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Abstract

LLMs have advanced text-to-SQL generation, yet monolithic architectures struggle
with complex reasoning and schema diversity. We propose AGENTIQL, an agent-
inspired multi-expert framework that combines a reasoning agent for question
decomposition, a coding agent for sub-query generation, and a refinement step
for column selection. An adaptive router further balances efficiency and accuracy
by selecting between our modular pipeline and a baseline parser. Several steps in
the pipeline can be executed in parallel, making the framework scalable to larger
workloads. Evaluated on the Spider benchmark, AGENTIQL improves execution
accuracy and interpretability and achieves up to 86.07% EX with 14B models using
the Planner&Executor merging strategy. The attained performance is contingent
upon the efficacy of the routing mechanism, thereby narrowing the gap to GPT-4-
based SOTA (89.65% EX) while using much smaller open-source LLMs. Beyond
accuracy, AGENTIQL enhances transparency by exposing intermediate reasoning
steps, offering a robust, scalable, and interpretable approach to semantic parsing.

1 Introduction

Natural language to SQL (NL2SQL) technology, which enables the transformation of everyday
language queries into structured SQL commands, marks a major step forward in improving data
accessibility. It empowers both novice and expert users to efficiently extract meaningful insights
from large and complex datasets [1–12]. Recent progress in large language models has considerably
improved the efficacy and accuracy of NL2SQL systems, but key challenges remain. Monolithic LLM
architectures often struggle with complex reasoning and with handling diverse database schemas,
while static ensemble methods introduce significant computational overhead. Serving massive
large language models (LLMs) in real-world environments is also costly and impractical for many
applications. Moreover, most existing systems offer limited interpretability, making it difficult to
understand why a particular SQL query was generated or to identify misalignment.

To address these limitations, we propose AGENTIQL, an agent-inspired, multi-expert architecture for
NL2SQL. Instead of relying on a single monolithic LLM, AGENTIQL decomposes query generation
into specialized expert components and employs a learned router to balance accuracy and efficiency.
This design yields a more interpretable, modular, and scalable framework for structured query
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generation. Our contributions are threefold: (i) a Divide-and-Merge module, where a reasoning agent
decomposes natural language questions into sub-questions and a coding agent generates corresponding
sub-queries that are then merged, improving interpretability through visible intermediate steps; (ii) a
Column Selection (CS) refinement that adjusts column choices and ordering in the final SQL query,
increasing alignment with user intent and boosting execution accuracy; and (iii) an Adaptive Routing
mechanism that directs queries (e.g. XGBoost classifier[13] or a reasoning-agent "judge"), enhancing
efficiency, efficacy, and robustness by adaptively allocating available resources to query complexity.

2 Related Works

There are three main categories of LLM-based NL2SQL approaches: prompt engineering [14–17],
supervised fine-tuning (SFT) [18], and reinforcement learning (RL)-based optimization [19].

Prompt engineering has shown strong potential for NL2SQL, particularly through zero-shot ap-
proaches (e.g., using ChatGPT/GPT-4 directly [14]) and few-shot chain-of-thought prompting tech-
niques [20, 15, 17]. These methods leverage pretrained LLMs with carefully crafted prompts.
Nonetheless, many prompt-based methods depend on multi-path generation combined with self-
consistency (majority voting) to select the optimal output, which leads to considerable inference
overhead in practice.

In contrast, SFT-based approaches fine-tune smaller or domain-specific models on NL2SQL data to
generate more controllable SQL queries (e.g., CODES fine-tunes open-source LLMs for text-to-SQL
[18]). However, reduced parameter capacity can limit their ability to handle complex NL2SQL
reasoning or generalize effectively to databases in new domains.

3 Method

Given a labeled dataset D = {(xi, si, yi)}Ni=1, where each natural language query xi with database
schema si is paired with the executable SQL query yi, the goal is to train a model that maps
(xi, si) 7→ yi. We introduce AGENTIQL, a multi-expert architecture designed to address this task
through query decomposition, specialized code generation, and adaptive routing.

3.1 Division

Table Selection. For a given question x with database schema s, we first filter out irrelevant tables
from s using a reasoning LLM freason. Formally, this produces a reduced schema s̃ = freason(x, s),
where s̃ ⊆ s contains only the tables likely needed to answer x, and the semantic content of the
original schema remains unchanged. The reduced schema s̃ is passed as context to all later stages in
the pipeline.

