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Abstract

Decentralized learning recently has received in-
creasing attention in machine learning due to its
advantages in implementation simplicity and sys-
tem robustness, data privacy. Meanwhile, the
adaptive gradient methods show superior perfor-
mances in many machine learning tasks such as
training neural networks. Although some works
focus on studying decentralized optimization al-
gorithms with adaptive learning rates, these adap-
tive decentralized algorithms still suffer from high
sample complexity. To fill these gaps, we pro-
pose a class of faster adaptive decentralized al-
gorithms (i.e., AdaMDOS and AdaMDOF) for
distributed nonconvex stochastic and finite-sum
optimization, respectively. Moreover, we provide
a solid convergence analysis framework for our
methods. In particular, we prove that our AdaM-
DOS obtains a near-optimal sample complexity of
O(e3) for finding an e-stationary solution of non-
convex stochastic optimization. Meanwhile, our
AdaMDOF obtains a near-optimal sample com-
plexity of O(y/ne~2) for finding an e-stationary
solution of for nonconvex finite-sum optimization,
where n denotes the sample size. To the best of
our knowledge, our AdaMDOF algorithm is the
first adaptive decentralized algorithm for noncon-
vex finite-sum optimization. Some experimental
results demonstrate efficiency of our algorithms.

1. Introduction

With the rapidly increasing dataset sizes and the high di-
mensionality of the machine learning problems, training
large-scale machine learning models has been increasingly
concerned. Clearly, training large-scale models by a single
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centralized machine has become inefficient and unscalable.
Due to addressing the efficiency and scalability challenges,
recently distributed machine learning optimization is widely
studied. In particular, decentralized optimization (Lian et al.,
2017) has received increasing attention in recent years in
machine learning due to liberating the centralized agent with
large communication load and privacy risk. In the paper,
we study decentralized learning algorithms to solve the dis-
tributed stochastic problem over a communication network
G = (V, E), defined as
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where for any i € [m], f*(x) denotes the objective function
in i-th client, which is a differentiable and possibly noncon-
vex function. Here ¢! for any 4 € [m] is an independent
random variable following an unknown distribution D, and
for any 4, j € [m] possibly D? # DJ. G = (V, E) is a com-
munication network including m computing agents, where
any agents 4,7 € V can communicate only if (i,j) € E.
Meanwhile, we also consider decentralized learning algo-
rithms for solving the distributed finite-sum problem over a
communication network G = (V, E), defined as
m
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where fi(z) = fi(x;&}) for k = 1,2--- ,n. Here
{€i}n_, can be seen as n samples drawn from distribu-
tion D’ for i = 1,2,---,m. In fact, Problems (1) and
(2) frequently appear many machine learning applications
such as training Deep Neural Networks (DNNs) (Lian et al.,
2017) and reinforcement learning (Chen et al., 2022).
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Many decentralized stochastic gradient-based algorithms
recently have been developed to solve the above stochastic
Problem (1). For example, (Lian et al., 2017) proposed
an efficient decentralized stochastic gradient descent (D-
PSGD) algorithm, which integrates average consensus with
local-SGD steps and outperforms the standard centralized
SGD methods. Due to the presence of inconsistency under
non-i.i.d. setting, some variants of D-PSGD (Tang et al.,
2018; Xin et al., 2021b) are studied to handle the data hetero-
geneity issue, e.g., D? method (Tang et al., 2018) by storing
previous status, and GT-DSGD method (Xin et al., 2021a)
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Table 1: Sample and Communication complexities comparison of the representative adaptive decentralized stochastic
algorithms for finding an e-stationary point of Problem (1) or (2), i.e., E||VF(x)| < € or its equivalent variants. Note that
the AdaRWGD (Sun et al., 2022) relies on the random walk instead of parallel framework used in other algorithms. For fair
comparison, here we do not consider some specific cases such as sparse stochastic gradients.

Problem Algorithm Reference Sample Complexity | Communication Complexity
DADAM (Nazari et al., 2022) O(e %) O(e %)
Stochastic AdaRWGD (Sun et al., 2022) O(e™) O(e™)
DAMSGrad/DAdaGrad | (Chen et al., 2023) O(e™ ) O(e™ T
AdaMDOS Ours O(e73) O(e™?)
Finite-Sum | AdaMDOF ‘ Ours ‘ O(y/ne=2) ‘ O(e7?)

by using gradient tracking technique (Xu et al., 2015). Sub-
sequently, (Sun et al., 2020; Pan et al., 2020) proposed some
accelerated decentralized SGD algorithms (i.e., D-GET and
D-SPIDER-SFO) by using variance reduced gradient es-
timator of SARAH/SPIDER (Nguyen et al., 2017; Fang
et al., 2018), which obtain a near-optimal sample complex-
ity of O(e=3) for finding the stationary solution of stochas-
tic optimization problems. To reduce large batch-size at
each iteration, (Zhang et al., 2021; Xin et al., 2021a) pro-
posed a class of efficient momentum-based decentralized
SGD algorithms (i.e., GT-HSGD and GT-STORM) based
on momentum-based variance reduced gradient estimator
of ProxHSGD/STORM (Cutkosky & Orabona, 2019; Tran-
Dinh et al., 2022), which also obtain a near-optimal sample
complexity of O(e~3).

Meanwhile, some decentralized stochastic gradient-based al-
gorithms have been developed to solve the above finite-sum
Problem (2). (Sun et al., 2020; Xin et al., 2022) proposed
a class of efficient decentralized algorithms for nonconvex
finite-sum optimization based on variance reduced gradient
estimator of SARAH (Nguyen et al., 2017). Subsequently,
(Zhan et al., 2022) presented a fast decentralized algorithm
for nonconvex finite-sum optimization based on variance
reduced gradient estimator of ZeroSARAH (Li et al., 2021)
without computing multiple full gradients.

It well known that the adaptive gradient methods show su-
perior performances n many machine learning tasks such
as training DNNs. More recently, (Nazari et al., 2022; Sun
et al., 2022; Chen et al., 2023) proposed some adaptive de-
centralized algorithms for stochastic optimization based on
the existing Adam algorithm (Kingma & Ba, 2014) or its
variants. However, these adaptive decentralized algorithms
still suffer high sample and communication complexities in
finding the stationary solution of Problem (1) (Please see
Table 1). Naturally, there still exists an open question:

Could we design adaptive decentralized algorithms
with lower sample and communication complexities
to solve Problems (1) and (2) ?

In the paper, to fill this gap, we affirmatively answer to this
question, and propose a class of faster adaptive decentral-
ized algorithms to solve Problems (1) and (2), respectively,
based on the momentum-based variance-reduced and gra-
dient tracking techniques. In particular, our methods use
a unified adaptive matrix to flexibly incorporate various
adaptive learning rates. Our main contributions are several
folds:

(1) We propose a class of efficient adaptive decentral-
ized optimization algorithms (i.e., AdaMDOS and
AdaMDOF) to solve Problems (1) and (2), respectively,
based on the momentum-based variance-reduced and
gradient tracking techniques simultaneously. More-
over, we provide a convergence analysis framework for
our methods.

(2) We prove that our AdaMDOS algorithm reaches the
near optimal sample complexity of O(¢~3) for finding
an e-stationary solution of Problem (1), which matches
the lower bound of smooth nonconvex stochastic opti-
mization (Arjevani et al., 2023).

(3) We prove that our AdaMDOF algorithm reaches the
near optimal sample complexity of O(+/ne~2) for find-
ing an e-stationary solution of Problem (2), which
matches the lower bound of smooth nonconvex finite-
sum optimization (Fang et al., 2018).

(4) We conduct some numerical experiments on training
nonconvex machine learning tasks to verify the effi-
ciency of our proposed algorithms.

Since our algorithms use a unified adaptive matrix includ-
ing various adaptive learning rates, our convergence anal-
ysis does not consider some specific cases such as sparse
stochastic gradients. Despite this, our adaptive algorithms
still obtain lower sample and communication complexities
compared to the existing adaptive decentralized algorithms.

2. Related Works

In this section, we overview some representative decentral-
ized optimization algorithms and adaptive gradient algo-
rithms, respectively.
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2.1. Decentralized Optimization

Decentralized optimization is an efficient framework to col-
laboratively solve distributed problems by multiple worker
nodes, where a worker node only needs to communicate
with its neighbors at each iteration. The traditional decen-
tralized optimization methods include some popular algo-
rithms such as Alternating Direction Method of Multipliers
(ADMM) (Boyd et al., 2011), Dual Averaging (Duchi et al.,
2011b). Subsequently, some efficient decentralized opti-
mization algorithms have been developed, e.g., Extra (Shi
et al., 2015), Next (Di Lorenzo & Scutari, 2016), Prox-
PDA (Hong et al., 2017). Meanwhile, (Lian et al., 2017)
proposed an efficient decentralized stochastic gradient de-
scent algorithm (i.e., D-PSGD), which shows that the de-
centralized SGD can outperform the parameter server-based
SGD algorithms relying on high communication cost. From
this, decentralized algorithms have begun to shine in ma-
chine learning such as training DNNs. Subsequently, (Tang
et al., 2018) proposed an accelerated D-PSGD (i.e., D?)
by using previous status. Meanwhile, (Xin et al., 2021a)
further proposed an efficient decentralized SGD algorithm
(i.e., GT-DSGD) by using gradient tracking technique (Xu
et al., 2015). By using the variance-reduced techniques,
some other accelerated decentralized SGD algorithms (Sun
et al., 2020; Pan et al., 2020; Cutkosky & Orabona, 2019;
Tran-Dinh et al., 2022) have been proposed, include D-
SPIDER-SFO (Pan et al., 2020) and GT-HSGD (Xin et al.,
2021a). Meanwhile, (Nazari et al., 2022) studied the decen-
tralized version of AMSGrad (Reddi et al., 2019) for online
optimization. Moreover, (Sun et al., 2022; Chen et al., 2023)
developed adaptive decentralized algorithms for stochastic
optimization by using local adaptive learning rates.

2.2. Adaptive Gradient Methods

Adaptive gradient methods (Duchi et al., 2011a; Kingma &
Ba, 2014; Loshchilov & Hutter, 2017) recently have been
successfully applied in machine learning tasks such as train-
ing DNNs. Adam (Kingma & Ba, 2014) is one of popular
adaptive gradient methods by using a coordinate-wise adap-
tive learning rate and momentum technique to accelerate
algorithm, which is the default optimization tool for train-
ing attention models (Zhang et al., 2020). Subsequently,
some variants of Adam (Reddi et al., 2019; Chen et al.,
2018; Guo et al., 2021) have been presented to obtain a
convergence guarantee under the nonconvex setting. Due
to using the coordinate-wise type of adaptive learning rates,
Adam frequently shows a bad generalization performance
in training DNNs. To improve the generalization perfor-
mances, recently some adaptive gradient methods such as
AdamW (Loshchilov & Hutter, 2017), AdaGrad (Li &
Orabona, 2019) and AdaBelief (Zhuang et al., 2020) have
been proposed. More recently, some accelerated adaptive
gradient methods (Cutkosky & Orabona, 2019; Huang et al.,
2021; Levy et al., 2021; Kavis et al., 2022) have been pro-

posed based on the variance-reduced techniques.

