
RLJ | RLC 2024

Non-adaptive Online Finetuning for Offline Rein-
forcement Learning

Audrey Huang
audreyh5@illinois.edu
University of Illinois Urbana-Champaign

Mohammad Ghavamzadeh
ghavamza@amazon.com
Amazon

Nan Jiang
nanjiang@illinois.edu
University of Illinois Urbana-Champaign

Marek Petrik
mpetrik@cs.unh.edu
University of New Hampshire

Abstract

Offline reinforcement learning (RL) has emerged as an important framework for
applying RL to real-life applications. However, the complete lack of online interac-
tions causes technical difficulties. The online finetuning setting which incorporates a
limited form of online interactions, often available in practice, has been developed to
address these challenges. Unfortunately, existing theoretical frameworks for online
finetuning either assume high online sample complexity or require deploying fully
adaptive algorithms (i.e., unlimited policy changes), which restrict their application
to real-world settings where online interactions and policy updates are expensive
and limited. In this paper, we develop a new theoretical framework for online
finetuning. Instead of competing with the optimal policy (which inherits the high
sample complexity and adaptivity requirements of online RL), we aim to learn a
policy that improves as much as possible over an existing reference policy using
a pre-specified number of online samples and a non-adaptive data-collection strat-
egy. Our formulation reveals surprising nuances and suggests novel principles that
distinguish finetuning from purely online and offline RL.

1 Introduction

Reinforcement Learning (RL) is a form of learning via trial and error in which the agent interacts with
the environment and improves its decision-making strategy (or policy) on the fly. Despite numerous
successes in simulated domains, such an online and adaptive protocol has seen difficulties in real-world
applications, such as healthcare, finance, and recommendation systems, where deploying unverified
and/or ever-changing policies can have undesirable consequences. As a response to this challenge,
offline RL, in which learning is solely from a pre-collected dataset without online interactions, has
received significant attention as a promising framework for deploying RL in real-world tasks (Levine
et al., 2020). However, its purely offline nature also gives rise to a host of new challenges, such
as difficulties in policy selection (Paine et al., 2020; Zhang & Jiang, 2021) and high sensitivity to
hyperparameters (Fujimoto & Gu, 2021; Cheng et al., 2022).

To tackle learning from a pre-collected dataset, researchers have started investigating a more hybrid
approach that combines offline and online RL, noting that many applications of interest do allow a
limited amount of online interaction in addition to the offline dataset. For example, in recommendation
systems, it is often possible to run a fixed policy (upon approval) on a small portion of user traffic to
collect more data for validation and further improvement; or in certain medical applications, one can
recruit a small group of patients to perform clinical trials. In these cases, the online interactions are
often limited in sample size and/or adaptivity (e.g., each new policy needs approval before being

RLJ | RLC 2024

deployed and one cannot change it on the fly (Koenecke et al., 2020)). The hope is that we can use
these limited online interactions as a scarce resource to mitigate the caveats of offline RL and to
improve upon (or to finetune (Xie et al., 2021b)) it.

Unfortunately, attempts at establishing a theoretical framework for this online finetuning setting
have mostly yielded results that violate the aforementioned practical limitations (Xie et al., 2021b;
Song et al., 2022; Wagenmaker et al., 2022; Wagenmaker & Pacchiano, 2023; Li et al., 2023; Zhang
& Zanette, 2023):

Adaptivity: Many works run (variants of) standard online RL algorithms in the finetuning phase,
requiring full adaptivity, which is undesirable in practical applications where policy changes are costly
to implement.

High sample complexity & structural assumptions: Most existing works require a high
sample complexity in the online phase that scales with certain structural quantities, such as the
number of states/actions in the tabular setting or certain rank/dimension parameter in the function-
approximation setting. In the latter case, the low-rankness itself is often an assumption on the
environment dynamics which restricts the application scope of the methods.1

The above violations are clear signs that the existing theoretical frameworks do not adequately
capture the essence of the practical settings. More concretely, all existing works inherit the standard
goal of online RL, namely, competing with the optimal policy (in either PAC or regret formulation),
and this ambitious goal (optimality seeking) comes at the cost of impractical assumptions (adaptivity
and/or high complexity). Consequently, the results and methodologies in these works are much closer
to those in the online RL literature than in offline RL.

In this paper, we take a different approach to the hybrid offline-online RL problem by removing
the impractical assumptions and pursuing a more humble and reachable goal of improvement
maximization (instead of competing with the optimal). More concretely, we consider the non-
adaptive setting,2 where the online policy is decided based on the offline data and is not allowed to
be updated during the online phase. Then, with a given online budget, we ask the following question:

How to design an online data-collection strategy from the offline data, such that the policy learned
from all the data (offline and online) improves as much as possible over the one learned purely from

offline data?

Contributions:

1. We begin by defining a concrete and representative problem setting (Section 2). We then propose
a model-based information-theoretic objective for choosing the online data-collection strategy
(Eq. (4)), which hallucinates online data from plausible models and simulates the offline algorithm
after data collection. Since we do not know the true model that would generate the data, worst-case
reasoning (i.e., pessimism (Jin et al., 2020; Xie et al., 2021a)) is employed to guarantee that the
objective value is a valid lower-bound of the improvement of interest (Theorem 2).

2. Perhaps surprisingly, we show that in certain cases the objective value—which represents the guar-
anteed amount of improvement—can be approximately zero across all online policies (Theorem 3),
implying that positive improvement may not be obtainable in the worst-case scenario, leading to
degenerate behaviors. To address this issue, we show that pessimism plays two different roles in
our formulation: in data hallucination and when running the offline algorithm on the combined
dataset. By choosing the offline algorithm to provide guard against degenerate policies (Bhardwaj
et al., 2022), pessimism in data hallucination can be relaxed to strike a trade-off between the
1In contrast, offline RL can enjoy strong guarantees in general settings without making structural assumptions on

the environment dynamics (Xie et al., 2021a).
2This is also called the single-deployment setting. In some practical scenarios, this process can iterate for a small

number of times (Matsushima et al., 2020; Huang et al., 2021). While we would eventually like to understand such a
multiple-deployment setting, we consider the single-deployment one as a building block which has already proven to be
a challenging problem on its own.

RLJ | RLC 2024

magnitude of improvement and the chance that improvement occurs (Eq. (7)), a new principle we
refer to as opportunistic pessimism.

3. Throughout the development we use multi-armed bandits (MABs) as a running example to provide
further intuitions. We report preliminary empirical investigations in MABs in Section 4.

