LexiCon: Lexically Constrained Review Generation via Robust Insertion

Anonymous ACL submission

Abstract

Existing review generators struggle to gener-
ate specific information correctly (e.g., Caesar
salad, Snapdragon CPU), which prevents gen-
erated reviews from being more informative.
In this paper, we propose to introduce lexical
constraints into review generation which can
be any key phrases to be contained in reviews.
Compared to soft constraints (e.g., aspects)
used in previous work, lexical constraints eas-
ily incorporate specific information which can
largely improve the diversity and informative-
ness of generated reviews. To this end, we
present LEXICON, a novel insertion-based re-
view generation framework that can generate
personalized reviews containing lexical con-
straints. Specifically, the proposed method pro-
gressively inserts new tokens between existing
tokens in a parallel manner until a sequence
is completed. Experimental results show that
LEXICON outperforms the strongest review
generation model by 20% BLEU-2 (coherence)
and 68% Distinct-2 (diversity) on average. Hu-
man evaluation also shows that LEXICON is
more robust to various lexical constraints than
the state-of-the-art lexically-constrained model
for general purpose.

1 Introduction

Personalized review generation models could work
as (1) a writing tool (Li et al., 2021a) for users
that assists the review writing process to encourage
users providing their feedback; (2) an explanation
generation system (Ni et al., 2019) from businesses
that justifies the users’ interests in a product by
natural languages. The generated reviews have per-
sonalized writing styles and information on specific
products by incorporating the product information
and user behavior as input (Ni and McAuley, 2018;
Zhou et al., 2017).

Previous works (Zhou et al., 2017; Wang and
Zhang, 2017; Radford et al., 2017; Li and Tuzhilin,
2019) have explored the review generation task

Aspect(s) Review Generation

Food k

Lexical Constraint(s)

Seafood is so fresh, and
steak is great as well!

Review Generation

Filet Mignon Great! Filet Mignon is grilled to
Lemon Butter perfection, and lemon butter
Scallops scallops are caramelized well!

Figure 1: Example of reviews generated from Aspect-
aware and Lexically-constrained methods.

and shown success in generating cohesive reviews.
Recent studies focus on increasing the controllabil-
ity of the generation process so that the generated
reviews will be more informative and relevant to
users’ interests. To this end, they use aspects ex-
tracted from data (Li et al., 2019; Ni and McAuley,
2018) or knowledge bases (Li et al., 2020a, 2021a)
then apply text planning methods (Hua and Wang,
2019; Moryossef et al., 2019) to generate person-
alized reviews which describe products based on
given information.

However, existing review planning tools only
have soft constraints (e.g. aspects) which mostly
control the sentiment or semantics of generated text.
In this case, users or businesses cannot conduct lex-
ical manipulation of the generation process to have
specific product attributes, but these attributes are
too specific to be accurately generated. For exam-
ple, as shown in Figure 1, a restaurant or user wants
to include some featured dishes (Filet Mignon
and Lemon Butter Scallops) into the ex-
planations or reviews. Previous aspect-aware (soft-
constraints) review generation methods control the
generation process by giving an aspect Food but
cannot ensure their dish names appear in the gen-
erated text. Moreover, generated dish names are
usually general (Seafood and Steak). To show
the missing key phrases in review generation, we
have experiments (setup details in Appendix A) on
comparing key phrase coverage (informativeness)
between generated reviews and human-written re-



s Human  mEE ExpansionNet B PETER

. 1.0
0.

0.0 RateBeer Steam " RateBeer Steam

Ref2seq
0.5

-
o

4

o
©
=}
©

3

0.
5 0.
:0,2
&
LA

" RateBeer Steam

o
o
=]
o

Distinct-2

=}
IS
=}
IS

Phrase Coverage
Aspect Coverage

=}
N

Figure 2: The phrase coverage, aspect coverage and
Distinct-2 of generated reviews from ExpansionNet (Ni
and McAuley, 2018), Ref2seq (Ni et al., 2019) and PE-
TER (Li et al., 2021b) on RateBeer and Steam dataset.

views. Experimental results in Figure 2 show Ex-
pansionNet largely improved the results (in Fig-
ure 2) compared to Ref2seq, but a lot of key phrases
are still missed. Furthermore, with soft constraints
only, existing methods also struggle to generate
sufficiently diverse and informative reviews. The
results in Figure 2 on key phrase coverage (infor-
mativeness), aspect coverage (controllability), and
Distinct-2 (diversity) show that the strongest model
(PETER) can cover at most 45% phrases and 60%
aspects in reviews and the diversity (Distinct-2) of
generated text is lower than reviews from human.
Due to the limitation of current models, the gener-
ated reviews usually lack diversity and are rare to
contain specific information about products.

To address the above problems, we propose a lex-
ically constrained review generation task, in which
the generated reviews must contain lexical con-
straints from users, businesses or even randomly
sampled product attributes. Compared to previ-
ous methods with soft constraints that generate
some general words (e.g., Seafood), lexically
constrained review generation can easily incorpo-
rate specific information (e.g., Lemon Butter
Scallops) into reviews. Hence, the informa-
tiveness and diversity of generated reviews can be
largely improved (see Section 4).

Existing lexically constrained text generation
methods (Zhang et al., 2020b; Welleck et al., 2019;
Miao et al., 2019) for general purpose cannot
be directly applied to review generation due to
three reasons: (1) special-decoding based meth-
ods (Hokamp and Liu, 2017; Post and Vilar, 2018;
Hu et al., 2019; Miao et al., 2019) tend to have
high complexity (Zhang et al., 2020b) at inference
time and are not feasible for online services; (2) in-
sertion based methods, such as POINTER (Zhang
et al., 2020b), are not robust to arbitrary keywords
that are not extracted by their pre-defined algorithm

(see Section 4.6); (3) current methods focus on

generating text from keywords but cannot incorpo-

rate personalized information, though reviews are
usually personalized and contain different product
features.