3. Preliminaries
3.1. Notations

[m] denotes the set {1,2,--- ,m}. || - || denotes the £ norm
for vectors and spectral norm for matrices. (x,y) denotes
the inner product of two vectors z and y. For vectors x and y,
2" (r > 0) denotes the element-wise power operation, x/y
denotes the element-wise division and max(z,y) denotes
the element-wise maximum. I; denotes a d-dimensional
identity matrix. a; = O(b;) denotes that a; < ¢b; for some
constant ¢ > 0. The notation O(-) hides logarithmic terms.
ones(d, 1) denotes an all-one d-dimensional vector.

3.2. Assumptions

In this subsection, we give some mild assumptions on the
Problems (1) and (2).

Assumption 3.1. (Smoothness) For any ¢ € [m], each
component loss function f%(z; &%) is L-smooth, such that
for all x1, 22 € R4

IVfi (21:€") = VI (22:€)] < Lllwr — 22l 3)

Clearly, based on Assumptions 3.1, we have
VEF(zs)|

1) —
% Z B [V fi(21;€%)] — Bei [V £ (2;69)))|

€)= Vi (x2:6)|| < Lzt — a2,

i.e., the global function F'(x) is L-smooth as well.

Assumption 3.2. (Sampling Oracle) Stochastic function
fi(x; %) has an unbiased stochastic gradient with bounded
variance for any i € [m], i.e.,

E[Vf'(2:¢")] = Vf'(2), E|Vf(2;€") ~

Assumption 3.3. (Lower Bounded) The objective function
F(z) is lower bounded, i.e., F* = inf, cpa F(z).

Assumption 3.4. (Network Protocol) The graph G =
(V, E) is connected and undirected, which can be repre-
sented by a mixing matrix W € R™*™: 1) W; ; > 0 if
W;.; € E'and W; ; = 0 otherwise; 2) W is doubly stochas-
ticsuchthatW:WT,Z W,J—landz_lwdz
1; 3) the eigenvalues of W sat1sfy A <0 < )\2 <A=1
and v = max(|Az|, |[Am]) < 1.

Viiz)|* < o

Assumption 3.5. In our algorithms, the local adaptive ma-
trices A% = ply = 0 forall i € [m], t > 1 for updating the
variables x, where p > 0 is an appropriate positive number.

Assumptions 3.1 and 3.2 are commonly used in stochas-
tic smooth nonconvex optimization (Sun et al., 2020; Pan
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Algorithm 1 Adaptive Momentum-Based Decentralized
Optimization (AdaMDOS) Algorithm for Stochastic Opti-
mization

Algorithm 2 Adaptive Momentum-Based Decentralized
Optimization (AdaMDOF) Algorithm for Finite-Sum Op-
timization

I: Input: T > 0, tuning parameters {~, 1, 5 }, initial
inputs z¢ € R? for all i € [m];

2: initialize: Set z{ = Z{ for i € [m], and draw one
sample & and then compute uf = V f*(zf; &) and
wh =35 en, Wijug forall i € [m].

3: fort =0to T — 1do

for:=1,--- ,m (in parallel) do

5: Generate the adaptive matrix A} €

One example of A by using update rule (a} = 0,
O0<o<1, p> 0.)

Compute aj = oaj_; + (1 — 0)(Vf'(z};€}))?,
Al = diag( \/7—1— pIdl ;

»

dxd.
R 9

6: j2€+1 = Zje/\/’i Wzﬂi V(A rwg;

T Tip =Xy + Tit(i’m xt)

8: Randomly draw a sample £t 11~ Dt

9: ut+1 = VJf* (Tt+17 5t+1) (1 — Ber1)(uy —
Vf ('Tt ft+1)) 4 4 .

10: Wiy =2 jen, Wi (Wi +uiyy —ul);

11:  end for

12: end for

13: Output: Chosen uniformly random from {x}, }i~,.

et al., 2020; Cutkosky & Orabona, 2019; Tran-Dinh et al.,
2022). Assumption 3.3 ensures the feasibility of Prob-
lems (1) and (2). Assumption 3.4 shows the protocol prop-
erties of network G = (V, E), which is very common in
the decentralized distributed optimization (Lian et al., 2017;
Xin et al., 2021a). Assumption 3.5 imposes that each lo-
cal adaptive matrix is positive definite, which is commonly
used in many adaptive gradient methods for non-distributed
optimization (Huang et al., 2021; Yun et al., 2021).

4. Adaptive Momentum-Based Decentralized
Algorithms

In this section, we propose a class of efficient adap-
tive momentum-based decentralized algorithms to solve
Problems (1) and (2), respectively, which build on the
momentum-based and gradient tracking techniques.

4.1. AdaMDOS Algorithm for Stochastic Optimization

In this subsection, we propose a faster adaptive momentum-
based decentralized (AdaMDOS) algorithm for the stochas-
tic Problem (1) over a network, which builds on the variance-
reduced momentum technique of STORM (Cutkosky &
Orabona, 2019; Tran-Dinh et al., 2022) and gradient track-
ing technique (Xu et al., 2015). In particular, our AdaM-
DOS algorithm also uses the momentum iteration and uni-

I: Input: T > 0, tuning parameters {~, 1, 5 }, initial
inputs z¢ € R? for all i € [m];

2: initialize: Set zf = | = 2}, 2{y = 259 = -+ =
2l o= 0and uj = wj = 0 forany i € [m].

3: fort =1to T do

4. fori=1,---,m (in parallel) do

5 Randomly draw a minibatch samples Z; with
I Z¢ | :1b; - .

: up = § 2per; (VSilah) = VHi(ziy) + (1 -
Be)ui_1 + By (% Zkez; (Vfii(77i7'1) - Z;;?,Afl) +
,1127 1 JL l)

E wi = djen: Wi (wt ol — u_1);

Generate the adaptive matrix A} € R?*9;
One example of A? by using update rule (af = 0,
0<o<1,p>0)

Compute  ai = oai_; + (1 —
9)(% Zkez% ka(l’t)) A = dlag(@*‘ pla);

9: Tie1 = 2jen, Wi ol —v(AD " wi;

10: mt+1 = xt + Ut(ffm xt)

11: zkt—ka(xt) for k € 7} andzkt—zkt , for
k¢ T

12:  end for

13: end for

14: Output: Chosen uniformly random from {z}-, }7* .

fied adaptive learning rate to update variable. Algorithm
1 provides the algorithmic framework of our AdaMDOS
algorithm.

At the line 5 of Algorithm 1, we generate an adap-
tive matrix based on the historical stochastic gradients
{Vfi(z};€))}, <)<, And we give an Adam-like adaptive
learning rate, defined as

aj = Qai’ L (L= o) (Vi €)?
Z oV €))7,

AZ = diag( \/7—|— pla), 4)

clearly, we have A; > pl4, which satisfies Assumption 3.5.
Besides one example (4), we can also generate many adap-
tive matrices satisfying the above Assumption 3.5. e.g., the
Barzilai-Borwein-like adaptive matrix, defined as

(2} — 2y, VI (25 §) — VI (2115 ))]

al = - - +p
¢ |2} — ai_y 2 ’

Al =ally = ply. (5)
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At the line 6 of Algorithm 1, each client updates the local
variable ' based on adaptive matrix A} and momentum-
based gradient estimator wy:

> Wijal — (A} w, ©6)
JEN;

~i
Tyy1 =

where the constant v > 0. Here V; = {j € V | (,5) €
E,j = i} denotes the neighborhood of the i-th client. Here
each client communicates with its neighbors to update the
variable z. Then we further use the momentum iteration to
update the variable x at the line 7 of Algorithm 1:

wpy = ap+ (T —x)), @)
where 1; € (0,1).

At lines 8-9 of Algorithm 1, each client uses the variance-
reduced momentum-based technique (Tran-Dinh et al.,
2022; Cutkosky & Orabona, 2019) to update the stochastic
gradients by using local data &/ ;: for i € [m)]

= Vfi($i+1§§§+1)
+ (1= Begr)(uf = V(25 6041), 8

where B;11 € (0,1). At the line 10 of our Algorithm 1, then
each client communicates with its neighbors to compute
gradient estimators wj_, |, defined as

Z W” wt +ut+1 ug), &)
JjEN;

i
Ugyy

wt+1

which uses gradient tracking technique (Xu et al., 2015;
Di Lorenzo & Scutari, 2016) to reduce the consensus error.
Thus, the local stochastic gradient estimator wj_,; can track
the directions of global gradients.

4.2. AdaMDQOF Algorithm for Finite-Sum Optimization

In this subsection, we propose a faster adaptive momentum-
based decentralized (AdaMDOF) algorithm for distributed
finite-sum problem (2) over a network, which builds on the
variance-reduced momentum technique of ZeroSARAH (Li
et al., 2021) and gradient tracking technique. Algorithm
2 provides the algorithmic framework of our AdaMDOF
algorithm.

Algorithm 2 is fundamentally similar to Algorithm 1, dif-
fering primarily in its application of the variance-reduced
momentum technique from ZeroSARAH (Li et al., 2021)
to update the stochastic gradients by using local data: for
i€ m]

ui=2 3 (Vi)

keI

(5 S0 (VA — ) +

keT}

- Vf;i(fci_ﬁ) + (1= Bouj_,y

n
1 1
n G
Jj=1

where 8;41 € (0,1). Here the ZeroSARAH technique can
be seen as the combination of SARAH (Nguyen et al., 2017)
and SAGA (Defazio et al., 2014) techniques.

5. Convergence Analysis

In this section, under some mild assumptions, we pro-
vide the convergence properties of our AdaMDOS and
AdaMDQOF algorithms for Problems (1) and (2), respec-
tively. All related proofs are provided in the following
Appendix. For notational simplicity, let z, = % S
forallt > 1.

5.1. Convergence Properties of our AdaMDOS
Algorithm

For AdaMDOS algorithm, we define a useful Lyapunov
function, for any ¢t > 1

0 = E[F@) + (ot = s - VTP

+ Xt 1*Z|Iut 1= Vi)

i=1

where g} = (Ai)’lw; V(@) = 5 S V(). xe >
u ” and 1, = 7 for all

Theorem 5.1. Suppose the sequences {{m;}gl}il be
generated from Algorithm 1.  Under the above As-
sumptions 3.1-3.5, and let iy = 7, 0 < B < 1

. 1-v%) 3p(1-v?)8
forallt > 0, v < mln(p(489:), p(ssL'jQ)t), n <

- pVI=v2 Vr(1=v)6; 9
T (4L'y\/3(1+u2)\/ﬁt’ QL\/7(3+D2)\/E) with Hy = ﬂ +
%for allt > 1, we have
T

1 —

7 2 _EIVF(z (10)
t=1
11 &

< 52— D EIIVF@)] + Lz - 2]

T m
3(6\/5+1i‘7 L) TZ lZEnAZn?,

_ F(z)-F~ 4° 9 9 2
where G = ; + (pQ(f*V) T 2025, W)U :
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Remark 5.2. Based on Assumption 3.1, if using
Barzilai-Borwein-like adaptive matrix (5), we have
T m i
VESL LS B4 <L+p.
Let 8; = Tg/g for all t > 1, we have
H 7i+£70(T2/3) (11)
P2 T (1-v)2 ’
and then we can obtain /4 2/ Hy3? = O(t5). We

setf; =60 > % for all ¢ > 1. Meanwhile, we can set
p=0(1),y = O(1) and = O(7775). Then we obtain
G = O(T"?) and

1 T
= E|VF()
t=1

T m
1 o 11 )

Since \/% S LS EAN2 = O(1), let

g

1
fZJEIIVF <Oz +mp) <6 (13)

we have T' = O(e~3). Since our AdaMDOS algorithm only
use one sample at each iteration, it obtains a near-optimal
sample complexity of 1 -7 = O(e~3) for finding an e-
stationary point of Problem (1), which matches the lower

bound of smooth nonconvex stochastic optimization (Arje-
vani et al., 2023).

