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Attribute-Aligned Domain-Invariant Feature
Learning for Unsupervised Domain
Adaptation Person Re-Identification

Huafeng Li , Yiwen Chen, Dapeng Tao , Member, IEEE, Zhengtao Yu , and Guanqiu Qi

Abstract— Domain invariance and discrimination of learned
features as two crucial factors affect the performance of
unsupervised domain adaptation (UDA) person re-identification
(Re-ID). Person attributes (such as “backpack”, “boots”, “hand-
bag”, etc) remaining unchanged across multiple domains have
been used as mid-level visual-semantic information in UDA
person Re-ID. As two main challenges, both misalignment of
attribute-related regions across multiple images and domain shift
between source and target domains affect the learning of domain-
invariant features (DIF). To address the above two challenges,
this article proposes to take advantage of the stability of person
attributes and the complementarity of person attributes and the
corresponding low-level visual features to guide the learning
of discriminative DIF. Specifically, the proposed solution con-
tains the generation of latent attribute-correlated visual features
(GLAVF), DIF learning under the guidance of person attributes,
and the alignment of person attributes corresponding to the
local regions of pedestrian images. Due to the gap between
person attributes and visual features, person attributes are first
converted into latent attribute-correlated visual features (LAVF)
without any specific domain information in GLAVF, and then
LAVF are used as the substitutions of person attributes to guide
the learning of DIF. To enhance the discrimination of learned
features, the proposed solution mainly explores the alignment
between person attributes and corresponding local regions, and
the alignment of the same person attributes across multiple
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pedestrian images. A fully connected layer is used to achieve
the above two types of alignment in the proposed framework,
which reduces the adverse impacts of inference information and
ensures the semantic consistency between person attributes and
corresponding local regions across multiple pedestrian images.
The effectiveness of the proposed solution is confirmed on four
existing datasets by comparative experiments.

Index Terms— Person Re-ID, domain adaptation, person
attributes, semantic alignment.

I. INTRODUCTION

PERSON re-identification (Re-ID) aims to identify the
same person across various scenes in multiple images

captured by non-overlapping cameras. Compared with the
traditional image retrieval, image querying of person
Re-ID involving image matching across multiple disjoint
camera views is more challenging [1]–[6]. On the basis of
essential applications in intelligent surveillance, person Re-ID
has attracted considerable attention in both academia and
industry [7]–[16]. Although great progress has been made in
person Re-ID, most of existing solutions focus on supervised
deep learning. However, due to the difference between training
data and target data, “domain shift” (also called “domain
bias) causes the poor scalability and usability of supervised
learning based solutions in practical applications. UDA per-
son Re-ID methods can effectively alleviate the “domain
shift” issues in supervised deep learning on labeled source
datasets [17]–[22]. Although the effectiveness of these existing
methods was confirmed on public datasets, a lot of challenges
still exist in practical applications due to the ambiguity in
pedestrian appearances across multiple disjoint camera views.
As a generic solution, the ambiguity of pedestrian appear-

ances across multiple domains is alleviated by improving the
discrimination of learned features. Person attributes such as
“boots”, “handbag”, and “shoulder bag” (as shown in Fig. 1)
can describe a person from visual-semantic aspects, and these
attributes keep unchanged across multiple disjoint camera
views, thus can be used as the complement to low-level visual
features. In person Re-ID, person attributes are often utilized
to improve visual feature learning. In most existing attribute-
based person Re-ID methods [7], [11], [23]–[27], both mid-
level attributes and low-level visual features extracted from
pedestrian images work together on image matching. These
methods usually design specific attribute classifiers first, and
then the attribute classifiers are applied to global features to
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Fig. 1. Pedestrian images and corresponding person attributes across multiple
disjoint camera views. Person attributes are unchanged across multiple disjoint
camera views, and have certain discrimination for distinguishing different
people.

achieve the attribute prediction. Actually, most of mid-level
attributes (such as “boots”, “handbag”, and “shoulder bag”),
are only associated with specific local regions of pedestrian
images, so person attributes directly from global features are
not conducive to enhancing the performance of person Re-ID.
Moreover, the extraction of DIF is difficult for these existing
methods. One main reason is the spatial misalignment of local
regions associated with the same attributes across multiple
images (as shown in Fig. 1), which is mainly caused by the
cluttered background, pose/viewpoint variation, and imperfect
person detection. Another reason is that attributes cannot be
effectively aligned with the local regions of pedestrian images
as described.
In this article, the stability of person attributes is exploited

to ensure the domain invariance of learned features, and the
complementarity of person attributes and the corresponding
low-level visual features is utilized to enhance the discrimina-
tion of learned features. As a basic principle, when the learned
discriminative identity features are aligned with LAVF at
domain level, the domain invariance of the learned features is
guaranteed due to the domain invariance of LAVF. In addition,
local regions of pedestrian images corresponding to person
attributes are often discriminative, so they are helpful in
distinguishing personal identities. If the local responses at the
corresponding local regions of person attributes are strength-
ened, the discrimination of learned features can be enhanced.
Furthermore, if the attribute-related regions are semantically
aligned across multiple images, the discrimination of learned
features can be further improved. According to the above
analysis, a novel solution is proposed for UDA person Re-ID.
As shown in Fig. 2, in addition to the “Baseline”, the proposed
method contains the generation of latent attribute-related visual
features (i.e. GLAVF module), the learning of discriminative
domain-invariant features (i.e. DIFL module), and the align-
ment between attributes and the corresponding local-region
features (i.e. LAAF module).
Assuming that a certain correlation exists between attributes

and the corresponding visual features, attributes are converted
into LAVF in GLAVF module, and all the LAVF constitute
a space, which is called LAVF space. After that, an adver-
sarial learning strategy is proposed to achieve the domain
alignment between the learned features and LAVF. In this

way, the learned features are guaranteed to share the same
domain information with LAVF. To enhance the discrimination
of the learned DIF, a new fully connected layer is added
to the proposed network to select and combine attribute-
related features, in which the alignment between LAVF and
the corresponding local features is achieved by a specific
objective function. Under the supervision of attribute labels,
feature maps associated with person attributes are purified, and
the local regions corresponding to the same attribute across
multiple images are aligned semantically in feature map chan-
nels. Therefore, the semantic alignment of attribute-related
features is achieved across multiple images. Correspondingly,
the discrimination of learned features can be improved. So far
as we know, it is the first time to exploit attributes to obtain
DIF and enhance the discrimination of DIF by semantically
aligning local regions with the same attributes across multiple
images.
In summary, this article has three main contributions as

follows.

• According to the unchanged attributes across multiple
domains, a domain-invariant feature extraction method is
proposed. The proposed method converts attributes into
LAVF first, and then obtains DIF by aligning the domain
information of visual features extracted from pedestrian
images with LAVF. So far as we know, it is the first time
to apply attributes to the learning of DIF.

