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ABSTRACT

The ultimate goal for foundation models is realizing task-agnostic, i.e., supporting
out-of-the-box usage without task-specific fine-tuning. Although breakthroughs
have been made in natural language processing and image representation learn-
ing, it is still challenging for video models to reach it due to the increasing uncer-
tainty of spatiotemporal signals. To ease training, existing works leverage image
foundation models’ prior knowledge and equip them with efficient temporal mod-
ules. Despite the satisfactory fine-tuning performance, we empirically find they
fall short of out-of-the-box usage, given the even degraded performance in zero-
shot/linear protocols compared to their baseline counterparts. In this work, we
analyze the factor that leads to degradation from the perspective of language su-
pervision distortion. We argue that tuning a text encoder end-to-end, as done in
previous work, is suboptimal since it may overfit in terms of styles, thereby losing
its original generalization ability to capture the semantics of various language reg-
isters. The overfitted text encoder, in turn, provides a harmful supervision signal,
degrading the video representation. To tackle this issue, we propose a degradation-
free pre-training strategy to retain the generalization ability of the text encoder via
freezing shallow layers while enabling the task-related semantics capturing in tun-
able deep layers. As for the training objective, we adopted the transcript sorting
task in TVTS (Zeng et al., 2023) incorporated with masking techniques (Li et al.,
2023c) to enable scalable training. As a result, we produce a series of models,
dubbed TVTSv2, with up to one billion parameters. We achieve new state-of-the-
arts on various video benchmarks with a frozen backbone, surpassing the recent
ImageBind, InternVideo, efc. Code and models will be released publicly.

1 INTRODUCTION

Learning universal representations that work out of the box' on any downstream task is the ultimate
goal for foundation models. Inspired by the significant success of large language models (Brown
et al., 2020; OpenAl, 2023; Ouyang et al., 2022) in natural language processing, a series of efforts
have been devoted to migrating this paradigm to computer vision, e.g., CLIP (Radford et al., 2021),
DINO v2 (Oquab et al., 2023), and ImageBind (Girdhar et al., 2023). They pre-train visual models
with web-crawled or curated data and enable emerging image-centric applications with pre-trained
and frozen visual representations, e.g., zero-shot image classification, and retrieval.

Despite the progress in learning all-purpose image features, there is still a long way to go in the
video domain. Given the increasing uncertainty of spatiotemporal signals compared to sole spatial
ones, it poses a great challenge for learning task-agnostic and universal video representations. To
meet the demand for out-of-the-box usage, a straightforward solution is to scale up the pre-trained
video data to cover most distributions. Unfortunately, such an idea is in contrast to the fact that the
magnitude of publicly accessible videos is much smaller than images, e.g., HowTo100M (Miech
et al., 2019) versus LAION-5B (Schuhmann et al., 2022). Moreover, the nearly quadratic-increased
computational overhead in Transformer (Vaswani et al., 2017) is generally unaffordable for training
video foundation models at a billion scale.

'The term “out-of-the-box” indicates that the learned features can be used directly for novel tasks (e.g.,
zero-shot, linear probing) without tailored fine-tuning.
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Figure 1: (a) An overview of the out-of-the-box capability of our learned video representations. ZS,
AR, and T2V denote zero-shot, action recognition, and text-to-video retrieval, respectively. (b) Visu-
alization of the self-attention distribution of our pre-trained video model. Taking the corresponding
class name or caption as a reference, we observe that our video features can well capture the key
spatiotemporal context, which explains our good out-of-the-box ability.

Some works, therefore, turn to exploit the pre-learned spatial prior in image foundation models
and adapt them to the video domain by equipping them with temporal reasoning modules, e.g., the
recent CLIP-ViP (Xue et al., 2023). Although such methods achieve state-of-the-art performance
when fine-tuned on specific downstream tasks, off-the-shelf video representations are not yet suit-
able for out-of-the-box usage, exhibiting poor zero-shot/linear results and even degradation from
CLIP baselines. This may be the reason why frame-level CLIP features are still widely used as
video feature extractors (Li et al., 2023a; Dai et al., 2023) despite many efforts that have been made
in developing video models. There is a need for real video foundation models that can generate
general-purpose video representations.

In this paper, we conduct an in-depth empirical analysis of why previous video models degraded.
Intuitively, the performance degradation mainly comes from the overfitting on the relatively small-
scale post-pretrain data, sacrificing the generalization ability of the original foundation models. To
this end, many existing works focused on efficient visual tuning with adapters (Pan et al., 2022;
Yang et al., 2023), while ignoring the potentially overfitted text encoder, which produces distorted
text supervision that could, in turn, degrades video representations.

Different from the sole caption knowledge learned from the image foundation models, video data
introduces ASR transcripts, which contain temporal dependency and facilitate temporal reasoning,
and have been widely adopted in recent literature (Xue et al., 2023; Zeng et al., 2023) to boost spa-
tiotemporal learning. Such supervision provides valuable temporal information but shows a great
domain gap from the pre-learned alt-text. Our extensive experiments reveal that performance degra-
dation in prior methods stems from the text encoder’s compromised capabilities of generalizing to
various language styles due to the end-to-end fine-tuning with noisy ASR transcripts. This is a
non-trivial issue that few previous papers have yet considered, which not only hinders the proper se-
mantic capture behind the ASR transcripts but also impairs pre-learned language knowledge within
the text model, thus negatively affecting video representation learning.

Given the observations, we propose a degradation-free pre-training strategy with a partially frozen
text encoder, i.e., the shallow layers are frozen while the deep layers are tunable. With such a strat-
egy, the pre-trained text encoder can generalize well to various language registers with different
styles, e.g., ASR transcripts for training, and search queries for downstream retrieval. The new lan-
guage semantics and structures can be captured in deep layers, thus producing semantically mean-
ingful learning targets to advance out-of-the-box video representation learning. Regarding the train-
ing objective, we adopt the pretext task of Turning to Video for Transcript Sorting (TVTS) (Zeng
et al., 2023) for its superior performance. To further scale up training to pursue state-of-the-art
performance, we adopt the masking strategy without reconstruction (Li et al., 2023c) to enable af-
fordable training with larger backbone architectures. As a result, we successfully trained huge-size
models with one billion parameters in total using 80 V100 GPUs in one week.

Finally, we offer a series of pre-trained models, dubbed TVTSv2, from base size to huge size.
Compared to the original TVTS (Zeng et al., 2023), we inherit the rich semantic knowledge learned
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from CLIP-pretrained models and scale up the models by up to 7 times. The knowledge inheritance
is actually not trivial given the degradation of prior methods (Xue et al., 2023; Wang et al., 2021)
as we discussed above. As illustrated in Figure 1 (a), our pre-trained model produces all-purpose
spatiotemporal visual representations, that can be used for zero-shot/linear video classification, and
zero-shot video-text retrieval on various datasets out of the box. Figure 1 (b) effectively highlights
how our model precisely captures key spatiotemporal elements, such as the cake being held and the
two small dogs near the people, demonstrating the model’s remarkable out-of-the-box transferability.
It is well noticeable that our TVTSv2 surpasses the recent SOTAs, i.e., ImageBind (Girdhar et al.,
2023) and InternVideo (Wang et al., 2022c), on zero-shot video classification and retrieval, despite
more data or more modalities they leveraged. Surprisingly, we also achieve comparable performance
to DINOv2-g (Caron et al., 2021) on linear K400 with 40% fewer parameters. The encouraging
results shed light on the direction of developing general-purpose video foundation models.

