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Abstract

Understanding the road genome is essential to realize autonomous driving. This highly
intelligent problem contains two aspects - the connection relationship of lanes, and the
assignment relationship between lanes and traffic elements, where a comprehensive topology
reasoning method is vacant. On one hand, previous map learning techniques struggle in
deriving lane connectivity with segmentation or laneline paradigms; or prior lane topology-
oriented approaches focus on centerline detection and neglect the interaction modeling. On
the other hand, the traffic element to lane assignment problem is limited in the image
domain while the mapping task lies in 3D space, leaving the construction of correspondence
between image and 3D views as an unexplored challenge. To address these issues, we present
TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond
conventional perception tasks. To capture the driving scene topology, we introduce three
key designs: (1) an embedding module to incorporate semantic knowledge from 2D elements
into a unified feature space; (2) a curated scene graph neural network to model relationships
and enable feature interaction inside the network; (3) instead of transmitting messages
arbitrarily, a scene knowledge graph is devised to differentiate prior knowledge from various
types of the road genome. We evaluate TopoNet on the challenging scene understanding
benchmark, OpenLane-V2, where our approach outperforms all previous works by a great
margin on all perceptual and topological metrics. The code will be released.

1 Introduction

Imagine that an autonomous vehicle is navigating towards a complex intersection and planning to go straight:
it is wondering which one of the lanes in front to drive into and which traffic signal to follow. This high-level
intellectual problem requires the agent not only to perceive lane position accurately, but also to understand
the topology relationship from sensor inputs. Specifically, the map topology in driving scene includes: (1)
the lane topology graph comprising centerlines as well as their connectivity, (2) and the assignment
relationship between lanes and traffic elements (e.g., traffic lights, traffic boards, and road markers). As
illustrated in Fig. 1, they altogether build a topological structure that provides explicit navigation signals
for downstream tasks such as motion prediction and planning (Bansal et al., 2018; Chai et al., 2020).

Conventional autonomous driving datasets (Caesar et al., 2020; Wilson et al., 2021) include lane topology
implicitly in the High-Definition (HD) map, which is designed for map storage but not being learned by
neural networks. Various formulations are proposed to serve as substitutes to HD maps, such as 2D and
3D laneline detection (Pan et al., 2018; Garnett et al., 2019; Guo et al., 2020; Tabelini et al., 2021; Chen
et al., 2022), bird’s-eye-view (BEV) map element detection by segmentation (Pan et al., 2020; Roddick &
Cipolla, 2020; Li et al., 2022a; Xu et al., 2023), and vectorization (Liu et al., 2023a; Liao et al., 2023a;b).
To derive lane connectivity, a “tabula-rasa” resolution is to directly average two neighboring lanelines to get
centerlines and then connect as a graph, based on the instance-wise laneline representations. Yet, it demands
complicated hand-crafted rules and heavy post-processings. Another approach is to supervise the perception
frameworks with relationship labels. Recent studies, STSU (Can et al., 2021) and TPLR (Can et al., 2022a),
employ a Transformer-based architecture for lane instances and an additional MLP for connectivity. But
still, they suffer from difficulty in finding useful information without explicit relationship modeling.

1



Under review as submission to TMLR

Centerline 

Traffic Element

Topology LL 

Topology LT

Turn left 
only.

Green light.

Figure 1: Topology relationship of driving scenes. While driving into an intersection, the self-driving
vehicle has to reason about the correct lane and traffic information for downstream navigation. We advocate,
and present TopoNet, to directly achieve topology understanding on the heterogeneous graph. “Topology
LL” and “Topology LT” represent the relationship among lane centerlines and the relationship between lane
centerlines and traffic elements respectively.

Moreover, the relationship assignment problem between traffic elements and lanes from sensor inputs remains
mostly unexplored. Langenberg et al. (2019) tried to associate the ground truth of lanelines and traffic
lights in the image domain (perspective view, PV). However, integrating traffic elements and lanes in a
heterogenous graph (Fig. 1) is a different story. A reason is that traffic elements are described as bounding
boxes in PV, while lanes are characterized as curves in 3D or BEV space. Meanwhile, spatial locations
remain less important for traffic elements as their semantic meanings are essential, but positional clues of
lanes are crucial for autonomous driving vehicles.

To address these issues, we present a Topology Reasoning Network (TopoNet), which predicts the driving
scene topology in an end-to-end manner. As an attempt to reason about scene topology in a single network,
TopoNet comprises two branches with a shared feature extractor, for traffic elements and centerlines respec-
tively. Motivated by the Transformer-based detection algorithms (Carion et al., 2020; Zhu et al., 2020), we
employ instance queries to extract local features via the deformable attention mechanism, which restricts the
attention region and accelerates convergence. Since the clues for locating a specific centerline instance could
be encoded in its neighbors and corresponding traffic elements, a Scene Graph Neural Network (SGNN) is
devised to transmit messages among instance-level embeddings. Furthermore, we propose a scene knowledge
graph to capture prior topological knowledge from entities of different types. Specifically, a series of GNNs
are developed based on categories of traffic elements and the centerline connectivity relationship (i.e., prede-
cessor, ego, successor). Updated queries are ultimately decoded as the perception results and driving scene
topology. With the proposed designs, we substantiate TopoNet on the large-scale topology reasoning bench-
mark for HD mapping, OpenLane-V2 (Wang et al., 2023). TopoNet outperforms state-of-the-art approaches
by 15-84% for centerline perception, and achieves times of performance in terms of the challenging topology
reasoning task. Ablations are conducted to verify the effectiveness of our framework.

2 Related Work

2.1 Lane Graph Learning

Lane Graph Learning has received abundant attention due to its pivotal role in autonomous driving. Prior
works investigate generating road graphs (He et al., 2020; Bandara et al., 2022) or spatially denser lane
graphs (Homayounfar et al., 2019; Zürn et al., 2021; He & Balakrishnan, 2022; Büchner et al., 2023) from
aerial images. However, roads in aerial images are often occluded by trees and buildings, leading to inaccurate
results. Recently, there has been a growing focus on producing lane graphs directly from vehicle-mounted
sensor data. STSU (Can et al., 2021) proposes a DETR-like neural network to detect centerlines and
then derive their connectivity by a successive MLP module. Based on STSU, Can et al. (2022a) introduce
additional minimal cycle queries to ensure proper order of overlapping lines. CenterLineDet (Xu et al.,
2023) regards centerlines as vertices and designs a graph-updating model trained by imitation learning.
LaneGAP (Liao et al., 2024) proposes a path-wise modeling to represent the lane graph. It is also worth
noticing that Tesla proposes the “language of lanes” to represent the lane graph as a sentence (Tesla, 2022).
The attention-based model recursively predicts lane tokens and their connectivity. In this work, we focus on
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explicitly modeling the centerline connectivity inside the network to enhance feature learning and indulging
traffic elements in constructing the full driving scene graph.