• To align the domain information of pedestrian visual
features with LAVF, an adversarial learning mecha-
nism is proposed to make both camera classifier and
feature encoder pit against each other. During the
learning process, camera classifier and feature encoder
are optimized alternatively. Following the optimization,
the camera classifier gradually becomes unable to dis-
tinguish whether the source of domain information is
from extracted pedestrian visual features or LAVF. So,
the domain information of pedestrian visual features is
aligned with LAVF.

• To improve the discrimination of the learned domain-
invariant features, a fully connected layer is added to
the proposed network to extract features corresponding
to attributes from global features obtained by Global
Average Pooling (GAP), and then the discriminative
information in the global features is strengthened by
aligning LAVF with corresponding local-region features
in pedestrian images. The semantic alignment of local
regions corresponding to the same attributes across mul-
tiple images is achieved, which helps improve the repre-
sentation quality of attribute-related regions.

The rest of this article is organized as follows: Section II
discusses the related work; Section III specifies the proposed
solution in detail; Section IV compares the proposed solution
with existing solutions; and Section V concludes this article.

II. RELATED WORK

A. Unsupervised Person Re-ID

Due to the lack of labeled data in practical applica-
tion, unsupervised person Re-ID has attracted considerable
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Fig. 2. Overall architecture of the proposed model. Attribute-feature map network G converts the attributes into LAVF so as to guide the learning of
domain-invariant features. The attribute prediction network D is used to predict the original attributes from LAVF so as to encourage G to give an accurate
prediction. The camera ID classifier W2 is used to identify the camera labels of global features and LAVF. F as a fully connected layer is used to achieve the
alignment between attributes and their corresponding local regions. In the framework, L I D , Lalign , Lre , L pre , Lcla1 and Lcla2 denote ID loss, alignment
(align) loss, attribute reconstruction (re) loss, attribute prediction (pre) loss, and two camera classification (cla) losses respectively.

attention from researchers. Handcrafted features were first
applied to unsupervised person Re-ID [28], [29]. However,
it is difficult to obtain handcrafted features with high dis-
crimination. In addition, this type of methods ignore the
distribution of samples, resulting in the poor performance
on large-scale datasets. Unsupervised feature learning such
as [30] can avoid this problem. In person Re-ID, to obtain
domain-invariant features across different views, some feature
representation learning methods were proposed to learn the
discriminative features by exploring invariant cross-view per-
son information [31], [32]. Nevertheless, due to the absence
of labeled pairwise samples in target domain, these methods
have poor recognition performance. To solve this issue, some
unsupervised self-training methods were developed to predict
the labels for the unlabeled target data, and employ them
to retrain the unsupervised person Re-ID models [33], [34].
In practical applications, target datasets often have really large
size, but only contain a small number of paired samples. So,
it is extremely difficult to select the paired samples from a
target dataset. Due to the limited number of paired samples,
even if all the paired samples are selected, it is still not enough
to train a deep learning model with large-scale parameters to
significantly enhance the performance of the propose solution
on target dataset.

B. UDA in Person Re-ID
UDA person Re-ID has been widely concerned, because

it can effectively alleviate the problem of poor recognition
performance caused by the lack of labeled samples in target
data. UDA person Re-ID methods usually train a Re-ID model
to learn transferable features under the supervision of the
labeled source dataset, and apply the learned Re-ID model to
the unlabeled target dataset for person identity matching [18],
[35]–[37]. Camera style translation, domain-invariant feature
learning, and pseudo label prediction are commonly used in
UDA person Re-ID methods. The camera style translation
based methods often transfer images from labeled source
domain to target domain, which makes the translated images
share the same camera style with the samples in target domain.
With the transferred images, the Re-ID model can be trained in
a supervised manner. In particular, Liu et al. [37] developed
an adaptive transfer network for UDA person Re-ID, where
the image style transfer is achieved by multiple factor-wise
CycleGANs and an ensemble CycleGAN. To alleviate the
influence of complicated background on the discrimination
of domain-invariant features, Huang et al. [19] proposed a
generative adversarial network of background shift to generate
images with suppressed backgrounds. This method guarantees
the style consistency of the transferred image across different
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domains, which narrows the domain gap. However, during the
image style transfer, it is difficult to ensure that the visual cues
associated with the corresponding ID information in an image
are not changed [20]. Although this issue was noticed a long
time ago, it has not been well solved.
Unlike image style transfer methods, which use the

transferred images to train Re-ID models in a super-
vised manner, clustering and pseudo-label prediction based
methods [14], [17], [18], [35], [38]–[40] solve lack of pairwise
labels in target domains by assigning pseudo-labels to target
samples. Particularly, to mitigate the negative effects of noisy
labels introduced by clustering algorithms, Ge et al. [18]
presented a mutual mean-teaching for UDA person Re-ID.
To reduce the restrictions caused by lack of pairwise samples
on the improvement of recognition performance, Yu et al. [35]
developed a soft multi-label learning method to select paired
samples from unlabeled target domain to train the correspond-
ing Re-ID model. To improve the label estimation process,
Ye et al. [40] designed a dynamic graph matching method
for the task of video-based person Re-ID. Because of the
excellent performance of dictionary learning in computer
vision tasks [41]–[44], Li et al. [7] proposed a scalable pedes-
trian re-recognition based on dictionary learning. This method
addresses the absence of labeled target samples by performing
pseudo-label prediction on target data samples. These methods
achieve excellent performance on public datasets, but lack of
paired samples may cause such algorithms impractical in real
world scenarios.
Compared with the clustering and pseudo-label predic-

tion based methods, unsupervised domain-invariant feature
learning is more practical in real-world applications [21],
[45]–[48]. This type of methods usually train Re-ID models
on the labeled source domain in a supervised way, so the
domain-invariant features can be extracted across multiple
domains. For example, to improve the discrimination of the
learned features, Yang et al. [46] developed a patch-based
unsupervised learning framework known as PatchNet for UDA
person Re-ID. Song et al. [21] presented a domain-invariant
mapping network to learn a generalizable person Re-ID model
by exploring the mapping relationship between pedestrian
images and an identity classifier. To learn the discriminative
information from unlabeled target domains, Qi et al. [45]
developed an unsupervised camera-aware domain adaptation
approach to reduce the discrepancy among different domains.

C. Attributes for Person Re-ID

As mid-level semantic information, person attributes are
intrinsically unchanged across multiple non-overlapping cam-
era views, so they have been widely used in person
Re-ID [7], [11], [23]–[27]. Wang et al. [23] developed a
transferable deep learning framework to extract discriminative
identity attributes by exploring both labeled attributes and
identity information for UDA person Re-ID. To reduce the
reliance on annotations, Wang et al. [11] used a plug-and-
play method to extract valuable information for attribute
prediction in an unsupervised way. During the testing process,
the outputs of both feature and attribute layers are used as the

discriminative information for personal identity matching.
Tay et al. [25] presented an attribute attention network for
person Re-ID, in which an identity classification frame-
work is used to analyze both human body parts and key
attributes. The above attribute-based methods mostly concate-
nate the predicted attributes with the extracted visual fea-
tures for similarity measurement. Unlike the above methods,
Li et al. [24] proposed to use person attributes to aid the
detection and refinement of human parts for person Re-ID.
Different from existing methods, the proposed solution in
this article only utilizes attributes to guide the learning of
domain-invariant features and enhance their discrimination by
semantically aligning local regions with the same attribute
across pedestrian images.