2 RELATED WORKS

Out-of-the-box Video Representations. In out-of-the-box image representation learning, the su-
pervision signal may come from web-crawled images (Oquab et al., 2023), descriptive texts (Rad-
ford et al., 2021; Jia et al., 2021), or other modalities (Girdhar et al., 2023), where the second one
dominates the literature. Similarly, in the video domain, a bunch of works has made an effort to
shift such a paradigm to pursue out-of-the-box video representations. For instance, TVTS (Zeng
et al., 2023) adopts a dual-stream architecture and learns fine-grained spatiotemporal representa-
tion by resorting to videos for transcript sorting. CLIP4Clip (Luo et al., 2022) stacks a temporal
Transformer on top of the origin CLIP to aggregate frame representations. CLIP-ViP (Xue et al.,
2023) plugs several video proxy tokens that attend to different frames for temporal summarization.
InternVideo (Wang et al., 2022c) inherits UniFormerV2 (Li et al., 2022b) and stacks a cross-modal
decoder to enable delicate video-text interaction. Other works either focus on improving vision
signals (Xu et al., 2021) or accessing more modalities (Girdhar et al., 2023). However, their im-
provement in zero-shot and linear probe evaluation is marginal, indicating there is still a long way
to reach general-purpose video representation.

Domain Specialists for Video Tasks. Besides the video pre-training, another line of research
adapted the pre-trained foundation models to the specific video tasks for obtaining domain ex-
perts. They reach in-domain gains in two technical routes: (i) Designing proper objectives. For
instance, Pace (Wang et al., 2020) and SVT (Ranasinghe et al., 2022) learn invariant spatiotempo-
ral characteristics, e.g., motion correspondences of different objects, by aligning clips sampled in
a different frame rate. (ii) Parameter-efficient tuning. For example, ST-adapter (Pan et al., 2022)
and AIM (Yang et al., 2023) plug several tunable spatial and temporal adapters into each atten-
tion block, leaving the original parameters frozen. Similarly, visual prompts (Ju et al., 2022; Jia
et al., 2022) replace the manually constructed prompt (Radford et al., 2021) with learnable ones to
raise instance-specific representations. Nevertheless, such a paradigm is opposite to general-purpose
video representation learning, making them inflexible in novel scenarios for real-world applications.

Scalable Visual Pre-training. Plenty of work are devoted to improving the model scalability in two
aspects: (i) Scale-up data. In the video domain, some work harvests from alt-text-video pairs (Bain
et al., 2021; Yang et al., 2022) due to the high-quality descriptions, while the available data is lim-
ited. The follow-up works utilize ASR transcripts derived from the raw video (Zellers et al., 2021;
Miech et al., 2019; Xue et al., 2022) for better scalability. In this work, we reuse the transcript
sorting objective (Zeng et al., 2023) for scalable spatiotemporal learning. (ii) Reducing computa-
tional overheads. The video pre-training is restricted to the quadratically-increased self-attention
complexity so far. Masked visual modeling is proposed to improve the efficiency of pre-training,
which drops a large portion of visual tokens and reconstructs them given unmasked ones. Although
solid results have been reached under a high masking ratio (Feichtenhofer et al., 2022; Tong et al.,
2022; Wang et al., 2023), these works are short of out-of-the-box transferability due to train-test
mismatch. Recently, FLIP (Li et al., 2023c) directly conducts image-text contrastive pre-training
based on masked visual tokens and achieves favorable results. Inspired by this work, we train the
models with up to one billion parameters by properly incorporating masking.

3 METHOD

In this section, we introduce how to learn out-of-the-box video representations at scale without the
performance degradation of the image pre-trained knowledge. Our main framework is illustrated in
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Figure 2: Our training framework. A large portion of patches from sampled frames is first dropped
out via random tube masking before being sent into a Vision Transformer equipped with divided
space-time attention for encoding video representations. The corresponding ASR transcripts are
shuffled and embedded by a partially frozen text encoder. The disposable joint attention (only for
training) is performed among all video and text representations for predicting the transcripts’ chrono-
logical order, formulated by a K-way classification objective.

Figure 2, where the trained Vision Transformer is deployed for extracting video features that work
out of the box on downstream tasks. We will introduce our partially frozen training strategy to
avoid knowledge degradation in Section 3.1, our model architectures in Section 3.2, our masking
mechanism to enable scalable pre-training in Section 3.3, and our training objectives in Section 3.4.

3.1 DEGRADATION-FREE PRE-TRAINING WITH PARTIALLY FROZEN TEXT ENCODER

Learning video representations with the assistance of text dominates recent literature (Bain et al.,
2021; Ge et al., 2022a; Xue et al., 2023). There are two main lines of research: (i) Learning video
features under alt-text supervision, i.e., video caption. The alt-text is generally clean but hard to scale
up, e.g., WebVid-10M (Bain et al., 2021). (ii) Using the ASR transcripts as supervision which are
naturally tied with the video and easy to scale up, e.g., YT-Temporal (Zellers et al., 2021). Despite
some noise, transcripts generally provide temporal dependency that facilitates temporal reasoning.

Existing methods relying solely on alt-text (Bain et al., 2021; Ge et al., 2022a;b) achieve marginal
improvements in video tasks due to limited data availability. Subsequent works (Zeng et al., 2023;
Xue et al., 2023) focus on effectively utilizing large-scale ASR transcripts to enhance temporal
modeling in downstream tasks. Although fine-tuning yields impressive results, their out-of-the-
box video representations are degraded compared to pre-trained image counterparts, meaning the
zero-shot capability is inferior to simply aggregating frame-level image features. Recently, CLIP-
ViP (Xue et al., 2023) attributed this to the domain gap between ASR transcripts and downstream
captions and proposed using OFA-generated captions (Wang et al., 2022b) for training. However,
these generated captions do not effectively improve out-of-the-box video representation learning.
Our detailed empirical analysis is presented below.

An empirical study of video degradation. To identify the cause of video degradation and develop
a reliable solution, we meticulously design experiments with six different pre-training settings. The
out-of-the-box capability of the learned representations is evaluated using two zero-shot metrics:
top-1 action recognition accuracy on Kinetics-400 and text-to-video retrieval recall@1 on DiDeMo.

As shown in Table 1 L1-L2, the CLIP-ViP trained with OFA-generated captions experiences perfor-
mance degradation compared to the CLIP baseline. To analyze the domain gap impact, we create two
baselines from CLIP-ViT-B/32, i.e., Magr.Fan (using YT-Temporal) and Muj.pun (using WebVid-
2.5M), both optimized solely by the Video-Text Contrastive objective. Table 1 L3-L4 reveals that
Masr-run degrades more than CLIP-ViP on DiDeMo, while May..run achieves significant gains, par-
ticularly on Kinetics-400. When jointly trained on ASR and alt-text corpus as Mj.ran (Table 1 LS5),
it slightly outperforms CLIP-ViP due to better text quality but remains inferior to the CLIP baseline
on DiDeMo, suggesting that merely reducing the domain gap offers limited improvements and does
not fully address the degradation issue.
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Table 1: The top-1 accuracy on Kinetics-400 and recall@1 on DiDeMo w.r.t. different settings.
ZS, AR, and T2V denote zero-shot, action recognition, and text-to-video retrieval respectively. HD-
VILA-OFA denotes the OFA-generated caption for videos in HD-VILA-100M. The tests are done
with the ViT-B/32 models, and all variants are trained by the Video-Text Contrastive objective only.

