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Abstract
Recent works have explored how individual com-
ponents of the CLIP-ViT model contribute to
the final representation by leveraging the shared
image-text representation space of CLIP. Compo-
nents like attention heads and MLPs have been
found to capture distinct image features such as
shape, color, or texture. However, understanding
the role of these components in arbitrary vision
transformers (ViTs) is challenging. Thus, we in-
troduce a general framework which can identify
the roles of various components in ViTs beyond
CLIP. Specifically, we (a) automate the decompo-
sition of the final representation into contributions
from different model components, and (b) linearly
map these contributions to CLIP space to interpret
them via text. We also introduce a novel scoring
function to rank components by their importance
with respect to specific features. Applying our
framework to various ViTs (e.g. DeiT, DINO, DI-
NOv2, Swin, MaxViT), we gain insights into the
roles of different components concerning particu-
lar image features.These insights facilitate appli-
cations such as image retrieval, visualizing token
importance heatmaps, and mitigating spurious cor-
relations.

1. Introduction
Vision transformers and their variants (Dosovitskiy et al.,
2021; Oquab et al., 2023; Caron et al., 2021; Tu et al., 2022;
Liu et al., 2021; Touvron et al., 2021) have emerged as
powerful image encoders, becoming the preferred architec-
ture for modern image foundation models. However, the
mechanisms by which these models transform images into
representation vectors remain poorly understood. Recently,
Gandelsman et al. (2024) made significant progress on this
question for CLIP-ViT models with two key insights: (i)

1Department of Computer Science, University of Maryland,
College Park. Correspondence to: Sriram Balasubramanian <sri-
ramb@cs.umd.edu>.

They demonstrated that the residual connections and atten-
tion mechanisms of CLIP-ViT enable the model output to be
mathematically represented as a sum of vectors over layers,
attention heads, and tokens, along with contributions from
MLPs and the CLS token. Each vector corresponds to the
contribution of a specific token attended to by a particular
attention head in a specific layer. (ii) These contribution
vectors exist within the same shared image-text representa-
tion space, allowing the CLIP text encoder to interpret each
vector individually via text.

Extending this approach to other transformer-based image
encoders presents several challenges. Popular models like
DeiT (Touvron et al., 2021), DINO-ViT (Caron et al., 2021;
Oquab et al., 2023), and Swin (Liu et al., 2021) lack a
corresponding text encoder to interpret the component con-
tributions. Additionally, extracting the contribution vectors
corresponding to these components is not straightforward,
as they are often not explicitly computed during the forward
pass of the model. Other complications include diverse at-
tention mechanisms such as grid attention, block attention
(in MaxViT), and windowed/shifted windowed attention (in
Swin), as well as various linear transformations like pool-
ing, downsampling, and patch merging applied to the resid-
ual streams between attention blocks. These differences
necessitate a fresh mathematical analysis for each model
architecture, followed by careful application of necessary
transformations to the intermediate output of each compo-
nent to determine its contribution to the final representation.
To address these challenges, we propose our framework to
identify roles of components in general ViTs.

First, we automate the decomposition of the representation
by leveraging the computational graph created during the
forward pass. This results in a drop-in function, REPDE-
COMPOSE, that can decompose any representation into con-
tributions vectors from model components simply by calling
it on the representation. Since this method operates on the
computational graph, it is agnostic to the specifics of the
model implementation and thus applicable to a variety of
model architectures.

Secondly, we introduce an algorithm, COMPALIGN, to map
each component contribution vector to the image representa-
tion space of a CLIP model. We train these linear maps with
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Figure 1: (Left) Workflow: The first step (REPDECOMPOSE) is to decompose a representation z into contributions from
its model components ci after being transformed by residual transformations like LayerNorm, linear projections, resampling,
patch merging and so on. The second step (COMPALIGN) aligns each contribution to CLIP space using a set of linear maps
f0, f1, . . . , fn on the corresponding contributions c0, c1, . . . , cn. We can then interpret these aligned contributions using
the CLIP text encoder. (Right) Applications of our method: (a) Visualizing contributions of each token through a specific
component using a joint token-component decomposition (b) Retrieving images that are close matches of the reference
image (on top) with respect to a given image feature like pattern, person, or location

regularizations so that these maps preserve the roles of the
individual components while also aligning the model’s im-
age representation with CLIP’s image representation. This
allows us to map each contribution vector from any compo-
nent to CLIP space, where they can be interpreted through
text using a CLIP text encoder.

Thirdly, we observe that there is often no straightforward
one-to-one mapping between model components and com-
mon image features such as shape, pattern, color, and tex-
ture. Sometimes, a single component may encode multiple
features, while multiple components may be required to
fully encode a single feature. To address this, we propose
a scoring function that assigns an importance score to each
component-feature pair. This allows us to rank components
based on their importance for a given feature, and rank
features based on their importance for a given component.