Assumption 5.3. (Lipschitz Continuity) For any ¢ € [m],
each component loss function f(x; &%) is M-Lipschitz con-
tinuity, such that for all z € R?

IV fi(z; €| < M. (14)

Assumption 5.3 is commonly used in the adaptive gradient
algorithms (Reddi et al., 2019; Chen et al., 2018; Guo et al.,
2021; Sun et al., 2022; Chen et al., 2023).

Remark 5.4. Based on Assumption 5.3, if using Adam-
like adaptive matrix given in Algorithm 1, we have

T i
VEST LT E|AR < M 4.

Based on the above Theorem 5.1, our AdaMDOS algorithm
still obtains a near-optimal sample (gradient) complexity of
O(e~?) for finding an e-stationary point of Problem (1).

5.2. Convergence Properties of our AdaMDOF
Algorithm

For AdaMDOF algorithm, we first define a useful Lyapunov
function for any ¢t > 1

¥ = B[F(a) + (1 = P s = TP

m

1 s i pyn 1
+Xt—IEZHut—1_vf( ||2+7*Z|| gi_1lI?

i=1

+ g 1*2 ZHka wh_1) = 2l
i=1

19 L
+ (61— —1 }]ml—mm2
+whlfim»—§jwﬂlprmﬂ
4p m — t— 3

where a; > 0, x¢ > 0, Ay > QQﬂ’ o

and n; = nforallt > 0.

29777L 2y > 3yn
= 4p

Theorem 5.5. Suppose the sequences {{xi}" 1} ., be
generated from Algorithm 2.  Under the above As-
sumptions 3.1-3.5, and let ny = n, 0 < [ < 1

forallt > 0, v < min(ﬂ(is_e,f),w(l—u;)az)’ n <

pVI=v2 Vr(1—v2)0,
n (2Lry,\/6(1+1j2 VH, 2L\/7(3+V2)\/H71) with Hy = bBt +

b( Y+ 4n ,6,5 (E + (19:?)2) + (1{”3)2 forallt >0, we

have

—ZEHVF

1 — ,
EZ IVE (@)l + L2 — ]

2

15)

IN

S M

'ﬂ \

m

T
Z — > E[A2,

IN

188212 3,2
2O T e +

_ F(f}l)fF* 1850
where G = 7“”, + ( +

2,)3,60 — %)% ol LS et IV fE(xh)||? is independent
onT, bandn.

Remark 5.6. Based on Assumption 3.1,
Barzilai-Borwein-like adaptive matrix (5),

\/% S, S E|AY2 < L+ p. Based on Assump-
tion 5.3, we have \/% S LS E|AL2 < M +p.

if using
we have

Let 0y = 0 > 20 p = /nand f, = L forall t > 1,
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we have
9 612 4n? 32 9?2 3v2

Hy=— (=

T Ay R Vo s - A s

4512
<45 16
+ e (16)
1 1
Then we have T > e and
a-v)
i ( pV1—v? Vol —v2)0 )
2Lv+/6(1 4+ v?)+/H, "2L+\/~ (3+ v?)VH,

> i ( pV1—v? V(1 —v?)0 ) 4512

min

- 2Ly \/6(1 + 1) 2L\/v(3 + 12) (1-v)?
Thus we can let n =

. p,/1,,}2 \/ (1 v 4512
mln(QL'y\/ﬁ(lJruQ 2L\/'y(3+1/2)) 45+ (1-v)? and

2

T min(p(zsg ),5”(518];; ) Note that we
set By = % for all ¢+ > 1, while we can set
Bo € (0,1), which is independent on T, b and n.
Let p = ( ), m = O(1) and v o= O( ), we have

_ F(’l) 184 1883y
G;_ xpvmn +( =+ (0)2+ (1 V)2+2p260
202 ) Dict nZk 1 ||ka(33o )|[> = O(1) is indepen-

dent on T, b and n. Since \/T thl Ly EJAY? =
O(1), set

ZEHVF ||<O(ﬁ>_e,

we have T = O(e?2). Since our AdaMDOF algorithm
requires b samples, we can obtain a near-optimal sample
complexity of 7' - b = O(/ne~?), which matches the lower
bound of smooth nonconvex finite-sum optimization (Fang
et al., 2018).

wsa wsa
100

stationary gap

B 2 2 5 2 2
epoch epoch

Figure 1: Stationary gap vs epoch at w8a dataset under the
ring network (Left) and the 3-regular network (Right).

6. Numerical Experiments

In this section, we apply some numerical experiments to
demonstrate efficiency of our AdaMDOS and AdaMDOF

stationary gap
stationary gap

P = 0 %
epoch epoch

Figure 2: Stationary gap vs epoch at covertype dataset
under the ring network (Left) and the 3-regular network
(Right).

" algorithms. Since the AdaRWGD (Sun et al., 2022) relies

on the random walk instead of parallel framework used in
other algorithms, our adaptive decentralized algorithms only
compare to the existing adaptive decentralized methods (i.e,
DADAM (Nazari et al., 2022), DAMSGrad (Chen et al.,
2023), DAdaGrad (Chen et al., 2023)) given in Tabel 1. In
decentralized algorithms, we consider two classical undi-
rected networks that connect all clients, i.e., the ring and
3-regular expander networks (Hoory et al., 2006), described
in the following Appendix B.

6.1. Training Logistic Model

In this subsection, we consider learning a non-convex logis-
tic model (Allen-Zhu & Hazan, 2016) for binary classifica-
tion over a decentralized network of m nodes with n data
samples at each node:

féi@%z( Zf 39 +/\Hxll)

=1

7)

where A > 0 and f'(z;&;) = W is a noncon-

vex sigmoid loss function. Here &¢ = (a%, %) denotes the
k-th sample at i-th node, where a}c € R4 denotes the fea-
tures and I} € {—1,1} is a label. In the experiment, we
set the regularization parameter A\ = 107°, and use the
same initial solution 7o = z = 0.01 - ones(d, 1) for all
i € [m] for all algorithms. We use public w8a and cover-
type datasets'. The w8a dataset includes 60,000 training
examples, where we partitioned into 5 clients each con-
taining 12,000 training examples. The covertype dataset
includes 100,000 training examples, where we partitioned
into 5 clients each containing 20,000 training examples.

In the experiment, we characterize performance of the algo-
rithms in comparison in terms of the decrease of stationary
gap versus epochs, where the stationary gap is defined as
[VE(z,)|+L 3" || — ||, where 2} is the estimate of
the stationary solution at the i-thnode and z, = = 3" | i,
and each epoch represents n component gradient computa-

'available at https://www.openml.org/
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Figure 3: Training CNN on MNIST dataset: training loss vs epoch (Left), training accuracy (%) vs epoch (Middle), and test

accuracy (%) vs epoch (Right) under the ring network.
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Figure 4: Training CNN on MNIST dataset: training loss vs epoch (Left), training accuracy (%) vs epoch (Middle), and test

accuracy (%) vs epoch (Right) under the 3-regular network.

tions at each node. In the experiment, for fair comparison,
we use the batch size b = 10 in all algorithms, and set
B1 = P2 = 0.9 in the DADAM (Nazari et al., 2022) and
DAMSGrad (Chen et al., 2023), and set 81 = 0.9 in the
DAdaGrad (Chen et al., 2023), and set o = 8; = n; = 0.9
for all ¢ > 1 in our algorithms.

Figures 1 and 2 show that our AdaMDOS method outper-
forms all comparisons, while due to requiring large batch-
size, our AdaMDOF is comparable with the existing adap-
tive methods.

6.2. Training Convolutional Neural Network

In this subsection, we consider training a Convolutional
Neural Network (CNN) for MNIST classification over a
decentralized network. Here we use the same CNN archi-
tecture as in (McMahan et al., 2017). This CNN includes
two 5 X 5 convolution layers (the first with 32 channels, the
second with 64, each followed with 2 x 2 max pooling), a
fully connected layer with 512 units and ReLu activation,
and a final softmax output layer (1,663,370 total parame-
ters). The MNIST dataset (LeCun et al., 2010) consists of 10
classes of 28 x 28 grayscale images, which includes 60,000
training examples and 10,000 testing examples, which we

partitioned into 5 clients each containing 12000 training and
2000 testing examples.

In the experiment, we characterize performance of the al-
gorithms in comparison in terms of the decrease of training
loss versus epochs, where the loss denotes the objective
function value in training CNN. Meanwhile, we also use
the training accuracy and test accuracy, where the accuracy
denotes the classification accuracy. For fair comparison,
we use the batch size b = 10 in all algorithms, and set
B1 = B2 = 0.9 in the DADAM (Nazari et al., 2022) and
DAMSGrad (Chen et al., 2023), and set 81 = 0.9 in the
DAdaGrad (Chen et al., 2023), and set o = By = n; = 0.9
for all £ > 1 in our algorithms. Figures 3 and 4 also show
that our AdaMDOS method outperforms all comparisons,
while due to requiring large batch size, our AdaMDOF is
comparable with the existing adaptive methods.

6.3. Training Residual Network

In this subsection, we consider training a residual neural
network for Tiny-ImageNet classification over a decentral-
ized network. Here we use the ResNet-18 as in (He et al.,
2016), which includes a 3 x 3 convolution layer followed
with batch-norm and ReL U activation, eight residual blocks
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(start with 64 channels, channel number doubled at third,
fifth and seventh block, end with 512 channels), a 4 X 4 max
pooling, a fully connected layer with 512 units and ReLU
activation, and a final softmax output layer. Each residual
block contains a shortcut and two 3 x 3 convolution layers,
the first followed with batch-norm and ReLLU activation, the
second followed with batch-norm.

The Tiny-ImageNet dataset (Le & Yang, 2015) consists of
200 classes of 64 x 64 RGB images, which includes 100,000
training examples and 10,000 testing examples, respectively.
Here we partitioned into 5 clients, where each client contains
20,000 training and 2000 testing examples, respectively.