Text Encoder Kinetics-400 DiDeMo

No. Method ASR Alt-text Tuning Strategy ~ (ZS AR)  (ZS T2V)
L1 CLIP X X X 427 (+0.0) 247 (+0.0)
L2 CLIP-ViP HD-VILA HD-VILA-OFA %X Full 37.0(-5.7) 22.6(-2.1)
L3 Masgrar  YT-Temporal X <5 Full 457 (43.0) 19.3 (-5.4)
L4 Mayra X WebVid-2.5M <5 Full 48.6 (+5.9) 28.4 (+3.7)
L5 Mappar  YT-Temporal WebVid-2.5M <5 Full 479 (+52) 242 (-0.5)
L6 Manrozen YT-Temporal WebVid-2.5M % Frozen 452 (+2.5) 21.9(-2.8)
L7 Masr-partiat Y T-Temporal X < Partial 48.1 (+5.4) 26.8 (+2.1)

L8 Manpatiat YT-Temporal WebVid-2.5M <" Partial 50.8 (+8.1) 29.8 (+5.1)

Considering that Mj.ran achieves the best performance while Muy.pan falls short, we draw two
conclusions: (i) Knowledge from alt-text-image pairs is more suitable for zero-shot video domain
inference, and (ii) The end-to-end tuning approach for the ASR corpus is suboptimal, causing catas-
trophic forgetting in the text branch and negatively impacting out-of-the-box performance. To test
this, we retrain May.pan With a fully frozen text encoder as Maji.prozen- However, the inferior results
in Table 1 L6 suggest that the pre-trained and frozen text encoder fails to fails to correctly capture
the language semantics and produces harmful learning targets.

Given the above observations, we come up with a simple yet effective training strategy, namely par-
tially frozen (PF), which freezes the shallow layers of the text encoder. Such a strategy promotes the
text encoder’s generalizability w.rz. different language registers with varying styles. The semantics
and structures of ASR transcripts are captured in deep layers, producing semantically meaningful
supervision signals to facilitate out-of-the-box video representation learning. In our practice, we
freeze the first three-quarters of layers, leaving other layers trainable. As demonstrated in Table |
L7-L8, the partially frozen models, i.e., MasRr-Partial and Maj.partial, Significantly outperform their
fully tuned counterparts (L3 and L5). Furthermore, Maj.partial achieves the best performance, sug-
gesting that pre-training with a partially frozen text encoder could well preserve the knowledge of
the CLIP-pretrained model and unleash it for learning strong out-of-the-box video representations.

3.2 MODEL ARCHITECTURES

To inherit the knowledge of pre-trained image foundation models, i.e., CLIP, we apply the dual-
stream framework, which consists of a visual encoder and a text encoder. We extend the visual
encoder to the video domain by equipping it with divided space-time attention following the practice
in Bertasius et al. (2021).

Video Encoder. We adopt the standard Vision Transformer (ViT) (Dosovitskiy et al., 2021) with Ly
layers as the video encoder and add divided space-time attention (Bertasius et al., 2021) in each layer
for spatiotemporal reasoning. Given 7" frames sampled from a video with a resolution of 3 x H x W,
we split each frame into patches of size P x P, then project them to a token sequence v € RTN*Dv |
where N = HW/ P? and v; € RPV denotes the i-th token with a dimension Dy . Next, learnable
spatial and temporal positional embeddings, denoted as E* € RN*Pv and E* € RT*PV | are added
to each token, i.e.,

o) = v,y + Bl +Ef (1)

where v, , denotes the x-th token sampled from the y-th frame. All x-th tokens sampled from
different frames are given the same spatial positional embedding, and all tokens belonging to the
y-th frame are given the same temporal positional embedding. Finally, a learnable [CLS] token
vo € RPV is concatenated at the beginning of the sequence, and we perform divided space-time
attention across the Ly, layers. The [CLS] token output by the Ly -th layer is further projected to a
D-dimensional shared space and used as our final video representation for out-of-the-box usage.

Text Encoder. The text encoder contains L stacked Transformer blocks. Following CLIP (Radford
et al., 2021), we adopt the casual attention mechanism. Similar to the visual branch, we project the
[CLS] token t( output by the last layer to the D-dimensional shared space as the final representation.
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3.3 SCALABLE PRE-TRAINING WITH MASKED VIDEO ENCODER

We aim to pursue scalable video representation learning with larger backbone architectures in or-
der to achieve better out-of-the-box capabilities. However, the token length, i.e., T' x N, is always
a bottleneck for scaling up video training due to spatiotemporal attention’s drastically increased
computational budget. The recent VideoMAEs (Tong et al., 2022; Wang et al., 2023) improve train-
ing efficiency by masking a high proportion of patches, significantly reducing the token length. A
similar practice was observed in image pre-training, i.e., FLIP (Li et al., 2023c). Inspired by their
success, we experiment with video pre-training at high mask ratios without reconstruction.

Specifically, we employed the tube masking approach introduced by VideoMAE (Tong et al., 2022)
because it’s compatible with divided space-time attention and can effectively diminish temporal
redundancy. Essentially, this method randomly blocks p% of patches from the same position across
various frames, resulting in a token length of TN (1 — p). For this study, we set p > 50%, translating
to at least half of the computational budget being reduced. This ensures our approach can be scaled
to models with billions of parameters.

3.4 TRAINING OBJECTIVES

Transcript Sorting (TS). Sorting the unordered transcripts given ordered video patches has been
proven effective for learning sophisticated spatiotemporal interaction (Zeng et al., 2023). In this
work, we further reveal the scalability of TS for training large models under a high mask ratio. Given
translated words and their timestamps {w;, ai}ﬁv:wl, where w; denotes the i-th word, a; denotes its
corresponding timestamp (in seconds), and N,, denotes the word number, we sample K transcript
segments {7}, }5_, of length [ (in seconds) with an interval of 1s between consecutive segments:

Lk = Lstart + (k - 1) * (l + 1) (2)

T, = {’LUZ|0,7, € [Lk,Lk + ”}
where Lg.¢ denotes a randomly picked starting time, and Lj, denotes the beginning time of the k-
th segments. Then we randomly shuffle the K segments to {7}, } X ,, where T, denotes the i-th
segment in the shuffled sequence corresponding to the ground-truth chronological order o;. As for
frame sampling, we follow TSN (Wang et al., 2016) to divide the overall interval, i.e., [L1, Lx +1],
into T" equal-space intervals and randomly sample 1 frame per interval.

After encoding sampled transcript segments and frames, we concatenate the text [CLS] tokens

{ts 1K | with all unmasked video tokens {vi}g\ép and perform joint attention across them. Next,
we send the attend text [CLS] tokens into a K-way classifier and predict their orders separately.
Finally, the transcript sorting objective is formulated as a cross-entropy:

K

1 exp(p,)
Lrs = — E —log ———"— 3)
K~ S exp(pt)

where p? € RX denotes the prediction for the i-th transcript segment in the shuffled sequence, pé-
indicates the probability that its chronological order is j, and o; represents the ground-truth order.

It is worth noting that the model may learn shortcuts, e.g., natural language order, without attending
to visual information. We prevent such cases from hurting training by stopping gradients flowing to
the text encoder, which forces the video model to provide well-learned spatiotemporal context.

Video-Text Contrastive. We adopt the widely-used Video-Text Contrastive (VTC) as the basic
objective for semantic alignment, which is formulated as:
ﬁVTC = NCE(%, Uo) + NCE(’U(),E)
exp(q"ky/T) 4)
> exp(qTki/T)

s.t. NCE(q, k) = —log

where T denotes the temperature, ¢ denotes the averaged text [CLS] token, i.e., t = % Zfil té,
and vy denotes the video [CLS] token. Note that vy only attends to the unmasked patches during
encoding. Our overall training objective is £ = Lyrtc + ALts, where A is a hyperparameter.
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Table 2: The zero-shot text-to-video retrieval results. T denotes using post-processing DSL (Cheng
et al., 2021). * means accessing extra modalities, e.g., audio. The underlined number indicates
absolute SOTA. Single-stream models are de-emphasized.