Motivated by the above, we propose a novel
insertion-based framework for lexically con-
strained review generation, called LEXICON
(LEXIcally CONstrained review generation).
Compared to existing lexically constrained meth-
ods, this framework is robust to arbitrary con-
straints and incorporates contextual information
by an encoder so that LEXICON largely improves
relevance, coherence and informativeness of gen-
erated reviews compared to existing methods. The
main contributions of this paper are summarized as
follows:

* To further improve the controllability and infor-
mativeness of review generation, we propose a
lexically constrained review generation task, in
which specific information can be easily con-
tained in the generated reviews.

* We present LEXICON, an insertion-based frame-
work which can generate personalized reviews
from arbitrary lexical constraints. A large-scale
pre-training is performed for downstream review
generation tasks.

* We conduct extensive experiments on four review
datasets. Objective metrics and human evalua-
tions show that LEXICON can largely improve
the diversity and informativeness of generated
reviews, and our insertion process is more robust
to lexical constraints than previous methods.

2 Related Work

Many attempts have been made to generate re-
views for users. RNN-based methods (Tang et al.,
2016) have been applied to generate the reviews
with useful context information from users and
items. Zhou et al. (2017) proposed an attribute-to-
sequence (Attr2Seq) method to encode user and
item identities with embeddings and then decode
with LSTM to generate reviews. Some studies (Ni
et al., 2017; Wang and Zhang, 2017; Li et al.,
2020b) proposed to combine rating prediction and
review generation, and utilize user-item interac-
tions to improve the sentiment of generated re-
views. To better control the review generation pro-
cess, previous methods (Ni and McAuley, 2018;
Li et al., 2019) extracted aspects and controlled
the semantics of generated reviews conditioned on



Generated Reviews

Token Prediction Head ]

Bidirectional
Decoder

preprocess

E E -m[ G

(9%
~N

=0

croutons [

LexiCon with Token Prediction Head

.

2

8

3

3

3

2
ENIETIEY:]

LexiCon with Mask Insertion Head ‘

Bidirectional St [ Caesar ] [ salad ] [ with ][ croutons ][ recommend ][ ! ] st
Encoder [ Mask Insertion H ] _
N ask Insertion Head " l LexiCon with Token Prediction Head l
e g e —e ]
T T [ Bidirectional 8 || ([caesar ) ([ sald ] | vask) | (Teroutons ] maskl |1 ivaskl | | &
Decoder (g0 | ————————————————————— ittt s
User Item 2 ‘ LexiCon with Mask Insertion Head ‘
Persona Profile y L
o o] s

(a) LexiCon model structure for review generation

(b) Data preprocess and text generation

Figure 3: The overview of (a) LEXICON model structure for review generation, and (b) training data construction

and text generation process.

different aspect. Another line of work (Li et al.,
2021a, 2020a) controlled and enriched generated
reviews by knowledge bases. Although previous
works continued increasing their controllability on
generated reviews, they still struggle to have fine-
grained manipulation such as self-defined review
keywords from users. In this paper, we propose lex-
ical constrained review generation which largely
increase the controllability, informativeness and
interpretability of generated reviews.

Hard-constrained generation requires that gen-
erated text contain the lexical constraints. Early
works usually involve special decoding meth-
ods. Hokamp and Liu (2017) proposed a lexical-
constrained grid beam search decoding algorithm
to incorporate constraints. Post and Vilar (2018)
presented an algorithm for lexically constrained
decoding with a reduced complexity in the number
of constraints. Hu et al. (2019) further improved
decoding by a vectorized dynamic beam alloca-
tion. Miao et al. (2019) introduced a sampling-
based conditional decoding method, where the con-
straints are first placed in a template, then decoded
words under a Metropolis-Hastings sampling. Spe-
cial decoding methods usually need a high running
time complexity. Recently, Zhang et al. (2020b)
implemented hard-constrained generation with a
O(logn) time complexity by language model pre-
training and insertion-based generation (Stern et al.,
2019; Gu et al., 2019b; Chan et al., 2019; Gu
et al., 2019a) used in machine translation. How-
ever, we found that POINTER is not robust to arbi-
trary lexical constraints due to the data construction
based on dynamic programming. Hence, we pro-
pose LEXICON which can generate personalized
reviews with arbitrary lexical constraints.

3 LexiCon

We describe the lexically constrained review gener-
ation task as follows. Given a user u, item %, sev-
eral lexical constraints (e.g, phrases or keywords)
C = {c1,c9,...,cm}, and historical reviews R",
R? of u and 7 respectively, our goal is to generate
areview R“ = (w1, ws, ..., w,) that maximizes
the probability P(R%“|u, i, C). Different from pre-
vious review generation tasks, our generated review
R™ has to exactly include all given lexical con-
straints ¢;, which means ¢; = (wj, ..., wy). The
lexical constraints can be from users, businesses,
or randomly selected from item attributes in a real
application. In this paper, we extract noun phrases
from reviews and use extracted phrases as lexical
constraints.

31

The generation procedure of our method can be
formulated as a progressive sequence of K stages
S = {8° 8t ..., 8K-1 SKY where SO is the
stage of lexical constraints and S is our final
generated text. Foreach k € {1,..., K}, S¥1is
a sub-sequence of S*. The generation procedure
finishes when LEXICON does not insert any new
tokens into SX.