2.2 HD Map Perception

With the trending popularity of BEV perception (Philion & Fidler, 2020; Li et al., 2022b; Zhou & Krähenbühl,
2022; Hu et al., 2023; Gao et al., 2023; Liao et al., 2023b), recent works focus on learning HD Maps with
segmentation and vectorized methods. Map segmentation aims at predicting the semantic meaning of each
BEV grid, such as lanelines, pedestrian crossings, and drivable areas. These works differentiate from each
other mainly in the perspective view to BEV transform module, i.e., IPM-based (Xie et al., 2022; Can
et al., 2022b), depth-based (Hu et al., 2022; Liu et al., 2023b), or Transformer-based (Li et al., 2022b; Jiang
et al., 2023). Though dense segmentation provides pixel-level information, it cannot touch down the complex
relationship of overlapping elements. Li et al. (2022a) handles the problem by grouping and vectorizing the
segmented map with complicated post-processings. VectorMapNet (Liu et al., 2023a) proposes to directly
represent each map element as a sequence of points, which uses coarse key points to decode laneline locations
sequentially. MapTR (Liao et al., 2023a) further explores a unified permutation-based modeling approach
for the sequence of points to eliminate the modeling ambiguity and improve performance and efficiency. In
fact, since vectorization also enriches the direction information for lanelines, vectorization-based methods
could be easily adapted to centerline perception by alternating the supervision. Recently, InstaGraM (Shin
et al., 2023) constructs map elements as a graph by predicting vertices first and then utilizing a GNN module
to detect edges. Its GNN produces all vertex features simultaneously, leading to the lack of instance-level
interaction. Contrary to the aforementioned approaches, we leverage instance-wise feature transmission with
a graph neural network, to extract prominent prediction hints from other elements in the topology graph.

2.3 Driving Scene Understanding

Driving Scene Understanding mainly indicates summarizing positional relationships of elements in out-
door environments beyond perception (Tian et al., 2020; Mylavarapu et al., 2020b; Zipfl & Zöllner, 2022;
Malawade et al., 2022a). Previous works focus on utilizing the relationships of 2D bounding boxes for
motion prediction (Li et al., 2020; Mylavarapu et al., 2020a;b; Fang et al., 2023) and risk assessment (Yu
et al., 2021; Malawade et al., 2022b). In the industrial context, Mobileye presents an optimization-based
method to automatically construct lane topology and traffic light-to-lane relationships based on their in-
ternal data (Mobileye, 2022). In the academy, Langenberg et al. (2019) address the traffic light to lane
assignment (TL2LA) problem with a convolutional network by taking heterogeneous metadata as additional
inputs. In contrast, TopoNet takes RGB images only and additionally reasons about the topology for lane
entities besides TL2LA. We instantiate TopoNet on the large-scale driving scene understanding benchmark,
which covers complicated urban scenarios.

2.4 Graph Neural Network

Graph Neural Network and its variants, such as graph convolutional network (GCN) (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018), are widely adopted to aggregate
features of vertices and extract information from graph (Scarselli et al., 2008). Witnessing the impressive
achievements of GNN in various fields (e.g., recommendation system and video understanding) (Guo &
Wang, 2020; Mohamed et al., 2020; Chang et al., 2021; Pradhyumna & Shreya, 2021), researchers in the
autonomous driving community attempt to utilize it to process unstructured data. Weng et al. (2020; 2021)
introduce GNN to capture interactions among agents for 3D multi-object tracking. LaneGCN (Liang et al.,
2020) constructs a lane graph from HD map, while others (Jia et al., 2022; 2023; Fang et al., 2023) model the
relationship of moving agents and lanelines as a graph to improve the trajectory forecasting performance.
Inspired by prior works, we design a GNN for the driving scene understanding task to enhance feature
interaction and introduce a class-specific knowledge graph to better incorporate semantic information.
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Figure 2: Systematic diagram of TopoNet. TopoNet addresses the crucial problem of topology reasoning
for driving scenes in an end-to-end fashion. It consists of four stages, with the last three being compacted in a
Transformer decoder architecture. TopoNet handles traffic elements and centerlines as two parallel branches
at the Deformable decoder. Various types of instance queries (red, blue) then interact, exchange messages,
acquire and aggregate prominent knowledge in the proposed Scene Graph Neural Network. The explicit
relationship modeling inside the network serves as a favorable scheme for feature learning and topology
prediction. We abbreviate traffic elements and lane centerlines as “TE” and “LC” in this paper, respectively.

3 TopoNet

3.1 Problem Formulation

Given multi-view images, the goal of TopoNet lies in two perspectives - perceiving entities and reasoning their
relationships. As an instance-level representation is preferable for topology reasoning, a directed centerline is
described as an ordered list of points. We denote it as vl = [p0, ..., pn−1], where p = (x, y, z) ∈ R3 describes a
point’s coordinate in 3D space, p0 and pn−1 are the starting and ending point respectively. Traffic elements
are represented as 2D bounding boxes in different classes on the front-view images. All existing lanes Vl and
traffic elements Vt within a predefined range are required to be detected.

On the perceived entities, the topology relationships are built. The connectivity of directed lanes establishes
a map-like network on which vehicles can drive and is denoted as the lane graph (Vl, Ell), where the edge
set Ell ⊆ Vl × Vl is asymmetric. An entry (i, j) in Ell is positive if and only if the ending point of the lane
vi is connected to the starting point of vj . The graph (Vl ∪ Vt, Elt) describes the correspondence between
lanes and traffic elements. It can be seen as a bipartite graph that positive edges only exist between Vl and
Vt. Both edge sets are required to be predicted in the task of topology reasoning.