III. THE PROPOSED METHOD

A. Overview of Our Framework

As shown in Fig. 2, the proposed model primarily consists
of three functional modules: generation of LAVF (GLAVF),
domain-invariant feature learning (DIFL), and local alignment
of attributes and features (LAAF). The feature encoder E is
trained on the labeled source domains by supervised learning,
so that it has an basic ability to extract global discriminative
features. In pre-training process, ResNet-50 [49] pre-trained
on ImageNet [50] is used as the backbone, and followed by
a fully connected layer, i.e., identity classifier W1 as shown
in Fig.2. In GLAVF, we propose to learn a translator, i.e.
attribute-feature map network G, and an attribute prediction
network D. G is used to convert attributes into LAVF, and
D is used to predict the attributes from LAVF.
In fact, G and D can be regarded as a pair of encoder

and decoder. Attribute prediction network ensures that the
relationship between the generated LAVF and the original
attributes stay unchanged. The global features of both source
and target domain samples are obtained by the pre-trained
encoder E. In DIFL, the encoder E is further trained to extract
domain-invariant features. Specifically, a camera ID classifier
W2 is introduced to conduct adversarial learning between W2
and E, so that the visual features extracted by E and the
LAVF share the same domain information. Local alignment is
used to enhance the discrimination of the learned features by
aligning attributes and the corresponding local visual features.

B. Generation of LAVF

Due to the gap between attributes and visual features,
we can not directly employ attributes to guide the learning
of domain-invariant features. To solve this issue, we propose
to construct an attribute-feature map network G to convert
attributes into LAVF. Given a labeled source domain Xs =
{x i

s}Ns
i=1, and the real labels Y = {yi

s}Ns
i=1, yi

s ∈ [1, 2, · · · , ns ],
where Ns is the number of images and ns is the number of
identities, both feature encoder E and identity classifier W1
can be optimized by minimizing the following cross-entropy
loss.

L I D(E, W1) = −
ns∑

c=1
I[c=yi

s ] log
(

p
(

W1
(

E(x i
s)

)))
, (1)
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where p(·) indicates the logits of the i -th person image x i
s

belonging to c-th identity, and I[c=yi
s ] denotes a common

indicator function.
Since the feature extractor E is trained without the super-

vision of the labels of target samples, which may cause the
over-fitting. To mitigate this issue, a label smooth operation
defined in Eq.(2) [51] is introduced to replace the indicator
function I[c=yi

s ].

Î[c=yi
s ] =

⎧⎪⎨
⎪⎩
1− Ns − 1

Ns
ε, if c = yi

s

ε

Ns
, otherwise

, (2)

where ε is a small hyper-parameter. In this work, it is set
to 0.1 according to [52]. So the improved Eq.(1) can be
formulated as follows.

L I D(E, W1) = −
ns∑

c=1
Î[c=yi

s ] log
(

p
(

W1
(
E(x i

s)
)))

, (3)

Under the supervision of attributes, both G and D are
optimized by minimizing the following reconstruction loss.

Lre(G, D) = − 1

nb

nb∑
i=1

‖ai
s − D(G(ai

s))‖1, (4)

where ‖ · ‖1 denotes the l1 norm, nb is the batch size and
ai

s is the attributes of the i -th person in source domain. With
the learned G, D and E, the global visual features f i

s =
E(x i

s), and the LAVF f i
s,a = G(ai

s) can be obtained. Due to
the domain invariance of attributes, the converted LAVF from
attributes are also domain-invariant, thus they can be used to
replace the attributes to guide the learning of domain-invariant
features.

C. DIF Learning

With the target dataset Xt = {x i
t }Nt

i=1, where Nt denotes
the number of person images, the features f i

t of input image
x i

t can be obtained by f i
t = E(x i

t ) for identity match-
ing. Nevertheless, the above method does not guarantee the
learned features are domain-invariant. According to the natural
stability of person attributes cross different camera views,
we develop a novel adversarial learning mechanism to make
camera ID classifier W2 and feature encoder E pit against each
other. In this process, LAVF are used as the game director
between W2 and E to promote the extracted features are
aligned with LAVF at domain level by letting the features
extracted by E share the same domain information with LAVF.
As shown in Fig. 3, a camera ID classifier W2 is designed

to classify the features f i
s , f i

t and LAVF f i
s,a into the corre-

sponding camera ID classes and a separate class respectively.
During the training process, W2 is trained by supervised
learning first. So W2 can classify the input images correctly.
Once W2 is updated, we leave it unchanged and further
optimize the encoder E to make W2 classify the features f i

s ,
f i
t into the separate class. After that, we leave E unchanged
and update W2 to make it can classify the input samples into
corresponding camera classes. After this game, the domain
of the extracted features by encoder E is aligned with the

Fig. 3. Illustration of the DIFL module. This process includes two stages. The
first one aims to optimize W2 by classifying features from different domains
into corresponding camera labels. Here, Lcla1,s , Lcla1,t and Lcla1,a are
classified losses of f i

s , f i
t and f i

s,a respectively. The second one optimizes E
with fixed W2 by classifying the features of both source and target domains
into the separate class (last class). This process is achieved by minimizing the
classified loss Lcla2. “Backward” means the back propagation. Two stages
are performed alternately.

LAVF. Due to the domain invariance of LAVF, the domain
invariance of the extracted features by E is guaranteed. Let
Cs = {ci

c}Ns
i=1, ci

c ∈ {1, 2, · · · , ks} and Ct = {ci
c}Nt

i=1, ci
c ∈

{1, 2, · · · , kt } be the camera ID labels in both source and target
domains. Thus, the dimension of the classification output of
W2 is nc = ks + kt + 1. With the updated E, W2 can be
updated by minimizing the following loss.

Lcla1(W2) = Lcla1,s(W2) + Lcla1,t (W2) + Lcla1,a(W2)

= −
ks∑

c=1
I[c=ci

s ] log
(

pc

(
W2

(
E(x i

s)
)))

−
kt∑

c=1
I[c=ci

t ] log
(

pc

(
W2

(
E(x i

t )
)))

−
nc∑

c=1
I[c=ca ] log

(
pc

(
W2

(
G(ai

s)
)))

, (5)

where pc is the camera prediction logits of class c, and ca is
the camera label of LAVF.
After updating W2, the encoder E is updated by minimizing

the following loss.