For fair comparison, we use the batch size b = 10 in all
algorithms, and set 51 = (B2 = 0.9 in the DADAM and
DAMSGrad, and set 5; = 0.9 in the DAdaGrad, and set
0= 0Bt =mn =09 forall ¢ > 1 in our algorithms. In this
experiment, we add two basic non-adaptive decentralized
algorithms, i.e., D-PSGD (Lian et al., 2017) and D? (Tang
et al., 2018), as the comparisons. From Figure 5, we find
that although DADAM and D? methods outperform our
AdaMDOS method at the beginning of the iteration, while
our AdaMDOS then outperforms all comparisons.

test acc

i G s 3 3 s
epoch epoch

Figure 5: Training ResNet-18 on Tiny-ImageNet dataset:
test accuracy (%) vs epoch under the ring network (Left)
and the 3-regular network (Right).

7. Conclusion

In the paper, we studied the distributed nonconvex stochas-
tic and finite-sum optimization problems over a network.
Moreover, we proposed a faster adaptive momentum-based
decentralized optimization algorithm (i.e., AdaMDOS) to
solve the stochastic problems, which reaches a near-optimal
sample complexity of 0(6*3) for nonconvex stochastic
optimization. Meanwhile, we proposed a faster adaptive
momentum-based decentralized optimization algorithm (i.e.,
AdaMDOF) to solve the finite-sum problems, which obtains
a near-optimal sample complexity of O(y/ne~2) for non-
convex finite-sum optimization. In particular, our methods
use a unified adaptive matrix including various types of
adaptive learning rate.
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A. Appendix

In this section, we provide the detailed convergence analysis of our algorithms. We first give some notations and review
some useful lemmas.

For the stochastic problem (1). Let By = Ee, ¢, , .. ¢, with & € {}72. Let, = - >27" af, wy = = >0 w},
Vfii(xl) =E[Vfi(zy; &) foralli € [m], t > 1 and

VIt = Y VA ), V@) = 3 Vi) 18)
=1

=1

For the finite-sum problem (2). Let E, = Ez, 7, , .. 7, with T, € {Z}}!"  Letz, = L Y7 2l w, = L 37 wi,
Vfiz}) =13 Vfi(a}) foralli € [m] and

s _ Iy~ 1y i LS i - L S i
Vi) = —> (=D Vfila)) = — > VFi(ai), VE@) = — Vfi(@). (19)
=1 k=1 i=1 i=1
Lemma A.1. Given m vectors {u'}1,, the following inequalities satisfy: ||u’ + u’|[* < (14 ¢)|[u]|> + (1 + 2)|[u/|?

forany ¢ > 0, and || - L Zm ut||? < 71121 1 [|ut ]2

Lemma A.2. Given a finite sequence {u'}™, and t = L 3" | u, the following inequality satisfies Y, | [[u’ — ul|* <
ity ™.

Lemma A.3. The sequences {uizl, wizl}ﬁl be generated from our Algorithm 1 or 2, we have for all t > 1,
1 m
il Ry il E 20
Uy = Uy = Wy m 2 (20)

Proof. We proceed by induction. From our Algorithm 1, since w¢ = > jeni Wij uj1 we have

wlzjnz Zzwﬂul S Wy _%Z . @1)

=1 i=1jeN; j=1 =1

where the second last equality is due to Z?;l W;.; = 1 from Assumption 3.4.
From the line 10 of Algorithm 1, we have for all ¢t > 1

3=
.MS

wt+1 = Z Z WZ] wt +ut+1 ui)
i=1 i=1jeN;
1 & . ) . 1 & . . .
= % Z (w{ + ’U;gle — ’U,g) ZWi’j = E Z (’LUg + Ungl — Ug) = ’lZ)t + ’lit+1 — ﬂt = ﬂt+1, (22)
j=1 i=1 j=1

where the second last equality is due to A; = {j € V | (4,j) € E,j =i} and > ;" | W; ; = 1, and the last equality holds
by the inductive hypothesis, i.e., w; = Uy.

O
Lemma A.4. Suppose the sequence {a:f;>1, ii>1} be generated from Algorithm 1 or 2. Let 0 < v < 7 for allt > 0,
then we have a a
-~ -~ 2vm _ Ve pvm
F(Zy11) < F(z) + IVF(z )—ut||2+**2||wt w||* ~ ZHgtHz (23)

where gi = (A)~1wi for any i € [m).

12
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Proof. Let g; = (A})~'wj, we have &} = >° .\ Wi ja] — (AL ~lw!. Then we have

;;m:%Z@; = ZZW”ast — ZA’

i=1 jeN;

Z Z i th—mt YGts 24)
JEN; i=1

i=1

S

where the last equality is due to Y-, W; ; = 1. Since A} = pI, for all i € [m], we have

i iy @y g _
PHQt||2 > <Atgtvgt> (wy, g;) =(wy — Wy, g;) + (U, gy)
LT P =i
< Tp”wt _wt||2+§”9t”2+<ut79t>7 (25)

where the equality (i) is due to u; = w;. So we can obtain
05 o wf — @l = Slgil? + {a, ) 6)
— 2p 2

Then we have for any ¢ € [m]

AL TR - PW?t —
0< %Hwt — | - lg1I? + ~yne (@, g7)- 27
Then taking an average over ¢ from 1 to m yields that
e _ fwm LS~y
0< g mZH wl? = S Sl v D (o)
i=1
v LSy e PV in2 _
o m ; [lwg — w¢|* — 2 m ; lge I + yne (e, Ge)- (28)

According to Assumption 3.1, i.e., the function F'(x) is L-smooth, we have
L
F(Ze11) < F(2) + (VE(@2), Te41 — ) + S l1Z041 — 4|

= (@) + e (VE (@), Fer = 20) + =50 [Frr — 20l

e - - = - Lyng o
= F(z¢) + n(VF(Z;) — Uy + Uy, —vge) + l1g¢ |l

2y _ PV _ L’anQ _
< F(z) + tIIVF( t) — UtH2+ftII9tII2*vm<uhgt>+ L1|gel?

_ 2"y _ y Lv
< F(z;) + ”tnvm) al® + ’”” antn e, ) + 2L anth (29)

where the second equality is due to Z;11 = Z; + nt(a:ft+1 — Ty).

By summing the above inequalities (28) with (29), we can obtain

_ _ 2 _ 3 L
F@i) < F@) + ZHVP(@) -l + Fo ZH AF—(%—ﬂ—ZH gill?
2
< F(@) + 21V - wlf+ G ZH a2 Zn il (30)

where the last inequality is due to v < L - forallz > 1.
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A.1. Convergence Analysis of AdaMDOS Algorithm

In this subsection, we provide the convergence analysis of our AdaMDOS Algorithm for stochastic optimization.

Lemma A.5. Under the above assumptions, and assume the stochastic gradient estimators {ui>1 }111 be generated from
Algorithm 1, we have

Ellujpy = V(@) |” < (1= Bep)Ellug — Vi (2o)|* + 267107 + 2L 0BTy, — 2ilf*, Vi € [m] (3D

~ -, 282,07 2L2 -
Ellter1 — Vf(we)? < (1= Biy)Ella — V()| + t;; ntZEHIfH [N (32)

where W = % 2111 Vfi(xi).

Proof. Since uj,, = Vfi(wi &) + (1 — Ben)(uf — Vfi(al € ,,)) forany i € [m], we have

m

Up41 = ooy Z (Vfl(x;+1§52+1) + (1 - Bt—kl)(ui - Vfl(wi;fiﬂ)))
i=1
= Vf(@ii1;8001) + (1 = Beg1) (@ — Vf (45 8041))- (33)
Then we have
Elttr1 — Vf(zi41)]?
1 o, . o
= EHE Z (U%Jrl - Vfl(xé+1)) H2
i=1
1 & i i i i/ 2
=E|— > (Vi (@hi€in) + (= B) (g = V' (@5:6140)) = V(i) |
i=1
1 & o ) o o o
= EHE Z (sz(l’;ﬂ;fz—u) - sz(zft-s-l) —(1- 5t+1)(vfz($fs§ 524-1) - Vfl(xi)))
=1
1 m
+ (1= Biy1) %; — VY xt)HQ

=— S BV Al 13 €h) — VI ) — (1 Bend) (VF (el 6,0) - VD) P
=1

+ (1 = Br)?Ella, — V()|

< % ZEHVf xt+1,§t+1) Vfi(xi_i_l) - Vfi(xi;fi;l) + Vfl(xi))Hz
+ 20 S B el ai i) = VP b I + (1= BBl — VR
i=1
( ﬂt+1

\ /\

+ (1= Beg1)*Eljay — V f (1) ||

i(od. e 267,102
ZEHVf xt+17§t+1) Vf (xt;§t+1)||2+%

o 26707 1*6 S
< (= B °Ellay = V()P + =2+ o) ZEH% 7

- 282, 0% 20?2 & , ;
_ 2 i+1 Un ~i 12
< (1= Ber)Efay — Vf () |I” + ] ZEH%H — x|,

where the forth equality holds by the following fact: for any i € [m)],

Eggﬂ [Vfi($i+1§§§+1)] = Vfi(xi+1), ngﬂ [Vfi(xi; fti+1))] = Vfi(xi),
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and forany i # j € [m], &/, and ¢ 1 are independent; the second inequality holds by the inequality E||¢ —E[¢]||* < E[/¢|*
and Assumption 3.4; the second last inequality is due to Assumption 3.2; the last inequality holds by 0 < ;41 < 1 and
Tipy = xp +ne(Thgy — @)

Similarly, we have

Elupy = VI (@)l? < (1= Ber)Elluy = V(@) |* + 26¢10% + 2L°07El|Z1 4y — 2*, Vi € [m]. - (34)

O

Lemma A.6. Given the sequence {xizp w§21 }:11 be generated from Algorithm 1. We have

—v? Tit 207 N~y i -
Z b — el < (10— L2 Z ok =2+ 20 3ok - 3l
m
» ) — 1—|—1/
Z | — 2 ? < B+07)> =i — 2] + 2 Z lgil?
i i=1

Z”wt-H — W1 < VZ”wt w* "‘7 45t+12||“t VJM(Q%)H2

=1

+ 467 ma® + 8n; LZZH%H %)

Proof. For notational simplicity, let z; = [(z})7,--- , (2]")"]" € R™, 2, = [(&)T,---, (@™)T]" € R™ and g, =

[(g)", -+ (g/)T]" € R™ for all t > 1. By using Assumption 3.4, since W1 = 1and W = W ® I, we have
Wa® a:t) = 1® ;. Meanwhile, we have 17 (z; — 1 ® Z) = 0 and W1 = 1. Thus, we have

Wz, =103 = Wz — 10 7)|% < 2|z, — 10 3|2, (35)

where the above inequality holds by x; — 1 ® Z; is orthogonal to 1 that is the eigenvector corresponding to the largest
eigenvalue of 1W, and v denotes the second largest eigenvalue of V.