Question Decomposition. Next, we employ another reasoning LLM fdecomp to decompose the
natural language query x (with respect to schema s̃) into a set of smaller sub-questions or tasks.
Formally, this step produces {x1, x2, . . . , xk} = fdecomp(x, s̃), where each xj is a natural language
sub-question. These sub-questions are intended such that solving each one individually (on the given
schema) and then merging the results will answer the original SQL query. Decomposition breaks
(complex, resource-intensive) queries into one or multiple manageable natural language sub-questions
and makes the reasoning process explicit.

Query Generation: For each sub-question xj , we use a coding LLM fgen (one specialized in
code/SQL generation) to produce the corresponding SQL query yj . This model operates in a few-
shot setting, similar to the baseline. Formally, the output of this step is fgen({x1, x2, . . . , xk}) =
{y1, y2, . . . , yk}, where each yi is the SQL query corresponding to the sub-question xi. If an error is
detected in a generated query, a refinement process is triggered. In this process, the same LLM is
used to correct the erroneous query for up to R iterations. At refinement step r ∈ {1, . . . , R}, the
model produces y(r)i = fgen(xi, y

(r−1)
i ), correcting potential errors in the previous version.
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3.2 Merge

The essential part of the pipeline is the ability to merge the generated sub-queries {y1, y2, . . . , yk}
into a single final SQL query y. Formally, this is achieved through a merge function g such that
y = g(y1, y2, . . . , yk). We explore two strategies for g in this work: (1) Selecting the Last Sub-
query: The output SQL query is taken to be the translation of the final generated sub-question. This
strategy assumes that the reasoning agent orders sub-questions such that the last one corresponds
to the complete solution. It is simple and fast, but may fail if the final sub-question does not cover
the entire query. (2) Planner&Executor: A reasoning LLM is employed as a planner to determine
how the generated sub-queries {y1, . . . , yk} should be combined. The planner produces a natural-
language description or pseudocode of a merging plan, which is then executed by a coding LLM (the
executor) to yield the final SQL query y. This approach is more general, as it does not assume that
one sub-query fully answers the question, but it introduces additional computational overhead.

This divide-and-merge design naturally follows a prompt chaining workflow, in which intermediate
reasoning steps are explicit and sequential. Such chaining improves interpretability by exposing
sub-questions and their corresponding sub-queries, reflecting the workflow taxonomy introduced by
Anthropic for building effective agents [21].

3.3 Column Selection

After merging, we obtain an intermediate SQL query ŷ. In a final refinement step, a reasoning LLM
fcol is given the original question x, schema s̃, and query ŷ from the previous step. The model then
performs CS, adjusting the SELECT clause, ensuring output columns and their ordering precisely
match the requirements of x. Formally, the final SQL query is obtained as y = fcol(x, s, ŷ) where
fcol denotes the CS function, aligning columns in ŷ with user intent.

3.4 Routing

After evaluating the divide-and-merge module across multiple LLMs, we identified complementary
strengths in the different approaches. According to Tables 2–3, decomposition often captured domain-
specific reasoning more effectively, whereas the baseline produced more consistent parsing in other
cases. To exploit these strengths, we introduce a router that selects between the baseline or divide-
and-merge pipeline based on the schema and query received. In addition to this intuition, we also
tested a simple schema-level metric (the table count) as a proxy for complexity. As observed in
Table 4, there are meaningful correlations between schema size and relative performance, suggesting
that even lightweight signals can guide effective routing decisions.

The performance comparisons reported in Tables 1–3 further confirm that, although the baselines
perform well on simple queries, the divide-and-merge strategies (particularly Planner and Executor
with CS) are more robust when it comes to complex reasoning tasks. These findings suggest that
routing based on simple complexity measures is promising, and motivate the development of more
advanced routers that combine such metrics with learned decision functions to improve efficiency
and accuracy in practice.

4 Experimental Results

4.1 Dataset

Among available text-to-SQL benchmarks such as BIRD [6], SQL-Eval [22], and SKYRL-SQL [23],
the Spider [24] dataset is selected for our experiments. Spider was the first large-scale benchmark
proposed for the text-to-SQL task and has since been widely adopted in the literature. It contains over
10,000 natural language questions across 200+ databases with diverse schemas, covering multiple
domains and complex query structures. Its widespread use ensures comparability with prior work
and provides a reliable basis for assessing the effectiveness of the proposed approach.