MSR-VTT DiDeMo LSMDC

Method Venue

R@1 R@5 R@10 MdR |[R@1 R@5 R@10 MdR |[R@1 R@5 R@10 MdR
Non-CLIP models
VideoCLIP (Xu et al., 2021) EMNLP’21 104 222 30.0 - 16.6 46.9 - - - - - -
Frozen (Bain et al., 2021) ICCV’21 18.7 39,5 51.6 10.0]|21.1 460 562 7.0 |93 220 30.1 510
ALPRO (Li et al., 2022a) CVPR’22 241 447 554 - | 238 473 579 - - - - -
VIOLET (Fu et al., 2021) arXiv’22 259 495 597 - | 235 498 5938 - - - - -
BridgeFormer (Ge et al., 2022a) CVPR’22 260 464 564 70 |256 506 61.1 50 |122 259 322 420
OmniVL (Wang et al., 2022a) NeurIPS’22 34.6 584 66.6 - 333 58.7 68.5 - - - - -
CLIP-B/32
CLIP (Radford et al., 2021) ICML’21 306 544 643 4.0 |247 493 609 60 |13.6 279 355 320
CLIP-straight (Portillo et al., 2021) MCPR’21  31.2 53.7 642 4.0 - - - - 11.3 227 292 565
CLIP4Clip (Luo et al., 2022) NC’22 320 57.0 669 4.0 - - - - 15.1 285 364 28.0
BridgeFormer (Ge et al., 2022a) CVPR’22 332 580 686 4.0 - - - - 155 30.7 38.7 220
CLIP-ViP (Xue et al., 2023) ICLR’23 29.0 512 613 50 |226 439 564 70 |11.3 253 313 38.0
Ours-B/32 - 345 585 67.7 35 312 569 683 40 16.1 30.6 38.7 250
Ours-B/321 - 364 580 69.0 3.0 370 616 709 3.0 156 31.8 38.6 22.0
CLIP-B/16
CLIP (Radford et al., 2021) ICML’21 31.8 539 645 4.0 277 510 625 50 |152 29.7 37.6 250
CLIP-ViP (Xue et al., 2023) ICLR’23 31.7 53.8 632 4.0 |24.6 50.7 59.7 50 |125 26.1 333 39.0
UMT-B (Li et al., 2023b) ICCV’23 29.6 52.8 619 - 1334 583 670 - 16.8 30.5 37.6 -
Ours-B/16 - 359 612 713 3.0 334 601 706 30 169 315 382 220
Ours-B/167 - 378 629 724 3.0 390 639 726 3.0 183 33.7 419 19.0
Larger Models
ImageBind* (Girdhar et al., 2023) CVPR’23 36.8 61.8 70.0 - - - - - - - - -
InternVideo (Wang et al., 2022¢)  arXiv’'22 400 653 741 20 [31.5 576 682 30 |17.6 324 402 230
UMT-L (Li et al., 2023b) ICCV’23 333 58.1 66.7 - 1340 604 687 - |20.0 37.2 437 -
Ours-L/14 - 369 62.0 729 3.0 [339 599 710 3.0 17.1 323 40.6 200
Ours-L/14f - 40.1 626 735 3.0 |383 626 725 3.0 193 362 431 170
Ours-H/14 - 382 624 732 3.0 346 619 715 30 173 325 414 200
Ours-H/14 = 413 630 740 2.0 (395 63.6 731 3.0 20.0 378 48.6 11.0

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Pre-training Datasets. We jointly pre-train our model on two datasets: (a) YT-Temporal (Zellers
et al., 2021) contains 6M YouTube videos with ASR transcribed words and timestamps. (b)
WebVid-2.5M (Bain et al., 2021) contains 2.5M alt-text-video pairs. Since the timestamps are
unavailable, we only perform VTC on it.

Text-to-Video Retrieval. We evaluate zero-shot performance of our model on three benchmarks: (a)
MSR-VTT (Xu et al., 2016a). (b) DiDeMo (Anne Hendricks et al., 2017). (c) LSMDC (Rohrbach
etal., 2015). The Recall@K (R@K) and Median Rank (MdR) are reported as the evaluation metric.

Action Recognition and Anomaly Detection. Six benchmarks are used for evaluating zero-shot
performance: (a) HMDB-51 (Kuehne et al., 2011), (b) UCF-101 (Soomro et al., 2012), (c) Kinetics-
400 (Kay et al., 2017) (K400), (d) Kinetics-600 (Carreira et al., 2018) (K600), (e) SSV2 (Goyal
etal., 2017), (f) UCF-Crime (Sultani et al., 2018) (Crime). Following Xue et al. (2023), we use the
prompt template “a person [CLASS]” for the first four datasets and evaluate SSV2 on a multi-choice
setting, namely SSV2-MC. As for the anomaly detection benchmark, i.e., UCF-Crime, we use the
prompt template “a video of [EVENT]” to recognize the anomaly events. See Appendix for details.

4.2 IMPLEMENTATION DETAILS

We inherit weights from CLIP (Radford et al., 2021) for the standard ViT modules and initialize
the parameters of time attention with zeros (Bertasius et al., 2021). We sample K = 4 transcript
segments for the transcript sorting task, and 7' = 12 frames with an input resolution of 224 x 224
for pre-training and downstream tasks. The masking ratio p is set to 50% for ViT-B/16 and 70% for
ViT-H/14, and we do not mask patches for ViT-B/32. All hyper-parameters are listed in Appendix.

4.3 MAIN RESULTS

Text-to-Video Retrieval. The zero-shot retrieval results are reported in Table 2. Compared to pre-
vious dual-stream SOTA, our model reaches an absolute gain of 1.4%, 6.9% and 1.8% in terms of
R@1 on MSR-VTT, DiDeMo, and LSMDC, respectively. Using post-processing techniques like
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Table 3: The zero-shot action recognition and anomaly detection results of top-1 accuracy. The
underlined number indicates absolute SOTA. Single-stream models are de-emphasized. “Our impl.”
denotes we use official pre-trained weights for evaluation. UMTyy, refers to dual-stream style in-
ference using UMT’s vision and text encoder.