3.2 Overview

Fig. 2 illustrates the overall architecture of the proposed TopoNet. Given multi-view images as input,
the feature extractor generates multi-scale image features, including the front-view feature FPV, and then
convert them into a BEV feature FBEV through a view transform module. Two independent decoders with
the same deformable attention architecture (Zhu et al., 2020) consume FPV and FBEV to produce instance-
level embeddings Qt and Ql separately. The proposed Scene Graph Neural Network (SGNN) then
refines centerline queries Ql in positional and topological aspects. Note that the decoder and SGNN layers
are stacked iteratively to obtain local and global features in a sequential fashion. Finally, the task-specific
heads take the refined queries to produce prediction results. Next, we elaborate on the proposed SGNN.

3.3 Scene Graph Neural Network

A representative embedding (or query) provides ideal instance-wise detection or segmentation results, as
discussed in conventional perception works (Carion et al., 2020; Wu et al., 2022). However, being discrimi-
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native is not enough to recognize correct topology relationships. The reason is that it takes a pair of instance
queries as input to determine their relationship, in which feature embeddings are actually not independent.
Meanwhile, adopting the local feature aggregation scheme of point-wise queries (Liu et al., 2023a; Liao et al.,
2023a) for centerline perception is inadequate. Specifically, a key difference between centerlines and physical
map elements is that centerlines naturally encode lane topology and traffic rules, which cannot be inferred
from local features alone. Therefore, we aim to simultaneously acquire perception and reasoning results by
modeling not only discriminative instance-level representations but also inter-entity relationships.

To this end, we present SGNN, which has several designs and merits compared to previous works. (1) It
adopts an embedding network to extract TE knowledge within a unified feature space. (2) It models all
entities in a frame as vertices in a graph, and strengthens interconnection among perceived instances to
learn their inherent relationships with a graph neural network. (3) Alongside the graph structure, SGNN
incorporates prior topology knowledge with a scene knowledge graph.

3.3.1 Embedding Network

As traffic elements are labeled on the perspective view, it is hard to harness their positional features in the
spatial feature space. However, their semantic meaning imposes a great effect. For instance, a road sign
indicating the prohibition of left turn usually corresponds to lanes that lay in the middle of the road. This
predefined knowledge is beneficial for locating corresponding lanes. We introduce an embedding network to
extract semantic information and transform it into a unified feature space to match with centerlines that
Q̃i

t = embeddingi
(
Qi

t

)
, where i denotes the i-th decoder layer. Note that the queries Q̃i

t remain intact in the
SGNN. This is intended since imagining traffic elements from centerlines is relatively challenging. Besides,
noting that the traffic element features are filtered and transformed into the spatial feature space by the
embedding network, if these features are subsequently updated with adequate feature interactions with lane
centerlines, they become unsuitable for predicting their attributes in the image feature space.

3.3.2 Feature Propagation in GNN

In this part, we introduce how topological relationships are modeled and how knowledge from different
queries is exchanged. Using GNN, relations can be conveniently formulated as edges in a graph where
entities are seen as vertices, while it is nontrivial in an open world without any explicit constraint. As
there is no prior knowledge of topology structure, a trivial way is to construct a fully connected graph
(V, E), where V = Vl ∪ Vt and E ⊆ V × V . This inevitably increases computational cost and introduces
unnecessary information transmission, such as between two traffic elements that are placed subjectively by
humans. Instead, we form two directed graphs to propagate features, namely Gll = (Vl, Vl × Vl) for lane
graph estimation and Glt = (Vl ∪ Vt, Vl × Vt) representing the TE to LC assignments.

In graph Gll and Glt, lane queries Ql are refined by the connected neighbors and corresponding traffic
elements. Due to the fact that Ql and Qt represent different objects, the semantic gap still exists. We
introduce an adapter layer to combine this heterogeneous information into the information gain denoted as
R. The overall process in an SGNN layer can be formulated as follows:

Qi′

l = SGNNi
ll

(
Qi

l, Gi−1
ll

)
,

Qi′′

l = SGNNi
lt

(
Qi

l, Q̃i
t, Gi−1

lt

)
,

Ri = downsamplei
(

ReLU
(
concat(Qi′

l , Qi′′

l )
))

,

Q̃i
l = Qi

l + Ri.

(1)

3.3.3 Vanilla Scene Graph

Given the adjacency matrix Ai−1
ll , which is a representation of neighboring relationships in graph Gi−1

ll from
the previous layer, we construct a weight matrix T i

ll to control the flow of messages in the graph. In the
directed graph, messages are passed in a single direction, e.g., from a centerline to its successor. However,
as the structure of lanes depends on each other, the position of a lane is a good indication of the locations
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of its neighbors. Thus, we supplement Ai−1
ll with a backward adjacency matrix to allow message exchange

for two connected centerlines. The matrix T i
ll of the i-th layer is calculated by:

T i
ll = βll ·

(
Ai−1

ll + transpose(Ai−1
ll )

)
+ I, (2)

where T 0
ll = I and I denotes the identical mapping for self-loop, βll is a hyperparameter to control the ratio

of features propagated between nodes.

In the bipartite graph Glt, where only the correspondence between lanes and traffic elements is presented,
we utilize features of traffic elements to refine centerline embeddings as follows:

T i
lt = βlt · Ai−1

lt , (3)

where T 0
lt = O is a matrix in which all entries are zero.

After obtaining the weight matrices, SGNN utilizes the graph convolutional layer (GCN) (Kipf & Welling,
2017) to perform feature propagation among queries:

Qi′

l = GCNi
ll

(
Qi

l, T i
ll

)
,

Qi′′

l = GCNi
lt

(
Qi

l, Q̃i
t, T i

lt

)
.

(4)

3.3.4 Scene Knowledge Graph
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Figure 3: Scene knowledge graph illustration. For the
centerline colored blue in the left case, related weight ma-
trices in the graph are categorically independent. Different
traffic elements and lane-directed connections bring different
information to the centerline, which is encoded as a scene
knowledge graph on the right.

Though GCN enables feature propagation in
the built graphs and treats nodes differently
based on their connectivity, the semantic
meaning of vertices remains unexplored. For
example, the information from a traffic ele-
ment indicating to go straight is not equally
important to a red light. To address the issue
and incorporate categorical prior, we design
the scene knowledge graph to treat vertices in
different classes differently. Fig. 3 illustrates
an example process of updating a centerline
query LC1 on the given knowledge graph.