4.2 Baseline

A coding LLM serves as a standard baseline for the text-to-SQL task. Specifically, we use the
Qwen2.5-Coder series as the base text-to-SQL model. The model is prompted with several question-
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SQL examples and then directly generates the SQL for a new question in one step, using few-shot
prompting, without any task-specific adaptation or additional training. We adopt a vanilla LLM as
our baseline parser, which simply maps text to SQL based on the provided in-context examples.

4.3 Metrics and Parameters

Execution accuracy (EX) is adopted as the primary evaluation metric. A predicted SQL query is
considered correct if it executes to the same result as the ground-truth query on the evaluation
database. This metric, which directly measures end-task success, is standard in Spider and other
NL2SQL evaluations. The SQL refinement loop for query generation is limited to R = 3 attempts,
balancing accuracy gains with inference cost.

4.4 Qualitative Results

We first present three success cases and two failure cases. Figures 3–5 show instances where the
baseline fails but our method succeeds, handling challenging scenarios such as multi-join queries,
nested aggregations, and schema alignment. In contrast, Figures 6–7 illustrate two failure cases of
our method: errors in sub-question decomposition or the final CS lead to incorrect outputs.

4.5 Quantitative Results

Impact of Column Selection and Merging Strategy. Table 1 evaluates the effect of the CS
refinement and the two merging strategies. Incorporating the CS step consistently improves per-
formance across model sizes and strategies, typically by 2-5% EX. For example, with 7B models
using the Last Sub-query merge, adding the CS step raises accuracy from 72.26% to 74.44%. The
Planner&Executor strategy benefits especially from CS: without CS it sometimes underperforms
the simpler (Last Sub-query) strategy (e.g., 66.77% vs 72.26% at 7B), but with CS it surpasses it
(75.85% vs 74.44% at 7B). This can be attributed to the planner occasionally introducing extraneous
or misordered columns that the final column-selection step fixes. While Planner&Executor with CS
yields the highest accuracy for each model size, it also incurs more latency than the Last Sub-query
heuristic, highlighting a trade-off between accuracy and efficiency.

Divide-and-Merge Module and AGENTIQL. Table 3 compares our divide-and-merge module
(with CS) against the baseline across different model scales. With the integration of an effective
routing mechanism, performance approaches that of the state of the art (SOTA), even when smaller
reasoning and coding models compared to GPT-4o are employed. We also found that the relative
performance of AGENTIQL vs. the baseline correlates with database complexity: for larger LLMs,
our pipeline tends to have a greater advantage on queries from schemas with many tables, whereas
with a small model, the baseline performed better on the most complex schemas.

5 Conclusion

AGENTIQL demonstrates that dividing complex natural language queries into sub-questions and
merging their answers can improve interpretability while maintaining high accuracy in text-to-SQL
generation. The CS refinement consistently yields additional gains in execution accuracy, with
the Planner&Executor merging strategy performing best when refinement is applied. Using an
adaptive router to combine our pipeline with a strong baseline further enhances robustness and
overall performance by exploiting their complementary strengths. Qualitative analyses show strong
improvements in handling joins, nested aggregations, and schema alignment, though errors in
decomposition and column refinement remain as failure cases. To facilitate reproducibility, we will
release our code and prompt templates publicly.

Several limitations and directions remain for future work. We evaluated primarily on the Spider
dataset; testing AGENTIQL on additional benchmarks (e.g., BIRD or SQL-Eval) will be important
to assess the generalizability of the findings. Experiments were limited to open-source LLMs up to
32B parameters, while larger models (and closed-source systems such as GPT-4 or Claude) were
not fully explored due to resource constraints. Scaling to very large models incurs substantial cost:
for example, in a preliminary trial, using a 235B-parameter model in our pipeline took nearly 60
minutes per question on four A100 GPUs (with CPU offloading). There are multiple avenues for
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future research to address the above limitations. For instance, RL could be incorporated into the query
generation stage, similar to what has been demonstrated in SkyRL-SQL [19], to provide adaptive
feedback and further enhance the quality of generated SQL queries. Testing should also be extended
to additional datasets such as BIRD and SQL-Eval, in order to evaluate the robustness of the approach
across different benchmarks. Furthermore, experiments with closed-source LLMs, such as GPT-4o
[25] and Claude 4 [26], as well as larger open-source models, such as Qwen3-235B-A22B-Instruct
and Qwen3-Coder-480B-A35B-Instruct, will provide deeper insights into the framework’s scalability
and general applicability. The effect of different merging strategies on accuracy and efficiency should
be investigated, as should various routing options, such as XGBoost classifier and retrieval-augmented
generation [27], to enable the framework to adapt more effectively to diverse question complexities
and schema structures.
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A Technical Appendices and Supplementary Material