Method Venue Cite From  Params HMDB-51 UCF-101 K400 K600 SSV2-MC Crime
Non-CLIP models
MTE (Xu et al., 2016b) ECCV’16  X-CLIP 19.7 15.8 - - - -
ASR (Wang et al., 2017) ECML'17 X-CLIP 21.8 24.4 - - - -
ZSECOC (Qin et al., 2017) CVPR’17  X-CLIP 22.6 15.1 - - - -
UR (Zhu et al., 2018) CVPR’18  X-CLIP s 24.4 17.5 - - - -
TS-GCN (Gao et al., 2019) AAAT'19  X-CLIP S 232 342 - - - -
E2E (Brattoli et al., 2020) CVPR’20 X-CLIP N 32.7 48.0 - - - -
ER-ZSAR (Chen et al., 2021)  ICCV’21 X-CLIP v 353 51.8 - 421 - -
ClipBert (Lei et al., 2021) CVPR’21 BridgeFormer 20.0 27.5 - -
Frozen (Bain et al., 2021) ICCV’21 BridgeFormer 27.5 45.4 - - - -
BridgeFormer (Ge et al., 2022a) CVPR’22 BridgeFormer 38.0 51.1 - - -
CLIP-B/16
CLIP (Radford et al., 2021) ICML’21  Our impl. 432 689 48.0 624 296 255
ActionCLIP (Wang et al., 2021) arXiv'21 X-CLIP g 40.8 58.3 - - - -
X-CLIP (Ni et al., 2022) ECCV’22  X-CLIP 5] 44.6 72.0 - 652 - -
CLIP-ViP (Xue et al., 2023) ICLR’23  Our impl. Vv 41.2 589 37.6 467 355 19.1
UMTgyq (Li et al., 2023b) ICCV’23  Our impl. 32.7 464 341 440 235 -
Ours-B/16 - - 50.4 69.8 543 68.1 421 28.2
Larger Models
ImageBind (Girdhar et al., 2023) CVPR’23  ImageBind 2;21]]\\/[4 E}r/; 500 - - -
X-Florence (Ni et al., 2022) ~ ECCV’22  X-CLIP izm ‘(\I; 48.4 732 - 688
632M (V)
Ours-H/14 - - Somey 21 TS0 596 732 484 309
39 — 40
Table 4: The zero-shot text-to-video retrieval re- 5 —— 3 -
sults w.r.t. different objectives. “sg” denotes stop- ) B ——— © ol S —
. . o
ping gradients. &30 £
MSR-VIT DiDeMo LSMDC 27
Name L:VTC ETS 58 50%" 60% 70% 80% 200 37 6 9 12
R@l R@5 R@l R@5 R@] R@5 (a) Masking Ratio, p (b) Tuneable Layer, L.
CLIP n/a n/a n/a 30.6 544 247 493 13.6 279 e . . .
Mye ¢ X nfa 330 567 298 555 152 293 Table 5: The sensitivity of (a) masking ratio
Myose v v X 319 562 292 549 149 289 p, (b) tuneable layer Ly,.. Default settings
ours V' v v 345 585 312 569 16.1 30.6

are marked with 1.

DSL (Cheng et al., 2021) further boosts performance. It is worth noting that we achieve comparable
performance with single-stream models, e.g., InternVideo (Wang et al., 2022¢), which uses a fusion
module to encode multimodal entangled representations, thereby incapable of out-of-the-box usage,
i.e., producing video-only representations. Moreover, the solid result further verifies the effective-
ness of the degradation-free pre-training strategy, especially given the fact that CLIP-ViP (Xue et al.,
2023) degrades and CLIP4Clip (Luo et al., 2022) only makes marginal improvement.

Action Recognition and Anomaly Detection. We report the zero-shot action recognition results in
Table 3. Our model brings significant improvements, i.e., 8.9%, 9.1%, 11.6%, 10.8% and 12.9% ab-
solute gain on HMDB-51, UCF-101, K400, K600, and SSV2-MC, respectively. The prompt-based
method, i.e., ActionCLIP (Wang et al., 2021), also degrades on this test, possibly due to overfitting
to manually constructed templates. When it turns to larger models, we even surpass X-Florecnce (Ni
et al., 2022), a single-stream model with comparable video encoder parameters, by a large margin,
revealing the superior scalability of our training paradigm. To make a fair and meaningful com-
parison with single-stream models, we remove the cross-modal encoder of UMT and directly use
the features outputted by the text and visual branch, namely UMTg,,. The worst performance indi-
cates that it is incapable of out-of-the-box usage. Even for the challenging SSV2-MC that contains
various motion dynamics, our model still achieves promising results, solidifying the contribution of
masked transcript sorting that promotes fine-grained spatiotemporal representation learning. As for
anomaly detection, our models also made remarkable improvements compared to the CLIP baseline
and CLIP-ViP on Crime, unveiling their adaptability and generalizability. We also provide the liner
classification results in Appendix, where we beat either self-supervised or language-guided models.

4.4 ABLATION STUDY

Considering efficiency, all ablations are based on the ViT-B/32 model if no specified.
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Training Objectives. We first analyze the impact of each training objective in Table 4 and reach
the following conclusions: (i) My, outperforms the CLIP baseline, implying that both ASR tran-
scripts and alt-texts are reliable supervision that benefits video representation learning. (ii) Moy
outperforms Mpase, while My, s underperforms. It indicates that without stopping gradients flow-
ing to the text encoder, the model turns to learn shortcuts, in other words, optimize the transcript
representation to ease the sorting task. The wrong optimization direction harms training efficiency.
Instead, My, encourages enhancing spatiotemporal representation to provide enough knowledge
for transcript sorting, remarkably improving the performance.

Masking Ratio. We report the Recall@1 under different masking ratio p in Table 5 (a) based on
the ViT-B/16 model. Given the same training steps, smaller ps lead to better performance due to
the more learned tokens. We imply that over-masking makes it too hard for the model to capture
enough visual semantics despite more training efficiency. As a result, for different scales of models,
we need to find a proper masking ratio that could trade off the performance and training cost.

Tuneable Layer. The performance in terms of different tuneable layers Ly, (count from the last
layer) for the text encoder is reported in Table 5 (b). Lune = 0 equals to fully freeze the text encoder,
and Lyne = 12 means fully fine-tuning. Both Ly, = 0 and Ly, = 12 lag far behind partially
freezing the text encoder, verifying the effectiveness of the proposed degradation-free pre-training
strategy, which preserves the image foundation model’s pre-learned knowledge while unleashing it
to learn powerful out-of-the-box spatiotemporal representation.

Generaliability. We further transfer our train- Typle 6: The zero-shot R@1 on DiDeMo and
ing framework to HowTolOOM Miech et al.  top-1 accuracy on Kinetics-400 w.r.z. different
(2019), which consists of 1.2M videos paired  datasets and training strategies. WYV, YT, and
with ASR transcripts, and employ CLIP-B/16  HT are short for WebVid, YT-Temporal, and
with a masking ratio of 50% for training. HowTol100M, respectively. FT denotes full tune,
Table 6 reports the results, with FT repre- 3nd PF denotes partial freezing.
senting full tuning and PF denOting partially Name Alt-texts ASR Transcripts ASR Domain DiDeMo Kinetics-400
freezing. The effectiveness of partial freez- 7., WV2SM  YTSM o 27.4 49.7
ing on HowTolOOM is evident when com- Myrer = ™ pen 334 54.3
paring Murpr and Myrpr. For FT variants, Metft wvosv HTI2M  Instrutional 205 517
Mur-pr 322 52.9
Myrpr underperforms Myrpr due to greater
ASR noise and more severe text distortion. However, when using partial freezing, Myrpp signifi-
cantly outperforms Myt pr as it benefits from a larger dataset. This suggests that our partial freezing
strategy is advantageous for scaling up video training data and practical for pre-training.

Similar patterns are observed across differ- Taple 7: The zero-shot evaluation results using

ent visjon models. For instance, we replace ResNet-50 as the vision model. FT denotes full
ViT with ResNet-50, keep the text branch un-  yne_ and PF denotes partial freezing.

?rhabrllge;i, and train tl}lle modells for htwo‘ epoc}llls. ethod MSR.VTT Kinetics-400 _SSV2-MC
able / presents the results, showing that R@1 R@5 MdR |Top-1 Top-5|Top-1 Top-5
ResNetS0-FT trails ResNet50-PE, which em-  ReNeis0rr 170 376 120] 277 562 | 226 468
ploys the partially frozen strategy, by a consid- ~ ResNet50p: 20.0 41.6 10.0 | 31.6 58.9 | 249 49.9
erable margin. The differences are expected to be even more significant when training for longer
epochs. These results demonstrate the strong generalizability of our proposed training scheme.