Since 7y, 1 = 3 e, Wi ol — (A twi = dien: Wi jxl — ygi forall i € [m], we have #111 = Wax; — vg; and
$t+1 =Tt — ’}/gt Since Ti41 = Tt + nt(xt—i-l — .Ift) and th_»,_l =T+ nt(l‘t+1 — l‘t) we have

Z 7t 1 = e = [loe — 1@ ftﬂHz (36)

= ||t + 0e(Trgr — 24) = 1@ (@ + 0e(Teg1 — Tr)) ||2

1 - =
<@ +a)( =m)llze 1@ &]° + 1+ )nllEe — 10 Fepll”

—~
2

7

Z(1—n)llze — 1@ Z|* + | Zesr — 1© Ty |2
= (1= no)llze — 1@ + ml|Way — ygr —1® (z, — ’Ygt)HQ

- 1
<A =n)llwe =1z + (1 + ag)m||[Way — 1@ 2] + (1 + —)mzllgt —1® g

(é1) B 1412 B 1+ v?)
20— e - 1@z + S 2)”t\|xt—1®:ct||2+i””1{ loc— 18 g0l
@ (- 2
su—i( )y~ 10 32+ 22 g 10
— 2 77t 2Tlt’Y
—q- 4 ant—xt\\? Zugt al?, G7)

15
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7,

where the above equality (7) is due to a; = 7, and the second inequality (i) holds by a2 = % and |[Waz; —10%|* <

T
v2||zs — 1 ® Z;||?, and the above inequality (77) is due to 0 < v < 1. Meanwhile, we have

Dy = 2l = [T — L@ 2
i=1
= Wzt — vgr — 1@ 2>
_ 1
< (L +ag)?fley —1@@* + (1 + *)W2H9t\|2
@) 1+V 1—|—y
Zth_xt”Q 2722\\%”2
where the last equality (¢) holds by ay = Zz Then we have

m
Do lF o — @l = T —
i=1

= ||i't+1 *1®ft+1®g_jf*x1’”2
<ﬂﬁui—1®fﬂz+ﬂur—1®ﬁw

+V
(3+v%) lewt Z||” + 2ZH9 2.

Let w; = [(wi), (i), (i) we = [(ud) ™, (u)T, - (ui)T]" and @y = 5 577 ) wj and iy =

Then we have for any ¢t > 1,
Wi1 = W(wt + Ut4+1 — Ut).

According to the above proof of Lemma A.3, we have w4 = wy + @1 — u; for all £ > 1. Thus we have

m

Z |wiyy — @epr1]|? = [Jwigr — 1@ Wepa |
i=1

= HVT/('wt +’U/t+1 — ut) -1 ® ('lDt +ﬂt+1 - ﬂt)||2

(38)

39)

% Z:il ui.

~ 1 ~
S (1 + C)HW’LUt -1 X ’LDt”Q + (1 + E)HW(UH_l — Ut) -1 X (ﬂt+1 — ’L_l,t) ||2

1
<1+ |lw —1@ @+ (1 + E)V2||Ut+1 — = 1® (Upr — ) ”2

1
< (1w = 1@ @l + (14 )2 fJurn = w’,

where the last inequality holds by Lemma A.2.

16
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Since uf = Vi (x} 136 ,1) + (1 — Begr)(uf — Vfi(2};&,,)) forany i € [m] and t > 1, we have

Hutﬂ _UtH ZHWH Ut||2

||Vf (xt+17£t+1) 5t+1ui -(1- 5t+1)vfi(xi§§f+1)”2

I
M3:

@
I
-

1B+ (Vf (@ y15€h1) = VI (@i 10)) + B (VF (41) = V(@) + Bera (Vf (21) — up)

M

1

+ (1 — 5t+1)(vfi($i+1§§§+1> - Vfi(l"i@éﬂ))w
=487 Y IV (@i &) = V@) P + 482 D IV (i) = VDI

3

i=1 i=1
+4B70 Y IV @) — ufl® + 40 = Bip1)? DIV (@13 ) — V(@ &) 1P
i=1 i=1
< 4/5t2+1 Z Hui - Vfl(xi)Hz + 45t2+1m02 + 45t2+1L2 Z ||3fi+1 - %”2
i=1 i=1

4(1 — Bt—&-l Z ||~Tt+1 thZ

< 4ﬁ1:2+1 Z luy — V£ (x)||* + 4Bt+1m0 + 8} L? Z th+1 1%, (41)

i=1

where the last inequality holds by 0 < 8; < 1 and z,, = x| + n, (%}, — x}).

Plugging the above inequalities (41) into (40), we have
m _ 1 2
Z Jwiyy — e ||? < (14 )P |wy — 1@ @] + (1 + E)V2||ut+1 - utH
1 G o
< (U lwy =@ |* + (1+ ) (467, Y llug = V()| + 467, mo”

i=1

+ 87 L? Z ||xt+1 xt” (42)
Letc = % — 1, we have
Z Hwt+1 wf+1H < VZ ”wt wt” JF 4Bt+1 Z ||Uf vfl(xi)”z
+ 467, ymo” + 8n; L? Z %541 — i]1?) (43)
O

Theorem A.7. (Restatement of Theorem 5.1) Suppose the sequences {{x%}ﬁl}le be generated from Algorithm 1.

. ) _ (p(1=v®) 3p(1—v*)6,
Under the above Assumptions 3.1-3.5, and let n; = n, 0 < By < 1 forallt > 0, v < mln( 180, 58L7 )

17
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Pm p(lfyz)et ) Wlth Ht

7 < min (4L7\/3(1+u2)\/H7t7 2L/ (3+v2)VH;

26t + %for all t > 1, we have

IN
H\

T T m

1 _ 1

TZ]EIIVF(%)II ZEZ (IVF ()|l + Lz — ]
t=1 t=1 i=1

6vVG 120 | 1 <& 11 & ,
< (VT \ T M0\ 7 2 o B

t=1 =1

_ F(z1)-F~ 4° 9 \,2
where G = YN + (P 2(1-v) + 2,0260 292)0 ’

Proof. Without loss of generality, let n = n; = --- = np. According to Lemma A.4, we have

_ _ 2777 _ 1 _ pyn 1
F(Zt41) < F(7) + IVF(z )—utH2+**lewt t||2—7*2|| gill*.

According to the Lemma A.5, we have

2 | 2 L2 .
Ella; = Vf(zo)|* < (1= B)E[ae-1 = Vf(ze-1)lI* + ﬁt 77 Z]EH — 4%

and

[ 1 S % 7 1 = ~1 7
fZEnut V@I < (1= B)— S Elluisy — VF (wen)|P + 2820 + 200 — 3 B — iy |
i:l =1

According to Lemma A.6, we have

(44)

(45)

(46)

(47)

1 i 2 1« i - 2 W2 1 2. 20 ~d i 2 2 i i 2
S Bl - wl? v S wjy = we P+ ST (2LBPE — P + BV i) - i
i=1 i=1

i=1

+ Bfmaz).

Meanwhile, we also have

277’7
*lexﬁxt\\ <(1- lext = TP+ ZHgf L= Gl

m

<-4z lext LB+ — > (lgioal + g1 1)

7_1

(1-1?) 4777
§(1— ZHUCt 1— T 1||2 ZH Gi— 1||2

and
1 . _, . 1+y
EZII&?@-»@AII2 B+ lewt L= TP+ ant 2.
=1

18
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Next considering the term ||, — VF(Z;)|?, we have

[ — VF(2)|1? = ||t — V() + Vf(xe) — VF(z,)|?
<20ty — V fze)|* + 2V f(ze) — VF ()|

< ot~ VRGP + 20 3 Vi) ——ZW P

=1
e 2PN
< 2, - V@I + == 3 ot — @l

i=1

where the last inequality is due to Assumption 3.1. Then we can obtain
- TE2 L e P e
—llae = VF@)ll” < =5 llue = VE(@)]| +EZH%—%H :
i=1

Since u; = w; for all ¢t > 1, we have

1 m ; ; 1 m ; ~ ~ ~ B i
— 3wk~ VE@)IP = =3 [lwf — @+ 5 — VE(@) + VF (@) - V)|
;=1

i=1

I, . _ . 1\ - '
<33 (i — @l + 3@ — VE@)IP 43— " [VF(@) - VF())?
i—1 =1
I &K,
= 352 k= w|? + 3l — VF(@)|? + 322~ Z I} — 2l

Then we have

—lla: = V(@ )H2<—72Hwt VEF(zy)|I” + lewt @ +7Z”'rt_'rt”

=1

We define a useful Lyapunov function (i.e., potential function), for any ¢t > 1

9vn - 1 & ) o
2 = B [F(0) + (e = 5 Dllws = VI +xea 3 by = V7 o)

=1

1977]L2 “
+ (011 — ZH% = Epa)? (ﬁt—l—* Z”wt | — W |?

pyn 1 i
+ o m ; llgt—1 ||2]

19
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2
where x;_1 > 0, \j_1 > 9%7, Op_1 > % and U1 > Z—Z for all t > 1. Then we have

Qi1 =B 1 [F(Zr1) + (A — 7)” =V f(w)||” + Xt* Z Jup — V()12
1=1
29777L 3 I~ Pl
+ (0, — Z||$t—$tH2 + (% 1p )mZ\|wt—wt||2+7EZ||gtH2]
=1 i

@ o _ pvn 1 ¢ 977713 1
SEep [F(ft) - Zp””t — VF(@,)|* - =5 — Z lgell? + Z 2y = 24> + Aell@e — V()12

1 ¢ i i 29'777L
X 2o = VI + 6 ant—xtu + (0 - ant @ 2]
(@9 1 5 pnl o nL? 1 2
< Eo |[Fa —@—Zn 2l ———ZH e ZH Pl
_ 0 2\ BP0 L2 L 7> )
M1 — _ 7V _ 2 t ot 2
+ M1 = Bl — V)| + = Zn 2|
+x¢(1 = Bt) li [ug—1 = V(1) |* + 2xe870° + 2x:L° Q*ZH — x|
~ .

) 1 4777
o0 U= EZII% L E | Zn gl

47%” 1 i i i i
i Sy - w P + > (223 — iy + BV £ i) — i
i=1 =1
+ gima?) . (54)

where the inequality (i) is due to the above inequalities (45) and (51); and the inequality (ii) holds by the above inequalities
(46), (47), (49) and (52).
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Then we have

1 2 mn 1 o L1
Qi1 <E [F B A - -
t+1 t+1 12meH )| ZH gl 120 m ZH% z¢|)?
_ S 2 479tﬂt - i 2
+ M (1= B)lle—1 — V(@) + (e — xeBe + Z — Vi)l
2 2 479t” - Qo2 - ) - i - 2
2L (Nt Xt Zn R R R DL o P
1=1
4777 49,12
ant 1||2+19tu—2|\wt L (2 2+ ) 607
@) m 1 p’yn 1 nL 1
<E [F‘ 2 2 -
t+1 12pm Z” H Z” t” 12p m Z” Ly xt||
— X £ _\|2 419156,‘, 7 2
+ Ae(1 = B)lltg—1 — Vf(@e—1)I? + (xe — xeBe + 17 Z”Ut L= V)
49,2 2(1 —|—V
2L (o 1) (B ant =P+ ant J?)

(1—v*)n 4777
+9t(1—T ZH% 1~ T 1H2+9t ZH gi1lI?

i=1
1<, ) 2\ 49,12
+19tVE;||wt_1*wt_1l|2 (7+2 et V) 302}, (55)

where the inequality (i) is due to the above inequality (50).