Figure 3 (b) shows an example of our text gen-
eration process. For each insertion step from S¥~!
to S*, we decompose one step into two operations,
mask insertion and token prediction. LEXICON
first insert [MASK] tokens between any two ex-
isting tokens and the number of inserted [MASK]
is predicted by an insertion head, then as other
masked language models, our model predicts the
word token for each [MASK]. Mask insertion and
token prediction are both personalized by incorpo-

Method Overview



rating information from users and products with a
text encoder. Overall, LEXICON has two compo-
nents as shown in Figure 3 (a): (1) text encoder
to incorporate user persona and item profile from
historical reviews; (2) decoder with two different
prediction heads, a token prediction head H 7p and
mask insertion head H ;.

3.2 Data Preparation

For preparing training data, we construct pairs
of text sequences at adjacent stages (S¥~1!, S¥)
that reverse the insertion-based generation pro-
cess. [Each review R in the training data
is broken into a consecutive series of pairs:
(89, 81), (S, 82),...,(SK-1, SK), and when we
construct the training data, the final stage S¥
is our review text R%. In the previous work,
POINTER (Zhang et al., 2020b) designed a method
to compute the importance score of tokens and a
dynamic programming algorithm to make sure that
important tokens appear in an earlier stage and the
number of stages K is small. However, we found
that the model pre-trained by this method is sen-
sitive to the initial lexical constraints SY. If the
constraint selections are not similar to the data pre-
processing algorithm in POINTER training, the
quality of generated reviews will decrease.

To alleviate the above problem, we propose a
simple but effective data preparation method which
makes the model robust to arbitrary lexical con-
straints. As illustrated in Figure 3 (b), given a se-
quence stage S*, we obtain the previous stage S¥~!
by two operations, masking and deleting. Specifi-
cally, we randomly mask the tokens in a sequence
by probability p as masked language model pre-
training (Devlin et al., 2019; Liu et al., 2019) to get
the intermediate sequence I k:k=1 Then, [MASK]
tokens are deleted from the intermediate sequence
I**=1 to obtain the stage S*~!. The numbers of
deleted [MASK] tokens after each token in %% 1
are recorded as an insertion number sequence
J##=1_ Finally, each training instance contains
four sequences (S*~1, [FF=1 jkk=1 Gk) Since
we delete 7" * p tokens in sequence S* where T'
is the length of S*, the average number of K is
log 1+ T.

1-p

3.3 Model Architecture

As shown in Figure 3 (a), LEXICON uses the
sequence-to-sequence Transformer architecture
with two different prediction heads for mask in-

sertion and token prediction, but different from
standard Transformer (Vaswani et al., 2017), our
decoder is a bidirectional self-attention structure as
encoder since LEXICON is a non-auto-regressive
generation model. The architectures of the en-
coder and decoder are closely related to that used
in RoBERTa (Liu et al., 2019), but each layer of
the decoder additionally performs cross-attention
over the final hidden layer of the encoder.

Context Encoder. Given a preprocessed train-
ing instance (S¥1, [FF—1 JkE=1 Gk) which is
constructed from review R% with the method intro-
duced in Section 3.2, we use user historical reviews
R* and item historical reviews R’ as our contextual
information ®**. R* and R are concatenated by a
special token [SEP] and the bidirectional encoder
E encodes the concatenated reviews to get contex-
tual information of user v and item ¢. Formally, the
output is calculated as:

h" = E(®") = E([R"%;R’]) (1)

where [;] denotes the concatenation, h*! € R**?, ¢
is the length of concatenated reviews and d is the
hidden size of our model.

Decoder with Two Heads. We decode the con-
textual information h" and existing token stage
Sk=1 with a bidirectional decoder D. The decoder
will predict the mask insertion numbers and word
tokens with two heads H,r and H 7p respectively.
H 7p is a multilayer perceptron (MLP) with activa-
tion function GeLU (Hendrycks and Gimpel, 2016)
and H s is a linear projection layer. Finally, our
predictions of mask insertion numbers and word
tokens are computed as:

yur = Hy (D(S*1, ")) )
yrp = Hyp(D(IFF1 hv)) A3)

where h" is incorporated by the cross attention of
decoder, y; € Rls*dins and yrp € RU X dvocab [
and I; are the length of S*~! and I**~1 respec-
tively. dins 18 the maximum number of insertion
and docqp 15 the size of vocabulary.

3.4 Model Training

The training process of LEXICON is to learn the
inverse process of data generation. Given stage
pairs (S*~1, S¥) from user u, item i, and corre-
sponding contextual information ®*“ and train-
ing instance (S*~1, [kk=1  Jkk=1 Gk) from pre-
processing, we optimize the following objective:



£ =—logp(S"|5*", &™)
_ _logp(SkL]k,kfl’ S«k*l7 (bui)p(t]k,kfllskfl’(pui)
— _ logp(sk|lk,kfl7 q)u'z)p(ch,kfl|Sl’cfl7 ¢u1)7

Token prediction probability

J ol B/Iasklnselrt(Jk’k*17 Skil)

Mask insertion probability

“

where MaskInsert denotes the mask token inser-
tion. In Equation (4), we jointly learn (1) like-
lihood of mask insertion number for each token
from LEXICON with H 7, and (2) likelihood of
word tokens for the masked tokens from LEXICON
with Hpp.

Same as training in BERT (Devlin et al., 2019),
we optimize only the masked tokens in token pre-
diction. The selected tokens to mask have the prob-
ability 0.1 to stay unchanged and probability 0.1
to be randomly replaced by another tokens in the
vocabulary. For mask insertion number prediction,
most numbers in J¥*~1 are 0 because we do not
insert any tokens between existing two tokens in
most cases. To balance the insertion number, we
randomly mask the 0 in J**~1 by probability q.