2 Setup

Markov Decision Process Our problem considers decision-making in finite-horizon Markov
Decision Processes (MDPs). An MDP is specified by the tuple M = {S, A, P, R, H}, where S is the
state space, A is the action space, H is the horizon, P = {P0, . . . , PH−1} with Ph : S × A → ∆(S) is
the transition dynamics, and R = {R0, . . . , RH−1} is a (possibly stochastic) reward function with
Er∼Rh(s,a)[r] ∈ [0, 1] for all h and s ∈ S, a ∈ A. A policy π maps states or histories to a distribution
over actions. For a given MDP model M , let JM (π) = EM [

∑H−1
h=0 rh|π] denote the expected return

of a policy π in M . We denote the true model underlying the environment as M∗.

Offline learning and (non-adaptive) online finetuning In our learning setting, we are given a
policy class Π, a model class M, an offline dataset Doff drawn from the environment M∗ ∈ M (we
assume realizability) following certain behavior policies, and a policy πref ∈ Π computed using Doff ,
Π, and M, before the online data is collected. Our framework is flexible and agnostic to the choice
of the algorithm that computes πref . Our task is to 1) choose a policy µon ∈ Π 3 to collect an online
dataset of size non, and 2) run an offline algorithm Aoff over the combined offline and online dataset
to produce a final policy π̂, with the goal of maximizing the improvement over πref . The protocol is
summarized below:

Non-adaptive Online Finetuning (NOF) Problem
Input: policy class Π, model class M, offline dataset Doff , reference policy πref ∈ Π.

1. Pick online data-collection policy µon ∈ Π.
2. Execute µon in M∗ to collect non samples, denoted by Don.
3. Run Aoff over Doff ∪ Don and compute π̂ ∈ Π.

Goal: maximize JM∗(π̂) − JM∗(πref).

Multi-armed bandits While Section 3 will discuss our problem formulation for the general
RL setting, to improve intuition we will interweave examples in the setting of multi-armed bandits
(MABs). MABs are a simplified and special case of MDPs that consist of a single state and a
set of actions (arms) A. In an MAB model M , each arm a ∈ A has a reward distribution RM (a)
with average reward rM (a), thus JM (π) =

∑
a∈A π(a)rM (a). An MAB dataset D consists of tuples

{(a, r)}, where a is drawn from a policy over A and r ∼ RM∗(a). Given a dataset D, nD(a)
denotes the number of times a ∈ A was pulled in D, and r̂D(a) denotes the empirical estimate
of rM∗(a), i.e., r̂D(a) = 1

nD(a)
∑

(a′,r)∈D r1[a′ = a]. For simplicity, our examples throughout the
paper will utilize Bernoulli bandits, for which the reward distribution of each arm a is given by
RM∗(a) = Bernoulli(rM (a)), and can be modeled by a single parameter rM∗(a), namely, its expected
reward. These examples are designed to elucidate the core challenges of NOF.

3 An Information-Theoretic Objective for NOF

We provide a mathematical formulation and theoretically sound algorithm for the NOF problem
described in Section 2, with its core being an information-theoretic objective that guides the choice
of µon. Note that to specify the algorithm we also need to specify Aoff, which we start with.

3For simplicity we assume that πref , µon, and π̂ are all chosen from the same policy class Π; it is straightforward to
allow for separate policy classes.

RLJ | RLC 2024

3.1 Choosing the Offline Algorithm Aoff

Once Don was collected, what we face in Step 3 of NOF (i.e., computing π̂) is a standard offline RL
problem. While we could employ any offline RL algorithm, there are a number of desirable properties:

1. While our goal is to improve over πref , a careless choice of Aoff may result in worse performance
than πref , i.e., negative improvement. It is desired to have safety assurance that π̂ is guaranteed
to be no worse than πref under mild conditions.

2. The offline algorithm Aoff should also enjoy the state-of-the-art offline RL guarantees that the
improvement is positive under favorable conditions (otherwise we can satisfy the point above by
trivially setting π̂ = πref , which will never improve over πref).

The ARMOR algorithm (Bhardwaj et al., 2022) satisfies both the above considerations. It is based
on the concept of version space, which will also be of vital importance for our later discussions.
Definition 1 (Version space). Given a model class M, a dataset D, and a confidence parameter
δ, the construction of a version space is a procedure that outputs Mδ(D) ⊆ M, satisfying the
following: if D is drawn from M∗ ∈ M, possibly in an adaptive (or non-i.i.d.) manner, then
PD[M∗ ∈ Mδ(D)] ≥ 1 − δ.

Roughly speaking, a version space uses data in D to rule out unlikely models. There are many ways
to implement it depending on the setting: for example, in “Bernoulli” multi-armed bandits (MABs),
the version space can be defined using the confidence intervals of the arms (see Example 1). A more
general approach is to filter out models with poor data likelihood compared to the MLE (Bhardwaj
et al., 2022).4 Our algorithm design does not depend on the specific form of version space, and we
will keep it abstract except for the standard condition of monotonicity in δ, i.e.,
Assumption 1. We assume that Mδ2(D) ⊆ Mδ1(D) for any fixed D and 0 < δ1 ≤ δ2 ≤ 1.

Assumption 1 implies that smaller δ’s result in larger version spaces, as they indicate higher probability
of retaining M∗. With the concept of version space, we can now state the ARMOR algorithm as

π̂ = argmax
π∈Π

min
M∈Mδ(Doff∪Don)

JM (π) − JM (πref) (1)

Intuitively, if we replace the minimum over M with M = M∗ in (1), the algorithm exactly maximizes
the improvement over πref , which is our goal. Of course, M∗ is unknown in practice, and generally
cannot be identified especially if the given dataset (Doff ∪ Don) does not provide full coverage over
the environment. However, we can still make the best effort in eliminating unlikely models and
reducing the uncertainty of M∗ by forming the version space Mδ(Doff ∪ Don), and then performing
worst-case reasoning over the version space. Such a design immediately yields the desired safety
guarantee, that π̂ is no worse than πref with high probability.
Proposition 1 (Theorem 2 of Bhardwaj et al. (2022)). We have JM∗(π̂) ≥ JM∗(πref) w.p. 1 − δ.

