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Abstract001

Recent progress in multilingual pretraining has002
yielded strong performance on high-resource003
languages, albeit with limited generalization to004
genuinely low-resource settings. While prior005
approaches have attempted to enhance cross-006
lingual transfer through representation align-007
ment or contrastive learning, they remain con-008
strained by the extremely limited availability009
of parallel data to provide positive supervision010
in target languages. In this work, we intro-011
duce NeighXLM, a neighbor-augmented con-012
trastive pretraining framework that enriches013
target-language supervision by mining seman-014
tic neighbors from unlabeled corpora. Without015
relying on human annotations or translation016
systems, NeighXLM exploits intra-language017
semantic relationships captured during pretrain-018
ing to construct high-quality positive pairs.019
The approach is model-agnostic and can be020
seamlessly integrated into existing multilingual021
pipelines. Experiments on Swahili demonstrate022
the effectiveness of NeighXLM in improving023
cross-lingual retrieval and zero-shot transfer024
performance.025

1 Introduction026

Recent progress in natural language processing027

(NLP) has brought impressive performance to En-028

glish and other high-resource languages across a029

wide range of tasks. However, for genuinely low-030

resource languages, models still struggle due to the031

lack of labeled data and effective transfer. Early032

multilingual models such as mBERT (Devlin et al.,033

2019), XLM (Conneau and Lample, 2019), and034

XLM-R (Conneau et al., 2020) exhibit some cross-035

lingual transfer capabilities, but their alignment re-036

mains limited, especially for typologically distant037

languages.038

To mitigate this limitation, recent research has039

focused on incorporating explicit cross-lingual sig-040

nals into pretraining at multiple levels of granular-041

ity, including token-level (Luo et al., 2021; Zhang042

et al., 2023), word-level (Huang et al., 2019; Cao 043

et al., 2020; Ji et al., 2021), sentence-level (Chi 044

et al., 2021; Ouyang et al., 2021), and syntax-level 045

(Wu and Lu, 2023; Ahmad et al., 2021; He et al., 046

2019). These methods enhance alignment by mod- 047

eling cross-lingual consistency at their respective 048

levels, providing stronger supervision across lan- 049

guages. In addition, contrastive learning techniques 050

have shown strong potential in improving sentence 051

representations, both in monolingual (e.g., Sim- 052

CSE; Gao et al. 2021) and multilingual (e.g., Con- 053

SERT; Yan et al. 2021 and LaBSE; Feng et al. 054

2022) contexts. 055

Despite recent advances such as alignment-based 056

techniques and contrastive pretraining that bet- 057

ter exploit existing corpora, a fundamental bot- 058

tleneck persists: the scarcity of labeled data for 059

low-resource languages. To address this, recent 060

work explores pseudo-supervision strategies that 061

simulate labeled pairs from monolingual corpora. 062

ERNIE-M (Ouyang et al., 2021), for example, con- 063

structs pseudo-parallel sentence pairs via back- 064

translation, but the resulting supervision is only as 065

reliable as the underlying translation system, which 066

often generates noisy or semantically inaccurate 067

outputs in low-resource settings due to the scarcity 068

of parallel training data. Alternatively, Keung et al. 069

(2020) mine cross-lingual neighbors in embedding 070

space as training pairs. However, in the absence of 071

strong initial alignment, particularly for typologi- 072

cally distant and under-resourced language pairs, 073

cross-lingual nearest neighbors in the embedding 074

space may not be semantically aligned. Training on 075

such misleading neighbors can reinforce incorrect 076

associations and degrade cross-lingual generaliza- 077

tion. This highlights a core challenge: how to 078

obtain more high-quality labeled supervision for 079

low-resource languages. 080

In this paper, we propose NeighXLM, a 081

neighbor-augmented contrastive pretraining frame- 082

work that enriches target-language supervision 083
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without relying on translation systems. While an-084