5 CONCLUSION

In this work, we pursue out-of-the-box spatiotemporal visual representations with a newly proposed
TVTSv2. Compared to TVTS (Zeng et al., 2023), we introduce a degradation-free pre-training strat-
egy to solve the representation degradation from the pre-trained image foundation model, which is
actually non-trivial given the failure of previous models (Xue et al., 2023; Wang et al., 2021). We
further adopt the masking technique (Li et al., 2023c) to improve scalability. With TVTSv2, we
train several models with up to one billion parameters, achieving SOTA results in terms of zero-
shot and linear probe evaluation on various video tasks. Notably, our model even surpasses or is
competitive with those trained on more data or modality, e.g., InternVideo (Wang et al., 2022c) and
ImageBind (Girdhar et al., 2023). In a nutshell, we make a step towards learning out-of-the-box spa-
tiotemporal visual representation despite some limitations: (i) Though performance improvements
on the benchmark, the emergent abilities are not present yet. (ii) The largest model studied in this
paper is still far from the SOTA model in the image domain (i.e., ViT-22B (Dehghani et al., 2023)).
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A  DOWNSTREAM TASKS

Text-to-Video Retrieval. The statistics of the three zero-shot text-to-video retrieval benchmarks are
listed as follows: (a) MSR-VTT (Xu et al., 2016a) consists of 10K videos harvested from YouTube,
and there are around 200K descriptions. We follow prior works (Luo et al., 2022; Xue et al., 2023;
Wang et al., 2022c) to conduct evaluations on the 1K-A test set. (b) DiDeMo (Anne Hendricks et al.,
2017) consists of 10K Flickr videos with around 40K sentences. Following Luo et al. (2022); Ge
etal. (2022a); Bain et al. (2021), we concatenate all sentences that describe the same video to form a
single query and conduct paragraph-to-video retrieval. Specifically, we do not crop and concatenate
the localized moments but directly use the whole video in the retrieval set, as done by (Ge et al.,
2022a; Bain et al., 2021). (c) LSMDC (Rohrbach et al., 2015) has 118,081 videos cropped from
202 movies. The evaluation protocol follows Zeng et al. (2023); Ge et al. (2022a), where the test set
contains 1,000 videos.

Action Recognition and Anomaly Detection. The statistics of the six benchmarks are listed as
follows: (a) HMDB-51 (Kuehne et al., 2011) contains 5K videos of 51 action categories. The
training and test sets have 3.5K and 1.5K videos, respectively. (b) UCF-101 (Soomro et al., 2012)
contains 13K videos of 101 action categories. The training set has 9.5K videos, and the test set has
3.5K videos. (c) Kinetics-400 (Kay et al., 2017) is a large-scale dataset with 260K videos belonging
to 400 categories, where 240K videos are used for training, and 20K videos are used for validation.
(d) Kinetics-600 (Carreira et al., 2018) has 480K videos belonging to 600 categories. The training,
validation, and test sets have 390K, 30K, and 60K videos, respectively. (e) SSV2 (Goyal et al.,
2017) consists of 189K videos showing humans performing 174 pre-defined fine-grained actions
with everyday objects. The training set has 169K videos, and the validation set contains 20K videos.
(f) UCF-Crime (Sultani et al., 2018) consists of 1.9K long untrimmed surveillance videos that cover
13 real-world anomalies. We evaluate the performance on the official test split.

In zero-shot action recognition, we follow the prior work (Radford et al., 2021) to use the prompt
template ““a person [CLASS]” for HMDB-51, UCF-101, Kinetics-400, and Kinetics-600, where the
cosine similarity is calculated between all video-category pairs for classification. As for SSV2, we
turn it into a multi-choice task, namely SSV2-MC. For each video, we randomly pick 173 negative
descriptions from other categories (one per category) and put them along with the ground-truth one
into a candidate set. The model is expected to retrieve the right one from the 174 candidates. For
UCF-Crime, we use the prompt template “a video of [EVENT]” to recognize the anomaly events
in a zero-shot action recognition manner.

B IMPLEMENTATION DETAILS

We use AdamW (Loshchilov & Hutter, 2018)
as the optimizer with a weight decay of 0. 05
The initial learning rates are set to be 1 x 1074

and 1 x 10~ for the newly added modules and
the origin CLIP modules, respectively. We fix
the weight parameter A in £ to be 2 for roughly
scaling the gradient magnitudes of Lyyc and
Lts to be the same. For the text encoder of
all models, we freeze the first three-quarters
of layers, leaving other layers trainable. Due
to computation source limitation, we vary the
batch size for different models, and all hyper-
parameters are listed in Table 8. For our ViT-

Table 8: The hyper-parameters for pre-training
and liner probe.

config pre-training linear probe

B/32 B/16 H/14 all models
optimizer AdamW SGD
weight decay 0.05 0
training epochs 10 5 100
Jearning rate 1 x 10~* (new modules) 01

1 x 10~ (CLIP modules) )

batch size 768 768 160 512
frozen text layers 1-9 1-18 n/a
input frames 12 12
masking ratio 0 50 70 0
augmentation RandomCrop CenterCrop
GPU for training 32 VI00 64 V100 80 V100 16 V100

B/32 and ViT-B/16 models, we load the weights released by OpenAl (Radford et al., 2021). As
for the largest ViT-H/14 model, we inherit weights from OpenCLIP (Schuhmann et al., 2022). The
detailed model architectures are listed in Table 9.

For masking ratio selection, according to our experiments, when keeping the training steps consis-
tent, a larger ratio of masking could only degrade the performance rather than bring extra gains, as
shown in Table 10. We select mask ratios according to the principle that achieving optimal perfor-
mance with affordable resources. Note that we use the same mask ratio in all our ablation studies to
rule out the potential impact of this factor and conduct fair comparisons.
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Table 9: Our detailed model architectures. “Embed” and “Hidden” denote the dimension of the
shared and hidden representations, respectively.

Video Encoder Text Encoder
Layers Params Hidden Patch GFLOPs Layers Params Hidden GFLOPs

B/32  149M 512 72 12 86M 768 32x32 69 12 63M 512 3
B/16  149M 512 281 12 86M 768 16 x16 278 12 63M 512 3
H/14 1.0B 1024 2674 32 632M 1280 14 x 14 2650 24 354M 1024 24

Model Params Embed GFLOPs

Table 10: The training configuration w.r.t. different masking ratios. We report zero-shot R@1 on
MSR-VTT for reference. BS denotes the overall batch size. Each V100 has 32 GB memory.

Method Masking Ratio BS GPU BS GPU Mem Overall GPU GFLOPs MSR-VTT

CLIP-B/16 n/a n/a n/a n/a n/a 278 31.8
50% 12 275GB_ 64VI00 138 35.9
60% 16 200GB  48VI00 110 35.7
Ours-B/16 70% %% 24 310GB  32VI00 82 35.0
80% 32 292GB  24V100 s5 345

C DI1VIDED SPACE-TIME ATTENTION

In this section, we describe the divided space-time attention in our video encoder detailedly. As
illustrated in Figure 3, for the intra-frame tokens, i.e., spatial-related tokens, we add the same spatial
positional embeddings, and for tokens at the same position across different frames, i.e., temporal-
related tokens, we add the same temporal positional tokens. For each token, it first attends to the
temporal-related tokens, then attend to the spatial-related tokens. Note that the [CLS] token is
attended in both temporal and spatial self-attention.

D ADDITIONAL EXPERIMENTS

Pre-training Data Comparison. We have listed the pre-trained datasets and their scales in Table 11
for a clear comparison. Generally speaking, models are expected to achieve better performance with
an increasing number of training data given the same training recipe. However, the performance
does not always improve since more data bring more noise. Moreover, video data with curated
alt-text, e.g., WebVid, is generally hard to scale up. Therefore, it is important to study scalable
and robust training schemes (our motivation) that can learn from large-scale noisy video data with
naturally associated text knowledge, e.g., ASR transcripts.