Since 0 < B, < 1forallt > 1, A\, = 2L > 21 apd \, < \,_;, then we have Al = B) < M1 — 92"—;7. Let

2pB: = 2p
2 2
X¢ = % > % and y; < x:_1, we have x; — x¢f5¢ + % < x¢—1. Let 9, = % for all ¢ > 1, since
0<v<l wehave hyw = 9 — (1 —v)d < 9y — :%" =91 — 3%7- Meanwhile, let 6, < 9t71 forallt > 1,
. p(1—12) 3p(1—1%)6, pV1—v2 V/P(1—v2)0; .
v < mln( 180, 58L2 ) 7 < min (4L7\/3(1+V2)m’ 2L\/7(3+1,2)\/Hj) with H; = 25 + (1 u)2 forallt > 1, we

can obtain

(1—12)n 5 9 9 49,12 29ynL?
12 <O;1—
04 ( 5 )+ 2L (3 + v*)( 7V)_9t 1 T (56)
4ny? 4(1+V) 2,2 2 497 pm
<
b+ L Nt ) <5 (57)
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Based on the choice of these parameters and the above inequality (55), we have

_ 1 2 mnl o mLk* 1
Qi1 < Eop [P —@%Zn )I? - ZH e v Zn L=l
9 SNZTNER) 7
+ (M- 1*7)”%: 1= V@) + xi- 172”“% L= V)P
=1
2977711 m 3777 m B
+ (01 — ZH% L= T wt_l_@ mZH |~ @
pyn 1 2’777Ht
+——ZH gial?+ fo?]
1 2 pm1 o L* 1 w2y 2mHe by o
t*@*ZH ;)| *7*2” il *W*Z” ¢ — | B (58)
Then we can obtain
11 & , L?1 SN 2 —Wy1)  48H; o o
7%; ;)| +7E;th*xtll ZII gill” < P B (59)
Sincexy =3} = =2 =i, u) = =uf andw} = --- = wd* = 0, we have
QlZE[F(le(/\o*f)H O*Vf(xo)l\QerOfZIIuO R
=1
9
< F(z )+(X0+Ao—¥) o’
0
, dynp® N 9,y o
= F(71) + -5 (60)
@) (p(l—V)2 2P0 20)
Let M = ||gi|| + %HVF(:U%) —wi| + %Hit — xt||. Then we have
i i 1 i i L _ i
M = lgell + ;HVF(%) —wi|| + ;Ill‘t — x|
@)\ qiN—1,, 1 i i L, _ i
= (4D "]l + *IIVF(It) —wi| + ;th — x|
= IAgI (A~ "IIJrEIIVF(fEi)—will+£||9E — i
IIA’II L ! e
: Jwi]l + = HVF( P — iII+LII‘ Hl
- w X w. — | Tt — X
At P
Sl 4+ e IVFG) — il + 7 — ]
= W Z X w Ty —
A" IIA [ ! ! HA | !
1 _
t

where the equality (i) holds by g¢ = (A%)~'w?, and the inequality (i7) holds by || A%|| > p for all ¢ > 1 due to Assumption
3.4. Then we have

IVE (@) + Lllze — ]l < M|l Al- (62)
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According to the above inequality (59), we have

T 1 m 1 T 31 m 3L2 m m
TZEZEW%P <52 [ S Il - VEG)I? + ——Z o~ 2l + > S i)
t=1 """ i=1 t=1 i=1 mia
T . T
< 1 Z 36(Q — Qiy1) < 36(Q — F™) n 1 Z 1442Ht 262,
T~ YN Tvpn T~ p
By using Cauchy-Schwarz inequality to the above inequality (62), we have
lm 1 & A
=5 — SEVFE)I + Lla - i) < 5 >0 — S EBMI4]]
t=1"" i=1 t=1 """ i=1
1 T 1 m 1 T 1 m
<\ 72— D EIMIP 5D — > B4
t=1"" i=1 t=1 " i=1

By plugging the above inequalities (64) into (63), we can obtain

’ﬂ \

T m T m
1o 1 . I 6V —F* 120/ 7 31 1Ht5t 1 .
ZEZE[IIVF(%)H + L7 - ] < (= \/ Z%ZEHA%II?
t=1 =1

T & m e = VT p
Since F'(x) is L-smooth, we have
IVF @) = VF(@:) = VF(x;) + VF(zy)|| < [IVF (@) + Lllzy — 2.

F(z,)—F* 9 _ 9
Meanwhile, let G = T (pz(l_y) t 328, ~ 2,7

T T m

1 _ 1 1

7 L EIVFGI < 73 LS EIIVF (] + e~ il
t=1 t=1 i=1

(6\/91 = 12‘7\/ Et 1Ht6t iliEHAlHQ
VT p —m

)02. Then we have

’ﬂ \

oG 120\ ESL HBE (131
_(\/T + ) T;E;E”At”

p

Let 8, = for all ¢ > 1, we have

T2/3

9 81?2

H=og t e

= O(T*?3).

(63)

(64)

(65)

(66)

(67)

(68)

We set 0, = 60 > M for all ¢ > 1. Then we can set v = O(1) and n = O(ﬁ) Thus we have G = Z@=F"

PN

(% + ﬁ 22 )o? = O(T*'/?), and then we can obtain

T T m

1 _ 1 1

7 2 EIVF@l < 73 0D BV + Ll ~ il
t=1 t=1 i=1

T m
1 1 .
< O(p + T1/3 ZEZE”AJ\Q-

23
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Given /£ S0, & S, EJ|Af[2 = O(1). set

T m
1 1 1
7§ E|VEF(@)|| < 0775 + T1/3 Y — Y ElAP<e (70)

t:l =1

we have T' = O(e~3). Since our Algorithm 1, it reaches a near-optimal sample complexity of 1 - T' = O(e~?) for finding an
e-stationary solution of Problem (1).

O

A.2. Convergence Analysis of AdaMDOF Algorithm

In this subsection, we provide the convergence analysis of our AdaMDOF Algorithm for finite-sum optimization.

Lemma A.8. Under the above Assumptions 3.1-3.2, and assume the gradient estimators {u§21 }:il be generated from
Algorithm 2, we have

i 257 ifoi i
Bulll — VA I < (1 - Bl — VPt + 2L LS 9 gl ) - sl
k=1
2L 77 i .
5 la = a1, vi e [m] (71
2L2 m )
Eillae — Vf(@)? < (1= B)llte—1 — VF(z-1)]* + nt ZH —apq?
262 <N 1 — o ,
Tn; ; o 1; IV fe(wi_q) — 21@,#1”27 (72)
where 3, € (0,1) forallt > 1.
Proof. According the line 6 of Algorithm 2, ie, u! = %Zkel} (Vfi(zl) — Vfi(zi_y) + (1 = Bui_y +
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B (% Ekezg (Vfizi_y) — Zlic.,tfl) + o Z?ﬂ Z;',t71>7 we have

Eyuf - V£ (x})]? (73)
1 o o . 1 oo . 1< . o
=Ei|3 Y (VA = Vi) + 0= 8wy + B (5 D (V) —2hen) + 2D 2) = V@)
k€] keTi j=1
= Et”g Z (Vi) = Vii(xi_y)) = V() + V(@) + (1= B (ui_y — Vi(xiy))
keT}
1 o . 1 <&
Jrﬂt(g Z (Vf;i(xi_l) - lec,t 1 ﬁz sz 33t 1))”2
keT} j=1
1 o o . . 1 . .
=By Y (VA = Vilai)) = V@) + Vi) +8(p 3 (Vi) —zhe)
kEeT] keT;
1 & o , o
=Y = VD) + (0= B, — I @)
j=1
<oy D (VHa) = Vi) = Vi) + I )|
keT}
1 o , 1 o . o
+ 287 5 D (VIi@in) = zhaa) + - 2 = V@) (= 807y — V(i)
keTi j=1

2L? i 237 i i
< 7”% t71||2+7t*2|| Zht—1 ka(xt 1)”2 (1—ﬁt)2||“t71_vf (%4)”2

202, . 25 i i,
< bt 1||$t*xt—1||2+7t*2||zkt L= VI )P+ (0= B)llui_y = V(i) (74)

where the third equality holds by

1
E. [+

y > (V) = Viiwi)] = V(@) = Vi (i),

keTI}

]Et[% Z (Vie(i_y) = Zlif,t—l)] \ACY Zzt L

keT}

and the second last inequality holds by the inequality E[|¢ — E[¢][* < E||¢||* and Assumption 3.1; the last inequality holds
byO< By <landai=2ai | +n_1(T¢ —xi_;).

Let 4 = o 321 up, Vfi(xy) = 5 5oy Vi) forall i € [m] and V() = o 321, (5 Xy Vi) =
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LS YV fi(x}). We can obtain

m

1 . o
Eda, — V)ll® = Bil| = > (wi = VI @)’
=1
1< /1 o o o o ) o
:EtHEZ (g Z (Vi) = V(@i ) = V(@) + V(i) + (1= Be)(uj_y — Vfi(a]_y))
i=1 " keI
1 oo ) 1< . o
+ 5t(5 Z (Vfi(xifl) - lec,tfl) + o Zz;,tfl - VJ“(»%A))) ||2
keT} j=1
i - moq o o o o
2 = B — V 1)||2+Et||f2(5 > (VIila) = Viileing) = V(@) + VI (i)
=1 keT}
1 o ) 1 <N o
+Bt<g Z (Vfi;(mlfl) - Z;@tq) + n Z'Z;',tfl - sz(xifl)»uz
keI j=1
< (1= B2l ar—1 — VeI + ZEtHf S (VH ) = V(i) = Vi) + Vi )|
keT
25t i 1« i i 2
ZEtH* Z Vfi(ah_y) — Zk,t—l)Jrﬁ Zip1— VS (%-1)”
keTi j=1
I 212 & . 282 N1 & o .
< (1= B)?|[tg—1 — V f(wp—1 H2+7Z”$t 2—1”24‘% EZ||VJ£12(9U;—1)—ZIZ€¢—1||2
=1 k=1
(n) 2L ) 282 1 & o )
< (1= By)te—1 — V(x| + m ZH L1||2+T§32E IV fi(@h 1) = 2hs |l (75)
1=1 k=1

where the above equality () is due to for all i € [m]

Elr Y (VA - Vi) = Vel - Vi),

keT}
1 o : 1O
E, [5 Z (Vf;i(wi_l) - lec,t—l)] V(1) EZ t—1)
keI j=1

and {Z}}™ | are independent, and the above inequality (i) holds by 0 < 8; < 1 and 2} = 2% _; + 0 (2% — xi_)).

O
Lemma A.9. Under Assumption 3.1, the sequence {z,’”} is defined in Line 11 of Algorithm 2, then we have
b - :
vafk zy) = zell?]) < ( 7 Z IV fi(@i_y) = 21 |12
k=1
2n b i .
(5 = 2 = D, 5 = ai |, i € [m]. (76)
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Proof. According to the Line 11 of Algorithm 2, we have

1 " b 1
EZ |ka J/’t _Zkt” ] 1_ - Zvak xt _Zkt 1” (77
k=1
b i i i
ﬁ Zvak xy) — V(i) + Vii(zi_)) —Zic,tq”2
1 i
< (1—|— 1— — Z”ka fft ka(xt71)||2
+ (1 + a)( 1** Z”ka zi_ ) Zlic,t—le
1 byroy P12 4 @ 2
<t )= DL e — i+ (@)1 - 2) T leka #i0) = 2ol

where the last inequality is due to Assumption 3.1.