Figure 1: The Divide-and-Merge module of AGENTIQL. The reasoning agent splits an input natural
language query into multiple sub-questions. The coding agent then generates a corresponding SQL
sub-query for each sub-question, and finally all sub-queries are merged to produce the final SQL
query. This multi-step approach explicitly exposes intermediate reasoning steps and ensures the final
query aligns with the question’s intent.

Figure 2: Overall architecture of AGENTIQL. An input query is first evaluated by an adaptive router,
which decides whether to send it to a one-step baseline parser or to the divide-and-merge module. The
baseline directly generates the SQL query, while the divide-and-merge module processes the query
through a multi-expert pipeline before producing the final SQL. This design balances interpretability,
provided by the modular pipeline, with efficiency, provided by direct execution for simpler cases.

7



Question: List the id, first name and last name of the customers who both have placed more
than 2 orders and have bought at least 3 items.

Database Schema:
• Products (product_id, parent_product_id, product_name, product_price, product_color, product_size,

product_description)
• Customers (customer_id, gender_code, customer_first_name, customer_middle_initial,

customer_last_name, email_address, login_name, login_password, phone_number, address_line_1,
town_city, county, country)

• Customer_Payment_Methods (customer_id, payment_method_code)
• Invoices (invoice_number, invoice_status_code, invoice_date)
• Orders (order_id, customer_id, order_status_code, date_order_placed)
• Order_Items (order_item_id, product_id, order_id, order_item_status_code)
• Shipments (shipment_id, order_id, invoice_number, shipment_tracking_number, shipment_date)
• Shipment_Items (shipment_id, order_item_id)

Sub-question 1: Find customers who have placed more than 2 orders.
Sub-question 2: Join this result with the Orders table to get order details.
Sub-question 3: Count the number of orders per customer.
Sub-question 4: Filter to customers who have placed more than 2 orders.
Sub-question 5: Find customers who have bought at least 3 items.
Sub-question 6: Join this result with the Order_Items table to get item details.
Sub-question 7: Count the number of items per customer.
Sub-question 8: Filter to customers who have bought at least 3 items.
Sub-question 9: Find the intersection of customers from steps 4 and 8.
Sub-question 10: Retrieve the id, first name, and last name of these customers.

Divide-and-Merge SQL:

SELECT customer_id, customer_first_name, customer_last_name FROM Customers
WHERE customer_id IN (

SELECT c.customer_id FROM Customers c JOIN Orders o ON c.customer_id = o.
customer_id GROUP BY c.customer_id HAVING COUNT(o.order_id) > 2

INTERSECT
SELECT c.customer_id FROM Customers c JOIN Orders o ON c.customer_id = o.

customer_id JOIN Order_Items oi ON o.order_id = oi.order_id GROUP BY c.
customer_id HAVING COUNT(oi.order_item_id) >= 3

);

Baseline SQL:

SELECT c.customer_id, c.customer_first_name, c.customer_last_name FROM Customers c
JOIN Orders o ON c.customer_id = o.customer_id GROUP BY c.customer_id HAVING COUNT(
o.order_id) > 2

INTERSECT
SELECT c.customer_id, c.customer_first_name, c.customer_last_name FROM Customers c

JOIN Order_Items oi ON c.customer_id = oi.customer_id GROUP BY c.customer_id
HAVING COUNT(oi.order_item_id) >= 3;

Invalid join path: incorrect linking of Customers directly to Order_Items

Figure 3: Success case with Qwen2.5-7B-Instruct and Qwen2.5-Coder-7B-Instruct using the Plan-
ner&Executor merging strategy. The query requires finding customers with both more than two orders
and at least three items. The baseline SQL fails by joining Customers directly with Order_Items,
violating the schema. The Divide-and-Merge approach, however, decomposes the task, routes through
Orders, and intersects constraints, producing a valid SQL that retrieves the correct customers.
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Question: What is the price of all products being ordered on average?