Computational and Memory Analysis. We provide a detailed computational and memory analysis
during both training and inference in Table 12. During the training phase, we optimized the batch
sizes to fully utilize available GPU memory. Our analysis, especially the GFLOPs comparison be-
tween the video and text encoders, reveals that the most computationally intensive part is video
encoding, particularly the spatiotemporal attention module. However, the use of an efficiently de-
signed divided space-time attention mechanism ensures that even our largest model, i.e., ViT-H/14,
can be run on consumer-level GPUs like the RTX 3090, thanks to its relatively modest memory
requirements during inference.

Direct Evidence for Text Distortion and Typle 14: The top-1 accuracy (%) on Yahoo

Catastrophic Forgetting. We further provide ~ Answers and average training loss for different
direct evidence linked to the distortion and epochs (EP). The tests are done with the officially
catastrophic forgetting in Table 14. We ob- (eleased ViT-B/32 models.

serve that: (i) Man.ran fits the ASR data bet-  Method  Top-1 Ace. Loss EP1. Loss EP3. Loss EPS.
ter than Maj.partial given the smaller losses for CLIP 5761 (:000)  ma /a o/a
epochs 1/3/5. (ii) However, Myj.pun Captures My pa  56.90 (0.71)  9.76 8.43 7.99
worse semantics given the lower test accuracy  Mampatiar 58.92 (+1.31)  10.75 9.00 8.62

in terms of linear text classification on Yahoo

News (Zhang et al., 2015) (another language register than ASR). It indicates that the fully tuned
M -ran indeed overfits to ASR styles and loses its generalization ability, as we claimed.
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(a) An illustration of divided space-time attention

T Zero initialization
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Divided Space-Time Attention Block X LV

(b) The detailed structure of the divided space-time attention block

Figure 3: (a) We illustrate the divided space-time attention. For the orange token, it attends to
tokens belonging to the same frame, i.e., spatial-related tokens, and tokens in the same position
across different frames, i.e., temporal-related tokens, as well as the [CLS] token. (b) The structure
of the divided space-time attention block, where we initialize the parameters of the temporal self-
attention module with zeros and inherit weights from CLIP for the spatial self-attention and MLP.

Linear Classification Results. In addition, we provide the linear classification results in Table 13,
where we optimize a linear classifier added on top of the frozen visual encoder. We surpass ei-
ther self-supervised or language-guided models. Notably, we find the linear accuracy of Video-
MAE (Tong et al., 2022) and VideoMAEV2 (Wang et al., 2023) lags far behind other models. It
implies that representation learned by MAE-style objectives concentrates on the pixel level instead
of the semantic level, making them impractical for learning general-purpose features. By contrast,
with the aid of language supervision, our model is capable of out-of-the-box transferring and retains
training efficiency like MAE variants.

Fine-tuning Results. While the primary ob-  Taple 15: The fine-tuning performance on

jective of this paper is to promote out-of-the-  DiDeMo and LSMDC. All baselines are based on
box spatiotemporal representation learning, we  the ViT-B/32 model.
also investigate whether this training frame- DiDeMo  LSMDC

. . . Method
work negatively impacts the fine-tuning perfor- R@1 R@10 R@L R@10
mance using the ViT-B/32 model. The results

can be found in Table 15, where our TVTSv2 CLIPAClip (Luo et al., 2022) 43.4 80.6 21.6 49.8

. X CenterCLIP (Zhao et al., 2022) - - 21.7 498
attains state-of-the-art results, suggesting that  xpool (Gorti et al., 2022) B} . 227 512
the proposed training approach plays a role in  CLIP2TV (Gaoetal,, 2021) 455 80.6 - -
enhancing the fine-tuning performance to a cer-  Ours 455 821 24.0 541

tain degree.

Comparison between Adapter-wise Tuning Taple 16: The zero-shot text-to-video retrieval re-
and Partial Freezing on Text Encoder. Toun-  gyjts on MSR-VTT w.rt. different textual training
derscore the importance of partial freezing, we  gtrategies. PF denotes partial freezing, and adapter
introduce a ViT-B/32-based alternate baseline, denotes freezing the original parameters and plug-
integrating adapters (Houlsby et al., 2019) be-  ging adapters between layers.

tween text encoder layers, denoted as M,gapter-

During training, onl)}ll the adapter—introduzed Method R@1 R@5 R@10 MdR
parameters are trainable. The MSR-VTT re- CLIP 30.6 544 643 4.0
trieval results, detailed in Table 16, show that Mpr 34.5 58.5 67.7 3.5
this alternative method yields comparatively

lower performance. This outcome reinforces Maaper 288 548 657 4.0
our assertion that end-to-end tuning can cause style overfitting, even when the text encoder remains
unaltered. It also confirms that our approach of partially frozen tuning is not just a superficial fix,
but a substantive and effective solution to the identified problem.
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Table 11: The pre-training datasets of different methods. WV2.5M, K400, and K700 are short
for WebVid-2.5M, Kinetics-400 and Kinetics-700, respectively. We only count the actual videos
instead of the split clips. * means accessing extra modalities, e.g., audio. Single-stream models are
de-emphasized. We report zero-shot R@1 on MSR-VTT for reference.

Method Pre-training Datasets # Videos/Images MSR-VTT
Non-CLIP models
VideoCLIP HowTo100M 1.2M 10.4
Frozen CC3M + WV2.5M 5.5M 18.7
ALPRO CC3M + WV2.5M 5.5M 24.1
VIOLET YT-Temporal + WV2.5M + CC3M 11.5M 259
BridgeFormer CC3M + WV2.5M 5.5M 26.0
COCO + VG + CC3M
OmniVL + CCI2M + SBU + WV2.5M ~16.5M 34.6
+ ImageNet-1K + K400
CLIP-B/32
CLIP-B/32 WIT 400M 30.6
CLIP-straight WIT 400M 31.2
CLIP4Clip WIT + HowTo100M-380k 400M + 380K 32.0
BridgeFormer WIT + CC3M + WV2.5M 400M + 5.5M 33.2
CLIP-ViP WIT + HD-VILA-100M 400M + 3.3M 29.0
Ours-B/32 WIT + YT-Temporal + WV2.5M 400M + 7.5M 34.5
CLIP-B/16
CLIP-B/16 WIT 400M 31.8
CLIP-ViP WIT + YT-Temporal + WV2.5M 400M + 3.3M 31.7
UMT-B WIT + K700 + CC3M + WV2.5M 400M + 6.15M 29.6
Ours-B/16 WIT + YT-Temporal + WV2.5M 400M + 7.5M 359
Larger Models
ImageBind* LAION-400M + Various Datasets 400M +? 36.8
. WIT + LAION-100M + WebVid2.5M 5 )
InternVideo + WebVid10M + HowTol00M 400M + 113.7M  40.0
UML-L WIT + K700 + CC3M + WV2.5M 400M + 6.15M 333

Ours-H/14 ~ LAION-400M + YT-Temporal + WV2.5M 400M + 7.5M 38.2

Table 12: The computational and memory analysis during training and inference. “BS” denotes the
batch size. V-GLOPs and T-GLOPs refer to GFLOPs corresponding to the video and text encoder.