Using this ranking, we proceed to analyze diverse vision

transformers such as DeiT, DINO, Swin, and MaxViT, in
addition to CLIP, in terms of their components and the im-
age features that they are responsible for encoding. We
consistently find that many components in these models en-
code the same feature, particularly in ImageNet pre-trained
models. Additionally, individual components in larger mod-
els MaxVit and Swin do not respond to any image feature
strongly, but can encode them effectively in combination
with other components. This diffuse and flexible nature of
feature representation underscores the need for interpreting
them using a continuous scoring and ranking method as op-
posed to labelling each component with a well-defined role.
We are thus able to perform tasks such as image retrieval,
visualizing token contributions, and spurious correlation
mitigation by carefully selecting or ablating specific compo-
nents based on their scores for a given property.
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Algorithm 1 REPDECOMPOSE

Input: z, the final representation output by the model and the final node in the computational graph. z.f is the function
that outputs node z

Output: A tree t consisting of component contributions c, such that components
∑

c∈t c = z. The structure of t is a
nested list where each list represents a level in the tree

function REPDECOMPOSE(z)
if is nonlinear(z.f ) then

return [z]
else if is unary(z.f ) then ▷ Function is unary linear

z0 ← z.parents()
t0 ← REPDECOMPOSE(z0)
if is reduction(z.f ) then

t0,u ← unbind(t0) ▷ Unbinds each c ∈ t along the reduction dimension
fd ← decomp(z.f ) ▷ Returns fd such that

∑
c∈t0,u

fd(c) = z.f(z0)
return map(fd, t0,u) ▷ Maps each c ∈ t0,u to fd(c)

else
return map( z.f , t0) ▷ Maps each element c ∈ t to z.f(c)

else ▷ z.f is binary
z0, z1 ← z.parents() ▷ Get the parents of z in the graph (inputs to z.function)
t0, t1 ← REPDECOMPOSE(z0), REPDECOMPOSE(z1)
fd,0, fd,1 ← decomp binary(z.f ) ▷ Returns fd,0, fd,1 such that:
return [map(fd,0, t0), map(fd,1, t1)] ▷

∑
c∈t0

fd,0(c) +
∑

c∈t1
fd,1(c) = z.f(z0, z1)

2. Decomposing the Final Representation
Recently, Gandelsman et al. (2024) decomposed zCLS, fin,
the final [CLS] representation of the CLIP’s image en-
coder as a sum over the contributions from its attention
heads, layers and token positions, as well as contribu-
tions from the MLPs. Thus, this representation can be
decomposed as: zCLS, fin = zCLS, init +

∑L
l=1 cl,MLP +∑L

l=1

∑H
h=1

∑N
t=1 cl,h,t, where L, H , N correspond to the

number of layers, number of attention heads and number
of tokens. Here, cl,h,t denotes the contribution of token
t though attention head h in layer l, while cl,MLP denotes
the contribution from the MLP in layer l. Due to this lin-
ear decomposition, different dimensions can be reduced by
summing over them to identify the contributions of tokens
or attention heads to the final representation. While this
decomposition is relatively simple for vanilla ViTs, it can-
not be directly used for general ViT architectures due to
use of self-attention variants such as window attention, grid
attention, or block attention, combined with operations such
as pooling or patch merging on the residual stream. The
final representation may also not just be a single zCLS, fin but
1
N

∑N
i=1 zi,fin or even 1

L

∑L
i=1 zCLS,i.

We thus seek a general algorithm which can automatically
decompose the representation for general ViTs. This can
be done via a recursive traversal of the computation graph.
Suppose the final representation z can be decomposed into
component contributions ci,t such that z =

∑
i,t ci,t. Here

each ci,t corresponds to the contribution of a particular to-

ken t through some model component i. For convenience,
let ci =

∑
t ci,t . Then, if given access to the computational

graph of z, we can identify potential linear components ci,t
by recursively traversing the graph starting from the node
which outputs z in reverse order till we hit a non-linear node.
The key insight here is that the output of any node which
performs a linear reduction (defined as a linear operation
which results in a reduction in the number of dimensions)
is equivalent to a sum of individual tensors of the same
dimension as the output. These tensors can be collected
and transformed appropriately during the graph traversal
to obtain a list of tensors ci,t, each members of the same
vector space as the representation z. This kind of linear
decomposition is possible due to the overwhelmingly linear
nature of transformers. The high-level logic of REPDECOM-
POSE is detailed in Algorithm 1. In practice, the number
of components quickly explodes as there are a very large
number of potential component divisions for a given model.
Thus, we restrict it to only the attention heads and MLPs
with no finer divisions. We also constrain REPDECOMPOSE
to return only the direct contributions of these components
to the output. In principle, REPDECOMPOSE could return
higher order terms such as cj,i which is the contribution of
model component i via the downstream component j. We
defer analysis of these higher order components for future
work.
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Embedding
Source