Lcla2(E) = −
nc∑

c=1
I[c=ca ] log

(
pc

(
W2

(
E(x i

s)
)))

−
nc∑

c=1
I[c=ca ] log

(
pc

(
W2

(
E(x i

t )
)))

, (6)

In the above-mentioned adversarial learning, the recognition
ability of classifier W2 is gradually improved by minimizing
the loss functions in Eq.(5) and (6), which further promotes
the encoder E accordingly to extract more domain-invariant
features. Since equal probability classification can not guar-
antee the learned features share the same domain in theory,
the proposed solution does not classify features into each
camera identity with equal probability as [53] to achieve
domain alignment.
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Fig. 4. Illustration of the LAAF module. F is used to extract the
features f i

s,l corresponding to attributes from global features f i
s obtained by

GAP, for achieving the alignment between attributes and their corresponding
local features. “Backward” means the back propagation.

D. Local Alignment Between Attributes and Features

It is challenging to automatically align attributes with the
corresponding local regions of pedestrian images due to the
gap between attributes and visual features. As shown in
recent work, the corresponding connections exist between
feature channels of person Re-ID network and local regions of
pedestrian images [54]–[56]. After assigning different weights
to the features from different channels and learning these fea-
tures under the supervision of attributes, the attribute-related
feature channels can be selected to describe the corresponding
attribute-related regions, so the alignment between attributes
and the corresponding local visual features can be achieved.
So far, the encoder E trained without the supervision

of attributes may ignore the discriminative local details of
pedestrian images corresponding to attributes. As we know,
person mid-level attributes such as “boots”, “backpack”, etc,
are usually related to the specific local regions in pedestrian
images. If person Re-ID network pays more attention to
the attribute-related regions, the discrimination of the learned
features can be improved. As one intuitive alignment method,
an image is divided into different patches first, and then
the attributes are aligned with these patches. However, this
patch-based feature extraction method may damage the latent
relationship between each patch, resulting in the reduction
of feature discrimination. To solve the above issue, a fully
connected layer F followed the encoder E is added into
the Re-ID network to select relevant feature channels for
describing each attribute-related region, as shown in Fig. 4.
This process can be achieved by minimizing the following
loss.

Lalign(F) = 1

nb

nb∑
i=1

‖G(ai
s) − F(E(x i

s))‖1, (7)

where nb denotes the batchsize.
Since f i

s = E(x i
s) contains a lot of redundant informa-

tion, it is challenging to predict attributes directly from f i
s .

To mitigate this issue, the local alignment between attributes
and corresponding visual features is introduced in Eq.(7).
In this process, if the global feature E(x i

s) contains attribute-
related information, the local features F(E(x i

s)) aligned with

Fig. 5. Illustration of the effect of the fully connected layer F on global
feature extraction under attribute supervision. Columns (a) and (d) show the
original pedestrian images. Columns (b) and (e) show the responses (i.e.
heatmaps) of the encoder E without the fully connected layer F. Columns (c)
and (f) show the responses of the encoder E followed by the fully connected
layer F. The strong activation regions are marked in red.

attribute should be able to correctly predict the corresponding
attributes ai

s via D(F(E(x i
s))). In this article, the following

Sigmoid Cross Entropy loss function is utilized to predict the
attributes by considering all m attribute classes.

L pre(E)

=
nb∑

i=1

m∑
j=1

(
ai, j

s log
(
pa(ã

i, j
s )

)+(1−ai, j
s ) log

(
1− pa(ã

i, j
s )

))
,

(8)

where pa(ã
i, j
s ) represents the predicted classification proba-

bility of the ground truth class ai, j
s of x i

s , and ãi, j
s is the j -th

element in attribute vector ãi
s = [ãi,1

s , ãi,2
s , · · · , ãi,m

s ]T . Since
ãi

s are the attributes predicted by D from the local features
F(E(x i

s)), ãi
s can be calculated by ãi

s = D(F(E(x i
s))).

In the above process, the fully connected layer can not only
align the attributes with the corresponding local regions of
pedestrian images, but also align the local regions with the
same attributes across multiple images in the feature chan-
nels of Re-ID network semantically. The alignment between
attributes and corresponding local regions can promote the
attribute-related regions to get more attention in Re-ID net-
work training. Meanwhile, the channel alignment is conducive
to the learning of features for semantic alignment. The above
two alignments are unquestionably beneficial to the enhance-
ment of the discrimination of global features. As shown
in Fig. 5, the visualization results are generated by the method
in [57] under the supervision of attributes. After introducing
the fully connected layer F, the encoder E can pay more
attention to the attribute-related regions. At the same time,
other discriminative regions irrelevant to attributes also receive
sufficient attention from the encoder E.
As shown in Fig. 6, one attribute-related channel is selected

from the same channels of different images to further demon-
strate the effect of the fully connected layer F. As shown
in columns (b) and (e) of Fig. 6, the encoder E can not
effectively focus on the regions related to the attributes from
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Fig. 6. The effect of the fully connected layer F on the semantic alignment
of attribute-related regions. These heatmaps are the responses of our model
to a specific attribute on the related single channel. Columns (a) and (d) show
the source images. Columns (b) and (c) are from the same channel related
to the attribute “shoulder bag”, and columns (e) and (f) are from the same
channel related to the attribute “hat” . Columns (b) and (e) show the results
without the fully connected layer F. Columns (c) and (f) show the results
with the fully connected layer F.

the same feature channels of Re-ID network without the fully
connected layer F. After introducing the fully connected
layer F, the regions activated by encoder E focus at the
attribute-related regions, and the regions of the same attributes
in different pedestrian images are activated at the same feature
channels. It indicates that the encoder E can semantically align
the attribute-related region features in global features across
multiple images once the encoder E is followed by the fully
connected layer F. Thus the attribute-aligned global features
can be obtained. Furthermore, the encoder E followed by the
fully connected layer F can purify the attribute-related feature
channels, which is helpful to enhance the discrimination of the
learned features.

E. Final Loss of the Proposed Model

In sum, the final loss is formulated as the combination
of the improved identity loss L I D(E, W1), reconstruction
loss Lre(Ea, Da), adversarial loss α1Lcla1(Wc)+α2Lcla2(E),
alignment loss Lalign(F) and prediction loss L pre(E):

L(E, G, D, F, W1, W2)

= (L I D(E, W1) + Lre(G, D)) + α1Lcla1(W2)

+α2Lcla2(E) + α3Lalign(F) + α4L pre(E) (9)

where α1, α2, α3 and α4 are hyper-parameters that adjust
the weight of the corresponding loss respectively in the

Algorithm 1 Attribute-Aligned Domain-Invariant Feature
Learning for Unsupervised Domain Adaptation Person
Re-Identification

Input: Labeled source samples Xs = {x i
s}Ns

i=1, corresponding
labels Y = {yi

s}Ns
i=1, corresponding attribute annotations A =

{ai
s}Ns

i=1, unlabeled target samples Xt = {x i
t }Nt

i=1.
Output: The trained encoder E.
Step I: Generation of Latent Attribute-Correlated Visual
Features (Sec.III.B)
1:Sample a batch of labeled source data to E.
2:Initialize E, W1, G, D
3:for iter=1, · · · , Iteration1 do
4: Update E and W1 by minimizing the loss in Eq.(3).
5: Update G and D by minimizing the loss in Eq.(4).
5:end for