Model Training BS x GPU Training Mem Inference Mem V-GFLOPs T-GFLOPs

B/32 24 x 32 30.2GB 3.3GB 69 3
B/16 12 x 64 27.5 GB 4.5 GB 278 3
H/14 2 x 80 31.3GB 8.8 GB 2650 24

The Partial Freezing Effects on Video En- Table 17: The zero-shot text-to-video retrieval re-
coder. Since it is natural to question if video sults on MSR-VTT w.rz. different visual train-
distortion happens in the visual branch, we ing strategies. “FT” denotes full tune, “PF” de-
conduct such experiments and report results notes partial freezing, and “AIM” denotes plug-
on MSR-VTT in Table 17. We consider two ging AIM adapters between frozen layers.
variants: (i) Mvisual PF that partlally freezes Method R@1 R@5 R@10 MdR
the image encoder. (ii) Mapv that embraces
a parameter-efficient fine-tuning method, i.e., Muisual FT 345 585 67.7 3.5
AIM (Yang et al., 2023), in which adapters are Myisual PR 325 563 65.9 4.0
inserted into the frozen image encoder. All Myisuaaiv 31.0 544 66.3 4.0
models adopt ViT-B/32 as the backbone, and
the text encoder is partially frozen.

We observe that partially freezing visual models does not help. The performance is inferior to the
original one with a fully tuned visual encoder. It indicates that the visual branch does not suffer
from “video distortion”, and for pre-training with large-scale data, it is beneficial to leave all visual
parameters trainable to better capture temporal knowledge and pursue stronger representations.
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Table 13: The linear action recognition results of top-1 accuracy.

We de-emphasize DI-

NOvV2 (Oquab et al., 2023) because it uses a larger model than ours, i.e., ViT-g/14. “Our impl.”
denotes we use official pre-trained weights for evaluation.

Method Venue Cite From Supervision Params HMDB-51 UCF-101 Kinetics-400
MemDPC (Han et al., 2019) ECCV’20 SVT 30.5 54.1 -
CoCLR (Han et al., 2020) NeurIPS’20 SVT 52.4 77.8 -
Vi2CLR (Diba et al., 2021) ICCV’21 SVT 473 754 63.4
VideoMoCo (Pan et al., 2021) CVPR’21 SVT § 49.2 78.7 -
CVRL (Qian et al., 2021) CVPR’21 SVT = < 57.3 89.2 67.6
DINO (Caron et al., 2021) ICCV’21 DINOv2 n Y - 85.0 64.5
SVT (Ranasinghe et al., 2022) CVPR’22 SVT 57.8 90.8 68.1
iBOT (Zhou et al., 2022) ICLR’22 DINOv2 - 88.6 72.6
VideoMAE-B (Tong et al., 2022)  NeurIPS’22 Our impl. 30.9 52.7 204
DINOv2-g (Oquab et al., 2023) arXiv’'23 DINOv2 1.0B - 91.2 78.4
VideoMAEV2-H (Wang et al., 2023) CVPR’23  Our impl. 632M 34.1 56.4 25.8
CLIP-B/16 (Radford et al., 2021) ICML’21 Our impl. 62.8 87.6 66.9
Frozen (Bain et al., 2021) ICCV’21  Our impl. 5 57.8 88.7 62.9
MERLOT (Zellers et al., 2021) NeurIPS’21 MERLOT 3 s 49.6 74.9 -
BridgeFormer (Ge et al., 2022a) CVPR’22  Our impl. %ﬁ = 60.7 89.2 65.6
MILES (Ge et al., 2022b) CVPR’22  Our impl. — - 60.0 89.6 64.0
TVTS (Zeng et al., 2023) CVPR’23  Our impl. Vv 60.1 87.6 60.8
Ours-B/16 - - 64.7 90.0 70.1
Ours-H/14 - - 632M 65.7 91.8 73.1

Robustness Evaluation.  Since robustness
plays an important role in developing founda-
tion models, we further test the performance
under noisy or incomplete data by randomly
masking some patches in each frame during in-
ference. The retrieval performance under dif-
ferent masking ratios on MSR-VTT is reported
in Table 18. Thanks to the masked contrastive
pre-training, our models are robust to data cor-
ruption. Impressively, even minor data distor-
tions, such as 10% or 20% masking, do not sig-
nificantly impact performance. More notably,
our models demonstrate commendable robust-

Table 18: The performance under corrupted data

on MSR-VTT.
Model Masking Ratio R@1 R@5 R@10 MdR
0 359 612 713 3.0
10 354 611 710 3.0
B/16 20 350 606 704 3.0
50 3.6 60.0 699 3.0
0 382 624 732 30
10 373 621 727 3.0
H/14 20 360 61.6 721 3.0
50 352 604 701 3.0

ness, maintaining considerable effectiveness even under substantial data incompleteness, with a
masking ratio as high as 50%. This clearly underscores the reliability and adaptability of our models

in handling corrupted data scenarios.

Temporal Module Initialization. We analyze
the proper way to instantiate temporal modules
based on the ViT-B/32 model. Since both the
attention architecture and initialization weights
are essential to the final performance, we fur-
ther supplement a baseline of joint attention.
As shown in Table 19, joint attention performs
worst because the simple extension of attention
range hurts the spatial prior. Besides, initializ-
ing temporal attention weights with zeros beats
its random initialization competitor by a large

Table 19: The zero-shot text-to-video retrieval
different attention mecha-
nisms and initialization strategies.

results of R@1 w.r.t.

Attention Initialization MSR-VTT DiDeMo
Joint CLIP 30.8 28.8
Divided S: CLIP
Space-Time T: random 312 293
Divided S: CLIP
Space-Time T: zero 34.5 31.2

margin, indicating that growing temporal reasoning ability out of nothing avoids hurting the well-
learned spatial prior, thus more suitable for training video foundation models.

Comparison with TVTSvl. We further com-
pare with TVTS (Zeng et al., 2023), which fo-
cuses on linear and fine-tuning tasks and adopts
a weak initialization. As shown in Table, TVTS
is not good at cross-modal retrieval and our
TVTSv2 demonstrates great superiority.

Table 20: The zero-shot retrieval results w.r.t.

TVTS and TVTSv2.

MSR-VTT

Method

DiDeMo

LSMDC

R@] R@5 MdR

R@] R@5 MdR

R@] R@5 MdR

TVTS-B/16

18.1 38.5 12.0
TVTSv2-B/32 345 585 3.5
TVTSv2-B/16 359 612 3.0
TVTSv2-H/14 413 63.0 2.0

18.6 39.0 10.0
312 569 4.0
334 60.1 3.0
39.5 63.6 3.0

8.6 21.5 550
16.1 30.6 25.0
169 315 22.0
20.0 37.8 11.0

19



Under review as a conference paper at ICLR 2024

g cup upside down

DiDeMo caption: the bird begins to eat the bread

Figure 4: The self-attention map of the visual [CLS] token. Note that it does not involve cross-modal
alignment. The captions are for reference only and are not used for attention maps. All crucial
objects involved in the temporal interaction are captured precisely, which indicates our model’s
powerful ability to produce general-purpose features.

Attention Visualization. We visualize the zero-shot self-attention map of the visual [CLS] token on
different datasets in Figure 4. The critical objects involved in the temporal interactions are captured
precisely, indicating our model’s strong out-of-the-box ability intuitively.

E BROADER IMPACT

The negative social impacts of our model may lie in intensifying global warming because of the large
amount of carbon emission produced by GPU clusters. Though the pre-training phase is energy-
consuming, the model can be used out-of-the-box, saving the potential carbon emission in fine-
tuning. Since the model produces general-purpose representations, it might also raise the risk of
abuse, such as unauthorized biometric recognition. In addition, it is our duty to guarantee there is
little bias when releasing the foundation models. We have checked the accuracies corresponding to
different sexes/races are comparable, indicating there is little risk of model bias.
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