ImageNet
pretrained

One map only COMPALIGN
(λ = 0)

COMPALIGN

TEXTSPAN’s
top 10

descriptions of a
random

component

wardrobe
medicine cabinet
window shade
desk
barbershop
refrigerator
library
shoji screen
bathtub
dining table

gyromitra
home theater
drumstick
Samoyed
muzzle
bookstore
dining table
medicine cabinet
park bench
tusker

bookcase
snorkel
red wolf
barbershop
microwave oven
bassinet
disc brake
dining table
sink
window screen

filing cabinet
snorkel
bakery
bathtub
dining table
red wolf
gyromitra
shoji screen
Norwich Terrier
bookstore

Match rate - 0.08 0.155 0.185
Cosine Distance - 0.23 0.18 0.17

Table 1: Comparison of different methods to map the representation space of ImageNet-1k pre-trained DeiT-B/16 to CLIP
image representation space. The green colored texts are exact matches with the top-10 descriptions obtained from the
imagenet pretrained embeddings, while the orange colored texts are approximate matches. The match rate is the average
fraction of exact matches across all components, while cosine distance is the average cosine distance between the CLIP
representations and the transformed model representations on ImageNet

3. Aligning the component representations to
CLIP space

Having decomposed the representation into contributions
from relevant model components, we now aim to interpret
these contributions through text using CLIP by mapping
them to CLIP space. Formally, given that we have a set of
vectors {ci}Ni=1 such that

∑N
i ci = z, the final representa-

tion of model, we require a set of linear maps fi such that
the sum of

∑
i fi(ci) = zCLIP, the final representation of

the CLIP model. Once we have these CLIP aligned vectors,
we can interpret them via text using CLIP text encoders.

However, from an interpretability standpoint, a few addi-
tional constraints on the linear maps are desirable. Consider
a component contribution ci and two directions u,v be-
longing to the same vector space as ci which represent
two distinct features, say shape and texture. Let us further
assume that the component’s dominant role is to identify
shape, and thus the variance of the projection of ci along u
is higher than that of v. We want this relative importance
of features to be maintained in fi(ci). Additionally, we
also want any two linear maps fi and fj to not change the
relative norms of features in components ci and cj . We can
express these conditions formally as follows:

1. Intra-component norm rank ordering: For any two
vectors u,v and a linear map fi such that ∥u∥ ≤ ∥v∥,
we have ∥fi(u)∥ ≤ ∥fi(v)∥

2. Inter-component norm rank ordering: For any two
vectors u,v and linear maps fi, fj such that ∥u∥ ≤ ∥v∥,
we have ∥fi(u)∥ ≤ ∥fj(v)∥

Theorem 1. Both of the above conditions together imply
that all linear maps fi must be a scalar multiple of an
orthogonal transformation, that is for all i, fT

i fi = kI for
some constant k. Here, I is the identity transformation.

The proof is deferred to appendix C. We can now formulate
a novel alignment method, COMPALIGN, to map contribu-
tions of model components to CLIP space. COMPALIGN
minimizes a loss function over {fi}Ni=1 to obtain a good
alignment between model representation space and CLIP
space:

L({fi}Ni=1) = E{ci}N
i=1,zCLIP

[
1− cos

(∑
i

fi(ci), zCLIP

)]
+ λ

∑
i

∥fT
i fi − I∥F

The first term of the objective is the alignment loss, which is
the average cosine distance between the CLIP representation
zCLIP and the transformed model representation

∑
i fi(ci).

It quantifies the directional discrepancy between the two
vectors. The second term is the orthogonality regularizer
which imposes a penalty if the linear maps fi are not or-
thogonal, ensuring that the fi adhere closely to the specified
conditions. We can now train fi using the above loss func-
tion on ImageNet-1k. The training is label-free and can be
done even over unlabeled datasets. We obtain zCLIP from
the CLIP image encoder and {ci}Ni=1 from running REPDE-
COMPOSE on the final representation of the model.

Ablation study: We now conduct an ablation study on
COMPALIGN. The first naive alignment method uses the
same linear map f for all fi without any constraints (Moay-
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Figure 2: Ablation results for various different image encoders. The top-1 ImageNet accuracy is plotted as the layers of the
model are increasingly ablated away, starting from the last layer up till the first layer. The circles on the plot represent the
endpoints of blocks, the definition of which varies across model architectures. For the vanilla ViT variants, a block is an
attention MLP pair, while for SWIN, it is a pair of windowed/shifted windowed attention and an MLP. For MaxVit, this
might either be a grid/block attention-MLP pair, or an MBConv block.

eri et al., 2023). The second method is a version of COM-
PALIGN with λ = 0, where all fi are different but not
trained with the orthogonality regularizer. To compare these
methods, we first get a “ground truth” description for each
model component by using the TEXTSPAN (Gandelsman
et al., 2024) algorithm on the class embedding vectors from
the ImageNet pre-trained head. This yields descriptions
of each component in terms of the top 10 most dominant
ImageNet classes. We then use COMPALIGN and the two
baselines to map the representations to CLIP space, and
apply TEXTSPAN on CLIP embedded ImageNet class vec-
tors to label each model component. We can then compare
the descriptions this yields with the “ground truth” text
description for each head. The results, shown in Tab. 1,
indicate that COMPALIGN’s TEXTSPAN descriptions have
the most matches to the ImageNet pre-trained descriptions,
followed by COMPALIGN with λ = 0 and the naive single
map method. This trend is similar in the average cosine dis-
tance between the CLIP representations and the transformed
model representations.