notated data are scarce, large unlabeled corpora are085

often available, even for low-resource languages.086

Pretrained multilingual encoders, trained on lan-087

guage modeling objectives, implicitly capture intra-088

language semantic relationships by positioning se-089

mantically similar sentences closer in the embed-090

ding space. NeighXLM exploits this property by091

mining semantically similar neighbors from unla-092

beled corpora, thereby constructing high-quality093

positive pairs to enhance contrastive pretraining.094

Figure 1 illustrates the NeighXLM framework. We095

evaluate NeighXLM on Swahili (sw), covering di-096

verse downstream tasks including cross-lingual sen-097

tence retrieval and zero-shot transfer tasks such098

as classification and question answering. Results099

across multiple benchmarks show that NeighXLM100

consistently outperforms the base model, demon-101

strating its effectiveness in enhancing cross-lingual102

transfer for genuinely low-resource languages.103

2 Related Work104

2.1 Multilingual Pretraining and105

Cross-Lingual Alignment106

Early multilingual models, such as mBERT (Devlin107

et al., 2019), XLM (Conneau and Lample, 2019)108

and XLM-R (Conneau et al., 2020), demonstrated109

that even simple pretraining objectives, like multi-110

lingual masked language modeling (MMLM) and111

translation language modeling (TLM), could en-112

dow models with non-trivial cross-lingual transfer113

abilities. However, multilingual representations of-114

ten cluster sentences by language rather than mean-115

ing due to insufficient cross-lingual alignment (Li-116

bovickỳ et al., 2020), and substantial transfer gaps117

persist for genuinely low-resource languages (Wu118

and Dredze, 2020).119

To address representational misalignment, recent120

research has focused on injecting explicit cross-121

lingual signals into pretraining objectives at vari-122

ous linguistic levels. Token-level methods such as123

VECO (Luo et al., 2021) and VECO 2.0 (Zhang124

et al., 2023) enhance cross-lingual alignment by125

introducing a plug-in cross-attention module into126

masked token prediction tasks or by directly apply-127

ing contrastive loss to aligned token pairs. Word-128

level methods like Unicoder (Huang et al., 2019),129

Word-aligned BERT (Cao et al., 2020), and word re-130

ordering (Ji et al., 2021) focus on the importance of131

words, aligning them across languages by targeting132

word pairs or addressing cross-lingual differences133

in word order. Syntax-aware methods—such as 134

StructXLM (Wu and Lu, 2023), Syntax-augmented 135

BERT (Ahmad et al., 2021), and projection-based 136

approach (He et al., 2019)—enhance cross-lingual 137

transfer by integrating syntactic structures, either 138

through explicit syntactic annotations or unsuper- 139

vised discovery, into training objectives; typology- 140

guided methods (Ji et al., 2023) further supplement 141

this by incorporating language-level features such 142

as canonical word order (e.g., SVO vs. SOV). At 143

the sentence level, models such as InfoXLM (Chi 144

et al., 2021) and ERNIE-M (Ouyang et al., 2021), 145

along with many of the aforementioned approaches, 146

employ translation ranking or contrastive learning 147

objectives to align cross-lingual sentence represen- 148

tations. 149

2.2 Contrastive Learning for Sentence 150

Representations 151

Contrastive learning has emerged as a powerful 152

tool for learning semantically meaningful represen- 153

tations. Early vision models like SimCLR (Chen 154

et al., 2020) and MoCo (He et al., 2020) in- 155

spired sentence-level approaches in NLP. Sim- 156

CSE (Gao et al., 2021) uses dropout-based aug- 157

mentation for unsupervised contrastive learning, 158

and NLI entailment pairs for the supervised vari- 159

ant. ConSERT (Yan et al., 2021) applies semantic- 160

preserving data augmentations—such as token 161

shuffling, cutoff, and adversarial dropout—to con- 162

struct contrastive pairs. In the multilingual settings, 163

LaBSE (Feng et al., 2022) aligns cross-lingual sen- 164

tence representations using translation pairs as posi- 165

tives in a dual-encoder setup, and mSimCSE (Wang 166

et al., 2022) extends the SimCSE framework to 167

multilingual settings. 168

2.3 Pseudo-supervision and Neighbor Mining 169

Despite the advances achieved by alignment-based 170

and contrastive learning techniques, low-resource 171

languages still suffer from limited high-quality 172

supervision, motivating alternative enhancement 173

strategies. A common approach is to mine pseudo- 174

positive pairs from monolingual corpora, thereby 175

simulating supervision without human annotation. 176

For example, ERNIE-M (Ouyang et al., 2021) em- 177

ploys back-translation to generate synthetic sen- 178

tence pairs; however, the quality of this supervision 179

is highly dependent on the accuracy of the transla- 180

tion model, which itself depends on the availability 181

of parallel corpora—a resource often absent in low- 182

resource settings. This creates a vicious cycle: poor 183

2



… … … …

…

Anchor Positive Neighbor1 Neighbor2 more neighbors

basic loss neighbor loss

Encoder Q

Encoder K

Previous Anchor j Previous Positive j …Previous Anchor j+1 Previous Positive j+1 … …

queue loss

…
a_1

a_2

a_N

p_1

p_2

p_N

n_1

n_2

n_N

n_1

n_2

n_N

n_1

n_2

n_N

Negative Queue

Figure 1: Overview of NeighXLM. Given a batch of source–target sentence pairs (anchor-positive), NeighXLM
augments each positive with k semantic neighbors mined from unlabeled target-language corpora. The main encoder
Q encodes anchors, positives and neighbors for current contrastive learning, while the momentum encoder K
encodes previous samples to populate a dynamic negative queue.