Database Schema:
• Products (product_id, parent_product_id, product_name, product_price, product_color, product_size,

product_description)
• Customers (customer_id, gender_code, customer_first_name, customer_middle_initial,

customer_last_name, email_address, login_name, login_password, phone_number, address_line_1,
town_city, county, country)

• Customer_Payment_Methods (customer_id, payment_method_code)
• Invoices (invoice_number, invoice_status_code, invoice_date)
• Orders (order_id, customer_id, order_status_code, date_order_placed)
• Order_Items (order_item_id, product_id, order_id, order_item_status_code)
• Shipments (shipment_id, order_id, invoice_number, shipment_tracking_number, shipment_date)
• Shipment_Items (shipment_id, order_item_id)

Sub-question 1: Find the price of each product.
Sub-question 2: Join the Orders and Order_Items tables to associate orders with their items.
Sub-question 3: Join the resulting dataset with the Products table to get the prices of the or-
dered products.
Sub-question 4: Calculate the average price of the ordered products.

Divide-and-Merge SQL:

SELECT AVG(p.product_price) AS average_price
FROM Order_Items oi
JOIN Products p ON oi.product_id = p.product_id;

Baseline SQL:

SELECT AVG(product_price)
FROM Products;

Ignores orders: averages all products (missing join to Order_Items)

Figure 4: Success case with Qwen2.5-14B-Instruct and Qwen2.5-Coder-14B-Instruct using the Last-
Subquery merging strategy. The query asks for the average price of products that have been ordered.
The baseline SQL incorrectly averages all products in Products, ignoring order information. In
contrast, the Divide-and-Merge approach decomposes the task, joins Order_Items with Products,
and computes the average over ordered products only, yielding the correct result.
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Question: Please show the most common affiliation for city channels.

Database Schema:
• city_channel (ID, City, Station_name, Owned_Since, Affiliation)
• radio (Radio_ID, Transmitter, Radio_MHz, 2FM_MHz, RnaG_MHz, Lyric_FM_MHz, ERP_kW)
• tv_show (tv_show_ID, tv_show_name, Sub_tittle, Next_show_name, Original_Airdate)
• city_channel_radio (City_channel_ID, Radio_ID, Is_online)
• city_channel_tv_show (City_channel_ID, tv_show_ID, Is_online, Is_free)

Sub-question 1: Select the Affiliation column from the city_channel table.
Sub-question 2: Select the Affiliation column from the city_channel table.
Sub-question 3: Group the results by Affiliation.
Sub-question 4: Count the number of occurrences for each Affiliation.
Sub-question 5: Order the groups by the count in descending order.
Sub-question 6: Select the top group’s Affiliation.

Divide-and-Merge SQL:

SELECT Affiliation
FROM (

SELECT Affiliation, COUNT(*) AS count
FROM city_channel
GROUP BY Affiliation
ORDER BY count DESC

) AS grouped_affiliations
LIMIT 1;

Baseline SQL:

SELECT Affiliation, COUNT(*) AS count
FROM city_channel
GROUP BY Affiliation
ORDER BY count DESC
LIMIT 1;

Extra output: baseline returns counts instead of only the affiliation

Figure 5: Success case with Qwen2.5-32B-Instruct and Qwen2.5-Coder-32B-Instruct using the
Planner&Executor merging strategy. The query asks for the most common affiliation among city
channels. The baseline SQL outputs both the affiliation and its count, adding extra information. The
Divide-and-Merge approach refines the output to return only the affiliation, exactly matching the
query intent.
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Question: Show agency ids and the number of clients for each agency.

Database Schema:
• Agencies (agency_id, agency_details)
• Staff (staff_id, agency_id, staff_details)
• Clients (client_id, agency_id, sic_code, client_details)
• Invoices (invoice_id, client_id, invoice_status, invoice_details)
• Meetings (meeting_id, client_id, meeting_outcome, meeting_type, billable_yn, start_date_time,

end_date_time, purpose_of_meeting, other_details)
• Payments (payment_id, invoice_id, payment_details)
• Staff_in_Meetings (meeting_id, staff_id)

Sub-question 1: Join the Agencies table with the Clients table on agency_id.
Sub-question 2: Count the number of clients for each agency.
Sub-question 3: Select the agency_id and the count of clients.