On the graph Glt, we use Wi
lt ∈ R|Ct|×Fl×Ft

to denote the learnable weights, where Ct de-
scribes the attribute set of traffic elements, Fl

and Ft are the number of feature channel of
LC and TE queries respectively. A center-
line query with index x aggregates information
from its corresponding traffic elements based on their classification scores:

Ki
lt = Ai−1

lt ,

Qi′′

l(x)
=

∑
∀y∈N(x)

∑
∀ct∈Ct

βlt · Si
t(ct,y)

Ki
lt(x,y)

Wi
lt(ct)

Q̃i
t(y)

, (5)

where N(x) outputs the indices of all neighbors of the vertex with index x, and Si
t ∈ R|Ct|×|Qi

t| represents
the classification scores of traffic element queries.

Although all centerlines fall into the same category, the directed connection nature, namely predecessor and
successor, still poses an impact on the process of feature propagation. To this end, we formulate the learnable
weight matrix for the lane graph as Wi

ll ∈ R|Cl|×Fl×Fl , where Cl = {successor, predecessor, self-loop}. The
centerline queries are further updated by:

Ki
ll = stack

(
Ai−1

ll , transpose(Ai−1
ll ), I

)
,

Qi′

l(x)
=

∑
∀y∈N(x)

∑
∀cl∈Cl

βll · Ki
ll(cl,x,y)

Wi
ll(cl)

Qi
l(y)

. (6)
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3.4 Learning

We employ multiple losses to train TopoNet in an end-to-end manner. As depicted in Fig. 2, all heads
consume queries to provide perception and reasoning results. Nevertheless, they are not entirely indepen-
dent, as the topology head requires matching results from perception heads. Similar to Transfomer-based
networks (Carion et al., 2020; Zhu et al., 2020), the supervision is applied on each decoder layer to optimize
the query feature iteratively. The overall loss of the proposed model is L = LdetTE + LdetLC + Ltop.

Perception. Following the head design in DETR (Carion et al., 2020), the TE head predicts 2D bounding
boxes with classification scores. Note that for predicting traffic elements, we take Qt instead of Q̃t to preserve
their positional information in the perspective view. The LC head produces 11 ordered 3D points and a
confidence score from each centerline query q̃l ∈ Q̃l. The ground truth of centerlines is normalized based
on the predefined BEV range. For both heads, the Hungarian algorithm is utilized to generate matchings
between ground truth and predictions, with the matching cost the same as the loss function. Then task-
specific losses LdetTE and LdetLC are applied accordingly. Specifically, for the TE head, we employ the Focal
loss (Lin et al., 2017b) for classification, an L1 regression loss, and an IOU loss for localization. Meanwhile,
for centerlines, we use Focal loss and L1 loss as the classification and regression loss, respectively.

Reasoning. The topology head reasons pairwise relationships on the given embeddings. Similar to
STSU (Can et al., 2021), for a pair of instances, we use two MLP layers to reduce the feature dimen-
sion for each instance. Then the concatenated feature is sent into another MLP with a sigmoid activation to
predict their relationship. Based on the matching results from perception heads, the ground truth of each
pair of embeddings is assigned. Different from the TE head, we adopt embeddings from the SGNN module,
i.e., the refined queries Q̃l for lanes and the semantic embeddings Q̃t for traffic elements. Due to the sparsity
of the graph, Focal loss is deployed in Ltop to deal with the imbalance in sample distribution.

4 Experiments

4.1 Implementation Details

Feature Encoding. We adopt a ResNet-50 (He et al., 2016), which is pre-trained on ImageNet (Deng et al.,
2009), with an FPN (Lin et al., 2017a) to obtain multi-scale image features. Following previous works (Zhu
et al., 2020; Li et al., 2022b), the output features are from stage S8×, S16× and S32× of ResNet-50, where
the subscripts n× indicates the downsampling factor. In the FPN module, the features are transformed into
a four-level output with an additional S64× level. The number of output channels of each level is set to
256. Then we adopt a simplified view transformer with 3 encoder layers proposed in BEVFormer (Li et al.,
2022b). Note that we do not use temporal information, and thus the temporal self-attention layer in the
BEVFormer encoder is replaced by a deformable attention (Zhu et al., 2020) layer. The size of BEV grids is
set to 200 × 100, with four different height levels of {−1.5m, −0.5m, +0.5m, +1.5m} relative to the ground.

Deformable Decoder. For the decoder, we utilize the decoder layer in Deformable DETR (Zhu et al., 2020)
that each decoder layer contains three layers: a self-attention layer with 8 attention heads, a deformable
attention layer with 8 attention heads and 4 offset points, and a two-layer feed-forward network with 512
channels in the middle. After each operation, a dropout layer with a ratio of 0.1 and a layer normalization
is applied. The dimension of initial queries q = [qp, qo] ∈ Q is set to 256, where qp is utilized to generate
the initial reference point, and qo is the initial object query. The query number for centerlines and traffic
elements is set to 200 and 100. The reference points will remain unchanged across different layers.

Scene Graph Neural Network. We utilize a simplified version of Graph Convolutional Network
(GCN) (Kipf & Welling, 2017) as our GNN layer. Given an input matrix Qi ∈ RN×C , with N representing
the number of nodes and C denoting the number of channels, the output of the operation is:

Qi′
= σ

(
T iQiWi

)
, (7)

where Wi ∈ RC×C is the learnable weight matrix, T i ∈ RN ′×N describes the adjacency matrix with N ′

output nodes, and σ(·) is the activation function. Note that the matrix T is inferred without gradients
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during training. For the traffic element branch, an embedding network is employed before each GNN layer.
The embedding network is a two-layer MLP, in which the output channels are 512 and 256. In between the
MLP, a ReLU activation function and a dropout layer are included. βll and βlt are set to 0.6.