Because our mask prediction task is similar to
masked language models, the pre-trained weights
from RoBERTa (Liu et al., 2019) can be naturally
used for initialization of encoder and decoder in
LEXICON to obtain prior knowledge. Moreover,
we pre-train LEXICON on a massive review corpus
for various domains to obtain pre-trained model
that can be finetuned on downstream review gener-
ation tasks.

3.5 Inference

At inference time, we start from the given lex-
ical constrain S° and use LEXICON predict
(S%,..., SKY repeatedly until no additional tokens
generated or reaching the maximum stage number.
SK is the final generated content.

Without loss of generality, we show the inference
details from S*~1 stage! to Sk stage: (1) given
Sk=1 LEXICON uses H,; to predict Jkk=1 in-
sertion number sequence?; (2) given I%k=1 from
MaskInsert(.J%#—1 §%=1)  LEXICON can use
Hrp to predict Sk with a specific decoding strat-
egy such as greedy search or top-K sampling.
(3) given S*, LEXICON meets the termination re-
quirements or executes step (1) again.

lor §*—1 stage when k£ = 1, we use S*=1 for simplicity.

>We set predicted insertion number as 0 for given phrases
in S°, to prevent given phrases from modification.

Dataset Train Dev Test #Users #Items
RateBeer 16,839 1473 912 4,385 6,183
GoodReads 385,369 10,394 8,655 18,147 182,501
Yelp 252,087 37,662 12,426 235,794 22412
Steam 450,631 67,367 24,827 403,942 1,993

Table 1: Statistics of our datasets

4 Experiments

4.1 Datasets

For pre-training, we combined the reviews from
Amazon® and Google Locals* with 55 million re-
views. After data construction, the total number
of training instances is up to 250 million; and for
fine-tuning, we used four smaller reviews datasets
in specific domain to evaluate our model, which are
Yelp®, RateBeer (McAuley and Leskovec, 2013),
Steam (Pathak et al., 2017), and Goodreads (Wan
and McAuley, 2018). We further filter the reviews
with length is larger than 64. For each user, fol-
lowing Ni et al. (2019), we randomly hold out two
samples from all of their reviews to construct the
development and test sets.

4.2 Baselines

For automatic evaluation, we consider two groups
of baselines to evaluate our model effectiveness,
where we make the input constraints for baselines
as the same as what we used in LEXICON, more
details can be checked in Appendix B. The first
group is existing personalized review generation
models with soft constraints, which means models
use lexical constraints as contextual information
for review generation, but don’t guarantee these
specific lexical constraints appear in generation.

* ExpansionNet (Ni and McAuley, 2018), gen-
erates reviews conditioned on different aspects
extracted from a given review title or summary.

* Ref2Seq (Ni et al., 2019), a Seq2Seq model in-
corporates contextual information from historical
reviews and uses fine-grained aspects to control
review generation..

* PETER (Li et al., 2021b), a Transformer-based
model that uses user- and item-IDs and given
phrases to predict the words in target personal-
ized review generation.

The second group includes general controllable
natural language generation models with hard con-

‘https://www.amazon.com/
4https ://www.google.com/maps
Shttps://www.yelp.com/dataset


https://www.amazon.com/
https://www.google.com/maps
https://www.yelp.com/dataset

RateBeer Yelp
Model B-2 B4 M RL BS D-1 D2 B-2 B4 M R-L BS D-1 D-=2
Human-Oracle — — — — - 8.3 492 — — — — — 3.8 341
ExpansionNet 8.5 1.6 298 244 819 09 106 7.1 1.1 285 21.0 827 07 9.3
Ref2Seq 13.8 29 288 327 866 15 107 44 03 147 183 846 05 8.1
PETER 254 94 40.0 408 870 24 194 207 55 38,6 442 872 20 216
NMSTG 5.7 0.8 319 300 855 89 69.0 438 03 262 276 841 48 64.0
POINTER 5.2 0.1 344 362 852 37 324 30 01 315 281 852 10 121
LEXICON 351 158 546 608 910 86 440 221 7.7 438 514 895 50 36.1

Goodreads Steam
Model B-2 B-4 M R-L BS D-1 D-2 B-2 B-4 M R-L BS D-1 D-2
Human-Oracle - - - - - 69 39.1 - - - - - 43 335
ExpansionNet 3.1 06 218 137 788 0.6 3.9 3.7 08 219 114 757 09 5.9
Ref2Seq 10,6 22 248 296 855 23 134 35 03 119 156 824 02 4.1
PETER 186 57 354 428 852 41 247 198 6.1 384 460 857 29 270
NMSTG 4.0 02 240 233 825 95 709 72 1.0 267 30.6 847 4.0 55.1
POINTER 4.0 0.1 284 277 851 20 17.1 1.8 00 246 230 832 13 134
LEXICON 21,6 78 414 487 891 89 393 224 83 420 471 88.7 51 327

Table 2: Performance on automatic evaluation. The highest scores are bold. For Distinct metrics (D-1 and D-2), the

scores closest to human-oracle are bold.

straints. We use two baselines,

* NMSTG (Welleck et al., 2019), a tree-based text
generation scheme that from given lexical con-
straints in prefix tree form, the model generates
words to its left and right, yielding a binary tree.
POINTER (Zhang et al., 2020b), an insertion-
based generation method pretrained on con-
structed data based on dynamic programming.
We train our model based on a pre-trained model
released from the authors.