Step II: Domain-Invariant Feature Learning (Sec.III.C)
6:Sample a batch of labelled source data.
7:Sample a batch of unlabeled source data.
8:Load the learned E, W1, G, D.
9:Initialize camera classifier W2;
10: for iter=1, · · · , Iteration2 do
11: Update W2 by minimizing the loss in Eq.(5).
12: Update E by minimizing the loss in Eq.(3) and
Eq.(6).
13: end for
Step III: Local Alignment Between Attributes and
Features (Sec.III.D)
14:Sample a batch of labelled source data.
15:Sample a batch of unlabeled source data.
16:Load the learned E, W1, Ea , D and W2.
17:Initialize F.
18: for iter=1, · · · , Iteration3 do
19: Update W2 by minimizing the loss in Eq.(5).
20: Update F by minimizing the loss in Eq.(7).
21: Update E by minimizing the loss in Eqs.(3), (6)
and (8).
22: end for

final loss. In the training process, identity loss L I D(E, W1)
is used to train the “Baseline” on the labeled source domain
in a supervised way, while reconstruction loss Lre(G, D) is
used to train the attribute-feature map network G and attribute
prediction network D on source domain under the supervision
of the manually labeled attributes. Then, adversarial loss
α1Lcla1(W2) + α2Lcla2(E) is used to train the encoder E on
the labeled source domain and the unlabeled target domain
for learning domain-invariant features. The last two losses
Lalign(F) and L pre(E) are minimized to learn more dis-
criminative features. The above processes are summarized
in Algorithm 1.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocol

The proposed solution is applied to four large-scale person
Re-ID datasets, Market1501 [67], DukeMTMC-reID [68],
[69], CUHK03 [70] and MSMT17 [59]. The corresponding
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results of the proposed solution are compared with state-of-
the-art UDA person Re-ID methods.

Market1501 consists of 32,668 person images which con-
tain to 1,501 identities and are captured by six cameras. This
dataset is divided into training and testing sets. The training set
has 12,936 images from 751 identities, and the testing set has
19,732 images from 750 identities. During the testing process,
3,368 query images are used to match the images in gallery.
27 attributes annotated in this dataset [26] are used as auxiliary
information to guide the learning of domain-invariant features.

DukeMTMC-reID as a commonly used large-scale person
Re-ID dataset contains 36,411 images from 1,404 identities
captured by eight non-overlapping cameras. 702 identities and
the remaining 702 identities are used as training and testing
sets respectively. Similar to the split setting in [68], [69],
2,228 and 17,661 images in the testing set are used as query
and gallery images respectively, and 23 attributes annotated
are used as auxiliary information [26]. For simplicity,“Duke”
is short for “DukeMTM-reID” in comparative experiments.

CUHK03 contains 14,096 images from 1,467 identities cap-
tured by five pairs of non-overlapping cameras. This dataset
contains two image sets of people. One consists of the images
captured by pedestrian detectors, and the other is composed by
the images annotated by hand-drawn bounding boxes. In this
article, we only perform experiments on the images captured
by pedestrian detectors, because it is more challenging and
closer to real scenes. The protocol in [70] is used, where
the corresponding images from 100 identities are randomly
selected as testing images and the remaining images are used
for training. This procedure repeats 10 times, and the average
score is reported.

MSMT17 as the largest pedestrian Re-ID dataset so far
contains 126,441 images from 4,101 identities captured by
15 cameras within four days. According to [59], this dataset
is randomly divided into both training and testing sets at
a ratio of 1:3. The training set contains 32,621 bounding
boxes marked on 1,041 people, and the testing set contains
93,820 bounding boxes marked on 3,060 people. Since the
images in MSMT17 contain more complex background con-
ditions, cover multiple time periods, and diverse illuminations,
it is more challenging to process than other datasets.
Since Market1501 and Duke are annotated with various

attributes, they are used as both source and target domains in
comparative experiments. Due to lack of annotated attributes,
CUHK03 and MSMT17 are only used as the target domain in
comparative experiments.

Evaluation Protocol. Cumulative Match Characteristic
(CMC) and mean average precision (mAP) are used to evaluate
the performance of each method under a single query setting.
CMC and mAP are used to measure the accuracy of identity
matching at each rank and the accuracy of overall retrieval
respectively.

B. Implementation Details

Network settings. Before applying an image to the pro-
posed network, each image is resized to 256 × 128, and
both random flip and crop are adopted for data augmentation.

ResNet-50 is used as the backbone in the proposed method,
which is followed by GAP to resize the features to 2,048-
dimensional vectors. Subsequently, two parallel fully con-
nected layers are add into the proposed framework, which are
used to identify pedestrian images and extract local features
respectively. Besides the backbone, an attribute-feature map
network G, an attribute prediction network D, and a camera
classifier W2 are designed. These networks mainly consist of
fully convolutional layers and fully connected layers. The input
of G is a low-dimensional attribute vector. The dimensions of
an attribute vector of one person are 30 in Market1501 and
23 in Duke respectively. The output dimension of classifier
W2 is one more than the total number of cameras in both
source domain and target domain. During the testing process,
Euclidean distance is used to measure the similarity of global
features. All experiments are performed on one NVIDIA Tesla
P100 GPU with 16GB memory.

Optimization. The complete training process has
130 epochs. Feature encoder E is only trained with the
identity loss defined in Eq.(3) in the first 80 epochs.
Simultaneously, attribute related networks G and D are
optimized by Lre(E, G). After that, classifier W2 and
encoder E are trained by Lcla1(W2) and Lcla2(E), and this
process lasts 20 epochs. In the last 30 epochs, the model
are fine-tuned by Lalign(F) and L pre(E) on source domains
to achieve the local alignment between attributes and visual
features. Adam optimizer [71] with mini-batch of 16 is
applied to all networks in the proposed method. When the
training is performed on Market1501 and Duke, the initial
learning rate of E is 1 × 10−4, and the decay factor
is 0.0005. According to [52], a warm-up strategy [72] is used
to adjust the learning rate linearly. Specifically, the learning
rate rises from 1 × 10−4 to 1.12 × 10−4 linearly for the
first 30 epochs and declines to 1.12 × 10−5 at the 31th
epoch. In 31∼55 epochs, the learning rate increases from
1.12× 10−5 to 1.22× 10−5 and then decays to 1.22× 10−6
after the 55th epochs. Finally, the learning rate increases to
1.52× 10−6 at the 130th epoch. In addition, the learning rate
is set to 3.5× 10−4 for G and D on all the datasets.
When Market1501 servers as the source domain, the initial

learning rate is 2.5×10−5 for training W2. The initial learning
rate of F is 1 × 10−3, and then decays to one tenth of the
initial learning rate after 20 epochs. When Duke is the source
domain, the initial learning rates of Wc and F are set to
3 × 10−5 and 7.5 × 10−3 respectively. The differences in
the above settings are only related to source domains, so the
practical applications of the proposed method involving target
domains are not affected. α1 = 1 and α2 = 1 are set
empirically after the 81th epoch, and then α1 = 0.1 and
α2 = 0.01 are set to fine-tune the proposed model at the
101th epoch. α3 = 10 and α4 = 20 are set throughout all
the experiments. The settings of these hyper-parameters will
be discussed in detail later.