As for the second consideration listed above, Bhardwaj et al. (2022) show that ARMOR also has
strong optimality guarantees and competes with the best policy covered by the data. The MAB
example below provides more intuition on ARMOR and its version space.
Example 1 (ARMOR in MABs). The version space in Bernoulli MABs can be defined as the set
of Bernoulli distributions whose parameters lie within the rectangular set of the arms’ confidence
intervals,

Mδ(D) =
{

M ∈ M : RM (a) = Bernoulli(rM (a)), rM (a) ∈ [LCBD(a), UCBD(a)], ∀a ∈ A
}

,

4Although most offline analyses of version spaces assume i.i.d. data, they can often be straightforwardly extended
to handle adaptively generated data via martingale concentration inequalities (Jin et al., 2021).

RLJ | RLC 2024

where UCBD(a) = r̂D(a) + b(a) and LCBD(a) = r̂D(a) − b(a) are the upper and lower confidence
bounds for arm a ∈ A. For an i.i.d. dataset5 D and any δ ∈ [0, 1), the confidence radius b(a) can be
defined using, e.g., Hoeffding’s inequality as b(a) :=

√
log(2|A|/δ)/2nD(a).

If πref is deterministic, i.e., πref(a) = 1[a = aref], ∀a ∈ A with aref ∈ A being a fixed arm, which is
the case when it is learned using a typical offline RL algorithm such as LCB (Lattimore & Szepesvári,
2020), ARMOR (Eq. (1)) will also output a deterministic policy π̂(a) = 1[a = â], where

â =
{

aref , if LCBD(a) < UCBD(aref), ∀a ̸= aref ,

argmaxa̸=aref
{

LCBD(a) − UCBD(aref)
}

, otherwise.
(2)

In other words, ARMOR switches from aref to another arm a, only if Doff ∪ Don is such that the
UCB of aref is smaller than the LCB of a.

3.2 Information-theoretic Objective for µon

Now that Aoff is fixed, we turn to the design of the online data-collection policy µon. As a starting
point, suppose that we had access to M∗ when choosing µon, but once it is selected we have to run
ARMOR on the combined dataset without access to M∗. In this case, we compute µon by solving

µon = argmax
µ∈Π

EDµ

M∗
[JM∗(π̂Dµ

M∗
) − JM∗(πref)],

where π̂Dµ

M∗
= argmax

π∈Π
min

M∈Mδ(Doff∪Dµ

M∗)
JM (π) − JM (πref). (3)

Here Dµ
M∗ is the set of non samples collected by executing µon in M∗ and EDµ

M∗
is the expectation

w.r.t. the random draws of Dµ
M∗ . The subscript in π̂Dµ

M∗
is to distinguish it from the final output

policy π̂ in Eq. (1). These policies are the outputs of ARMOR with different version spaces. For
π̂Dµ

M∗
, the version space is defined on the union of Doff and the dataset Dµ

M∗ “hallucinated” in the
process of optimizing µon, while for π̂ it is defined on the union of Doff and the actual Don. Since
Dµ

M∗ is identically distributed as Don when we choose µon = µ, the objective is exactly the expected
improvement we can obtain in M∗ by selecting µon = µ to collect the online data.6

In reality when we do not have access to M∗, we follow a design choice similar to ARMOR and
construct a version space to quantify the uncertainty over M∗, and then employ worst-case reasoning
(pessimism) to form our objective as

µon ∈ argmax
µ∈Π

OBJ(µ, M′) := min
M ′∈M′

EDµ

M′

[
JM ′(π̂Dµ

M′
) − JM ′(πref)

]
, (4)

where M′ is a version space that we hope can capture M∗. We will consider different design choices for
M′ in the rest of this section. For starters, we can set M′ = Mδ′(Doff), the version space constructed
on Doff with confidence δ′. We also abuse notation and write OBJ(µ, δ′) := OBJ(µ, Mδ′(Doff)).

Thanks to the worst-case reasoning (pessimism), if M∗ ∈ M′, the objective value on the RHS of
Eq. (4) will give us a lower-bound on the improvement obtained in the real environment M∗ by
deploying the learned policy µon. Such a lower-bounding property makes the optimization problem
“what you see is what you get”, i.e., if we see a large objective value in Eq. (4), it is guaranteed that
the real improvement can only be higher (all proofs can be found in Appendix B):
Proposition 2. Let Don be the dataset collected using µon in Eq. (4). Then, if M∗ ∈ M′, we have

EDon
[
JM∗(π̂Don) − JM∗(πref)

]
≥ OBJ(µon, M′) = max

µ
OBJ(µ, M′).

Moreover, for M′ = Mδ′(Doff), the above equation holds w.p. ≥ 1 − δ′. In addition, OBJ(µ, δ′) is
monotonically non-decreasing in δ′.

5One can handle an adaptive dataset by union bounding over time and paying an additional log |D| factor.
6One design choice we make here is to use the expectation EDµ

M∗
to convert the distribution of improvement into a

scalar metric. Alternatively, we can consider other functionals such as risk-sensitive measures.

RLJ | RLC 2024

Trade-off in the choice of δ′ The hyperparameter δ′ defines a trade off between how greedy we
would like to be with maximizing our objective and the probability of the improvement being realized
when we deploy µon in the true environment M∗. More precisely, for δ′

1 ≥ δ′
2 we have M′

δ′
1

⊆ M′
δ′

2
,

and thus, maxµ OBJ(µ, δ′
1) ≥ maxµ OBJ(µ, δ′

2). This is because for δ′
1, the minM ′ in Eq. (4) searches

over a smaller set of models and as a result is less adversarial/conservative. This means that as δ′

increases in magnitude, we will see a larger objective value and hence more significant guaranteed
improvement, but the chance that the improvement actually occurs (1 − δ′) will become smaller.

An Alternative Objective We conclude by discussing an alternative objective that is a relaxed
version of Eq. (4). Instead of using the improvement JM ′(π̂) − JM ′(πref) in the expectation of Eq. (4),
one alternative design choice is to directly use the ARMOR objective from Eq. (1), i.e.,

µon = argmax
µ

OBJ′(µ, δ′) := min
M ′∈M′

EDµ

M′

[
max
π∈Π

min
M∈Mδ(Doff∪Dµ

M′)
JM (π) − JM (πref)

]
. (5)

This is a relaxation of Eq. (4), as the ARMOR objective itself lower bounds the improvement in M ′:

JM ′(π̂) − JM ′(πref) ≥ max
π∈Π

min
M∈Mδ(Doff∪Dµ

M′)
JM (π) − JM (πref),

under the event that M ′ ∈ Mδ(Doff ∪ Dµ
M ′).7 While being looser than Eq. (4), Eq. (5) is also

simpler and avoids a few nested computations in Eq. (4) (e.g., computing the argmax policy from
the ARMOR objective and plugging it back to M ′ for evaluation). Another notable difference is
that Eq. (5) is monotone in δ, i.e., it is no smaller for larger δ, which is not necessarily the case for
Eq. (4) since it incorporates the tradeoff that δ induces (Assumption 1). We empirically investigate
the performance of Eq. (4) vs. Eq. (5) in Section 4.