4. Component ablation
To identify the most relevant model layers for downstream
tasks, we progressively ablate them and measure the drop in
ImageNet classification accuracy. Ablation involves setting
a layer’s contribution to its mean value over the dataset.
We use the following models from Huggingface’s timm
(Wightman, 2019) repository: (i) DeiT (ViT-B-16) (Touvron
et al., 2021), (ii) DINO (ViT-B-16) (Caron et al., 2021), (iii)
DINOv2 (ViT-B-14) (Oquab et al., 2023), (iv) Swin Base
(patch size = 4, window size = 7) (Liu et al., 2021), (v)
MaxViT Small (Tu et al., 2022), along with (vi) CLIP (ViT-

B-16) (Cherti et al., 2023) from open clip (Ilharco et al.,
2021). DeiT, Swin, and MaxViT are pretrained on ImageNet
with a supervised classification loss, DINO on ImageNet
with a self-supervised loss, DINOv2 on LVD-142M with a
self-supervised loss, while CLIP is pretrained on a LAION-
2B subset with contrastive loss.

In Fig. 2, we see that for models not trained on ImageNet
(CLIP and DINOv2), removing the last few layers quickly
drops the accuracy to zero. In contrast, models trained on
ImageNet experience a more gradual decline in accuracy,
reaching zero only after more than half the layers are ablated.
This trend is consistent across both self-supervised (DINO)
and classification-supervised (DeiT, SWIN, MaxViT) mod-
els. This suggests that ImageNet-trained models encode
useful features redundantly across layers for the classifi-
cation task. Additionally, larger models with more layers,
such as MaxVit, show significantly more redundancy, with
minimal accuracy impact from ablating the last four layers.
Conversely, the first few layers in all models contribute little
to the output. Therefore, our analysis in the subsequent
sections is focused on the last few layers of each model.

5. Feature-based component analysis
We now analyze the final representation in terms finer com-
ponents like attention heads and MLPs, focusing on the last
few significant layers. We limit decomposition to 10 layers
for DeiT, DINO, and DINOv2, but 12 layers for SWIN and
20 layers for MaxVit due to their greater depth and redun-
dancy across components. We accumulate contributions
from the remaining components in a single vector cinit, ex-
pressing z as cinit +

∑N
i ci, where N is the total number of

components excluding cinit. Here, N = 65 for DeiT, DINO,

5



Decomposing and Interpreting Image Representations via Text in ViTs Beyond CLIP

Figure 3: Top-3 images retrieved by DeiT components for “forest” and “beach” ordered according to their relevance for the
attribute “location”. Each column here corresponds to the images returned by the sum of contributions of 3 components, so
column i corresponds to components c3i, c3i+1, c3i+2. A large fraction of components which can recognize the “location”
feature are sorted correctly by the scoring function

and DINOv2; 134 for SWIN, and 156 for MaxVit.

We then ask if it is possible to attribute a feature-specific role
to each component using an algorithm such as TEXTSPAN
(Gandelsman et al., 2024). These image features may be
low-level (shape, color, pattern) or high-level (such as loca-
tion, person, animal). However, such roles are not necessar-
ily localized to a single component, but may be distributed
among multiple components. Furthermore, each individual
component by itself may not respond significantly to a par-
ticular feature, but it may jointly contribute to identifying
a feature along with other components. Thus, rather than
rigidly matching each component with a role, we aim to
devise a scoring function which can assign a score to each
component - feature pair, which signifies of how important
the component is for identifying a given image feature. A
continuous scoring function allows us to select multiple
components relevant to the feature by sorting the compo-
nents according to their score.

We devise this scoring function (described in the appendix
in Alg. 2) by looking at the projection of each contribution
vector ci onto a vector space corresponding to a certain
feature. Suppose we have a feature, “pattern”, that we
want to attribute to the components. We first describe the
feature in terms of an example set of feature instantiations,
such as “spotted”, “striped”, “checkered”, and so on. We
then embed each of these texts to CLIP space, obtaining a
set of embeddings B. We also calculate the CLIP aligned
contributions fi(ci) for each component i over an image
dataset (ImageNet-1k validation split). Then, the score is
simply the correlation between projection of fi(ci) and the
projection of

∑
i fi(ci) onto the vector space spanned by

B. Intuitively, this measures how closely the component’s
contribution correlates with the overall representation. The
scores obtained for each component and feature can be
used to rank the components according to its importance

for a given feature to obtain a component ordering, or to
rank the features according to its importance for a specific
component to get a feature ordering .