Note that these baselines are proposed for gen-
eral natural language generation without incor-
porating user personalized information. Other
insertion-based transformers such as Insertion
Transformer (Stern et al., 2019) and Levenshtein
Transformer (Gu et al., 2019b) focus on machine
translation instead of hard-constrained generation,
so we do not consider them into our comparison.

For human evaluation, we choose the state-of-
the-art review generation models PETER (Li et al.,
2021b) and hard-constrained generation model
POINTER (Zhang et al., 2020b) to make compari-
son with our LEXICON generated results.

4.3 Evaluation Metrics

Following Ni et al. (2019); Zhang et al. (2020b), we
perform automatic evaluation with commonly-used
text generation metrics including n-gram metrics

including BLEU (B-1 and B-2) (Papineni et al.,
2002), METEOR (M) (Banerjee and Lavie, 2005)
and ROUGE-L (R-L) (Lin, 2004), diversity metric
Distinct (D-1 and D-2) (Li et al., 2016). We also
introduce BERT-score (BS) (Zhang et al., 2020a)
as a semantic rather than n-gram metric.

4.4 Implementation Details

In training data construction, we randomly mask
p = 0.2 tokens in S* to obtain 7**~1. The max-
imum length of concatenated reviews ®% is set
to 256. 0 in J**~1 are masked by probability
q = 0.9. The structures of encoder and decoder
are same as RoBERTa-base (Liu et al., 2019) and
initialized with pre-trained weights. The tokenizer
is byte-level BPE following RoBERTa. For pre-
training, the learning rate is Se-5, batch size is 512
and our model is optimized by AdamW (Kingma
and Ba, 2015) in 1 epoch. For fine-tuning on down-
stream tasks, the learning rate is 3e-5, batch size
is 128 with the same optimizer as pre-training.
The training epoch is 10 and we select the best
model performing on the development set as our
final model evaluated on test data. The lexical
constraints are phrases extracted by spaCy © noun
chunks.

*https://spacy.io/


https://spacy.io/

—k— LexiCon  —A— LexiCon-D

0.40

POINTER

0.30 0.35

0.25 0.30
0.20 0.25

0.15 020

0.15
0.10
0.10
1 2 3 4 5 1 2 3 4 5
Meteor score ROUGE-L score

Figure 4: Meteor and Rouge-L scores on RateBeer
dataset with different numbers (from 1 to 5) of lexi-
cal constraints.

4.5 Automatic Evaluation

In Table 2, we report evaluation results of review
generation on four review datasets in terms of n-
gram metrics (BLEU, Meteor and ROUGE-L), se-
mantic metric (Bert Score) and diversity metric
(Distinct). Overall, LEXICON achieves the highest
n-gram and semantic scores on four datasets con-
sistently, which confirms that our model is able to
generate the most relevant reviews. Specifically, we
analyze the results from two aspects: (1) compared
with review generation baselines, LEXICON im-
proves the state-of-the-art model (PETER) by 20%
BLEU-2 and 68% Distinct-2 on average. Although
ExpansionNet is able to include more key phrases
compared to Ref2seq (see analysis in Section 1),
it cannot achieve more diverse reviews (Distinct)
than Ref2seq due to the limitation of RNN-based
sequence-to-sequence models. The results indicate
that though lexical constraints are given, the exist-
ing review generation models with soft constraints
still struggle to include specific information into
generated reviews; (2) compared with lexically con-
strained generation baselines, LEXICON largely
improves the coherence (53.5% Meteor and 81.6%
ROUGE-L in average) of generated reviews than
POINTER. The diversity of LEXICON generation
is the closest to the human reviews. NMSTG has
much higher diversity because it tends to insert
less-related tokens with users or products. The re-
sults indicate the necessity of contextual encoder
and previous methods are not robust to our lexical
constraints. We have further validation in the next
section.

Contextual Encoder. To show the effective-
ness of our contextual encoder and the quality of
generated reviews with different numbers of lexi-
cal constraints. We pre-train a model (denoted as
LEXICON-D) using the same method introduced

BN PETER W POINTER LexiCon Emm AD) mmm NOUN RANDOM W YAKE

120 80

C |

100
60

40
0II

0 POINTER LexiCon

80

Votes

60

40
20 I
0 "R

(a) Review Generation Quality

Votes

N

(b) Generation Robustness

Figure 5: Human evaluation results on (a) review gener-
ation quality; (b) generation robustness.

in Section 3 but do not incorporate contextual in-
formation with an encoder. Then, we evaluate
the generated reviews of LEXICON, LEXICON-
D and POINTER by giving different numbers of
lexical constraints on RateBeer dataset. The re-
sults is shown in Figure 4. We can observe that
(1) LExiCoN outperforms LEXICON-D consis-
tently on Meteor score, and on ROUGE-L when
we provide fewer lexical constraints; (2) the qual-
ity of generated reviews increases while we give
more constraints. (3) LEXICON and LEXICON-D
outperform POINTER largely. POINTER cannot
achieve the same improvement as the number of
constraints increases. The results indicate that our
encoder can provide contextual information to im-
prove review generation. The contextual encoder is
necessary especially when the number of constrains
is small. As the number of constraints increases,
LEXICON-D has similar scores as LEXICON be-
cause the lexical constraints can provide enough
information to generate reviews.