3.3 Degeneracy in Optimization and Opportunistic Pessimism

In Section 3.2, we showed that the optimization objective in Eq. (4) has “what you see is what you
get” property, and a good improvement is guaranteed as long as the value of maxµ OBJ(µ, δ′) is
large. Here we first show that unfortunately, under fairly reasonable assumptions, the objective value
maxµ OBJ(µ, δ′) is guaranteed to be close to 0. This leads to a degenerate behavior for the algorithm
and implies that our formulation is overly conservative.
Proposition 3 (OBJ(µ, δ′) ≈ 0 under mild assumptions). If there exists a model M ′

0 ∈ Mδ′(Doff)
such that πref ∈ argmaxπ∈Π JM ′

0
(π), then

|OBJ(µ, δ′)| ≤ PDµ

M′
0

[M ′
0 /∈ Mδ(Doff ∪ Dµ

M ′
0
)], ∀µ ∈ Π.

Two remarks are in order: First, the proposition holds under the condition that πref is optimal for
one of the models in Mδ′(Doff), which is not a very strong assumption. For example, in Bernoulli
MABs, if πref is computed using the LCB algorithm (Lattimore & Szepesvári, 2020; Rashidinejad
et al., 2021) based on Doff with confidence parameter δ′, the condition is always satisfied as πref is
optimal for the model in which the mean rewards of the arms are equal to their lower confidence
bounds. Second, the RHS of the bound should be treated as a small quantity close to δ for reasons
discussed in Footnote 7. This non-zero residual corresponds to the low-probability event that the
version space fails to capture the model M ′

0 used to hallucinate data, and is a technical artifact due
to the mismatch between the expectation in EDµ

M′
and the high-probability guarantee of ARMOR.8

7The slight complication here is that Doff comes from M∗ but Dµ
M′ comes from M ′, so it is difficult to quantify

the likelihood of M ′ ∈ Doff ∪ Dµ
M′ using Definition Definition 1 which is stated very abstractly. However, note that

M ′ ∈ Mδ′ (Doff), meaning that M ′ is a model consistent with Doff . Therefore, it is very natural to assume that when
Doff is augmented with data sampled from M ′, then M ′ should not be eliminated (at least with high probability),
since the new observations from Dµ

M′ should favor M ′ even more.
8We refer the readers to Eq. (3) and Footnote 6 for a discussion on the choice of the distribution functional. If we

replace the expected improvement with the (1 − δ)-quantile, we would obtain an exact 0 on the RHS.

RLJ | RLC 2024

In summary, we show that under reasonable assumptions OBJ(µ, δ′) ≈ 0 for all µ, which makes the
optimization meaningless: the objective implies that we can only gain an improvement of ≈ 0, but we
can achieve that by simply outputting πref as the final policy! Moreover, since OBJ(µ, δ′) is roughly
the same for all µ, the optimization over µ becomes arbitrary tie-breaking, which is the last
thing we want as doing anything else would not be any worse.

Opportunistic pessimism We first note that the above issue is not due to our objective being
loose: if M∗ = M ′

0—which is completely possible given the information we have in Doff—then the
possible improvement is in fact 0, so OBJ(µ, δ′) is a tight lower-bound on the worst-case possible
improvement. That said, M∗ = M ′

0 is an uninteresting case as πref is already optimal, so we should
exclude it from consideration when selecting µon, and a smaller M′ implies less pessimism and an
increase in the objective value in general. This leads to the following definition, where ∆ ∈ [0, 1] is a
user-specified hyperparameter,

Mδ′(Doff , ∆) :=
{

M ′ ∈ Mδ′(Doff) : ∆(M ′) ≥ ∆
}

, where ∆(M ′) := max
π∈Π

JM ′(π) − JM ′(πref), (6)

which filters out models for which πref is already near-optimal (up to a gap of ∆). Plugging this into
Eq. (4) (i.e., letting M′ = Mδ′(Doff , ∆)), our final objective for selecting µon is:

µon = argmax
µ∈Π

OBJ(µ, δ′; ∆) := min
M ′∈Mδ′ (Doff ,∆)

EDµ

M′

[
JM ′(π̂Dµ

M′
) − JM ′(πref)

]
. (7)

Crucially, we only filter out the uninteresting models in the version space for M ′. It is important to
note that both the ARMOR in Eq. (7) (i.e., π̂Dµ

M′
) and the final ARMOR (i.e., π̂ which uses the real

online data Don) must still use the unfiltered version spaces Mδ(Doff ∪ Don) and Mδ(Doff ∪ Dµ
M∗),

respectively, in order to retain the guarantee that π̂ is never worse than πref (from Theorem 1).

This reveals a more general principle, which we call opportunistic pessimism: our original
objective in Eq. (4) employs pessimism in two places: (i) Mδ′(Doff) (for data hallucination), and (ii)
Mδ(Doff ∪ Dµ

M ′) and Mδ(Doff ∪ Don) (for ARMOR). Theorem 1 shows that as long as ARMOR is
used as the offline algorithm, π̂ will always be competitive with πref regardless of the choice of
µon, and hence the choice of M′, the version space for data hallucination. This provides
a strong guardrail for the optimization of µon, allowing for great flexibility in the design of M′ to
trade-off between the objective value and the scope within which the improvement is guaranteed.