Text based image retrieval: We can now use our frame-
work to identify components which can retrieve images pos-
sessing a certain feature most effectively. Using the scoring
function described above, we can identify the top k com-
ponents {ci}ki=1 which are the most responsive to a given
feature p. We can use the cosine similarity of

∑k
i=1 fi(ci)

to the CLIP embedding of an instantiation sp of the feature
p to retrieve the closest matches in ImageNet-1k validation
split. In Fig. 3, we show the top 3 images retrieved by
different components of the DeiT model for the location
instantiation “forest” and “beach” when sorted according
to the component ordering for the “location” feature. As
the component score decreases, the images retrieved by the
components grow less relevant. Also note that a significant
fraction of components are capable of retrieving relevant
images. This further confirms the need for a continuous
scoring function which can identify multiple components
relevant to a feature.

Model Feature
ordering

Component
ordering

DeiT 0.531 0.684
DINO 0.714 0.723
DINOv2 0.716 0.703
SWIN 0.628 0.801
MaxVit 0.681 0.849

Table 2: Spearman’s rank correlation
between the orderings induced by CLIP
score and component score averaged
over a selection of common features

To quantita-
tively verify
our scoring
function, we
devise the
following ex-
periment. We
first choose a
set of common
image features
such as color,
pattern, shape,
and location,
with a repre-
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Figure 4: Top-3 images retrieved by the most significant components for various features relevant to the reference image
(displayed on top). The models used are (from left to right) DINO, DeiT, and SWIN.

sentative set
of feature instantiations for each (details in appendix
B). The scoring function induces a component order-
ing for each feature p and feature ordering for each
component i. We then compute the cosine similarity
simi,sp = cos(fi(ci),ysp,CLIP) where ysp,CLIP is the CLIP
text embedding of sp. We can compare this to the cosine
similarity simCLIP,sp = cos(zCLIP,ysp,CLIP) where zCLIP is
the CLIP image representation. The correlation coefficient
between simi,sp and simCLIP,sp over an image dataset can
be viewed as another score which is purely a function of
how well the component i can retrieve images matching sp
as judged by CLIP. Averaging this correlation coefficient
over all sp for a given p yields a “ground truth” proxy
for our scoring function. We can measure the Spearman
rank correlation (which ranges from -1 to 1) between the
component (or feature) ordering induced by our scoring
function and the ground truth and average it over features
(or components). In Tab. 2 and Tab. 4, we observe that the
average rank correlation is significantly high for all models
for both feature and component ordering.

Image based image retrieval: We can also retrieve images
that are similar to a reference image with respect to a spe-
cific feature. To do this, we first choose components which
are highly significant for the given feature while being com-
paratively less relevant for other features. Mathematically,
for a feature p ∈ P , the set of all relevant features, we want
to choose component i with score si,p such that the quantity
minp′∈P\p si,p − si,p′ is maximised. Intuitively, we want
components which have the highest gap between si,p and
si,p′ where p′ can be any other feature. We can then select a

set of k such components Ck by sorting over the score gap,
and sum them to obtain a feature-specific image representa-
tion zp =

∑
i∈Ck

ci . Now, we can retrieve any image x′

similar in feature p to a reference image x by computing the
cosine similarity between z′

p and zp, which are the feature-
specific image representations for x′ and x. We show a few
examples for image based image retrieval in Fig. 4. Here,
we tune k to ensure that it is not so small that the retrieved
images do not resemble the reference image at all, and not
so large that the retrieved images are overall very similar to
the reference image. We can see that the retrieved images
are significantly similar to the reference image with respect
to the given feature, but not similar overall. For example,
when the reference image is a handbag with a leopard print,
the “pattern” components retrieve images of leopards which
have the same pattern, while the “fabric” components return
other bags which are made of similar glossy fabric. Sim-
ilarly, for the ball with a spiral pattern on it, we retrieve
images which resemble the spiral pattern in the second row,
while they resemble the shape in the third row.

Note that this experiment only involves the alignment pro-
cedure for computing the scores and thereby selecting the
component set Ck. The process of retrieving the images is
based on zp which exists in the model representation space
and not CLIP space. This shows that the model inherently
has components which (while not constrained to a single
role) are specialized for certain properties, and this special-
ization is not a result of the CLIP alignment procedure.