translations weaken supervision and hinder cross-184

lingual alignment. Keung et al. (2020) propose to185

mine cross-lingual sentence pairs from unlabeled186

corpora by treating nearest neighbors in embed-187

ding space as positives. While effective in some188

cases, this approach may suffer in the context of lin-189

guistically distant and low-resource language pairs190

(e.g., Swahili–English, which differ substantially in191

syntax, morphology, and script), where the initial192

cross-lingual embedding neighborhoods may be193

noisy or misaligned. Training on such unreliable194

alignments risks amplifying semantic inconsisten-195

cies rather than correcting them.196

3 Method197

3.1 Overview198

In this paper, we propose NeighXLM, a neighbor-199

augmented contrastive pretraining framework that200

enriches target-language supervision by mining se-201

mantically similar neighbors from unlabeled cor-202

pora. The overall framework of NeighXLM is il-203

lustrated in Figure 1. We assume access to a small204

set of source-to-target parallel sentences—typically205

in the order of a few thousand—which serve as 206

the seed supervision for cross-lingual contrastive 207

learning. In our setup, we refer to the source- 208

language sentence as the anchor, and its corre- 209

sponding target-language translation as the posi- 210

tive. Starting from a batch of (anchor, positive) 211

pairs, we retrieve k nearest semantic neighbors for 212

each positive sample from the unlabeled target cor- 213

pus. We maintain two encoders during training: a 214

main encoder Q that is updated through standard 215

back-propagation, and a momentum encoder K 216

whose parameters are updated as an exponential 217

moving average of Q. For previously seen anchor 218

and positive samples, we encode them using K 219

and store their embeddings into a dynamic queue, 220

serving as a repository of negative examples. For 221

the current batch, we encode anchor, positive and 222

neighbor sentences with Q. Contrastive learning is 223

applied to bring anchor embeddings close to their 224

positives and semantic neighbors, while pushing 225

anchors away from negatives stored in the queue. 226
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Figure 2: Sentence encoder architecture.

3.2 Neighbor-Augmented Input Construction227

We start with a set of parallel source-target sentence228

pairs. For each target sentence, we retrieve k se-229

mantic neighbors from a large unlabeled corpus in230

the target language. To select these neighbors, we231

compute semantic similarity based on the cosine232

distance between sentence embeddings produced233

by a multilingual encoder, where embeddings are234

obtained via mean pooling over the hidden states.235

Thus, the final input to the model includes the an-236

chors (source language), the positives (target lan-237

guage) and multiple semantic neighbors (target lan-238

guage).239

3.3 Encoder Architecture240

The structure of our sentence encoder is illustrated241

in Figure 2. The base encoder is a pretrained mul-242

tilingual model (e.g., InfoXLM or XLM-R). For243

each input sentence, we extract the last four hidden244

layers and perform weighted layer pooling (WLP)245

to produce a rich contextualized representation.246

Specifically, we learn trainable scalar weights over247

the selected layers and compute a weighted sum.248

Following SimCLR (Chen et al., 2020), we add a249

two-layer projection head with nonlinear activation250

to map the pooled representation into a contrastive251

space. Contrastive training is conducted in this pro-252

jected space, which has been shown to help base253

encoders yield better downstream task representa-254

tions. 255

3.4 Contrastive Learning with Additive 256

Margin 257

Given a training batch of N anchor–positive pairs, 258

each anchor has one positive sample and treats 259

the remaining N−1 samples as negatives. We use 260

cosine similarity as the base similarity function, 261

denoted by ϕ(x, y) = cos(f(x), f(y)), where f(·) 262

denotes the output of the sentence encoder. We 263

apply an additive margin (Yang et al., 2019) to the 264

positive logits and incorporate temperature scal- 265

ing (Chen et al., 2020) directly into the similarity 266

function. The modified similarity is defined as: 267

ϕ̃(xi, yj) =

{
ϕ(xi,yj)−m

τ , if i = j
ϕ(xi,yj)