Tradeoff in ∆ In Eq. (7), the hyperparameter ∆ plays a crucial role in designing M′ and exhibits
the aforementioned tradeoff. Similar to the monotonicity in δ′ discussed earlier, for ∆1 ≥ ∆2 we have
Mδ′(Doff , ∆1) ⊆ Mδ′(Doff , ∆2), thus for larger choices of ∆ the objective will search over a smaller
set of models and act less conservatively.9 In fact, an extreme value of ∆ would imply optimism
in data hallucination, where µon is selected according to the best-case model in the version space.
More concretely, setting ∆ = ∆max = max{∆ : |Mδ′(Doff , ∆)| > 0}, i.e., the largest possible gap, is
approximately equivalent to choosing µon according to maxM ′∈Mδ′ (Doff), instead of the worst case.10

When ∆ is too large relative to ∆(M∗), however, it will exclude M∗ from Mδ′(Doff , ∆), which means
the RHS of Eq. (7) will no longer lower bound the true improvement in M∗. This is formalized in
the following guarantee for Eq. (7):
Theorem 4. For Don collected using µon in Eq. (7) and any ∆ ∈ [0, 1], we have

(1) w.p. ≥ 1 − δ (w.r.t. the randomness of Doff ∪ Don), if ∆(M∗) < ∆, then

JM∗(π̂) ≥ max
π∈Π

JM∗(π) − ∆.

9If ∆ is chosen poorly and large enough such that Mδ′ (Doff , ∆) = ∅, then implemention-wise, one may simply
reduce it until Mδ′ (Doff , ∆) is nonempty.

10One caveat is that ∆max is a random variable (depending on πref), and we also need |Mδ′ (Doff , ∆max)| = 1 for
this equivalence to hold, otherwise non will be diluted over multiple policies.

RLJ | RLC 2024

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

non = noff, ′ = 0.3, = 0.3

0.2 0.4 0.6 0.8 1.0
′

0.1

0.2

0.3
non = noff, = 0.15, = 0.3

OBJ(on, ′;)
JM * () JM * (ref)

Figure 1: The magnitude-scope trade-off in choosing the (top) ∆ and (bottom) δ′. Y-axis shows
the value of Eq. (7) (solid lines) and the actual improvement (dashed lines). Top-left corner is desired
as it implies a high objective value and more scenarios where improvement occurs. Shaded region
represents 90% quantile over 100 random approximations of EDµ

M′
.

(2) w.p. ≥ 1 − δ′ (w.r.t. the randomness of Doff), if ∆(M∗) ≥ ∆, then

EDon
[
JM∗(π̂) − JM∗(πref)

]
≥ OBJ(µon, δ′; ∆) = max

µ
OBJ(µ, δ′; ∆).

Moreover, OBJ(µ, δ′; ∆) is monotonically non-decreasing in both δ′ and ∆, and OBJ(µ, δ′) =
OBJ(µ, δ′; 0).

The guarantee reflects the trade-off in the choice of ∆, the hyperparameter that we choose: if there
is room for improvement at least ∆ in M∗, then claim (2) is active and we are guaranteed an
improvement of OBJ(µ, δ′; ∆), which increases with ∆. On the other hand, if there is not enough
room for improvement of at least ∆ in M∗, then M∗ will be excluded from Mδ′(Doff , ∆), nullifying
all the guarantees for the optimization of µon. Fortunately, Proposition 1 is still valid since we still
keep M∗ in the version space used by ARMOR (Eq. (1)), leading to a π̂ that is no worse than πref

with high probability, and hence inherits the ∆-optimality of πref , as per claim (1) in Theorem 4.
We remark that claim (2) holds for any choice of offline algorithm used to learn π̂ in Eq. (5), but
claim (1) only holds for ARMOR.

Theorem 4 claim (2) is a “what you see is what you get” type of guarantee, where the improvement
lower-bound is computed by the value of the objective itself. Speaking generally, this lower-bound is
non-decreasing in non (more samples means higher probability of improvement), and non-increasing
with model complexity (e.g., a bandit with more arms dilutes available exploration samples). We
leave for future work the problem of deriving a more “conventional” sample complexity bound for
policy improvement, i.e., one that depends on a small number of interpretable parameters, such as
the sample size. The missing key is a “complexity” parameter that summarizes the difficulty of the
problem instance. One key challenge of NOF is the non-adaptive nature of the online samples, which
prohibits full exploration of the environment and application of online complexity parameters. Instead,
the NOF parameter must express “difficulty of finding a better policy with limited interactions”. As
a result, even novel uses of the standard frameworks and complexities from offline RL, e.g., data
coverage (Chen & Jiang, 2019; Xie et al., 2021a), and online RL, e.g., structural quantities such as
the size/rank of state-action spaces (Jiang et al., 2016; Jin et al., 2018), do not apply. It is unclear
what this parameter is, or if it exists at all; identifying it will require significant further work, for
which our careful formulation provides a solid foundation.

Example: Bernoulli MAB Lastly, to improve intuition, we instantiate the behavior of Eq. (7)
and its guarantee in Bernoulli bandits.
Example 2 (Mechanism of Eq. (7) in Bernoulli MABs). Let A′ = {a ∈ A : ∃M ∈
Mδ′(Doff , ∆) s.t. rM (a) ≥ rM (aref) − ∆} denote the set of “candidate arms” for improvement,
i.e., arms that have not been eliminated by offline data and have potential for at least ∆ improvement
in M∗. Because Eq. (7) takes the minimum over all models, it must then strive to separate all
candidate arms in A′ equally (i.e., increase LCBDoff∪Dµ

M′
(a′) over UCBDoff∪Dµ

M′
(aref) for all a′ ∈ A′,

per Eq. (2)), at a gap of ∆. Thus for a single deployment, the objective in Eq. (7) cannot “simply

RLJ | RLC 2024

improve by ∆” in one arm, without trying to improve in all candidate arms by ∆. This represents a
fundamental difficulty of single-deployment NOF: because we receive no feedback, in order to guarantee
we cover a single better policy we actually need to cover all candidates. However, as we explore
further in Fig. 4 of Appendix C, “simply improving” is possible in a case-by-case basis given favorable
conditions (e.g., if pulling any candidate arm results in improvement, see Instance 3 in Fig. 2).

The theoretical insights of Theorem 4 are validated in Fig. 1 (top), that displays the performance of
Eq. (7) on Doff as depicted in Instance 1 of Fig. 2, which is a Bernoulli bandit with ∆(M∗) = 0.3
also used in our later experiments (Section 4). The actual improvement (dashed line) is close to the
maximum possible ∆(M∗) for a large range of ∆ ∈ [0.1, 0.4], and is always non-negative, echoing
the opportunistic pessimism principle that π̂ will not decay compared to πref regardless of the
choice of the version space. It is also larger than the objective value with high probability when
∆ ≤ ∆(M∗) (Theorem 4, claim (2)), but can be lower when the version space excludes the true
model (∆ > ∆(M∗), e.g., when ∆ > 0.3 in Fig. 1 (top)).