C. Comparison With State-of-the-Art Methods

In this section, the proposed method is compared with
the state-of-the-art approaches on six experimental settings:
Duke→Market1501, Duke→ CUHK03, Duke→MSMT17,
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TABLE I

COMPARISON OF THE PROPOSED METHOD WITH SOME STATE-OF-THE-ART METHODS ON DUKE→MARKET1501 AND
DUKE→ CUHK03. “MAP” INDICATES MEAN AVERAGE PRECISION, AND “–” INDICATES NO REPORTED DATA

Market1501 → Duke, Market1501 → CUHK03 and Mar-
ket1501→ MSMT17. In these experiments, A → B indicates
the datasets A and B are used as the labeled source domain and
the unlabeled target domain respectively. The proposed method
neither performs the pseudo-label prediction on unlabeled
target samples, nor selects the paired samples from target
domains to fine-tune the proposed model. Therefore, the pro-
posed method is not compared with pseudo-label prediction
based methods.According to the review of unsupervised per-
son Re-ID in [73], on Duke → Market1501 and Duke →
CUHK03, the comparative methods include domain-invariant
feature learning methods, i.e. TJ-AIDL [23], PAUL [46],
CaNE [65], CASC [22], CFSM [61], FMC [62], UCDA [45],
and SSAE [63], as well as style transfer learning methods,
i.e. HHL [58], PTGAN [59], CamStyle [60], CSGLP [36],
LVRP [64], SBSGAN [19], ATNet [37], and DG-Net [66]
(without self-training). The comparative results of Duke →
Market1501 and Duke → CUHK03 are shown in Table I.
As shown in Table I, the proposed method achieves

the best matching accuracy in Rank-1, Rank-5, Rank-10,
and mAP on Duke → Market1501 and Duke → CUHK03.
Specifically, the recognition rate of the proposed method
reaches 71.8%/39.6% and 35.1%/29.7% in Rank-1/mAP on
Duke → Market1501 and Duke → CUHK03 respectively.
As a domain-invariant feature learning method, the proposed
solution outperforms the second best domain-invariant feature
learning method 5.1%/2.8% in Rank-1/mAP on Duke →
Market1501. Compared with the style transfer learning based

methods such as LVRP, CSGLP, and PTGAN, the pro-
posed method also shows better performance, and out-
performs the second best style transfer learning method
LVRP 7.9%/5.7% in Rank-1/mAP. On Duke → CUHK03,
the proposed method outperforms SBSGAN 1.4%/2.4% in
Rank-1/mAP. The above results confirm the effectiveness of
the proposed method.
To further test both effectiveness and scalability of the

proposed method on different datasets, the proposed method is
applied to Market1501→ Duke and Market1501→ CUHK03,
and the corresponding results obtained by the proposed method
are compared with domain-invariant feature learning methods
(including TJ-AIDL [23], PAUL [46], CFSM [61], FMC [62],
CASC [22], UCDA [45], ENC [47], and SSAE [63]), and
style transfer learning methods (including HHL [58], PTGAN
[59], CamStyle [60], CSGLP [36], LVRP [64], SBSGAN [19],
ATNet [37] and DG-Net [66] (without self-training)). All
the obtained recognition rates on Market1501 → Duke and
Market1501 → CUHK03 are listed in Table II.
As shown in Table II, the proposed method outperforms

other comparative methods, when Maket1501 is used as the
labeled source domain, and Duke and CUHK03 are used as
the unlabeled target domains. As a domain-invariant feature
learning method based on attribute guidance, the proposed
solution is compared with existing domain-invariant feature
learning methods to test the its effectiveness. As existing
methods, ENC and SBSGAN are the second best methods
are Duke and CUHK03 respectively. According to Table II,
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TABLE II

EXPERIMENTAL RESULTS OF THE PROPOSED METHOD AND STATE-OF-THE-ART METHODS ON MARKET1501→DUKE AND
MARKET1501→ CUHK03. “MAP” INDICATES MEAN AVERAGE PRECISION. “–” INDICATES NO REPORTED DATA

TABLE III

PERFORMANCE(%) COMPARISON OF THE PROPOSED METHOD
AND STATE-OF-THE-ART METHODS ON TWO TASKS OF
DUKE→MSMT17 AND MARKET1501→MSMT17

the accuracy obtained by the proposed solution is 0.8% and
2.7% higher than ENC in Rank-1 and mAP on Market1501→
Duke, and 2.3% and 7.5% higher than SBSGAN in Rank-1 and
mAP on Market1501 → CUHK03. The above results further
confirm both effectiveness and scalability of the proposed
method.
As the largest dataset in comparative experiments,

MSMT17 as target domain, and Duke and Market1501 with
attribute annotations are used as source domains respectively
to further test the performance of the proposed solution
on a large-scale dataset. The proposed method is compared
with two state-of-the-art unsupervised person Re-ID methods

PTGAN [59] and ENC [47] on Duke→ MSMT17 and
Market1501→MSMT17. As shown in Table III, the results
confirm that the proposed method significantly outperforms
PTGAN [59] and ENC [47]. Compared with the second best
results, the proposed method improves the recognition accu-
racy from 30.2% and 10.0% to 38.6% and 14.0% in Rank-1
and mAP respectively, when Duke serves as the source
domain. Similarly, when Market1501 is used as the source
domain, the recognition rates obtained by the proposed solu-
tions are 30.5% and 11.4% in Rank-1 and mAP respectively,
which are increased by 5.2% and 2.9% respectively based
on the second best results. According to the above results,
the effectiveness of the proposed method is confirmed on a
large-scale dataset.

D. Ablation Study

In this section, a series of experiments are conducted
to evaluate the effectiveness of GLAVF, DIFL, and LAAF.
In DIFL, the generated latent attribute-correlated visual fea-
tures in GLAVF are utilized to guide the learning of domain-
invariant features. To demonstrate the contributions of GLAVF,
all attribute-related losses are removed, and a method based
on the proposed approach is constructed to learn domain-
invariant features and compared with “Baseline+DIFL”. Since
the learning of domain-invariant features is not guided
by attributes, this method is called “Baseline+DIFL w/o
GLAVF”. In “Baseline+DIFL w/o GLAVF”, W2 is optimized
to classify the learned features into the corresponding camera
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TABLE IV

ABLATION STUDY OF THE DEVELOPED METHOD. DUKE→MARKET1501 AND MARKET1501→DUKE ARE USED TO TEST THE
EFFECTIVENESS OF EACH MODULE. THE “BASELINE (RESNET-50)” IS TRAINED ONLY WITHIDENTITY LOSS L I D(E, W1)

ID classes, and E is also optimized to classify the learned
features into an additional class that does not belong to
any camera identity. All experiments are performed on Duke
and Market1501, and the corresponding results are shown
in Table IV. When one dataset is used as the source domain,
the other is used as the target domain.