Visualizing token contributions: The contribution from a
component i can be further decomposed as a sum over con-
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Figure 5: Visualization of token contributions as heatmaps for two example images for the DeiT model. The relevant
feature and the head most closely associated with the feature is displayed on the bottom of the heatmap, while the feature
instantiation is displayed on the top. The layer numbering starts from the last layer (which has index ‘00’). The regions
highlighted in red contribute positively to the prediction, while blue regions contribute negatively.

tributions from a tokens, so ci =
∑

t ci,t. For any particular
CLIP text embedding vector u corresponding to a realiza-
tion of some feature p, we have u⊤fi(ci) =

∑
t u

⊤fi(ci,t).
We can visualize this token-wise score u⊤fi(ci,t) as a heat
map to know which tokens are the most influential with
respect to u. We show the heat map obtained via this proce-
dure in Fig. 5 for two example images for the DeiT model.
The components used for each heat map correspond to the
feature being highlighted and are selected using the scor-
ing function we described previously. We can observe that
the heatmaps are localized within image portions which
correspond to the text description.

Spurious correlation mitigation: We can also use the
scoring function to mitigate spurious correlations in the Wa-
terbirds dataset (Sagawa et al., 2020) in a zero-shot manner.
Waterbirds dataset is a synthesized dataset where images
of birds commonly found in water (“waterbirds”) and land
(“landbirds”) are cut out and pasted on top of images of land
and water background. For this experiment, we regenerate
the Waterbirds dataset following Sagawa et al. (2020) but
take care to discard background images with birds and thus
eliminate label noise. We select the top 10 components for
each model which are associated with the “location” fea-
ture but not with the “bird” class following the method we
used for image-based image retrieval. We then ablate these
components by setting their value to their mean over the Wa-
terbirds dataset. In Tab. 3, we observe a significant increase
in the worst group accuracy for all models, accompanied
with an increase in the average group accuracy as well.

6. Related Work
Several studies attempt to elucidate model predictions
by analyzing either a subset of input example through
heatmaps (Selvaraju et al., 2016; Smilkov et al., 2017) or
a subset of training examples (Koh & Liang, 2020; Park
et al., 2023), however, these approaches are often unreliable
in real-world scenarios (Kindermans et al., 2017). These
methods do not interpret model predictions in relation to the
model’s internal mechanisms, which is essential for gaining

Model
name

Worst group
accuracy

Average group
accuracy

DeiT 0.733→ 0.815 0.874→ 0.913
CLIP 0.507→ 0.744 0.727→ 0.790
DINO 0.800→ 0.911 0.900→ 0.938
DINOv2 0.967→ 0.978 0.983→ 0.986
SWIN 0.834→ 0.871 0.927→ 0.944
MaxVit 0.777→ 0.814 0.875→ 0.887

Table 3: Worst group accuracy and average group accuracy
for Waterbirds dataset before and after intervention for vari-
ous models (format is before→ after)

a deeper understanding of the reliability of model outputs.

Internal Mechanisms of Vision Models: Our work is
closely related to the studies by Gandelsman et al. (2024)
and Vilas et al. (2023), both of which analyze vanilla ViTs
in terms of their components and interpret them using either
CLIP text encoders or pretrained ImageNet heads. Like
these studies, our research can be situated within the emerg-
ing field of representation engineering (Zou et al., 2023)
and mechanistic interpretability (Cammarata et al., 2020;
Bricken et al., 2023). Other works (Bau et al., 2020; Goh
et al., 2021; Olah et al., 2018) focus on interpreting individ-
ual neurons to understand vision models’ internal mecha-
nisms. However, these methods often fail to break down the
model’s output into its subcomponents, which is crucial for
understanding model reliability. Shah et al. (2024) examine
the direct effect of model weights on output, but do not
study the fine-grained role of these components in building
the final image representation.

Interpreting models using CLIP: Many recent works uti-
lize CLIP to interpret models via text. Moayeri et al. (2023)
align model representations to CLIP space with a linear
layer, but it is limited to only the final representation and
can not be applied to model components. Oikarinen & Weng
(2023) annotate individual neurons in CNNs via CLIP, but
their method cannot be extended easily to high-dimensional
component vectors.
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A. Limitations
Our analysis is limited in several ways which we hope to address in future work. Firstly, similar to Gandelsman et al. (2024),
we only consider the direct contributions from the last few layers, and do not look at the indirect contributions though other
components. Secondly, we limit ourselves to decomposition only over attention heads and tokens, while convolutional
blocks are not decomposed even if they might admit one. Furthermore, it is still unclear if we can identify certain directions
or vector subspaces in the model component contributions which are strongly associated with a certain property. We believe
that a detailed analysis of higher order contributions with a more fine-grained decomposition may be key for addressing
these challenges.