This simulation also displays the dependence of Eq. (7) on the choice of the hyper-parameter ∆.
The improvement lower-bound in claim (2) of Theorem 4 is maximized by setting ∆ = ∆(M∗), but
since this is an unknown quantity (and may not necessarily be optimal for a given problem instance),
the choice of ∆ in general represents a trade-off that might be refined with pre-existing knowledge.
When ∆ is too small, it is more difficult for any µ to cause the inner ARMOR to switch arms, while
∆ too large excludes M∗ from the version space, and any simulated improvement may not transfer
to the true model. Besides ∆, a similar trade-off can be made by tuning δ′ as a hyperparameter:11

the greater δ′, the higher OBJ(µon, δ′; ∆), but the probability that the actual improvement will be at
least OBJ(µon, δ′; ∆) (Theorem 4, claim (2)) will be smaller than (1 − δ′). See Fig. 1 (bottom) for
a visualization of such trade-off curves in the same MAB instance. More generally, one can imagine
striking similar trade-offs in other ways, such as defining domain-specific subsets of models that
reflect situations where improvement is more important.

4 Simulation Studies

We use simulations in three different instances of 3-armed Bernoulli bandits to corroborate our
theoretical intuitions from the preceding sections, and compare the behavior of our method (Eq. (7))
against other baselines of interest in Fig. 3. We emphasize that the experiments are not intended to
demonstrate the superiority of our algorithm, but rather to examine how different methods succeed or
fail in three representative instances, that each highlights the advantages or potential disadvantages
of using pessimistic reasoning over M′, as in Eq. (7), in NOF. Representative draws of offline data
from each scenario are displayed in Fig. 2. Due to space constraints, comprehensive experiment
details and results are included in Appendix C.

Baselines In Fig. 3, we first plot the improvement when M′ = {M∗} from Eq. (3), that represents
an improvement “ceiling” when the underlying model is known, which we do not expect to outperform.
We also plot our method’s improvement Eq. (7) against that of the alternative objective in Eq. (5)
using the same version space M′ = Mδ′(Doff , ∆). We compare their behavior against other candidate
algorithms for NOF: A) the UCB policy, that deterministically plays the arm argmaxa∈A UCBDoff (a);
B) setting M′ = {M̂} where rM̂ (a) = r̂Doff (a) for all a ∈ A, that simply explores according to the
point estimate of rewards, which is common in empirical offline-online papers such as in Matsushima
et al. (2020); C) continuing to collect data from the offline distribution, i.e., µon = µoff ; and D)
setting µon = unif(A) to uniformly sample actions.

Discussion Both Eq. (7) and its alternative version from Eq. (5) obtain significantly more improve-
ment than either continuing to collect data via µoff for different values of non (pink), or uniformly
collecting online data (brown); we expect this difference to grow as the MDP complexity (e.g., number

11Since δ′ is often used in the concentration inequalities for constructing the version spaces, we cannot directly
tune δ′ based on OBJ(µon, δ′; ∆): the latter depends on the randomness in Doff , which invalidates the concentration
guarantees. To circumvent the issue one can consider techniques such as sample splitting.

RLJ | RLC 2024

Figure 2: Representative draws of Doff in our three Bernoulli MAB case studies, with parameters in
Table 1. The dashed lines display the rectangular version space Mδ′(Doff) with δ′ = 0.05.

Figure 3: Comparison of methods in Eq. (7) and Eq. (5) against baselines, with fixed ∆ = 0.3 and
δ = δ′ = 0.05. Shaded region shows ±1 standard error over 100 random draws of Doff . Dashed black
line is maximum possible improvement (averaged over draws of Doff).

of arms in MABs) increases. They also reach the “ceilings” of M = {M∗} (blue) and the maximum
possible improvement (black dashed) as the available non increases. While UCB (red) can perform
competitively when the arm it pulls happens to be better than πref (e.g., Instance 3), it can just as
easily underperform significantly when that arm is worse than πref , which is the case in Instance 2.
The version space pessimism in Eq. (5) is crucial for ensuring that any policy improvement predicted
from Doff translates to real improvement in M∗ when samples are collected from µon. This can
lead to conservative behavior in specific problem instances, but it also ensures improvement in the
worst-case problem instance; by this metric our method outperforms UCB.

Another case in point can be in seen Instance 1 and Instance 3, where µon chosen according to M̂
(purple) is highly suboptimal. Because µoff rarely pulls the arms that are better than aref , their
estimated means in M̂ can deviate significantly from in M∗, which is a pitfall that Eq. (7) is robust
to since it considers the worst-case over the version space. Conversely, Instance 2 shows that there are
scenarios where using pessimism can be disadvantageous. Our method has slightly worse improvement
than choosing µon via M̂ because the worst arm a3 is never pulled in offline data (and by design
choice rM̂ (a3) = 0 as default). Thus, exploring via M̂ will just use online samples to differentiate a1
from a2, while Eq. (7) uses them to explore all arms.

In summary, our method may have small reductions in improvement for some instances where less
conservative methods may opportunistically do better. However, these less conservative methods
perform highly suboptimally in other scenarios, where both Eq. (7) and Eq. (5)’s use of pessimism
guarantees they will improve over πref with high probability. This guarantee will in fact hold for any
instance (see Theorem 4 Claim (2)).

Conclusion & Future work We have defined a concrete and representative problem setup for
non-adaptive online finetuning (NOF), whose goal is to output a policy that improves as much as
possible over a (purely offline) reference policy given a single online deployment. We designed and
analyzed an information-theoretic algorithm (Eq. (7)) for improvement maximization. As the current
implementation of Eq. (7) iterates over all candidate online distributions and models, one important
direction of future work involves developing a computationally efficient algorithm. Another involves
deriving lower-bounds on Eq. (7)’s expected improvement, which will require novel proof techniques

RLJ | RLC 2024

as the direction of the bound (improvement ≥ . . .) is reversed from the typical RL learning guarantee
(suboptimality ≤ . . .). Lastly, we plan to extend our results to the multiple-deployment setting, for
which our single-deployment results form an important building block.

Broader Impact Statement

As this work is largely theoretical in nature, the potential negative impacts are limited. Rather, our
paper aims to direct attention of the RL community towards developing guarantees and analysis for
offline-online RL within a practically relevant framework.