4.6 Human Evaluation

To further validate our results in automatic met-
rics, we conduct human evaluation (details in Ap-
pendix C) on review quality and generation robust-
ness to compare LEXICON and our baselines.
Review Quality. We evaluate the quality from
three aspects of generated reviews: (1) Relevance
(R) measures whether the generated output contains
information relevant to the human review; (2) Co-
herence (C) measures whether generated reviews
are logical, well-organized and easy to understand
by humans; (3) Informativeness (1) measures how
distinct the generated reviews are and how much
specific information is included. Annotators select
the best generated review from each aspect (details
in Appendix C.1). The review quality evaluation
results (see Figure 5 (a)) show that the generation



Model Result from RateBeer Model Result from Yelp
Phrases best sold beer, Barcelona, water Phrases Overpriced sushi, 55 bucks, crap, fridge, days
Human This is best sold beer in Barcelona. Very cheap Human Overpriced sushi, I paid 55 bucks for crap that
(more than water trust me!). taste like its been sitting in a fridge for days.
Ref2Seq this is one of the best beers i have ever had. it’'s  Ref2Seq this place has been pretty good for the last times
a good beer. i’ve been to. i’ve been here a few times and i’m
not sure why
PETER this is the best beer i’ve ever tasted. it’s gottobe ~ PETER overpriced sushi i spent $300, i was told that
a beer to be the i have ever tasted. it’s not bad they were closed for a crap fridge for days and
but it’s not bad for the price. they were closed for days and they were closed.
POINTER this is possibly one one of the best beers i have ~POINTER terrible. if you should have waited over 2 hours
ever sold. i think this as a great beer and a great here for overpriced sushi: no more. then, for
beer. barcelona, is probably one of the better what can i should pay for 55 bucks. oh, if they
water to drink . had all of the same crap, a screw up stuff in your
fridge and no more. seriously, how do you waste
your days here?!
LEXICON  This is the best sold beer in Barcelona. Light LEXICON  Really bad service. Overpriced sushi. Over 55

and the water is refreshing.

bucks. Got the crap in the fridge for 2 days.

Table 3: Generated reviews from RateBeer and Yelp datasets. Lexical constraints (phrases) are highlighted in
reviews. The reviews of LEXICON is cased because we use byte-level BPE following RoBERTa.

quality of LEXICON is largely better than PETER
and POINTER on all aspects.

Generation Robustness. To compare the robust-
ness to lexical constraints between POINTER and
LEXICON, we give different types but the same
number (5 in our experiments) of keywords to mod-
els and generate reviews. The keywords types in-
clude: adjectives (ADJ); nouns (NOUN); random
words (RANDOM); and keywords extracted by
YAKE (Campos et al., 2018) used in POINTER
(YAKE). Our annotators are asked to select the
most coherent sentences among generated reviews
from different constraints (details in Appendix C.2).
The evaluation results are shown in Figure 5 (b).
We can see that: (1) for LEXICON, reviews from
different keyword types have similar votes which
indicates annotators struggle to select the best re-
view and the quality of generated reviews is con-
sistent from different keywords. (2) for POINTER,
the votes of YAKE keywords are much higher than
others (especially for ADJ) which means the qual-
ity of POINTER generation is sensitive to lexical
constraints. Based on the above analysis, we can
conclude that LEXICON largely improves the ro-
bustness of generation compared to POINTER.

4.7 Case Studies

We compare generated reviews from Ref2Seq, PE-
TER, POINTER and LEXICON in Table 3. From
examples, we can see that (1) Generated reviews
from Ref2Seq are general and hard to cover some
specific words (e.g., Barcelona) due to the limi-

tation of RNN-based sequence-to-sequence mod-
els. (2) PETER adopts Transformer-based model
which can have direct attention on lexical con-
straints. Hence, PETER can copy some words
from constraints to the generated reviews but the
copy process easily lead to repeated sentences in
reviews. (3) POINTER can include lexical con-
straints but these phrases are broken into words.
The generated reviews are not coherent because
POINTER is not robust to lexical constraints pre-
sumably. (4) LEXICON can easily include specific
information precisely from lexical constraints. The
generated reviews are coherent and relevant to hu-
man reviews.

5 Conclusion

In this paper, we propose to have lexical constraints
in review generation which can largely improve the
informativeness and diversity of generated reviews
by including specific information. To this end, we
present LEXICON, a lexically constrained review
generation framework which can easily include lex-
ical constraints by inserting new tokens to generate
coherent reviews. We conduct comprehensive ex-
periments on review generation. Results show that
LEXICON significantly outperforms previous re-
view generation models and lexically constrained
models in terms of informative and coherence. In
addition, user studies indicate LEXICON is robust
to arbitrary lexical constraints and generates high-
quality reviews consistently.



Ethical Consideration

One main concern associated with review genera-
tion is that the model can be misused for generating
spam reviews. These considerations largely follow
from other works on review generation (and per-
sonalized language modeling in general). We also
note that these are fundamental concerns with Nat-
ural Language Generation (as are issues of bias,
toxic content, etc.). On the other hand, developing
these models can help understand the behaviors
and patterns in a spam review thus contribute to
its detection. We also emphasize that our model is
intended to be used in human-in-the-loop settings
rather than automated generation, to minimize pos-
sible risks.

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In IEEvalua-
tion@ACL.

Ricardo Campos, Vitor Mangaravite, Arian Pasquali,
Alipio Mario Jorge, C. Nunes, and Adam Jatowt.
2018. Yake! collection-independent automatic key-
word extractor. In ECIR.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. Kermit: Genera-
tive insertion-based modeling for sequences. ArXiv,
abs/1906.01604.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019a.
Insertion-based decoding with automatically inferred
generation order. Transactions of the Association for
Computational Linguistics, 7:661-676.

Jiatao Gu, Changhan Wang, and Jake Zhao. 2019b. Lev-
enshtein transformer. In NeurIPS.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (gelus). arXiv: Learning.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In ACL.