Effectiveness of DIFL. To alleviate the domain bias
between both source and target datasets, attributes are used
to guide the learning of domain-invariant features. As shown
in Table IV, “Baseline+DIFL” achieves 69.1%/37.3%
accuracy rate in Rank-1/mAP on Duke→Market1501,
and 62.7%/42.5% accuracy rate in Rank-1/mAP on
Market1501→Duke, which are significantly outperforms
the recognition accuracy of “Baseline (ResNet-50)”. The
results demonstrate the effectiveness of the proposed learning
of domain-invariant features.

Effectiveness of Attribute Guidance. Although the
domain-invariant feature learning methods based on attribute
guidance are effective, it does not show how the attribute
guidance affects the domain-invariant feature learning.
To explore the effects of attribute guidance, the attribute-
related loss is removed from “Baseline+DIFL”, and the
method “Baseline+DIFL w/o GLAVF” is obtained and com-
pared with “Baseline+DIFL”. As shown in Table IV, when
GLAVF is removed from “Baseline+DIFL”, the recognition
rate of Rank-1/mAP is reduced by 1.8%/1.4% (reduced from
69.1%/37.3% to 67.3%/35.9%) on Duke→Market1501, and
1.3%/1.8% (reduced from 62.7%/42.5% to 61.4%/40.7%) on
Market1501→Duke. The results demonstrate that domain-
invariant feature learning with attribute guidance is more
effective than “Baseline+DIFL w/o GLAVF” for UDA
person Re-ID.

Effectiveness of LAAF. To further improve the dis-
crimination of the learned features, LAAF is added to
“Baseline+DIFL” and the method “Baseline+DIFL+LAAF”
is obtained. As shown in Table IV, “Baseline+DIFL+LAAF”
outperforms “Baseline+DIFL”, and improves the Rank-1/mAP
accuracy from 69.1%/37.3% to 71.8%/39.6 on “Duke→
Market1501”, and from 62.7%/42.5% to 64.1%/43.1 on
“Market1501→Duke”. This performance improvement ben-
efits from the alignment between attributes and the corre-
sponding local features. It indicates that the alignment between
attributes and the corresponding local features can effectively
improve the discrimination of features, which further confirms
that the algorithm proposed in this article is reasonable and
effective.

E. Parameter Selection and Analysis

In this section, a series of experiments are conducted to
investigate the effects of the hyper-parameters α1, α2, α3, and
α4 involved in the proposed model. The discussion of hyper-
parameters analyzes the effects of α1 and α2 in DIFL and the
effects of α3 and α4 in LAAF. The value of each parameter
is changed within a certain range at a time to analyze the
impacts of different parameter values. The analysis of these
hyper-parameters is carried out on Duke and Market1501, but
the selected values of these parameters are applied to each
dataset. Only one parameter is changed during analyzing the
effect of one parameter.

1) Effects of α1 and α2 in DIFL: To make the mod-
ule play a better role in domain-invariant feature learning,
α1 and α2 are set to different values in different training stages.
In 81 to 100 epochs, the effects of α1 and α2 are shown
in Figs. 7 (a) and (b). After 100th epoch, we change the
values of α1 and α2 to adjust the contribution of Lcla1(Wc)
and Lcla2(E).

Effect of the parameter α1. In 81∼100 epochs, the effect
of α1 with different values is shown in Fig. 7 (a). According
to these results, the accuracies of both Rank-1 and mAP are
improved, when α1 ∈ [0.5, 1] is set for Duke→Market1501.
On Market1501→Duke, the proposed method achieves higher
accuracies in Rank-1 and mAP, when α1 ∈ [0.5, 2]. So α1 is
set to 1 for the proposed model in 80 ∼100 epochs. After the
100th epoch, the effect of the value of α1 should be explored
again on the proposed model. As shown in Fig. 7 (c), when
α1 = 1 remains unchanged, the Rank-1 and mAP accuracies
of the proposed method are not obviously optimal, and the
optimal performance is achieved at α1 = 0.1 for all testing
tasks.

Effect of the parameterα2. The parameter α2 is used to
control the contributions of Lcla2(E). In Figs. 7 (b) and (d),
the effects of α2 are evaluated. First, in 81 ∼100 epochs,
the value of α2 varies from 0.01 to 10 to investigate its
effect on the proposed model. As shown in Fig. 7 (b),
α2 = 1 is a good choice on both Duke→Market1501 and
Market1501→Duke. Therefore, in the initial stage of training,
α2 is set to a larger value (i.e. α2 = 1), so that Lcla2(E)
can play a more important role in model training. Once the
performance of our model becomes stable, α2 is set to a
smaller value to fine-tune the proposed model. According to
Fig. 7 (d), when α2 = 0.01, the proposed method can achieve
the best performance after the 100th epoch.
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TABLE V

ANALYSIS OF EXPERIMENTAL RESULTS UNDER DIFFERENT SETTINGS. THE “BASELINE
(RESNET-50)” IS TRAINED ONLY WITH IDENTITY LOSS L I D(E, W1)

Fig. 7. Performance Analysis with Different Values of Hyper-parameters.
(a)In 81∼100 epochs, Rank-1 and mAP accuracy when α1 takes different
values. (b)In 81∼100 epochs, Rank-1 and mAP accuracy when α2 takes
different values. (c)After the 100th epoch, Rank-1 and mAP accuracy when
α1 takes different values. (d)After the 100th epoch, Rank-1 and mAP accuracy
when α2 takes different values. (e)Rank-1 and mAP accuracy when α3 takes
different values. (f)Rank-1 and mAP accuracy when α4 takes different values.
D denotes the Duke dataset, and M denotes the Market1501 dataset.

2) Effects of α3 and α4 in LAAF: This sub-section evaluates
how α3 and α4 impact the performance of the proposed model.

Effect of the parameter α3. The effect analysis of para-
meter α3 is illustrated in Fig. 7(e). When α3 ≥ 5, the per-
formance of the proposed model gradually improves on both
Duke→Market1501 and Market1501→Duke. When α3 ≥ 10,
the accuracies of Rank-1 and mAP obtained by the proposed

method reach the peak simultaneously, and then begin to
decline. This indicates that α3 = 10 is the best value for the
proposed method. In this article, α3 is set to 10 for all the
experiments.

Effect of the parameter α4. In Eq.(9), α4 is used to adjust
the role of L pre(E). In Fig. 7(f), the effect of α4 is evaluated
by varying its value from 0 to 40. As shown in Fig. 7(f),
the proposed model consistently improves the accuracies of
both Rank-1 and mAP within a wide range of parameter α4.
The best performance is achieved at α4 = 20. This indicates
that α4 = 20 is a good value for the proposed method. The
experiments performed on all datasets are under the fixed
hyper-parameter settings.