B. Implementation details
Feature instantiations: We use the following features and corresponding feature instantiations. They are chosen arbitrarily:

1. color: “blue color”, “green color”, “red color”, “yellow color”, “black color”, “white color”

2. texture: “rough texture”, “smooth texture”, “furry texture”, “sleek texture”, “slimy texture”, “spiky texture”, “glossy
texture”

3. animal: “camel”, “elephant”, “giraffe”, “cat”, “dog”, “zebra”, “cheetah”

4. person: “face”, “head”, “man”, “woman”, “human”, “arms”, “legs”

5. location: “sea”, “beach”, “forest”, “desert”, “city”, “sky”, “marsh”

6. pattern: “spotted pattern”, “striped pattern”, “polka dot pattern”, “plain pattern”, “checkered pattern”

7. shape: “triangular shape”, “rectangular shape”, “circular shape”, “octagon”

8. fabric: “linen”, “velvet”, “cotton”, “silk”, “chiffon”

Hyperparameters: The aligners are trained with learning rate = 3× 10−4 , λ = 1/768 using the Adam optimizer (with
default values for everything else) for upto an epoch on ImageNet validation split. Hyperparameters were loosely tuned for
the DeiT model using the cosine similarity as a metric, and then fixed for the rest of the models. We may achieve better
performance with more rigorous tuning. The number of components k used for the image-based image retrieval experiment
was tuned on an image-by-image basis. It is approximately around 9 for larger models like Swin or MaxVit, and around 3
for the rest.

Computational resources: The bulk of computation is utilized to compute component contributions and train the aligner.
Most of the experiments in the paper were conducted on a single RTXA5000 GPU, with 32GB CPU memory and 4 compute
nodes.

11
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C. Proof of Theorem 1
Proof. From the first condition on intra-component rank ordering, for any two vectors u,v and a linear map fi, if
∥u∥ ≤ ∥v∥ then ∥fi(u)∥ ≤ ∥fi(v)∥. We first show that fi is a scalar multiple of an isometry.

If ∥u∥ = ∥v∥ ̸= 0, then both ∥u∥ ≤ ∥v∥ and ∥v∥ ≤ ∥u∥. This implies that ∥fi(u)∥ ≤ ∥fi(v)∥ and ∥fi(v)∥ ≤ ∥fi(u)∥.
Therefore, ∥fi(u)∥ = ∥fiv∥, when ∥u∥ = ∥v∥. Given the input space of the transformation as U , we choose a unit vector
uunit ∈ U . Let’s assume ∥fi(uunit)∥ = c. With the above result, we can use the following equality ∥ u

∥u∥∥ = ∥uunit∥ to
obtain the following: ∥∥∥∥fi(u)∥u∥

∥∥∥∥ =

∥∥∥∥fi( u

∥u∥

)∥∥∥∥ = ∥fi(uunit)∥ = c, (1)

Therefore:
∥fi(u)∥ = c∥u∥ (2)

Thus, the linear transformation fi is a scalar multiple of an isometry. Now consider two linear maps fi and fj such that
∥fi(u)∥ = ci∥u∥ and ∥fju∥ = cj∥u∥. From the second condition on inter-component rank ordering, for any two vectors
u,v and linear maps fi, fj , if ∥u∥ ≤ ∥v∥ then ∥fi(u)∥ ≤ ∥fj(v)∥. This implies that if u = v, ∥fi(u)∥ = ∥fj(u)∥.
However, this can only happen when ∥fi(u)∥ = c∥u∥ for some constant c for all fi ∀i.

With this, let’s denote fi
c as an isometry. One of the general property of isometries are that they preserve the inner product

between two vectors u and v. First we prove that isometries preserve the inner product, which we will then use to prove the
orthogonality of fi

c . Given two vectors u and v, their inner product can be expressed as the following:

uTv =
1

4
(∥u+ v∥2 + ∥u− v∥2) (3)

An isometry by definition preserves the norm of the vectors i.e. ∥fi(u)∥ = ∥u∥ and ∥fi(v)∥ = ∥v∥. Due to this property,
we can express the following relations:

∥fi(u+ v)∥ = ∥u+ v∥, (4)

and
∥fi(u− v)∥ = ∥u− v∥, (5)

We can express fi(u)T fi(v) as the reduction from Eq.(3):

fi(u)
T fi(v) =

1

4
(∥fi(u) + fi(v)∥2 + ∥fi(u)− fi(v)∥2), (6)

fi(u)
T fi(v) =

1

4
(∥fi(u+ u)∥2 + ∥fi(u− v)∥2), (7)

Next we substitute the relations from Eq.(4) and Eq.(5) to Eq.(7) to obtain the following inner product preservation property:

fi(u)
T fi(v) =

1

4
(∥u+ v∥2 + ∥u− v∥2) = uTv (8)

Next we use the inner product preservation property to prove the orthogonality of fi
c as follows:

fi(u)
⊤fi(v) = c2u⊤v, (9)

u⊤
(

1

c2
f⊤
i fi − I

)
v = 0, (10)

From 10, we can infer the orthogonality of fi
c which leads to the following result:

f⊤
i fi = c2I = kI, (11)
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D. Scoring function

Algorithm 2 Scoring function for attributing properties to components

Input: Z, the image representation output by the model over n images with dimension d (shape: n×d); C, the contribution
of a particular component of interest (shape: n× d); B, the set of k feature vectors that represent a given feature
(shape: k × d)