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick
Xia, Tongfei Chen, Matt Post, and Benjamin Van
Durme. 2019. Improved lexically constrained de-

coding for translation and monolingual rewriting. In
NAACL.

Xinyu Hua and Lu Wang. 2019. Sentence-level con-
tent planning and style specification for neural text
generation. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015.
A method for stochastic optimization.
abs/1412.6980.

Adam:
CoRR,

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and William B. Dolan. 2016. A diversity-promoting
objective function for neural conversation models. In
NAACL.

Junyi Li, Siqing Li, Wayne Xin Zhao, Gaole He,
Zhicheng Wei, Nicholas Jing Yuan, and Ji-Rong Wen.
2020a. Knowledge-enhanced personalized review
generation with capsule graph neural network. Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management.

Junyi Li, Wayne Xin Zhao, Zhicheng Wei, Nicholas Jing
Yuan, and Ji-Rong Wen. 2021a. Knowledge-based
review generation by coherence enhanced text plan-
ning. Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Junyi Li, Wayne Xin Zhao, Ji-Rong Wen, and Yang
Song. 2019. Generating long and informative re-
views with aspect-aware coarse-to-fine decoding. In
ACL.

Lei Li, Yongfeng Zhang, and L. Chen. 2020b. Gener-
ate neural template explanations for recommendation.
Proceedings of the 29th ACM International Confer-
ence on Information & Knowledge Management.

Lei Li, Yongfeng Zhang, and Li Chen. 2021b. Person-
alized transformer for explainable recommendation.
In ACL/IJCNLP.

P. Li and Alexander Tuzhilin. 2019. Towards con-
trollable and personalized review generation. In
EMNLP.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In ACL 2004.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Julian McAuley and Jure Leskovec. 2013. From ama-
teurs to connoisseurs: modeling the evolution of user
expertise through online reviews. Proceedings of the
22nd international conference on World Wide Web.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei Li.
2019. Cgmh: Constrained sentence generation by
metropolis-hastings sampling. In AAAL

Amit Moryossef, Yoav Goldberg, and Ido Dagan.
2019. Step-by-step: Separating planning from re-
alization in neural data-to-text generation. ArXiv,
abs/1904.03396.



Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Jus-
tifying recommendations using distantly-labeled re-
views and fine-grained aspects. In EMNLP.

Jianmo Ni, Zachary Chase Lipton, Sharad Vikram, and
Julian McAuley. 2017. Estimating reactions and rec-
ommending products with generative models of re-
views. In IJCNLP.

Jianmo Ni and Julian McAuley. 2018. Personalized re-
view generation by expanding phrases and attending
on aspect-aware representations. In ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL.

Apurva Pathak, Kshitiz Gupta, and Julian McAuley.
2017. Generating and personalizing bundle recom-
mendations on steam. Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In NAACL.

Alec Radford, Rafal J6zefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. ArXiv, abs/1704.01444.

Peter Rousseeuw. 1987. Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20:53-65.

Mitchell Stern, William Chan, Jamie Ryan Kiros, and
Jakob Uszkoreit. 2019. Insertion transformer: Flexi-
ble sequence generation via insertion operations. In
ICML.

Jian Tang, Yifan Yang, Samuel Carton, Ming Zhang, and
Qiaozhu Mei. 2016. Context-aware natural language
generation with recurrent neural networks. ArXiv,
abs/1611.09900.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Mengting Wan and Julian McAuley. 2018. Item recom-
mendation on monotonic behavior chains. Proceed-
ings of the 12th ACM Conference on Recommender
Systems.

Zhongqin Wang and Yue Zhang. 2017. Opinion recom-
mendation using a neural model. In EMNLP.

Sean Welleck, Kianté Brantley, Hal Daumé, and
Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. In ICML.

10

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020a. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan,
Chris Brockett, and Bill Dolan. 2020b. Pointer: Con-
strained progressive text generation via insertion-
based generative pre-training. In EMNLP.

M. Zhou, Mirella Lapata, Furu Wei, Li Dong, Shao-
han Huang, and Ke Xu. 2017. Learning to generate
product reviews from attributes. In EACL.



A Motivating Experiment Details

In this experiment, we evaluate the diversity and
informativeness of reviews. Specifically, we apply
phrase coverage, aspect coverage and Distinct-2
to measure generated reviews and human-written-
reviews.

For phrase coverage, we first extract noun
phrases from reviews by spaCy ’ noun chunks.
Then we compare the phrases in human-written
reviews and generated reviews. If a phrase appears
in both reviews, we consider it as a covered phrase
by generated reviews. This experiment measures
how many specific information can be included in
the generated reviews.

For aspect coverage, we obtain the phrase em-
bedding by first tokenize phrases into words and
use averaged GloVe (Pennington et al., 2014) em-
beddings to represent a phrase. Then, we use K-
means clustering algorithm to get the clusters of
phrases and these clusters are viewed as aspects
of reviews. To achieve the best clustering results,
silhouette scores (Rousseeuw, 1987) are computed
to find the best cluster numbers(in Table 4). Simi-
lar as prhases, if an aspect appears in both reviews,
we consider it as a covered aspect by generated
reviews. This experiment measures if the soft-
constraints can control the semantics of generated
reviews.

Steam  Goodreads

195 55

RateBeer
100

Datasets Yelp

185

Aspect numbers

Table 4: Aspect numbers in datasets.

For Distinct-2, we use the numbers as described
in Table 2.

B Baseline Details

For ExpansionNet, we use the default setting
which uses hidden size 512 for RNN encoder and
decoder, batch size as 25 and learning rate 2e-4.
For soft constraints in ExpansionNet, we use the
set of lexical constraints (as concatenated phrases)
to replace the title or summary input as contextual
information for training and testing.