References
Mohak Bhardwaj, Tengyang Xie, Byron Boots, Nan Jiang, and Ching-An Cheng. Adversarial model

for offline reinforcement learning. arXiv preprint arXiv:2211.04538, 2022.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
In International Conference on Machine Learning, 2019.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. International Conference on Machine Learning, 2022.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, and Tie-Yan Liu. Towards deployment-
efficient reinforcement learning: Lower bound and optimality. In International Conference on
Learning Representations, 2021.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low bellman rank are pac-learnable. arXiv preprint arXiv:1610.09512,
2016.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?
In Advances in Neural Information Processing Systems, 2018.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. In Advances in Neural Information Processing Systems,
2021.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? arXiv
preprint arXiv:2012.15085, 2020.

Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor
Toups, John R Rickford, Dan Jurafsky, and Sharad Goel. Racial disparities in automated speech
recognition. 2020.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Gen Li, Wenhao Zhan, Jason D Lee, Yuejie Chi, and Yuxin Chen. Reward-agnostic fine-tuning:
Provable statistical benefits of hybrid reinforcement learning. arXiv preprint arXiv:2305.10282,
2023.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu.
Deployment-efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

RLJ | RLC 2024

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning.
arXiv preprint arXiv:2007.09055, 2020.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit problems.
2016.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702–11716, 2021.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun.
Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718,
2022.

Andrew Wagenmaker and Aldo Pacchiano. Leveraging offline data in online reinforcement learning.
In International Conference on Machine Learning, pp. 35300–35338. PMLR, 2023.

Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S Du, and Kevin Jamieson. Reward-free
RL is no harder than reward-aware RL in linear markov decision processes. arXiv:2201.11206,
2022.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34, 2021a.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning. Advances in neural information processing
systems, 34:27395–27407, 2021b.

Ruiqi Zhang and Andrea Zanette. Policy finetuning in reinforcement learning via design of experiments
using offline data. arXiv preprint arXiv:2307.04354, 2023.

Siyuan Zhang and Nan Jiang. Towards hyperparameter-free policy selection for offline reinforcement
learning. Advances in Neural Information Processing Systems, 34:12864–12875, 2021.

RLJ | RLC 2024

A Related Work

Xie et al. (2021b); Song et al. (2022); Wagenmaker & Pacchiano (2023); Li et al. (2023); Zhang
& Zanette (2023) all consider with variants of the offline-online RL setting, where offline data is
available as well as online interaction.

Of these papers, all but Zhang & Zanette (2023) allow unlimited deployments, which separates them
from our problem setting. Specifically, Song et al. (2022) assumes a bilinear MDP, and that π∗ is
covered by offline data. The online phase of their algorithm learns policies via Fitted Q iteration,
which is warm-started with the offline dataset. They demonstrate the learned policy is near-optimal,
and their main contribution is a computationally efficient algorithm. Wagenmaker et al. (2022)
works with linear MDPs, and develops a notion of offline-online complexity for learning π∗ when
warm-starting with offline data. In contrast, Xie et al. (2021b) and Li et al. (2023) work with tabular
MDPs, but only assume that the offline dataset satisfies a notion of partial π∗ coverage. The former
considers the finite-horizon MDP setting where π∗ is covered up until a specific timestep, whereas
the latter defines partial coverage on a per-state-action basis. They propose algorithms that compete
with the optimal policy, with Zhang & Zanette (2023) obtaining better sample complexity than either
offline or online RL alone.

Zhang & Zanette (2023) also consider the single-deployment setting, but they require a large number
of online samples and seek to learn π∗ via reward-free exploration. In contrast, our setting focuses
on a fixed number of online samples, and we seek only to find a better policy, not the optimal one.
This is the other major difference between our setting, and previous related works (beyond the issue
of deployments).

Lastly, we note that the single-deployment offline-online RL problem is also related to deployment-
efficient RL (Huang et al., 2021) as well as batched bandits (Perchet et al., 2016) (in MABs, our
problem setting corresponds to a single batch, but with additional information from logged data).

B Proofs

Proof of Theorem 2. The inequality in the proposition statement follows directly from the inclusion
of M∗ ∈ M′ and the definition of OBJ in Eq. (4):

EDon
[
JM∗(π̂Don) − JM∗(πref)

]
= EDµon

M∗

[
JM∗(π̂Dµon

M∗
) − JM∗(πref)

]
≥ min

M ′∈M′
EDµon

M′

[
JM∗(π̂Dµon

M′
) − JM∗(πref)

]
= OBJ(µon, M′)

The equality is from the definition of µon ∈ argmaxµ∈Π OBJ(µ, M′) from Eq. (4).

Proof of Theorem 3. For any draw of Dµ
M ′

0
we have JM ′

0
(π̂Dµ

M′
0

) − JM ′
0
(πref) ≤ 0 since πref ∈

argmaxπ∈Π JM ′
0
(π). On the event that M ′

0 ∈ Mδ(Doff ∪ Dµ
M ′

0
), we additionally have JM ′

0
(π̂Dµ

M′
0

) −

JM ′
0
(πref) = 0 since

JM ′
0
(π̂Dµ

M′
0

) − JM ′
0
(πref) ≥ min

M∈Mδ(Doff∪Dµ
M

)
JM (π̂Dµ

M
) − JM (πref)

= max
π∈Π

min
M∈Mδ(Doff∪Dµ

M
)
JM (π) − JM (πref) ≥ 0,

RLJ | RLC 2024

where the last inequality is because πref ∈ Π. Then since M ′
0 ∈ Mδ′(Doff) and using the law of total

expectation,

|OBJ(µ, δ′)|

≤
∣∣∣∣EDµ

M′
0

[
JM ′

0
(π̂Dµ

M′
0

) − JM ′
0
(πref)

]∣∣∣∣
≤

∣∣∣∣EDµ

M′
0

[
JM ′

0
(π̂Dµ

M′
0

) − JM ′
0
(πref) | M ′

0 ∈ Mδ(Doff ∪ Dµ
M ′

0
)
]∣∣∣∣PDµ

M′
0

[M ′
0 ∈ Mδ(Doff ∪ Dµ

M ′
0
)]

+
∣∣∣∣EDµ

M′
0

[
JM ′

0
(π̂Dµ

M′
0

) − JM ′
0
(πref) | M ′

0 /∈ Mδ(Doff ∪ Dµ
M ′

0
)
]∣∣∣∣PDµ

M′
0

[M ′
0 /∈ Mδ(Doff ∪ Dµ

M ′
0
)]

=
∣∣∣∣EDµ

M′
0

[
JM ′

0
(π̂Dµ

M′
0

) − JM ′
0
(πref) | M ′

0 /∈ Mδ(Doff ∪ Dµ
M ′

0
)
]∣∣∣∣PDµ

M′
0

[M ′
0 /∈ Mδ(Doff ∪ Dµ

M ′
0
)]

≤ PDµ

M′
0

[M ′
0 /∈ Mδ(Doff ∪ Dµ

M ′
0
)]

since JM ′
0
(π) ∈ [0, 1] for any π.