τ , otherwise
(1) 268

The contrastive loss for the source-to-target di- 269

rection is: 270

Lx→y = − 1

N

N∑
i=1

log
eϕ̃(xi,yi)∑N
j=1 e

ϕ̃(xi,yj)
(2) 271

We adopt a bidirectional contrastive objective: 272

Lbasic = Lx→y + Ly→x (3) 273

3.5 Momentum Encoder and Queue 274

Mechanism 275

To stabilize training with dynamic negatives, we 276

maintain two encoders: a main encoder Q and a 277

momentum encoder K, following MoCo (He et al., 278

2020). Let θq and θk denote the parameters of the 279

main encoder and momentum encoder, respectively. 280

After each training batch, the momentum encoder 281

is updated via an exponential moving average: 282

θk ← mθk + (1−m)θq 283

where m is a momentum coefficient close to 1. 284

During training, the current batch samples are pro- 285

cessed as follows: 286

• Anchor embeddings ha and positive embed- 287

dings hp are computed using the main encoder 288

Q. 289

• Negative embeddings {hn1 , hn2 , . . . , hnqs} 290

are retrieved from the dynamic queue of size 291

qs, where all entries are encoded by the mo- 292

mentum encoder K. 293
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For each anchor embedding hai , the similarity294

logits are constructed as:295

logitsi = [ϕ(hai , hpi), ϕ(ha, hn1),296

ϕ(ha, hn2), . . . , ϕ(ha, hnqs)] (4)297

where ϕ(·, ·) denotes cosine similarity. The first298

position corresponds to the positive sample, and the299

remaining positions correspond to negatives. We300

compute the InfoNCE (Oord et al., 2018) loss by301

applying a cross-entropy objective over the logits,302

with the ground-truth label set to 0 (indicating the303

positive sample). The queue-based contrastive loss304

for a batch of N anchors is:305

Lqueue =
1

N

N∑
i=1

CrossEntropy(logitsi, 0)306

where logitsi denotes the logits for the i-th anchor.307

After each training step, we use the momentum308

encoder K to recompute the embeddings of the309

current batch’s anchors and positives, and enqueue310

them into the memory queue for future negative311

sampling.312

3.6 Neighbor-Augmented Contrastive313

Objective314

To further enrich supervision, NeighXLM lever-315

ages semantic neighbors. For each positive316

sample hpi inside the batch, k semantic neigh-317

bors {h(1)ni , . . . , h
(k)
ni } are sampled. The neighbor-318

augmented contrastive loss is computed batch-319

wise:320

Lneighbor =321

K∑
k=1

1

k

(
L(ha, h(k)n ) + L(h(k)n , ha)