Divide-and-Merge SQL:

SELECT agency_id, COUNT(client_id) AS client_count
FROM Agencies a
JOIN Clients c ON a.agency_id = c.agency_id
GROUP BY agency_id;

Ambiguous column: agency_id not qualified after join

Baseline SQL:

SELECT agency_id, COUNT(client_id) AS client_count
FROM Clients
GROUP BY agency_id;

Figure 6: Failure case with Qwen2.5-7B-Instruct and Qwen2.5-Coder-7B-Instruct using the Plan-
ner&Executor merging strategy. The query asks for agency IDs with their client counts. The
Divide-and-Merge SQL introduces an explicit join between Agencies and Clients, but fails due to
an ambiguous reference to agency_id. The baseline SQL, grouping directly over Clients, avoids
this error and produces the correct result with a simpler query.
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Question: Return the number of stories for each building in the region named “Abruzzo”.

Database Schema:
• building (Building_ID, Region_ID, Name, Address, Number_of_Stories, Completed_Year)
• region (Region_ID, Name, Capital, Area, Population)

Sub-question 1: Find the Region_ID for the region named "Abruzzo".
Sub-question 2: Filter buildings that belong to the region with the found Region_ID.
Sub-question 3: Retrieve the Name and Number_of_Stories for these buildings.

Divide-and-Merge SQL:

SELECT b.Name, b.Number_of_Stories
FROM building b
JOIN (

SELECT Region_ID
FROM region
WHERE Name = ’Abruzzo’

) AS r ON b.Region_ID = r.Region_ID;

Extra output: divide-and-merge returns building names in addition to number of stories

Baseline SQL:

SELECT b.Number_of_Stories
FROM building b
JOIN region r ON b.Region_ID = r.Region_ID
WHERE r.Name = ’Abruzzo’;

Figure 7: Failure case with Qwen2.5-32B-Instruct and Qwen2.5-Coder-32B-Instruct using the Last-
Sub-query merging strategy. The query asks for the number of stories for each building in the region
“Abruzzo.” The Divide-and-Merge SQL correctly filters buildings by region but incorrectly adds
building names to the output, returning more information than required. The baseline SQL directly
joins building and region and outputs only Number_of_Stories, exactly matching the query
intent.
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Reasoning Agent Coding Agent Merging Strategy w/o CS with CS

Qwen2.5-7B-Instruct Qwen2.5-Coder-7B-Instruct Last Sub-query 72.26 74.44
Planner&Executor 66.77 75.85

Qwen2.5-14B-Instruct Qwen2.5-Coder-14B-Instruct Last Sub-query 69.33 76.61
Planner&Executor 74.27 77.16

Qwen2.5-32B-Instruct Qwen2.5-Coder-32B-Instruct Last Sub-query 73.84 78.57
Planner&Executor 75.58 79.77

Table 1: Impact of CS refinement on EX(%) for the Spider test set. Results are shown for different
combinations among reasoning agent, coding agent, and merging strategy. Incorporating CS consis-
tently improves performance across settings, with gains of up to 9% compared to models without
refinement. The Planner&Executor strategy benefits the most from CS, showing that finer control
over column choices enhances alignment with user intent.

Reasoning Agent Coding Agent Merging Strategy AGENTIQL Only Baseline Only

Qwen2.5-7B-Instruct Qwen2.5-Coder-7B-Instruct Last Sub-query 6.96 8.91
Planner&Executor 7.34 8.21

Qwen2.5-14B-Instruct Qwen2.5-Coder-14B-Instruct Last Sub-query 5.00 9.10
Planner&Executor 4.78 8.91

Qwen2.5-32B-Instruct Qwen2.5-Coder-32B-Instruct Last Sub-query 4.94 6.30
Planner&Executor 4.78 5.54

Table 2: Comparison of instances where AGENTIQL and the baseline model differ in EX on the
Spider test set. The columns report proportion of instances where our method succeeds but the
baseline fails (AGENTIQL Only) and cases where the baseline succeeds but ours fails (Baseline
Only). Results show that while both methods capture distinct strengths, the Planner&Executor
merging strategy reduces the gap relative to the baseline.