Prediction Heads. The prediction head for perception comprises a classification head and a regression
head. For the traffic element branch, the classification head is a single-layer MLP, which outputs the sigmoid
probability of each class. The regression head is a three-layer MLP with ReLU, which predicts the normalized
coordinates of 2D bounding boxes in the form of {cx, cy, width, height}. For centerline, the classification
head consists of a three-layer MLP with LayerNorm and ReLU in between, which predicts the confidence
score. The regression head is a three-layer MLP with ReLU, which predicts the normalized point set of
11 × 3 for a centerline. To predict topology relationships, relationship heads are applied. Given the instance
queries Q̃a and Q̃b with 256 feature channels, the topology head first applies a three-layer MLP:

Q̃′
a = MLPa(Q̃a), Q̃′

b = MLPb(Q̃b), (8)

where the number of output channels is 128. For each pair of queries q̃′
a ∈ Q̃′

a and q̃′
b ∈ Q̃′

b, the output is the
confidence of the relationship, with independent MLPs for different types of relationships:

conf. = sigmoid
(

MLPtop
(
concat(q̃′

a, q̃′
b)

))
. (9)

Loss. LdetTE includes a classification, a regression, and an IoU loss that LdetTE = λcls ·Lcls+λreg ·Lreg +λiou ·
Liou. λcls, λreg, and λiou are set to 1.0, 2.5, and 1.0, respectively. The classification loss Lcls is a Focal loss.
Note that the regression loss Lreg is an L1 Loss calculated on a normalized format of {cx, cy, width, height},
while the IoU loss Liou is a GIoU loss computed on the denormalized coordinates. For centerline detection,
LdetLC comprises a classification and a regression loss that LdetLC = λcls · Lcls + λreg · Lreg, where λcls

and λreg are 1.5 and 0.025 respectively. Note that the regression loss is calculated on the denormalized 3D
coordinates. For topology reasoning, we adopt the same Focal loss but different weights on different types
of relationships. The loss Ltop is defined as λtopll

· Ltopll
+ λtoplt

· Ltoplt
, where both λtopll

and λtoplt
are 5.0.

Training. The resolution of input images is 2048 × 1550, except for the front-view image, which is 1550
× 2048 and cropped into 1550 × 1550. For data augmentation, ×0.5 resizing and color jitter are used. We
adopt the AdamW optimizer (Loshchilov & Hutter, 2018) and a cosine annealing schedule with an initial
learning rate of 1 × 10−4. TopoNet is trained for 24 epochs with a batch size of 8 with 8 Tesla A100 GPUs.

4.2 Dataset and Metrics

We conduct experiments on the OpenLane-V2 benchmark (Wang et al., 2023). The dataset contains topo-
logical structures in the driving scenes, and raises huge challenges for algorithms to perceive and reason
about the environment accurately. Ablation studies are conducted on the subset_A of OpenLane-V2.

Dataset. Built on top of the Argoverse 2 (Wilson et al., 2021) and nuScenes (Caesar et al., 2020) datasets,
the OpenLane-V2 benchmark includes images from 2,000 scenes collected worldwide under different envi-
ronments. The dataset is split into two subsets, namely subset_A and subset_B. Each subset contains
1,000 scenes with multi-view images and annotations at 2Hz. All lanes within [−50m, +50m] along the
x-axis and [−25m, +25m] along the y-axis are annotated in the 3D space. Centerlines are described in the
form of lists of points. Each list is ordered and comprises 201 points in 3D space. Statistically, about 90%
of frames have more than 10 centerlines while about 10% have more than 40. Traffic elements follow the
typical labeling style in 2D detection that objects are labeled as 2D bounding boxes on the front-view images.
Each element is denoted as a 2D bounding box on the front view image, with its attribute. There are 13
types of attributes, including unknown, red, green, yellow, go_straight, turn_left, turn_right, no_left_turn,
no_right_turn, u_turn, no_u_turn, slight_left, and slight_right. The topology relationships are provided
in the form of adjacency matrices based on the ordering of centerlines and traffic elements. In the adjacency
matrices, an entry (i, j) is positive (i.e., 1) if and only if the elements at i and j are connected.

Perception Metrics. The DET score is the typical mean average precision (mAP) for measuring instance-
level perception performance. Based on the Fréchet distances (Eiter & Mannila, 1994), the DETl score is
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Table 1: Comparison with state-of-the-art methods on the OpenLane-V2 benchmark. TopoNet out-
performs all previous works by a wide margin, especially in directed centerline perception and topology
reasoning. *: Topology reasoning evaluation is based on matching results on Chamfer distance. The highest
score is bolded, while the second one is underlined.

Data Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
su

bs
et

_
A

STSU (Can et al., 2021) 12.7 0.5 43.0 15.1 25.4
VectorMapNet (Liu et al., 2023a) 11.1 0.4 41.7 5.9 20.8
MapTR (Liao et al., 2023a) 8.3 0.2 43.5 5.9 20.0
MapTR* (Liao et al., 2023a) 17.7 1.1 43.5 10.4 26.0
TopoNet (Ours) 28.5 4.1 48.1 20.8 35.6

su
bs

et
_

B

STSU (Can et al., 2021) 8.2 0.0 43.9 9.4 21.2
VectorMapNet (Liu et al., 2023a) 3.5 0.0 49.1 1.4 16.3
MapTR (Liao et al., 2023a) 8.3 0.1 54.0 3.7 21.1
MapTR* (Liao et al., 2023a) 15.2 0.5 54.0 6.1 25.2
TopoNet (Ours) 24.3 2.5 55.0 14.2 33.2

averaged over match thresholds of T = {1.0, 2.0, 3.0}:

DETl = 1
|T|

∑
t∈T

APt. (10)

Note that the defined BEV range is relatively large compared to other lane detection datasets, so accurate
perception of lanes in the distance is hard. As a result, thresholds T are relaxed based on the distance
between the lane and the ego car. The DETt uses IoU as the similarity measure and is averaged over
different attributes A of traffic elements:

DETt = 1
|A|

∑
a∈A

APa. (11)

Reasoning Metrics. The TOP score is an mAP metric adapted from the graph domain. Specifically, given
a ground truth graph G = (V, E) and a predicted one Ĝ = (V̂ , Ê), it builds a projection on the vertices
such that V = V̂ ′ ⊆ V̂ , where the Fréchet and IoU distances are utilized for similarity measure among lane
centerlines and traffic elements respectively. Inside the predicted V̂ ′, two vertices are regarded as connected
if the confidence of the edge is greater than 0.5. Then the TOP score is the averaged vertice mAP between
(V, E) and (V̂ ′, Ê′) over all vertices:

TOP = 1
|V |

∑
v∈V

∑
n̂′∈N̂ ′(v) P (n̂′)1(n̂′ ∈ N(v))

|N(v)| , (12)

where N(v) denotes the ordered list of neighbors of vertex v ranked by confidence and P (v) is the precision
of the i-th vertex v in the ordered list. The TOPll is for topology among centerlines on graph (Vl, Ell), and
the TOPlt for topology between lane centerlines and traffic elements on graph (Vl ∪ Vt, Elt).