)
(5)322

where L(·, ·) denotes the standard InfoNCE loss323

without an additive margin. Unlike direct transla-324

tion pairs, these semantic neighbors are approxi-325

mate matches mined from unlabeled data and may326

not guarantee precise semantic equivalence. To327

prevent over-constraining their representations, we328

omit the margin term and apply vanilla InfoNCE.329

The inverse rank-based weighting 1
k reflects the330

intuition that top-ranked neighbors are semanti-331

cally closer and thus more reliable. This design332

encourages the model to place greater emphasis333

on high-quality neighbors while still incorporating334

broader contextual signals. The reduced weight335

on lower-ranked neighbors is particularly helpful 336

when the base encoder produces suboptimal rep- 337

resentations or the unlabeled corpus is limited in 338

size or diversity—conditions under which lower- 339

ranked neighbors are more likely to be semantically 340

noisy or misaligned. Consequently, the weighting 341

scheme enhances training stability and robustness 342

in challenging low-resource scenarios. 343

3.7 Overall Training Objective 344

The overall training loss aggregates the basic con- 345

trastive loss, the negative queue contrastive loss, 346

and the neighbor-augmented contrastive loss: 347

Ltotal = Lbasic + Lqueue + Lneighbor (6) 348

4 Experiments 349

4.1 Experiment Settings 350

Corpus We simulate a realistically low-resource 351

setting by selecting only 2,048 parallel sentence 352

pairs from the Tatoeba (Tiedemann, 2020) train- 353

ing set, which corresponds to the typical data 354

scale of Tatoeba’s lowest-resource language sub- 355

set—generally consisting of only several thousand 356

sentence pairs per language. Additionally, we col- 357

lect 2 million Swahili (sw) sentences as unlabeled 358

corpora for neighbor mining, sampled from the re- 359

maining corpus excluding the selected 2,048 pairs. 360

Base Encoder We use InfoXLM as the base mul- 361

tilingual encoder, consisting of 12 Transformer lay- 362

ers with a hidden size of 768. 363

Neighbor Mining To retrieve semantically simi- 364

lar neighbors in our experiments, we use sentence 365

embeddings obtained via mean pooling over the 366

9th-layer hidden states of a pretrained multilingual 367

encoder. This choice is motivated by observations 368

in the InfoXLM (Chi et al., 2021) study, which 369

found that representations from mid-to-late encoder 370

layers—particularly layers 7 through 11—consis- 371

tently achieved around 80% top-1 accuracy on the 372

Tatoeba cross-lingual retrieval benchmark, indi- 373

cating their effectiveness in capturing sentence- 374

level semantics. Sentence embeddings will be ℓ2- 375

normalized, and then cosine similarity is used to 376

identify the top-k nearest neighbors from the 2 mil- 377

lion Swahili unlabeled sentences. 378

Hyperparameters We set the additive margin 379

m = 0.3, contrastive loss temperature 0.05, and 380

MoCo momentum 0.995. The weighted layer pool- 381

ing (WLP) aggregates the last 4 hidden layers. The 382
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projection head consists of two linear layers (hid-383

den size→ 512→ ReLU→ 128). Neighbor counts384

are set as k = 2 and k = 7 for evaluation. Batch385

size is 32, queue size is 2,048, learning rate is 2e-5,386

and training proceeds for 30 epochs.387

4.2 Evaluation388

Cross-Lingual Sentence Retrieval We evalu-389

ate on the Tatoeba (Tiedemann, 2020) and FLO-390

RES (Goyal et al., 2022) benchmarks for multilin-391

gual sentence retrieval. Specifically, we use our392

model to encode sentences, and for each source393

sentence, retrieve the nearest sentence from the full394

target set. We then evaluate top-1 retrieval accuracy,395

based on whether the retrieved sentence is the exact396

translation. We conduct bidirectional evaluations397

(en→sw and sw→en).398

Zero-Shot Cross-Lingual Transfer Tasks We399

further assess the zero-shot cross-lingual transfer400

capabilities of our model on classification and ques-401

tion answering tasks:402

• Cross-Lingual Classification: We evaluate403

on the MasakhaNEWS dataset (Adelani et al.,404

2023), a multilingual news topic classification405

benchmark covering 16 languages. The model406

is trained on the English train set and tested407

zero-shot on the Swahili test set.408

• Cross-Lingual Question Answering: We409

evaluate on KenSwQuAD (Wanjawa et al.,410

2023) and SD-QA (Faisal et al., 2021), which411

contain Swahili QA benchmarks where ques-412

tion answers are extracted from a given con-413

text. Following the MLQA (Lewis et al.,414

2020) setup, we finetune our model on 12K415

English QA pairs sampled from SQuAD (Ra-416

jpurkar et al., 2016) and evaluate its zero-shot417

performance on the three Swahili QA datasets.418

4.3 Results419

We compare the following models:420

• Base Encoder: InfoXLM without additional421

training.422

• Vanilla Contrastive: Contrastive pretraining423

without neighbor augmentation.424

• NeighXLM (k=2): Neighbor-augmented con-425

trastive pretraining with k = 2.426

• NeighXLM (k=7): Neighbor-augmented con-427

trastive pretraining with k = 7.428

Cross-Lingual Representation Alignment Fig- 429

ures 3 and 4 illustrate that NeighXLM consis- 430

tently outperforms both the vanilla contrastive 431

model and the base encoder across nearly all 432

layers on the Tatoeba and FLORES benchmarks. 433

While standard contrastive learning already yields 434

notable improvements over the base encoder, 435

NeighXLM further enhances retrieval accuracy 436

by incorporating neighborhood-based contrastive 437

signals—particularly in the higher layers (e.g., 438

L10–L12). Detailed results are in Appendix A. 439

Remarkably, both NeighXLM variants (k=2 and 440

k=7) demonstrate consistently strong performance, 441

suggesting that the method maintains stable perfor- 442

mance across different neighborhood sizes. These 443

results in bi-directional sentence retrieval under- 444

score NeighXLM’s ability to effectively bridge the 445

semantic gap across languages and promote more 446

aligned cross-lingual representations. 447
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Figure 4: Layer-wise Retrieval Accuracy on FLORES
(Averaged over en→sw and sw→en)

Zero Shot Cross-Lingual Classification As 448

shown in Table 1, NeighXLM (k=2) achieves 449

the best performance in the entertainment (F1 = 450

0.553) and technology (F1 = 0.711) categories. 451

6



Model business entertainment health politics sports technology Avg

Base Encoder 0.685 0.533 0.845 0.804 0.965 0.548 0.730
Vanilla Contrastive 0.667 0.485 0.828 0.788 0.960 0.639 0.728
NeighXLM (k=7) 0.655 0.516 0.835 0.812 0.960 0.603 0.730
NeighXLM (k=2) 0.621 0.553 0.817 0.796 0.949 0.711 0.741

Table 1: F1 scores on MasakhaNEWS.