Method Reasoning Agent Coding Agent Merging Strategy Spider-Test
Baseline

Qwen2.5-7B-Instruct Qwen2.5-Coder-7B-Instruct
- 76.4

Ours Last Sub-query 74.44
Planner&Executor 75.85

Baseline
Qwen2.5-14B-Instruct Qwen2.5-Coder-14B-Instruct

- 80.80

Ours Last Sub-query 76.61
Planner&Executor 77.16

Baseline
Qwen2.5-32B-Instruct Qwen2.5-Coder-32B-Instruct

- 79.93

Ours Last Sub-query 78.57
Planner&Executor 79.77

XiYan-SQL [28] GPT-4o GPT-4o - 89.65
Table 3: EX(%) on the Spider test set for the Divide-and-Merge module. Results are reported
for Qwen2.5 models of varying sizes. While the baseline achieves strong performance, the Plan-
ner&Executor merging strategy improves over the naive last-sub-query approach, demonstrating the
benefit of decomposition. Larger models generally yield higher accuracy.

Reasoning Agent Coding Agent Merging Strategy Pearson Spearmanr

Qwen2.5-7B-Instruct Qwen2.5-Coder-7B-Instruct Last Sub-query -0.61 -0.74
Planner&Executor -0.39 -0.79

Qwen2.5-14B-Instruct Qwen2.5-Coder-14B-Instruct Last Sub-query 0.46 0.70
Planner&Executor 0.37 0.52

Qwen2.5-32B-Instruct Qwen2.5-Coder-32B-Instruct Last Sub-query 0.35 0.67
Planner&Executor 0.12 0.64

Table 4: Correlation between schema complexity and performance improvements of our method
over the baseline. Schema complexity is measured using a simple metric, which is computed by
calculation of the number of tables in the schema. Pearson [29] and Spearman [30] coefficients are
reported for different combinations of reasoning agents, coding agents, and merging strategies.
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Figure 8: EX(%) on the Spider test set plotted against the adaptive router’s accuracy. The curves
show AGENTIQL’s performance under two configurations (with different model sizes) using the
Planner&Executor merging strategy compared to the state-of-the-art system XiYan-SQL. AGENTIQL
employs dynamic routing that selects either a modular pipeline (divide-and-merge approach) or a
baseline parser for each query. As the router’s accuracy increases (i.e., more queries are routed
correctly), AGENTIQL’s execution accuracy steadily improves, approaching the level of the SOTA
system despite using much smaller models. This highlights the effectiveness of dynamic routing in
narrowing the performance gap to state-of-the-art solutions while maintaining efficiency.

B Experimental Setup

All local experiments were conducted on an internal compute cluster equipped with NVIDIA A100
GPUs each with 80GB of memory. A total of eight GPUs were available, as confirmed by system
diagnostics. For open-source models, we estimate GPU memory requirements based on parame-
ter size: Qwen2.5-7B-Instruct(7B parameters), Qwen2.5-14B-Instruct(14B parameters), Qwen2.5-
32B-Instruct (32B parameters), Qwen2.5-Coder-7B-Instruct (7B parameters), Qwen2.5-Coder-14B-
Instruct (14B parameters), and Qwen2.5-Coder-32B-Instruct (32B parameters). Some experiments
were executed in parallel because they had no dependencies, while others were computed sequentially
due to dependency requirements. The total compute estimate for open-source models amounts to
approximately 1450 GPU-hours.

C Assets License

We evaluated the following LLMs on the Spider [24] dataset. Below, we list each asset along with its
creator and the corresponding license or usage information, where available.
LLMs

• Qwen2.5-7B-Instruct

– Creator: Alibaba Cloud
– License: Apache license 2.0, Hugging Face link

• Qwen2.5-14B-Instruct

– Creator: Alibaba Cloud
– License: Apache license 2.0, Hugging Face link
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• Qwen2.5-32B-Instruct
– Creator: Alibaba Cloud
– License: Apache license 2.0, Hugging Face link

• Qwen2.5-Coder-7B-Instruct
– Creator: Alibaba Cloud
– License: Apache license 2.0, Hugging Face link

• Qwen2.5-Coder-14B-Instruct
– Creator: Alibaba Cloud
– License: Apache license 2.0, Hugging Face link

• Qwen2.5-Coder-32B-Instruct
– Creator: Alibaba Cloud
– License: Apache license 2.0, Hugging Face link

• GPT-4o
– Creator: OpenAI
– License: Accessed via API under OpenAI Terms of Use
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