Overall Metrics. The primary task of the dataset is scene structure perception and reasoning, which
requires the model to recognize the dynamic drivable states of lanes in the surrounding environment. The
OpenLane-V2 Score (OLS) summarizes metrics covering different aspects of the primary task:

OLS = 1
4

[
DETl + DETt + f(TOPll) + f(TOPlt)

]
, (13)

where f is the square root function.

4.3 Main Results

In Table 1, we compare the proposed TopoNet to several state-of-the-art methods, whose implementation
details are described in Appendix A. TopoNet outperforms all previous algorithms by a large margin. As
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Table 2: Comparison on centerline perception with a unified feature extractor. “Topology” denotes
that the network is trained with topology supervision.

Method Topology DETl↑ TOPll↑ DETl,chamfer↑ FPS
STSU (Can et al., 2021) ✓ 14.2 0.6 13.8 12.8
VectorMapNet (Liu et al., 2023a) ✗ 12.7 - 10.3 1.0
MapTR (Liao et al., 2023a) ✗ 10.0 - 21.7 11.5
TopoNet (Ours) ✓ 27.7 4.6 27.4 10.1

the SOTA map learning method MapTR ignores the direction of centerlines with the permutation-equivalent
modeling (Liao et al., 2023a), we additionally evaluate MapTR based on Chamfer distance matching. How-
ever, its performance on DETl, as well as topology metrics, significantly degenerates. The performance of
centerline queries without directional information indicates that understanding the complex scenario and
perceiving presented instances are two totally different stories. All methods achieve similar DETt, since we
adopt the same traffic element detection branch. In more detail, TopoNet possesses slightly superior traf-
fic light detection performance, which indicates that its comprehensive framework is capable of performing
heterogeneous feature learning between traffic elements and centerlines, thereby enhancing the performance
of DETt and TOPlt. On the other hand, since all methods employ a shared backbone, it is noticeable that
the convergence of traffic light detection could be influenced by other branches, especially when the model
struggles to learn centerlines and topological information with a large loss in the LC head. Therefore, given
that all methods have the same TE head, our experimental analysis primarily focuses on centerline detec-
tion and topology reasoning. Regarding the performance on LC-TE topology reasoning, the superiority of
TopoNet can be attributed to the effectiveness of proposed SGNN module, in which different entities are
modeled differently, as well as its overall superior centerline and traffic element detection performance.

Table 3: Comparison on BEV seg-
mentation. When rendering center-
lines on the BEV grids, TopoNet also
outperforms the previous approach.

Method mIoU↑
HDMapNet (Li et al., 2022a) 18.3
STSU (Can et al., 2021) 24.6
VectorMapNet (Liu et al., 2023a) 18.9
MapTR (Liao et al., 2023a) 32.1
LaneGAP (Liao et al., 2024) 35.0
TopoNet (Ours) 35.1

Comparison on Centerline Perception. To have a fair com-
parison, we use a unified backbone architecture and PV-to-BEV
transformation module for various SOTA methods on centerline
perception task. We keep the topology supervision for STSU, as
it is originally designed for detecting centerlines and their topology
relationship. Since VectorMapNet and MapTR are for the task of
laneline detection where there is no relationship between visible
lanelines, we alter the supervision from laneline to centerline and
ignore topology supervision to preserve their design choice.

To better align with previous works (Liu et al., 2023a; Liao et al.,
2023a), we also provide DETl,chamfer with the Chamfer distance
as the similarity measure. It does not take the lane direction into
account and is thresholded on {0.5, 1.0, 1.5}. As shown in Table 2, TopoNet outperforms other methods on
all metrics. We also found that the original design of online mapping approaches struggle with managing
lane topology and traffic elements. As shown in Table 1 and Table 2, when the affect from lane topology
and traffic elements is removed, MapTR’s performance in centerline detection improves from 17.7 to 21.7
on DETl,chamfer score. In contrast, TopoNet’s performance in centerline detection decreased by 0.8 points
on DETl due to the removal of the traffic element branch and the lane-traffic element feature interaction in
SGNN. This suggests that TopoNet benefits from detecting traffic elements and reasoning the LT topology,
attributable to the effective design of our pipeline. Besides, the FPS of TopoNet is 10.1 on an A100 bare
machine. Compared to other methods on the same machine with aligned input size 512× 676, our method
has comparable online efficiency but higher performance.

Comparison on BEV Segmentation. DETl is a rigorous and effective metric for evaluating the validity
of each point on a single centerline, requiring a consistent instance representation of lanes. In contrast, the
Intersection over Union (IoU) metric changes continuously, and insensitive to minor prediction variations.
However, it facilitates the instant assessment of the overall geometric accuracy across different methods with
varying formulation, such as HDMapNet (Li et al., 2022a) and LaneGAP (Liao et al., 2024). Except for
HDMapNet, the vectorized centerline prediction of each method are rendered to BEV with a fixed line width
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GT (BEV) STSU VectorMapNet MapTR TopoNet (Ours)

GT (Front-view) Pred (Front-view, TopoNet)Multi-view Vision-only Input

Figure 4: Qualitative results of TopoNet and other algorithms on subset_A of the OpenLane-V2 dataset.
While driving in complex scenarios, TopoNet achieves superior lane graph prediction performance compared
to other SOTA methods. It also successfully builds all connections between traffic elements and lanes (top
right, and correspondingly colored lines in BEV). Colors denote categories of traffic elements.

Table 4: Ablation on the design of scene graph
neural network. “SG” represents the vanilla scene
graph, and “SKG” is the enhanced SGNN with the
proposed scene knowledge graph.

Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
Baseline 25.7 4.0 47.2 20.6 34.6
+ SG 27.7 3.7 48.0 20.1 35.0
+ SKG 28.5 4.1 48.1 20.8 35.6

Table 5: Ablation on feature propagation in the
SGNN. “LL only” denotes aggregation of spatial in-
formation from lane connectivity, and “LT only” in-
cludes lane-traffic element relationship.

Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
LL only 27.9 3.8 47.8 20.3 35.1
LT only 27.8 3.9 47.5 20.5 35.1
TopoNet 28.5 4.1 48.1 20.8 35.6

of 0.75m aligned with the setting in HDMapNet. As shown in Table 3, TopoNet surpasses other methods
in terms of IoU. We also conduct a fair comparison with a concurrent work LaneGAP (Liao et al., 2024),
which utilizes a path-wise modeling to represent lane graph. Transforming lane paths into lane pieces in the
LaneGAP’s post-processing stage necessitates high geometric accuracy, making it unsuitable for evaluation
using DETl. This method achieves comparable performance to TopoNet in terms of IoU. However, we note
that piece-wise modeling of TopoNet can effectively capture the precise locations of lane splits or merges, as
well as the topology between lanes and traffic elements, making it more suitable for practical applications.

