-v5 202048.2 162776.7 168732.4
Defender-v5 360287.5 48761.1 66381.0
DemonAttack-v5 135450.5 125870.4 131320.0
DoubleDunk-v5 -1.8 -1.2 -1.2
Enduro-v5 2323.4 462.7 2284.6
FishingDerby-v5 46.6 31.2 45.4
Freeway-v5 33.7 21.4 33.8
Frostbite-v5 7689.5 6537.2 5623.8
Gopher-v5 67829.0 26859.5 40834.5
Gravitar-v5 1547.2 514.4 1107.3
Hero-v5 30617.4 24912.9 18099.9
IceHockey-v5 16.3 -2.4 -1.4
Jamesbond-v5 4244.8 1285.8 1942.8
Kangaroo-v5 13177.3 8728.6 13992.5
Krull-v5 10554.4 9497.9 9802.2
KungFuMaster-v5 36751.9 24102.8 38233.3
MontezumaRevenge-v5 0.0 0.0 0.0
MsPacman-v5 6968.3 4584.7 4909.7
NameThisGame-v5 21334.2 18754.3 16437.0
Phoenix-v5 267080.2 41001.4 120959.5
Pitfall-v5 -43.5 -34.4 -50.5
Pong-v5 21.0 20.8 21.0
PrivateEye-v5 3.6 3.9 7.5
Qbert-v5 25970.2 21818.4 22449.6
Riverraid-v5 29423.9 18669.8 24133.3
RoadRunner-v5 190019.6 52925.0 76600.9
Robotank-v5 71.5 66.1 68.3
Seaquest-v5 129408.8 43559.8 11554.4
Skiing-v5 -29971.3 -29479.8 -29972.3
Solaris-v5 1884.2 863.5 2189.4
SpaceInvaders-v5 22258.0 13800.3 15125.0
StarGunner-v5 549350.4 215397.7 264413.1
Surround-v5 9.4 7.5 6.3
Tennis-v5 23.8 22.9 -1.0
TimePilot-v5 17946.0 11924.0 12320.1
Tutankham-v5 258.7 216.8 248.0
UpNDown-v5 191857.2 82743.3 270833.7
Venture-v5 940.7 0.0 18.1
VideoPinball-v5 522510.3 416690.8 463022.1
WizardOfWor-v5 21526.1 13130.5 22214.2
YarsRevenge-v5 444710.8 119951.1 111611.7
Zaxxon-v5 31400.8 14229.4 17644.0

21

	
	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning and Value-based Methods
	Parallelised Q-Network

	Hadamax Encoder
	Design Choice 1: Down-sampling by Max-pooling
	Design Choice 2: Application of Hadamard Representations
	Design Choice 3: Gaussian Error Linear Unit

	Experiments
	Hadamax-PQN: Results
	Does Hadamax Generalize Beyond PQN?
	Effective Rank and Dead Neurons
	Which Design Choice is most Important?

	Conclusions and Future Work
	Appendix

	 Appendix
	Impact Statement
	Hadamax Encoder Code
	Experiment Details
	Hyperparameters
	Environments
	Baseline Implementations
	Compute Usage

	Metrics
	Median Human-Normalized Score
	Atari-57 Score Profile
	Atari-3 and Atari-10

	Additional Experiments
	Deeper Hadamax Networks
	Hadamax with Other Agents
	Per-game improvement over Rainbow-DQN

	Individual Game Scores