NeighXLM (k=7) performs best in the politics cate-452

gory (F1 = 0.812). Interestingly, the Base Encoder453

(InfoXLM) achieves the highest F1 scores in the454

business and health categories. We attribute this to455

topic bias in the pretraining corpora—specifically,456

the pretraining data used for our model differs from457

that of the Base Encoder, potentially leading to458

imbalanced topic coverage and performance varia-459

tion across categories. Overall, NeighXLM (k=2)460

achieves the highest macro-average F1 score of461

0.741, indicating its strong and consistent perfor-462

mance across all categories.463

Zero Shot Cross-Lingual Question Answering464

As shown in Table 2, the NeighXLM variant465

with k=2 achieves the best overall performance,466

reaching the highest F1 and EM scores on both467

KenSwQuAD (49.96 / 35.76) and SD-QA (57.34 /468

47.66).469

Model KenSwQuAD SD-QA

F1 EM F1 EM

Base Encoder 49.06 35.69 55.08 44.02
Vanilla Contrastive 48.27 34.37 56.39 45.47
NeighXLM (k=7) 49.28 34.75 55.72 44.02
NeighXLM (k=2) 49.96 35.76 57.34 47.66

Table 2: Results on KenSwQuAD and SD-QA.

4.4 Analysis and Discussion470

Robustness to Neighbor Quality Although our471

neighbor search is conducted on a relatively modest472

pool of 2 million unlabeled sentences, both k=2473

and k=7 settings lead to consistent performance474

gains. Manual inspection reveals that some of the475

more distant neighbors can be of lower semantic476

quality, yet the k=7 variant still performs compa-477

rably to k=2 across most tasks. This suggests that478

our inverse rank-based weighting mechanism plays479

a crucial role in mitigating the impact of noisy or480

less relevant neighbors, thereby enhancing the over-481

all robustness of the model.482

Importance of Neighbor Augmentation Train-483

ing contrastive models with extremely limited484

parallel data presents significant challenges, of- 485

ten resulting in unstable optimization and over- 486

fitting. As evidenced by our experiments, the 487

Vanilla Contrastive baseline—which does not incor- 488

porate neighbor augmentation—performs poorly 489

on both the MasakhaNEWS classification and 490

KenSwQuAD question answering tasks, in some 491

cases even underperforming the base encoder. This 492

underscores the limitations of contrastive objec- 493

tives when applied in low-resource settings without 494

sufficient positive supervision. By contrast, our pro- 495

posed method, NeighXLM, enriches the training 496

signal by incorporating semantic neighbors mined 497

from unlabeled corpora as additional positive ex- 498

amples. This augmentation not only compensates 499

for the lack of labeled supervision, but also mit- 500

igates overfitting and semantic space collapse by 501

supplying more abundant and diverse positive ex- 502

amples, which improve coverage in the representa- 503

tion space. 504

Base Encoder
en
sw
fr

NeighXLM (k=2)
en
sw
fr

Figure 5: UMAP projection of sentence embeddings
from Tatoeba (en–sw, en–fr). Each point represents a
sentence, and lines connect translation pairs.

Representation Visualization We sample 100 505

sentence pairs each from the English–Swahili and 506

English–French subsets of the Tatoeba benchmark. 507

For each sentence, we compute its embedding 508

by applying mean pooling over the final four 509

layers of the encoder. The resulting representa- 510

tions are then projected to two dimensions us- 511

ing UMAP (McInnes et al., 2018), and visualized 512

in Figure 5. Each point corresponds to a sen- 513

tence, with lines connecting translation pairs. The 514

visualization clearly shows that NeighXLM pro- 515
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motes semantic clustering across languages, rather516

than forming clusters based on language iden-517

tity—supporting its goal of enhancing cross-lingual518

transfer. Notably, with the base encoder, typolog-519

ically similar languages like English and French520

already exhibit partial semantic alignment, while521

typologically distant languages such as Swahili522

are clustered strictly by language. In contrast,523

NeighXLM brings sentences from all three lan-524

guages together based on meaning, indicating525

stronger and more consistent cross-lingual align-526

ment. This language-based clustering in the base527

encoder also highlights a key limitation of the cross-528

lingual neighbor mining strategy proposed by Ke-529

ung et al. (2020): selecting neighbors based on530

encoders that have not been aligned cross-lingually531

may capture superficial linguistic similarity rather532

than true semantics, leading to biased and less ef-533

fective alignment.534

en es en fr en ru en ar en jp en sw0
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Figure 6: Sentence retrieval accuracy on additional
Tatoeba language pairs (en–xx).