4.4 Ablation Study

Effect of Design in Scene Graph Neural Network. We alternate the proposed network into a baseline
without feature propagation by downgrading the SGNN module to an MLP and supervising topology reason-
ing at the final decoder layer only. The concatenation and down-sampling operations, as well as the traffic
element embedding, are also removed. As illustrated in Table 4, the proposed SKG outperforms models
in other settings, demonstrating its effectiveness for topology understanding. Compared to the SG version,
the scene knowledge graph provides an additional improvement of 0.8% for centerline perception, owning
to the predefined semantic prior encoded in the categories of traffic elements. The improvement of traffic
element detection and topology reasoning is also consistent. Given that transformers are widely regarded as
a variant of GNN, this also reveals that explicitly designing the feature interaction between queries within a
transformer decoder can further enhance performance, especially when instances have a strong correlation.
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Table 6: Ablation on the number of GNN layers
in the scene knowledge graph. Model performance
drops as the number of SGNN layers increases.

# GNN DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
1 28.5 4.1 48.1 20.8 35.6
2 27.9 4.0 47.5 20.9 35.3
3 20.4 0.5 46.1 15.7 28.3

Table 7: Ablation on edge weight in the scene
knowledge graph. The magnitude of edge weight has
an impact on model performance.

Weight DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
0.5 28.4 4.0 47.7 20.8 35.4
0.6 28.5 4.1 48.1 20.8 35.6
0.7 27.3 4.1 47.7 20.7 35.1

Effect on Feature Propagation. In the “LL only” setting, we set the βlt parameter to 0. Similar to
the baseline, we remove the concatenation and down-sampling operations, as well as the traffic element
embedding. For “LT only”, we set the βll parameter to 0, while other modules remain intact. Results
are reported in Table 5. In the “LL only” setting, the drop on TOPlt demonstrates the importance of the
graph Glt. Besides, it can be observed that the performance of DETl experiences a certain decline under
this setting as well. This might result from the lack of traffic element features’ guidance for lane centerline
detection within intersections. Compared to non-intersection areas, there is a higher number of centerlines
within intersections, while they lack distinct lane marking features and require traffic elements’ guidance.

With the “LT only” design, DETl degenerates when removing the graph Gll, showing the importance of
feature propagation between centerline queries. These experiments show that both branches are necessary
for achieving satisfactory model performance on the primary task.

Effect on the Number of GNN Layers. Though GNN is beneficial for propagating features in the
knowledge graph, raising the number of GNN layers leads to degenerated performance. As shown in Table 6,
SGNN with a single GNN layer achieves the best performance. The reason is that a GNN layer increases the
similarity of adjacent vertices. With multiple GNN layers, features of all vertices become less discriminative.

Effect on Edge Weight. Edge weight in the scene knowledge graph represents how much information is
propagated through the SGNN layers. In Table 7, 0.6 corresponds to the most appropriate ratio.

4.5 Qualitative Analysis

We provide a qualitative comparison on validation set in Fig. 4. We present the raw output of each method,
abstaining from the post-processing technique suggested in STSU (Can et al., 2021), to avoid the potential
introduction of accumulated inaccuracies and misalignment with quantitative evaluation. TopoNet predicts
most centerlines correctly and constructs a lane graph in BEV. Yet, prior works fail to output all entities or
get confused about their connectivity. More visualizations are provided in Appendix C.

5 Conclusion and Future Work

In this paper, we discuss abstracting driving scenes as topology relationships and propose the first resolution,
namely TopoNet, to address the problem. Importantly, our method models feature interactions via the graph
neural network architecture and incorporate traffic knowledge in heterogeneous feature spaces with the
knowledge graph-based design. Our experiments on the large-scale OpenLane-V2 benchmark demonstrate
that TopoNet excels prior SOTA approaches on perceiving and reasoning about the driving scene topology
under complex urban scenarios.

Limitations and Future Work. Due to the query-based design for feature interactions, TopoNet per-
forms well in achieving most positive predictions, while post-processes such as merging or pruning are still
needed to produce clean output as in lane topology works (Can et al., 2021; Büchner et al., 2023). How to
incorporate the merging ability with auto-regressive or other association mechanisms deserves future explo-
ration. Meanwhile, it will be interesting to see if more categories of traffic elements, and correspondingly
more sophisticated knowledge graphs will make any advances.
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Appendix

A Re-implementation of SOTA Methods

Since there are no prior methods for the task of driving scene understanding, we adapt three state-of-the-
art algorithms which are initially designed for lane graph estimation or map learning: STSU (Can et al.,
2021), VectorMapNet (Liu et al., 2023a), and MapTR (Liao et al., 2023a). To ensure a fair comparison,
we employed the same input resolution, the same ResNet-50 image backbone, and the same FPN neck
for extracting features from surrounding images. Additionally, we incorporated a Deformable DETR head
specifically for traffic elements, aligning all settings with TopoNet. As for topology reasoning, we treat it
differently based on their own modeling concepts of instance query. The topology heads for each methods
are the same MLPs as in TopoNet. All the methods are trained for 24 epochs to ensure a fair comparison.

STSU. The original model predicts centerlines and their relationships under the monocular setting. It
employs a BEV positional embedding and a DETR head to predict three Bezier control points for each
centerline, and uses object queries in the decoder to predict the connectivity of centerlines. To adapt to the
multi-view inputs, we re-implement STSU by computing and concatenate the BEV embedding of images from
different views. The concatenated embedding is then fed into the DETR encoder. We retain the original
DETR decoder to predict the Bezier control points, which are interpolated into 11 equidistant points as
outputs. The lane-lane relationship prediction head of STSU is preserved as well.

VectorMapNet utilizes a DETR-like decoder to estimate key points and an auto-regressive module to
generate detailed graphical information for a map elements instance, such as lanelines and pedestrian cross-
ings. We supervise VectorMapNet’s decoder with centerline labels to adapt with OpenLane-V2 task. The
perception range is defined as ±30m×±15m in the original setting, and we expand it to ±50m×±25m. The
centerline outputs of VectorMapNet are interpolated to 11 equidistant points during the prediction process.
For topology prediction, we use the key point object queries in the VectorMapNet decoder as instance queries
of centerlines. We implement the modification on the given codebase of VectorMapNet while retaining other
settings. However, due to their lack of support for 3D centerlines, we only predict 2D centerlines in the BEV
space and ignore the height dimension during training and evaluation.