F. Further Analysis and Discussion

Effect of fully connected layer F. In LAAF module,
a fully connected layer F is added into the encoder E to select
attribute-related features from global features so as to achieve
the alignment between attributes and the corresponding local
regions. The proposed method realizes the above alignment
by aligning LAVF with the corresponding local regions in
pedestrian images. As a result, the discriminative information
related to attributes in global features can be strengthened
correspondingly. In addition, the alignment between attributes
and the corresponding local regions is helpful to correctly
predict the attributes from the corresponding local-region fea-
tures in pedestrian images. The encoder E is promoted to pay
more attention to attribute-related regions. To demonstrate the
effect of F, the fully connected layer F is removed from the
proposed person Re-ID model and the corresponding model is
named as “Our model w/o F”. “Our model w/o F” is applied
to “Duke→Market1501” and “Market1501→Duke” to test
its performance. According to the corresponding experiment
results listed in Table V, the Rank1/mAP of “Our model w/o
F” is 3.1%/2.8% and 1.1%/0.7% lower than the corre-
sponding ones of “Our model” on Duke→Market1501 and
Market1501→Duke respectively, which demonstrate the effec-
tiveness of the fully connected layer F on improving the
performance of the proposed person Re-ID model.

Effect of Camera ID. The proposed model introduces
camera ID labels to train camera ID classifier W2 to
distinguish the camera IDs of input features. To achieve the
alignment of different domains, an adversarial mechanism is
proposed to make W2 and encoder E pit against each other.
To demonstrate the effect of the supervision of camera IDs,

Authorized licensed use limited to: Kunming Univ of Science and Tech. Downloaded on December 13,2020 at 04:08:29 UTC from IEEE Xplore.  Restrictions apply. 



1492 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

the camera ID loss is removed from Eqs.(5) and (6), and the
input features of W2 are classified into two classes. One class
is composed of the sample features from both source and target
domains, and the other class is composed of the LAVF. This
method is named as “Our model w/o CamID”. According to
Table V, Rank1/mAP obtained by “Our model w/o CamID”
only reaches 64.1%/34.0% and 53.2%/34.5% on
Duke→Market1501 and Market1501→Duke respectively.
Compared with the “Baseline” method, the performance of
“Our model w/o CamID” is improved, but its performance
is far less than the corresponding one obtained by using
camera IDs in supervised training. The reason is that the
learned classifier W2 under the supervision of camera IDs has
stronger identification ability, and the ability of encoder E
in extraction of domain-invariant features is also improved
accordingly in adversarial training.

Effect of Person Attributes. The proposed method intro-
duces person attributes to guide the learning of domain-
invariant features. In practice, each person contains more
than one attribute. To show the effect of different number
of attributes, only two attributes are used in the training of
the proposed person Re-ID model. This model is named as
“Our model+2attri”. As listed in Table V, the performance of
“Our model+ 2attri” is better than the corresponding one of
“Baseline”, when only two attributes are used. But its recog-
nition accuracy on Rank1/mAP is 3.8%/2.8% and 2.3%/1.3%
lower than the corresponding ones obtained by “Our model”
on Duke→Market1501 and Market1501→Duke respectively.
The experiment results confirm the comprehensive pedestrian
descriptions are helpful to improve the recognition perfor-
mance of the proposed Re-ID model.

Effect of Adversarial Mechanism. In DIFL module,
the encoder E is updated based on the following expec-
tation. Classifier W2 can classify all the extracted features
into the separate classes of camera IDs. To achieve the
domain alignment, traditional person Re-ID methods based
on adversarial learning usually classify the extracted features
into each camera ID with equal probability. For instance,
the probability of image features from an image belong-
ing to each camera is 1

nc
, where nc denotes the number

of cameras. This method is named as “Our model +
Equ”. According to Table V, “Our model + Equ” achieves
68.8%/36.8% and 63.6%/43.0% Rank1/mAP accuracy on
Duke→Market1501 and Market1501→Duke respectively.
“Our model + Equ” has a lower performance than “Our
model”. The reason is that equal probability classification in
“Our model+Equ” can not theoretically guarantee the domain
alignment of the learned features.

Effect of LAVF in The Supervised Person Re-ID. The
effectiveness of LAVF is furtherly evaluated in the supervised
person Re-ID. Only the data from a single domain and the
corresponding camera labels are used in the training of the
supervised person Re-ID, so the output dimension nc of
camera classifier W2 equals ks + 1. The supervised training
process of the first 100 epochs uses the same settings of
the unsupervised person Re-ID training. After adding the
LAAF module to the 101st epoch, the training lasted 20 and
15 epochs in Duke and Market1501 respectively. For the

TABLE VI

ANALYSIS THE EFFECT OF LAVF IN THE SUPERVISED PERSON RE-ID

experiments on Duke, the initial learning rate of camera clas-
sifier W2 is set to 2.25×10−5, the hyper-parameters α3 and α4
are set to 1 respectively, and the remaining parameters are set
to be same as the corresponding ones used in the unsupervised
person Re-ID when Duke is used as the source domain. For the
experiments on Market1501, the initial learning rate of camera
classifier W2 and fully connected layer F are set to 1.8×10−5
and 0.01 respectively, the hyper-parameters α3 and α4 are set
to 0.5 and 1 respectively, and the remaining parameters are
set to be same as the corresponding ones used in the unsuper-
vised person Re-ID when Market1501 is used as the source
domain. The recognition performance of the proposed model
in the supervised person Re-ID is named as “Supervised”
in Table VI. The “Supervised w/o LAVF” method is obtained
by removing LAVF learning from the “Supervised” method.
These two methods are applied to the same dataset with
the same experiment settings to demonstrate the effect of
LAVF. As shown in Table VI, the recognition rate of Rank-
1/mAP is reduced by 0.8%/1.2% (reduced from 85.5%/71.8%
to 84.7%/70.6%) on Duke, and 0.7%/0.2% (reduced from
94.9%/83.8% to 94.2%/83.6%) on Market1501 after removing
LAVF learning from the “Supervised” method. The results
confirm that LAVF is conducive to improving the performance
of supervised person Re-ID.

V. CONCLUSION

In this article, a novel domain-invariant feature learning
method is proposed for UDA person Re-ID. This approach
makes full use of the domain-invariant attributes to improve
the domain invariance and the discrimination of the learned
features. The proposed method has three main sub-modules,
GLAVF, DIFL, and LAAF. DIFL allows the model to extract
domain-invariant features under the guidance of attributes,
and LAAF improves the robustness of features by aligning
attributes with their corresponding local features. The model
structure and loss functions are discussed in detail. A series
experiments are conducted on four convictive datasets, and
the results confirm that the proposed method outperforms the
state-of-the-art solutions. The ablation study demonstrates the
effectiveness of attributes and each sub-module. Under the
guidance of attributes, the scalability ability of the proposed
model is enhanced, which is conducive to the practical appli-
cations in real-word scenarios. In future, the learning of person
discriminative features will be further explored to improve the
generalization of this model in practical applications.
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