Proof of Theorem 4. First, we prove the statement in (1). Since π̂ is learned from Doff ∪ Don, from
the ARMOR guarantee in Theorem 1 we have that JM∗(π̂) ≥ JM∗(πref) with probability ≥ 1 − δ
with respect to the randomness of Doff ∪ Don. Then if ∆(M∗) = maxπ∈Π JM∗(π) − JM∗(πref) < ∆,
we have

JM∗(π̂) ≥ JM∗(πref) > max
π∈Π

JM∗(π) − ∆.

Next, we prove (2). Fix Doff . When M∗ ∈ Mδ′(Doff , ∆),

EDon [JM∗(π̂) − JM∗(πref)] = EDon
M∗ [JM∗(π̂Don

M∗) − JM∗(πref)]

≥ min
M ′∈Mδ′ (Doff ,∆)

EDon
M′

[JM ′(π̂Don
M′

) − JM ′(πref)]

= OBJ(µon, δ′; ∆).

The theorem statement follows from the fact that M∗ ∈ Mδ′(Doff , ∆) with probability ≥ 1 − δ′ (with
respect to the randomness of Doff) from Definition 1 and (6) if ∆(M∗) ≥ ∆.

C Implementation Details and Additional Results for Section 4

M∗ noff µoff

Instance 1 (0.6, 0.3, 0.2) 200 [0.01, 0.495, 0.495]
Instance 2 (0.6, 0.3, 0.1) 100 [0.1, 0.9, 0.0]
Instance 3 (0.6, 0.5, 0.2) 200 [0.01, 0.01, 0.98]

Table 1: Parameters for Bernoulli MAB case study instances.

MAB Instances We analyze the behavior of our method in three Bernoulli MAB case studies, with
parameters displayed in Table 1. Representative draws of the offline dataset and the corresponding
version spaces Mδ′(Doff) are shown in Fig. 2. Briefly, Instance 1 is the easiest problem instance
because µoff eliminates the worse arm, and the goal of NOF is to explore the remaining arm (that is
optimal).

Instance 2 and Instance 3 are designed to express the tradeoff between conservatism/pessimism
and the potential for improvement in M∗. Instance 2 is an instance where pessimism is crucial for

RLJ | RLC 2024

Figure 4: Improvement in in MAB instances for different values of ∆, with δ = δ′ = 0.05 and
non = 0.25noff fixed. As before, confidence bands show ±1 standard error.

improvement, and an algorithm must explore all candidate arms (recall Example 2) in order to
guarantee improvement in M∗. The offline data primarily covers the middle arm, but the UCB for
the worst arm tends to be larger than the UCB for the better arm. As a result, a less-conservative
algorithm (e.g., larger ∆) runs the risk of exploring only the worst arm, which will lead to no
improvement. Finally, we note that, as can be seen in Fig. 3 (middle), Instance 2 has larger
confidence bands over draws of Doff because πref chooses the optimal arm a larger portion of the
time from Doff . This is a consequence of the bandit instance design and not our algorithm quality
(in fact Instance 2 has the highest probability out of all three-armed bandit instances to exhibit the
desired quality of having UCB(a1) > UCB(a3) and aref = a2).

In comparison, the offline data in Instance 3 largely pulls the worst arm, leaving the two better
arms as candidates, and the optimal arm generally has the largest UCB. An algorithm for NOF
can improve by pulling either of the two better arms. Here, an extreme choice of ∆ can expect to
do well, while acting conservatively may be empirically less effective because it will unnecessarily
explore both arms.

Implementation Details We build the version spaces as specified in Example 1, except that for
tighter practical confidence bounds for a given dataset D and δ we set LCBD(a) = Φ−1(1−δ/2)·SED(a)
and UCBD(a) = Φ−1(δ/2) · SED(a), where Φ−1 is the inverse CDF of the standard Guassian, and
SED(a) is the standard error of the rewards observed for a given a. For a fixed Doff , πref is a
deterministic policy learned via LCB, i.e., πref(a) = 1[a = a′] where a′ = argmaxa∈A LCBDoff (a).
We set Π to be the set of all valid distributions over the arms A, and M = [0, 1]A to be the set of
all models with rewards bounded on the unit interval. Because both Π and M classes with infinite
cardinality, in our implementation we discretize the sets to a grid of 0.05 and search over the resulting
set, which results in negligible approximation error as realizability is still satisfied. We approximate
EDµ

M′
in the inner loop of Eq. (7) using 200 random draws of data. All simulations were run on

a personal laptop. Generating the results for Fig. 1 took roughly 1-2 hours, while generating the
results for Fig. 3, Fig. 4, and Fig. 5 took roughly 1-2 days combined. Results, code, and instructions
for running are included in the supplementary material.

Additional Results We also discuss additional results related to the effect of ∆ and δ′ on
performance, in a similar vein to Fig. 3. Aligned with our predictions regarding pessimism from
the design of the MAB problem instances, Fig. 4 demonstrates that Instance 1 and Instance 3
do not degrade in performance and even improve slightly with larger ∆ (that excludes M∗ from
Mδ′(Doff , ∆)), but Instance 2 does. Thus, while a less conservative choice of ∆ may lead to good
practical performance on a case-by-case basis, a value of ∆ that preserves realizability is required in
order to guarantee improvement in any given instance.

RLJ | RLC 2024

Figure 5: Improvement in in MAB instances for different values of δ′, with δ = 0.05, ∆ = 0.3, and
non = 0.5noff fixed. As before, confidence bands show ±1 standard error.

Fig. 5 displays the sensitivity of improvement to choice of δ′. While Instance 1 and especially Instance
3 are relatively robust to different values of δ′, the algorithm degrades significantly in performance
for Instance 2 as δ′ increases (and the probability of M∗ ∈ Mδ′(Doff , ∆) being satisfied decreases).
The reason for this is related to the above; that Instance 1 and Instance 3 are problems where
less conservative behavior can be rewarding, but Instance 2 is an instance where it is extremely
punishing.