For Ref2Seq, we use the default setting with
256 hidden size, 512 batch size and 2e-4 learning
rate. For soft constraints, we concatenate our given
phrases as reference (historical reviews are also

"https://spacy.io/

11

incorporated as reference following the original im-
plementation) as contextual information in training
and testing.

For PETER, we use the original setting with 512
embedding size, 2048 hidden units, 2 self-attention
heads with 2 transformer layers, 0.2 dropout. We
use the training strategy suggested by the authors.
Since original PETER only support single word
as soft constraint, we adopt PETER to multiple
words with maximum length of 20 and reproduced
the original single-word model on our multi-word
model. We input our lexical constraints as the multi-
word input for PETER training and testing.

For NMSTG, we uses the default settings with
an LSTM with 1024 hidden size with the uniform
oracle. We convert our lexical constraints into a
prefix sub-tree as the input of NMSTG, and then
use the best sampling strategy in our testing (i.e.,
StochasticSampler) for NMSTG.

For POINTER, we use the pre-training
BERT-base from WIKI to fine-tune 40 epochs
on our downstreaming datasets. We use all the de-
fault setting except for batch sizes since POINTER
requires 16 GPUs for distributed training that ex-
ceeds our computational resources. Instead, we
train POINTER with the same configuration on 3
GPUs. For testing, we select the base maximum
turn as 3 with default greedy decoding strategy. We
feed lexical constraints as the original implementa-
tion.

C Human Evaluation Details

We conduct two human evaluation experiments on
RateBeer and Yelp datasets: (1) Quality Exper-
iment: to evaluate the generation quality of gen-
erated reviews; (2) Robustness Experiment: to
evaluate the generation robustness with respect to
lexical constraints from various sources, since we
find POINTER is sensitive to initial lexical con-
straints as mentioned in Section 3.2.

C.1 Quality Experiment Setup

Question Design. We uniformly sample 200
ground truth reviews (GT) from RateBeer and
Yelp datasets in total, then collect corresponding
generated reviews from PETER, POINTER and
LEXICON respectively. Given the GT, annotator
is requested to select the best review on different
aspects i.e., relevance, coherence and informative-
ness (explained in Section 4.6) among reviews gen-
erated from PETER, POINTER and LEXICON. Ta-


https://spacy.io/

ble 5 is an example of our evaluation template.

GT: delicious breakfast plates ... pecan waffle R C I
which came in the shape of texas! pretty cool :)

food delicious fresh breakfast ! plates great and
service excellent ... i the shape the toast texas !

great place. delicious breakfast plates and great v v
service. the pecan waffle is in great shape in texas.

delicious breakfast plates. service was great. v
pecan waffle ... perfect. texas was very nice.

Table 5: A simple example of quality experiment
multiple-choice question. Annotator checks the best
in terms of relevance (R), coherence (C) and informa-
tiveness (I).

Experiment Conduction. We uniformly split
the samples for 5 annotators so there are 40
multiple-choice questions per annotator, noting that
displaying order of generated reviews are shuffled
every time. Those 5 annotators are volunteer stu-
dents for this project without payment, they are
consent the fully use of collected data in the exper-
iments for this paper after reading our instructions.

C.2 Robustness Experiment Setup

Question Design. We uniformly sample 200
ground truth reviews from RateBeer and Yelp
datasets in total, then extract corresponding ini-
tial lexical constraints from ADJ, NOUN, YAKE,
RANDOM strategies (described in Section 4.6).
For POINTER or LEXICON, we generate reviews
from lexical constraints coming from those five
strategies respectively. Then we group the four
generated reviews from the same model and the
same GT as a set. Annotator is asked to choose
the most coherent generated review from this set
without knowing which initial lexical constraints
strategy it comes from. Table 6 is an example of
our evaluation template.

Generation Best

amazing service! i wish they had more options and a little
different flavors, but overall well the best mongolian food!

you get what you pay for the different combinations. prices v
are great. the ingredients is fresh and the food is a good
value.

great selection of veggies all the time. fresh and great com-
binations. fresh and a cold beer, soup and tea.

food is amazing and the selection of the fish bowl delicious.
lots of different combinations. love this place!

Table 6: A simple example of robustness experiment
multiple-choice question. Annotator checks the best
without knowing the initial lexical constraints (ADJ,
NOUN, YAKE or RANDOM).

12

Experiment Conduction. We uniformly split
the samples for 5 annotators. Thus, there are 40
multiple-choice questions from POINTER and 40
multiple-choice questions from LEXICON per an-
notator. Those 5 annotators are volunteer students
for this project without payment. They are consent
the fully use of collected data in the experiments
for this paper after reading our instructions.

D GPU Hours

Our pre-training model is trained on 3 NVIDIA
Quadro RTX 8000 graphical cards with 48GiB
memory for 13 days. Our fine-tuning models
are trained on single NVIDIA Quadro RTX 8000
graphical card with 48 GiB memory for averagely
10 hours per dataset. We acknowledge that one lim-
itation of our model is LEXICON is a pre-training
model on large-scale datasets so it is heavy to train.
But for downstream review generation domains,
fine-tuning is much faster.

E Packages

SpaCy. We use en_core_web_ sm pre-trained
natural language pipeline to process our data.
All other settings are default in this pre-trained
pipeline.

NLTK. We use NLTK to compute BLEU scores
and all settings are default.

Huggingface Datasets 8. We use this package
to compute Meteor, ROUGE-L and BERT score
(RoBERTa model).

Shttps://huggingface.co/docs/datasets/


https://huggingface.co/docs/datasets/