Leta = %, then we have

7 i 2n b
Z”Vf () _ZtH] 1_7 Zva (xi_1) =z l? + (5= = — = L[|y — 2y )P (78)
b n
b 2, b 2
—(1-5)s ZHW G I A L ) 2 S A

where the above equality holds by z¢ — x| = n,_1(%; — x¢_;).

O
Lemma A.10. Given the sequence {xizv fizl, w221 }:’;1 be generated from Algorithm 2. We have
- i - 2 (1= & i 2 2w’ - i -2
> et~ el < (1= SIS ek -2+ £ 3 ek -l
m m
~i i i 2(1 —|— V2
Z 1Z61 —2i* < 3+ VQ)Z 2t = &l® + =5~ QZ [
> By — el < uZ Jej — el + U AR R AR CHRH
i=1 1—1
5t+1 i V() |12
+ PN ok~ VFGDIP).
k=1
Proof. For notational simplicity, let z; = [(z})7,--- , (27)T]" € R™, 2, = [(&)T,---, (@™)"]T € R™ and g, =
[(95)T, -+ (g7)T]" € R™ forall ¢ > 1. By using Assumption 3.4, since W1 = 1and W = W ® I4, we have
WA®z) =11 L. Meanwhlle we have 17 (2, — 1 ® ) = 0 and W1 = 1. Thus, we have
||W{Et -1 ®i’t||2 = HW(.’Et -1 ® {Et)HQ S 1/2||$t -1 (9 i’tHQ, (79)

where the above inequality holds by z; — 1 ® Z; is orthogonal to 1 that is the eigenvector corresponding to the largest
eigenvalue of W, and v denotes the second largest eigenvalue of W.

Since Zj,1 = > e, Wizl — (A~ twi = D ien W, jxl — ~ygi forall i € [m], we have Z111 = Wax; — vg; and

27



Faster Adaptive Decentralized Learning Algorithms

SEtJ,_l =T — ’Ygf Since Ti41 = T + T]t(SEt+1 — It) and jt—&-l =T+ T]t(iz't+1 — if’t), we have

m
Z [ty = el = Joen — 1@ ft+1H2 (80)
=1

= ||@s + e (Fegr — @) — 1@ (T + mu(Trs1 — Ty)) H2

1 N =
< (T4 a)( —ne)?[lee = 1@ 3> + (1 + 7)77tz||xt+1 —1® &

=

i

=1 —ne)llwe — 1@ Ze|® + nel|Zear — 1® Tppa |2
=1 —n)llze = 1T + ne|[Way —vge —1® (z4 — 7§t)”2

s

~ 1
S (@ =n)llwy — 1@ &> + (1 + ag)mel[Way — 1@ & || + (1 + —)mQIIgt —1® g

(ii) B 1 +V2 B 1 —|—l/
s<1—m>||xt—1®xt||2+%“ft—1®xt||2+%u g —10 3|
(444) 1— 12 9
V 77t 2771‘/'7 i _
== ZH% nl+ s legt—gtIIQ, 1)
i=1
where the above equality (¢) is due to iy = 1"77 (i) holds by cra = _;;2 and ||Wxt71®jt||2 <

v?||z; — 1 ® 7,||?, and the above inequality (i7) is due to 0 < v < 1. Meanwhile, we have

m

S l# Ly — 2] = [E — 1@ 7
=1

= HWﬂCt — g — 1@ 34

1
<+ flz =10z + (1 + —)7||gll”
2

(i) 14 12 — — 1412 " .
= e =zl + =577 Y llail’, (82)
i=1 i=1

where the last equality (z) holds by ay = . Then we have

21/2

m
Do lF = @l = 1F e —

=1
= |Ze11 — 10T + 10 T — 242
<2Ep1 — 1@ T + 22 — 1@ T ||
Ui i - 1+1/
=@+ ey -zl + 22Hg I (83)
=1
Let wy, = [(w})", (wi)™, -+, (i) 1" ue = [(ud) ™, ()™, -+ (up)"]" and w, = - 300 wi and @ = o 307 uf.

Then we have for any ¢t > 1,

Wi1 = W(wt + Uty1 — Ut).

28



Faster Adaptive Decentralized Learning Algorithms

According to the above proof of Lemma A.3, we have w;y; = wy + @41 — u; for all ¢ > 1. Thus we have

Z |wiyy — Wep1]|? = [Jwigr — 1@ Wepa |
=1

= | W (wr + w1 — wg) = 1@ (04 + g1 — ) ||

< (14 0)[Wwy — 1@ w|* + (1 + %)HW(WH —ur) = 1@ (g1 — ) |

< (L4 o’ [lw, — 1@ @ + (1 + %wnum —uy =18 (41 — )|

< (14 o2 flwy — 1@ @ + (1 + %)vQHUtH — i, (84)
where the last inequality holds by Lemma A.2.

Since uj 1 = § Yperi, (VIi(@er1) = VIilze)) + (1= Bera)uf + Bri (% Ykeri,, (VHilw) —2p,) + 5 X5 Z;t)
forany i € [m] and t > 1, we have

Et+1Hut+l _UtH2

m
= Erplluf, —ufl?

i=1
m 1 o o 4 1 o , 1<
=Y Benlly Y (Vi) = VAGD) =Bl + B (3 Y (VA =) +5 2 )|
i=1 keItJrl keItJrl j=1
= ZEt+1H Z foi(fiﬂ) - Vf;i(xi)) - 5t+1“i + ﬂt+1vfi($i)
kET],,
1 Z
+ Bit1 (* Z (ka(ﬂft Kt szt \Z xt))”
kET],,
S i - i i 35 -\ i
< 3L? Z (BT xtHQ + 351:2-1-1 Z IV f(xy) — “zt”2 Hl Z ‘Zkt Vf (%)”2
i=1 i=1 1 k=
i i - i 3671 N~ N L Qg
= 3L277t2 Z th+1 - xtHQ + 3ﬂt2+1 Z V£ (xy) — t”2 btgl Z |Zk,t -Vf (xt)HQa (85)

=1 =1 1=1 k=1
where the second last inequality holds by Assumption 3.1 and the last equality is due to z}, | = zin,(Z},, — z}).

Plugging the above inequalities (85) into (84), we have

m
, _ _ 1 2
> lwipr — @l < 1+ )Py — 1@ @]* + (1+ E)V2||Ut+1 — |

< (1 +o?flw, — 1@ @] +3(1 VQZ PN — 2l® + BV () — wgll
=1
ﬂ752+1 & i v SR ANTP 86
S v, 56)
k=1
Letc = L — 1, we have
m 2 m
> Ernllwiy —wea? < VZ”wt w|* + VZ(L277§H5€§+1 — zi|” + B IV () — wy)?
=1 =1
/BtJrl 7 V R ANTP 87
+ 5D Mk = VA EDI). (87)
k=1
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O

Theorem A.11. (Restatement of Theorem 5.5) Suppose the sequences {{x%}ﬁl}le be generated from Algorithm 2.
Under the above Assumptions 3.1-3.5, and let iy = 1, 0 < By < 1 forallt > 0, v < min (p(l—uz)’ 3’)(1_”2)9‘),

58L2
. pV1—v2 p(1—v2)6, . _ 9 612 4n?p2
1< min (2L7\/6(1+u2)\/ﬁ’ 2L\/y(3+u2)\/ﬁt) with Hy = bB: + b(1-v)? T (Br + (1- V)Q) + (1 forallt 20, we

have

m

T T m T
Ly Ly ! VG |11 |
- E|VF(z < = - F( L _ = *ZE Ai|2
T — ||v (xt>|| — T pot m g ||V .fL't H + ||-Tt xtm \/T T ; m pt H t|| 3 (88)

F(z,)—F* 18 188212 2 ..
where G = % + ( pgo + ;)2(131:/)2 + p2(:iy—y)2 + ngﬁg - %) m Z;" 1n Zk 1 ”vfk:( )”2 s mdependent onT,
b and n.

Proof. Without loss of generality, let n = 1; = - -- = 9. According to Lemma A.4, we have

_ _ 2 _ _ 1 _ 1
F(#) < F@) + = HIVE@) -l + 3 Z R e Z i1 (39)

According to the Lemma A.8, we have

Eillae — V()| < (1= B)|[t—1 — V(1) H2+ Lo ZH -z 4|

tZ ZHka wi_y) = 2% (90)
=1

and

1 2L n? ;
fZEt ui =V @)I* < (1-B) EZIIut 1= V)l + ZII — ;4|
=1

i=1

267 1 (- 1 i
T%Zf IV Fi(i-1) = zh gl o1

k=1

According to Lemma A.9, we have for any i € [m]

1O i i b1« i( i i 2n b ~i i
B[~ DIV ) = 2hl?) < (1= 52) = S IV ) = 2kl + (5 = = = DIPIE - o)y
nkil n nkil n
h 1< ; 2n i g
< (1= )= Y IV @) = 2kl + L2018 — 2™ 92)
n nk 1
According to Lemma A.10, we have
LS Bt — @l < v 3 oy — w2 L S (L2020 — o P BRIV A — P
m & || W tl = m & t—1 t— l—l/mi:l t—1 t t—1 t—1
F S Ve ©03)
bn k,it—1 t—1 .
k=1
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Meanwhile, we also have

2777
fZIIxt—th <(1- lext L= TP+ ZHgt = Ge—1l?

(1-2)y 2777 T _
<(1- Z iy — Zea® + 2, Z(”gt—lH2 + [|ge—111?)
=1
1= 1 & 4777
<(1- Z @ty — e |” + Z gt 1% (94)

and

m

i 1—|—V
—ZH —z 4P <3+ ant T e ant 12 (95)

Next considering the term |, — VF(Z;)|?, we have
lae = VE@)|I* = [lae — Vf(we) + Vfa) = VE(@)|?
< 2l|d = Vf(zo)|I* + 2|V (i) = V(3 )\\2
- 1 & )
<2lfae = V@I + 21> V() - — Zfo )P
i=1

< 2[jay — V f(z¢) H2+7Z||33t—$t||

where the last inequality is due to Assumption 3.1. Then we can obtain
—llae = V§(z)l* < —lllﬂ — VE(z,)|I” + L zm: llf — ]| (96)
t TS —5llw t m = t el -
Since u; = w; for all t > 1, we have

1 & ) . 1 & ) )
o 2w = V@I = 3 i — w0+~ VF (@) + V@) = VEG)?

i=1
1 m ; ~ - - 1 m ~ ;
<3 lwi = @il + 3@ — VE(@)[* +3— > [ VF () - VF ()]
i=1 i=1
1o 1o~
<33 i — el + 3l = VE(z)[* +30°— 3 |l — ]|,
i=1 —

Then we have

[l — VF(@,)|I* < _72“1015 VE(z)]* + lewt o ” +*Z||$t—$t|| ©7

We define a useful Lyapunov function (i.e., potential function), for any ¢ > 1

‘I’t:]Et[F(ft)Jr()\tfl*f)H 1 — Vf(@)l” + xi- 1*2”’% A C] 98)
i=1
i 19ynL? 1
- 172 Z”vfk Ty_y) zk,t—lHQ‘F(at—l_ 4p )mZth 1= o
=1 =1

3777 mn 1
@ = 7 mZHwt L= B+ Zn giall’]
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where ay_1 > 0, x¢—1 >0, A1 > 977’ , 01 29%21;2 and ¥;_1 > %:7 for all ¢t > 1. Then we have

Biis = B [Flauan) + (v — ) e - TR + x>l — VG

=1
11 i i 29’)/77[/
o S IV — 2l + (0 - Zuxt_xtu
i=1 k=1
3777 _ o L~
* ZII — il + 5 Eantnﬂ

(@) _ M pyn 1 9ynL? 1
<Eip {F(l’) || 1= VF(z )||2*7*Z|| aill* + o lefcﬁwtll2+/\tllut Vi()?