Preservation of Multilingual Space Beyond im-535

proving transfer to Swahili, NeighXLM does not536

degrade representation quality for other languages,537

nor does it collapse the overall multilingual se-538

mantic space. To verify this, we evaluate sentence539

embedding quality on several additional Tatoeba540

language pairs (en–xx), sampling up to 2000 sen-541

tence pairs per language. Using mean pooling542

over the last four layers and evaluating sentence543

retrieval accuracy, we observe that performance544

on other languages consistently improves, rather545

than merely remaining stable—likely because the546

contrastive queue loss sharpens the English repre-547

sentation space by pushing it away from negatives,548

indirectly benefiting retrieval tasks that involve En-549

glish. As shown in Figure 6, this suggests that550

NeighXLM selectively strengthens target-language551

alignment while preserving or enhancing general552

multilingual capabilities.553

Exploring Alternative Negative Queue Interac- 554

tions We also experimented with alternative de- 555

signs for the negative queue. Specifically, we aug- 556

mented the current loss by adding an additional 557

objective that pushes both positives and neigh- 558

bor examples away from the negative queue sam- 559

ples. Detailed results across all evaluation tasks are 560

provided in Appendix A; we refer to this setting 561

as NeighXLM (allvsqueue). Overall, this variant 562

did not lead to improved performance. Since the 563

model already receives sufficient negative supervi- 564

sion through the contrastive loss, further increas- 565

ing negative signals reduces the relative impact 566

of our added positive neighbor supervision. This 567

shift in balance diminishes the intended benefits of 568

neighborhood-based learning, making it an ineffi- 569

cient modification. 570

5 Conclusion 571

In this work, we propose NeighXLM, a neighbor- 572

augmented contrastive pretraining framework for 573

improving cross-lingual transfer in low-resource 574

settings. By leveraging intra-language semantic re- 575

lations to mine high-quality neighbors, our method 576

enriches supervision beyond limited parallel data 577

and enhances cross-lingual alignment. Experi- 578

ments show that NeighXLM consistently improves 579

retrieval and zero-shot transfer performance. 580

6 Limitations 581

Although NeighXLM consistently improves perfor- 582

mance in low-resource settings, several limitations 583

remain. 584

Dependence on Unlabeled Corpora While our 585

method removes the need for translation systems 586

or human annotations, it still requires access to 587

sufficient unlabeled corpora in the target language. 588

The extent to which parallel supervision can be 589

augmented via neighbor mining depends on the 590

size and diversity of this corpus. For extremely 591

low-resource languages with limited monolingual 592

data, neighbor mining may be less effective. 593

Simulated Low-Resource Setting We do not use 594

languages that are low-resource in practice in our 595

experiments, because such languages often lack 596

evaluation benchmarks, making it impossible to as- 597

sess the performance improvements of our method. 598

Instead, we choose Swahili, which is relatively low- 599

resource, typologically distant from English, and 600

8



has limited but usable evaluation datasets. To sim-601

ulate data scarcity, we use only a small subset of602

its parallel data. However, Swahili still has sub-603

stantial unlabeled corpora and has been partially604

observed during base encoder pretraining, mean-605

ing the initial semantic space for Swahili is already606

of adequate quality. This gives our method a bet-607

ter starting point than it would have in genuinely608

low-resource languages that lack both labeled and609

unlabeled data.610
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Model L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

sw → en

Base Encoder 7.69 7.69 12.31 20.26 21.03 26.92 39.49 49.49 33.85 27.18 21.03 15.90

Vanilla Contrastive 10.51 12.05 22.82 42.82 52.56 59.23 62.82 64.36 63.59 62.31 61.54 60.00

NeighXLM (allvsqueue) 10.26 13.08 26.67 40.00 51.54 60.26 64.10 66.41 64.36 62.05 62.56 60.51

NeighXLM (k=7) 10.51 12.05 24.10 40.26 51.03 57.95 60.51 62.56 63.08 63.59 64.87 66.41

NeighXLM (k=2) 10.26 13.85 26.15 41.28 52.31 59.49 63.08 64.87 64.87 64.87 65.90 66.15

en → sw

Base Encoder 12.05 8.72 10.51 9.23 18.97 32.05 40.77 54.10 36.67 36.67 32.31 20.00

Vanilla Contrastive 14.87 15.38 26.92 40.51 54.87 62.56 64.36 67.18 64.10 65.38 62.82 60.77

NeighXLM (allvsqueue) 15.64 14.87 24.62 37.44 53.33 63.08 65.90 67.18 62.31 64.62 62.56 61.79