Output: A score that signifies the importance of the component for the given feature
function COMPATTRIBUTE(c, z, B)

B ← orthogonalize(B)
sZ ← ZB⊤

sC ← CB⊤

r ← correlation coefficient(sZ , sC , dim=0)
return mean(r)

13
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E. Text-based Image retrieval

Model name Color Texture Animal Person Location Pattern Shape

DeiT 0.679 0.563 0.774 0.596 0.818 0.597 0.764
DINO 0.663 0.657 0.781 0.742 0.833 0.680 0.706
DINOv2 0.751 0.614 0.875 0.714 0.857 0.597 0.510
SWIN 0.795 0.720 0.904 0.780 0.912 0.760 0.739
MaxVit 0.872 0.832 0.911 0.828 0.901 0.803 0.797

Table 4: Spearman rank correlation for various common properties
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F. Image-based Image retrieval

Figure 6: Top-3 images retrieved by the most significant components for various relevant properties for DINO
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Figure 7: Top-3 images retrieved by the most significant components for various relevant properties for SWIN

Figure 8: Top-3 images retrieved by the most significant components for various relevant properties for DeiT
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Figure 9: Top-3 images retrieved by the most significant components for various relevant properties for MaxViT

Figure 10: Top-3 images retrieved by the most significant components for various relevant properties for DINOv2
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Figure 11: Top-3 images retrieved by the most significant components for various relevant properties for CLIP
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G. Property visualization via token decomposition

'animal' head: 
layer:00, attn_head:05

camel

'location' head: 
layer:01, attn_head:10

desert

'shape' head: 
layer:01, attn_head:00

triangle

'person' head: 
layer:00, attn_head:04

man

'pattern' head: 
layer:00, attn_head:05

striped pattern

'location' head: 
layer:01, attn_head:10

beach

Figure 12: Visualization of token contributions for CLIP

'animal' head: 
layer:00, attn_head:07

camel

'location' head: 
layer:03, attn_head:08

desert

'shape' head: 
layer:03, attn_head:09

triangle

'person' head: 
layer:01, attn_head:05

man

'pattern' head: 
layer:04, attn_head:04

striped pattern

'location' head: 
layer:03, attn_head:08

beach

Figure 13: Visualization of token contributions for DINO
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'animal' head: 
layer:00, attn_head:15, 
layer:01, attn_head:15, 
layer:03, attn_head:09

camel

'location' head: 
layer:04, attn_head:08, 
layer:05, attn_head:12, 
layer:01, attn_head:31

desert

'shape' head: 
layer:04, attn_head:13, 
layer:05, attn_head:00, 
layer:04, attn_head:03

triangle

'person' head: 
layer:01, attn_head:07, 
layer:00, attn_head:30, 
layer:02, attn_head:06

man

'pattern' head: 
layer:04, attn_head:14, 
layer:01, attn_head:06, 
layer:02, attn_head:03

striped pattern

'location' head: 
layer:04, attn_head:08, 
layer:05, attn_head:12, 
layer:01, attn_head:31

beach

Figure 14: Visualization of token contributions for SWIN

'animal' head: 
layer:00, attn_head:20, 
layer:01, attn_head:10, 
layer:00, attn_head:09

camel

'location' head: 
layer:03, attn_head:22, 
layer:05, attn_head:11, 
layer:06, attn_head:03

desert

'shape' head: 
layer:04, attn_head:11, 
layer:03, attn_head:13, 
layer:04, attn_head:02

triangle

'person' head: 
layer:03, attn_head:01, 
layer:03, attn_head:03, 
layer:02, attn_head:16

man

'pattern' head: 
layer:02, attn_head:22, 
layer:03, attn_head:09, 
layer:01, attn_head:07

striped pattern

'location' head: 
layer:03, attn_head:22, 
layer:05, attn_head:11, 
layer:06, attn_head:03

beach

Figure 15: Visualization of token contributions for MaxVit
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H. Zero-shot spurious correlation mitigation

Model name Waterbird in water Waterbird in land Landbird in water Landbird in land

DeiT 0.985→ 0.971 0.733→ 0.815 0.787→ 0.886 0.991→ 0.980
CLIP 0.920→ 0.814 0.507→ 0.746 0.534→ 0.744 0.948→ 0.857
DINO 0.985→ 0.944 0.800→ 0.911 0.832→ 0.943 0.982→ 0.956
DINOv2 0.994→ 0.989 0.967→ 0.981 0.971→ 0.978 1.000→ 0.997
SWIN 0.989→ 0.989 0.834→ 0.871 0.893→ 0.923 0.994→ 0.994
MaxVit 0.959→ 0.942 0.796→ 0.814 0.777→ 0.832 0.970→ 0.961

Table 5: All group accuracies on the Waterbirds dataset before and after component ablation
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