S = VP + a1 = LS LS i) - 2
=1 =1 k=1
B LS P 0 ) D b
b= Zn =)l
(?Em[ ; f%%Zn @I - ”g";imzzmlz vi - ml?

m

B - NI N i 2A,B i
+ Ae(1 = Be)|lae—1 —Vf(xt—1)||2+ZTZH%—%—H\Q =t Z ZHka 1) = 2|
i=1

i=1

1 & 2XtL n? .
+ xe(1 = Br) Ez lui_y =V (y_y)|I? + ZH —ap_q?
i=1 i=1
2xt5 11y i
: Z vafk (zi1) = 2o ® + au(1 71 aZgZHka zy_1) =zl
i=1 k=1
204n 1 » ; (1—v2)n 4777
+TLQTFEZH@frct_ﬂ\?wt(lf# ant L= T e Zn g
i=1 i=1
1 m 3’[9ty 1 m L ; ; ; ;
+19tV*Z||wt Y (L2772||33t_95t—1||2+5752|‘vf (z5-1) — ui_q|?
i=1 i=1
2 n
+ LY ke — Vf1<wz,1>||2)}, 99)
k=1

where the inequality (i) is due to the above inequalities (89), (92) and (96); and the inequality (ii) holds by the above
inequalities (90), (91), (93) and (97).
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Then we have

_ 1 pyn 1 ynL? 1
Qi1 <]Et+1[ *@EZH ||2*7*Z|| t||2*W*Z|| xy —z?
_ S 3?%6 i 2
+ (1= Bo)l[te—1 = VI (e I” + (xe = xeBe + —— leut 1= Vi)l
2 2x 2a n 319 v? -
(G T Zn — i

atb 267 2x.B? 352191/ 1 -1
+(at—%+ Zt+ Zt L EEﬁZIIVfMt 1) — Zkt 7
ant 1\|2+ﬂtu—z||wt L= i’

m
o 1 i mnl mL? 1
< Evpt[F@) = 50— 3" lwf = VF(@))|? - —Zn il - —Znt—xtn
i=

171/2
ro - L2201 anf L= Feal O

12pm — 12p m
. NZICRIE 31%6 . i >
+ M1 = B)llar-1 = V(@) * + (xe — xeBe + Z — Vi)
2 2 20um 30,17 1+V
2,2 t Xt t t 2.
(S S S ) (6 antﬁxt 2+ S W—ant J2)

m

ab 2N B7 2xB? 3ﬂ2ﬁ v? i
+ (o — e — Z vafk wy_1) = Zep |
i=1

2n b b 1—u

(1—v%)n 4777
+0,(1— =) — lefct ) ZII 9i- 1H2+19wf2|lwt 1 — Wi 1H}

i=1

(100)

where the inequality (i) is due to the above inequality (95).

Since 0 < By < 1forallt > 1, \; = 29;’; > 92’Yp" and \; < \;_1, then we have )\t( —B) < )\t,l—g"—" Let x; = 319”’ >
319th”

and x¢ < x¢—1, we have x¢ — x5 + % < Xt-1- Letag = ‘ (22X + 2Xt + 3”9”’ ) = 2n6t (2 + 919“/ )
2 2 2
and oy < a1, then we have o, — O‘Q;f + 2>‘th + 2Xt6t + 31;8(319% < Qy_q. Let Wy = (

we have 9y = 9y — (1 — )9y < U4y — M Meanwhile, let 6; < 6,_; forall t > 1, v < min ("(1 0”2), 3p<})8L”2>9f),

)fora11t>1 since) < v <1,

. pV1—v2 \p(1—v2)0; 4” Bt
7 < min (2Lv\/6(1+u2)\/Hﬁ’ 2L\/ﬁy(3+y2)m) with H; = bﬁt + b(l u)2 + (& + a u)2) + (171,)2 forallt > 1, we
can obtain
1 -2 2 2 39,2 29ynL?
01— L) L gy 20 2o B0ary o 290l (101)
2 b 1-— 6p
4ny? (1—|—u )9 9 92X 2X¢  2a4n 39° PN
0 L°n A < 2L 102
P gy 5 Tt +1fy)_6 (102)
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Based on the choice of these parameters and the above inequality (100), we have

_ 1 o pmm1 s mL? 1
Dis1 < Eupa [F(@, f@EZII zh)| f——Zn gl f?p—Zn wi— 3|
9yn 1 & i i i 2
Ot = e = V@) 4+ xe s 3l = V)|
=1

; 29'ynL
T Q- 1*2 vafk i 1) lec,t71||2+(9t71 ZHmt L= Ze)?

1= 1
3777 _ 1~
(= Z N ugH||2]
i=1
MLy pyn 1 ynl? 1
—‘I)t***ZHwt*VF( ||2***ZH t||2*7*2||xt*ItH (103)
12pm — 12p
Then we can obtain
11, . - q>t+1)
> llwi = VE@)I? + Z lof — 24l|* + — Z lgil|? < —————= (104)
pem = ypn
Since xg = &y = -+~ = af* =I5, 2{ g = 2bo = -+ = 20, o = 0 and uf, = wj; = 0 for any i € [m], we have

@) =E[F(@) + a0 > = S IVAEH)IP + 0o 9””>||Vf<xo>|\2+><o—z||w Ol
k=1

=1
. 9777 1 n 1 5
SF($1)+(040+X0+)\0—7EZEZHVJ% i
=1 k=1
_ 18vynBy 1883 yqv?  3ym? 9vn 9777 1 -1 2
—F T ZNT AN v 105
@)+ o a0 p—v7 2B 2 mgnz:' Su(al™ (109

Let Mj = ||gf| + S IV F(}) — wil + %Hi‘t — t||. Then we have
i o L i i, Lo i
= llgill + —[IVF(x}) — will + — [z, — =]
p p
G\ aiN—1,, 1 i i L, _ i
= [1(A) ™ wil| + *||VF(%) —wi| + ;Hfft |

7 1 7 1 7 7 L _ 7
= 1AL (AR~ t”+;||VF(xt)_wt”"i';H'rt_xt”

||Al||
i i L i
2 ”AZH ” tH+ Hv‘F(wt)_wt”"‘Eth_‘rt”
Qi+ IV EG) — i + =z — ]
> —|lw o
i+ will + e =
1 .
> ||A7|| (HVF(‘%‘;)H +L||§3t - :L‘%H), (106)
t

where the equality (i) holds by g¢ = (A%)~1w?, and the inequality (i7) holds by || A%|| > p for all ¢ > 1 due to Assumption
3.4. Then we have

IVF(z})|| + Ll|lze — x| < Mi||Af]]. (107)
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According to the above inequality (104), we have

T m ) m L m .
S SE D DR S Y ZACHI R iZHwt—thQ 22 Nl

t=1 i=1 =1

N[ =
[M]=
%o

~
Il
-

36(®: — 1) _ 36(®1 — F*)

< (108)
1 el Typn

IA
N
M=

t

By using Cauchy-Schwarz inequality, we have

A
\
g
3~
]
S
<
E

T m

1 1 i 7 @ !

=3 — S E(IVFE)| + Lla - il <
t=1 i=1

IN

T m T m
TZ;;E[M::P ;;;;Emn?. (109)

By plugging the above inequalities (109) into (108), we can obtain

;i;i IV P + Ll i) < zij;if;wz‘n?. (10)

Since F'(x) is L-smooth, we have
IVE (o)l = VF(2:) = VF(a}) + VF(zy)|| < [VF ()l + L2y — ell. (111)
Meanwhile, let G = F(%);F* + (1860 + 1?50 o T (1 V)2 228~ 37w 2oiet w 2ohen I VFE(@)[|?. Then we

have

T T m

1 _ 1 1

7 L EIVFGI < 73 S BIVF (] + o =il
t=1 t=1 i=1

61/ S L
A ki ;E;EH/&IIQ

vIvpn

T m
1 1 ,
TZ%ZHMP (112)
t=1 =1

Letd, =60 > %foralltz 1.Letb:\/ﬁandﬁt:%forallt2 1, we have

9 612 an?B2 . 9 912 302 4512
H = — t(Z <454 2 113
o e G rtaoo) T Ao ST e (113)
Then we have —A— > L , and
e 45+(f57/)2

n pV1—12 Vol —v2)0 ) > min ( pV1—12 Vp(1l —1v2)0 )45+ 4512
2Ly+\/6(1 + 1v2)VH, 2L\/v(3 + v2)VH; 2Ly+/6(1 + 12) 2L\/7(3 + v2) (1-v)?

pV1-v2 Vr(1—v2)0 1502 B p(1—v2) 3p(1—12)0
2Ly4/6(14v2)’ 2L\/’y(3+u2)) 45+ (1-v)2 and v = mln( 180 0 ESL2 ) Note that

we set 3y = % for all ¢ > 1, while we can set 8y € (0,1), which is independent on 7', b and n. Thus we have

Thus we can let = min (
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G = Fa)-r (18ﬁo + 15(5/30 L+ 2(1 V)2 + 2p260 %)%Z’fl LS e IV fi(zd)|* is independent on T', b and

o1
n.
Let p = O(1), n» = O(1) and v = O(1), then we have G = O(1) is independent on T, b and n. Given
T m i _
\/% Dimt m 2oier E[ A2 = O(1), set
- Z]EHVF ) < Z ZEHA’ 12 <e, (114)

we have T = O(e~2). Since our Algorithm 2 requires b samples, it obtains a sample complexity of Thb = O(y/ne2).

B. Additional Experiment Details

In the experiments, we consider two classical undirected networks that connect all clients, i.e., the ring and 3-regular
expander networks (Hoory et al., 20006), illustrated in Figures 6 and 7, respectively.

[ 04 03 0 0 03]
0.3 04 03 0 0
W = 0 03 04 03 0
0 0 03 04 03
| 03 0 0 03 04 |

Figure 6: An illustration of the ring network with 5 nodes and its mixing matrix.

05 025 0 0 025
0.25 025 025 025 0
W=| 0 025 025 025 025
0 025 025 025 0.25

| 025 0 025 025 025 |
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Figure 7: An illustration of the 3-regular expander network with 5 nodes and its mixing matrix.