NeighXLM (k=7) 15.38 15.90 26.92 38.46 53.08 58.72 63.08 64.10 64.87 64.87 67.44 67.69

NeighXLM (k=2) 15.90 16.15 25.13 37.69 53.33 59.49 64.10 65.38 66.15 66.67 64.10 64.36

bi-directional avg

Base Encoder 9.87 8.21 11.41 14.74 20.00 29.49 40.13 51.79 35.26 31.92 26.67 17.95

Vanilla Contrastive 12.69 13.72 24.87 41.67 53.72 60.90 63.59 65.77 63.85 63.85 62.18 60.38

NeighXLM (allvsqueue) 12.95 13.97 25.64 38.72 52.44 61.67 65.00 66.79 63.33 63.33 62.56 61.15

NeighXLM (k=7) 12.95 13.97 25.51 39.36 52.05 58.33 61.79 63.33 63.97 64.23 66.15 67.05

NeighXLM (k=2) 13.08 15.00 25.64 39.49 52.82 59.49 63.59 65.13 65.51 65.77 65.00 65.26

Table 3: Layer-wise retrieval accuracy on Tatoeba.

Model L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

sw → en

Base Encoder 7.32 9.23 17.45 39.42 60.68 87.46 94.08 98.19 90.57 72.72 58.78 19.96

Vanilla Contrastive 9.03 10.03 22.27 54.66 80.54 96.19 98.70 98.80 99.20 98.29 95.39 93.38

NeighXLM (allvsqueue) 7.72 9.33 20.36 53.86 83.15 97.29 98.90 99.00 98.80 97.39 94.98 91.88

NeighXLM (k=7) 8.32 10.33 22.27 56.77 84.25 97.19 99.40 99.30 99.20 98.60 96.69 95.59

NeighXLM (k=2) 8.53 10.33 23.97 59.08 84.45 97.19 99.20 99.10 99.10 98.09 96.09 95.19

en → sw

Base Encoder 18.86 14.04 19.56 19.16 60.58 86.56 94.48 96.59 90.47 89.47 83.65 39.52

Vanilla Contrastive 23.17 25.78 41.42 55.47 81.64 95.29 98.50 99.20 99.20 98.19 94.98 94.18

NeighXLM (allvsqueue) 24.37 26.98 41.22 56.87 82.75 96.29 98.09 99.20 98.40 98.40 95.69 93.88

NeighXLM (k=7) 25.78 28.49 41.93 56.27 85.06 95.79 98.19 98.80 98.80 98.40 96.89 97.49

NeighXLM (k=2) 23.57 27.88 44.83 60.38 83.45 95.59 98.50 99.10 99.10 99.00 96.69 96.59

bi-directional avg

Base Encoder 13.09 11.63 18.51 29.29 60.63 87.01 94.28 97.39 90.52 81.09 71.21 29.74

Vanilla Contrastive 16.10 17.90 31.85 55.07 81.09 95.74 98.60 99.00 99.20 98.24 95.19 93.78

NeighXLM (allvsqueue) 16.05 18.15 30.79 55.37 82.95 96.79 98.50 99.10 98.60 97.89 95.34 92.88

NeighXLM (k=7) 17.05 19.41 32.10 56.52 84.65 96.49 98.80 99.05 99.00 98.50 96.79 96.54

NeighXLM (k=2) 16.05 19.11 34.40 59.73 83.95 96.39 98.85 99.10 99.10 98.55 96.39 95.89

Table 4: Layer-wise retrieval accuracy on FLORES.
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Model KenSwQuAD SD-QA

F1 EM F1 EM

Base Encoder 49.06 35.69 55.08 44.02
Vanilla Contrastive 48.27 34.37 56.39 45.47
NeighXLM (allvsqueue) 49.14 35.23 57.03 46.31
NeighXLM (k=7) 49.28 34.75 55.72 44.02
NeighXLM (k=2) 49.96 35.76 57.34 47.66

Table 5: Results on KenSwQuAD and SD-QA.

Model business entertainment health politics sports technology Avg

Base Encoder 0.685 0.533 0.845 0.804 0.965 0.548 0.730
Vanilla Contrastive 0.667 0.485 0.828 0.788 0.960 0.639 0.728
NeighXLM (allvsqueue) 0.678 0.556 0.831 0.792 0.959 0.583 0.733
NeighXLM (k=7) 0.655 0.516 0.835 0.812 0.960 0.603 0.730
NeighXLM (k=2) 0.621 0.553 0.817 0.796 0.949 0.711 0.741

Table 6: F1 scores on MasakhaNEWS.
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