MapTR. MapTR directly predicts polylines with a fixed number of points using a DETR-like decoder. It
utilizes a hierarchical query, representing each line instance with multiple point queries and one instance
query. For topology prediction, we use the average of the hierarchical queries of an instance in the MapTR
decoder as the instance query of a centerline. The traffic element head and the topology head are with the
same setting as in TopoNet. We align the original backbone setting with TopoNet. The perception region is
also expanded to ±50m × ±25m. The implementation is also done on the open-source codebase of MapTR
with other settings retained. Due to the lack of support for 3D centerlines, we only predict 2D centerlines
in BEV and ignore the height dimension during training and evaluation.

B More Experiments

Table 8: Ablation on traffic element embedding. TE embedding is necessary to deal with inconsistency
in the feature space of different queries.

Method DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
w/o embedding 28.4 4.1 46.9 20.5 35.2
TopoNet 28.5 4.1 48.1 20.8 35.6

Effect on Traffic Element Embedding. In the “w/o embedding” setting, we remove the traffic element
embedding network and use Qt as the input of SGNN directly. As shown in Table 8, removing the em-
bedding results in a 1.2% performance drop in traffic element recognition. The reason is that TE queries
contain a large amount of spatial information in the PV space due to the 2D detection supervision signals,
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Table 9: Comparison with the awarded methods in the CVPR 2023 Autonomous Driving
Challenge. The upper part is the Leaderboard on the OpenLane-V2 test split. The down part is the
performance on the val split with ResNet-50 backbones. The listed teams utilized non-shared backbones
for the lane and traffic element branches. “# Params.” refers to the total number of backbone parameters.
“*”: using post-processing on the topology prediction. TopoNet surpasses third-place method on the overall
performance, with only 25M backbone parameters and 24 epoch training.

Data Team & Method Backbone # Params. Epoch DETl↑ TOPll↑ DETt↑ TOPlt↑ OLS↑

te
st

MFV (Wu et al., 2023) (1st) ViT-L + CSPNet (YOLOv8x) 375M 48 + 20 35.8 22.5* 79.7 33.5* 55.2
Victory (Lu et al., 2023) (2nd) Swin-S + Swin-S 100M Unknown 21.8 13.2* 72.5 22.6 44.6
PlatypusWhispers (Kalfaoglu et al., 2023) (3rd) RegNetY-800mf + ConvNext-B 95M 40 + 30 22.1 6.0 70.6 15.7 39.2
TopoNet (Ours) ResNet-50 (shared) 25M 24 25.8 10.1* 59.5 23.7* 41.4

v
a
l

MFV (Wu et al., 2023) (1st) ResNet-50 (LC only) 25M 20 18.2 - - - -
PlatypusWhispers (Kalfaoglu et al., 2023) (3rd) ResNet-50 + ResNet-50 50M 24 + 24 22.1 5.8 58.2 15.5 36.0
TopoNet (Ours) ResNet-50 (shared) 25M 24 28.5 4.1 48.1 20.8 35.6

resulting in significant inconsistencies in the feature spaces. In all, the experiments demonstrate that TE
embedding effectively filters out irrelevant spatial information and extracts high-level semantic knowledge
to help centerline detection and lane topology reasoning.

Comparison on the OpenLane-V2 leaderboard methods. We compare TopoNet with the awarded
methods in the CVPR 2023 Autonomous Driving Challenge in Table 9. The leading methods of the com-
petition employed various tricks to maximize the performance, such as stronger and non-shared backbones,
longer training epochs, training on the validation set, extensive hyper-parameter tuning, and complex data
augmentation and post-processing strategies. Because most methods in the competition employ SOTA
2D detection approaches and non-shared backbone, we primarily compare the effectiveness of TopoNet in
the context of lane graph perception. After utilizing the post-processing technique of MFV (Wu et al.,
2023) on lane-lane topology prediction, TopoNet achieves a DETl score of 25.8 and a TOPll of 10.1 on the
OpenLane-V2 test set, achieving superior centerline detection performance compared to the second-place
method. TopoNet employs a shared ResNet-50 backbone, being up to 15× smaller in backbone parameter
size than the awarded methods, demonstrating great training efficiency.

We further provide the comparison on the validation split, where these methods report performance with
a ResNet-50 backbone and without most tricks. MFV, the first-place team in the competition, achieves a
DETl score of 18.2, and the third-place team PlatypusWhisperers (Kalfaoglu et al., 2023) gets a DETl score
of 22.1. With less data augmentation and hyper-parameter tuning, TopoNet achieves a much higher DETl

score of 28.5, surpassing all methods above. These fair comparisons on the validation set well demonstrate
the effectiveness of TopoNet’s pipeline.

C More Visualization

We provide additional qualitative comparisons on subset_B of OpenLane-V2 in Fig. 5. We present the
raw output of each method, abstaining from the post-processing technique suggested in STSU (Can et al.,
2021), to avoid the potential introduction of accumulated inaccuracies and misalignment with quantitative
evaluation. TopoNet predicts most centerlines correctly and constructs a lane graph in BEV. Yet, prior
works fail to output all entities or get confused about their connectivity.

Fig. 6 shows a case where a bus occludes the intersection in the front view image. TopoNet fails to predict
lanes and the topology, especially those in the left half of the crossing. A large-scale dataset and learning
techniques, such as active learning, would solve such failure cases in a real-world deployment.
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GT (BEV) STSU VectorMapNet MapTR TopoNet (Ours)

GT (Front-view) Pred (Front-view, TopoNet)Multi-view Vision-only Input

Figure 5: Qualitative results of TopoNet and other algorithms on subset_B of the OpenLane-V2 dataset.
Colors denote categories of traffic elements.

GT (BEV) STSU VectorMapNet MapTR TopoNet (Ours)

GT (Front-view) Pred (Front-view, TopoNet)Multi-view Vision-only Input

Figure 6: Failure case under large-area occlusion. TopoNet fails to predict centerlines and the lane
graph in the intersection with a large bus colluding in front. Note that the relationship between the left lane
and the red light is an incorrect annotation where our algorithm reasons about the direction of the left lane
and avoids the false positive prediction.
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