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Abstract—The reconstruction of bandlimited signals from
nonuniform samples remains a key challenge in modern signal
processing, particularly for variable bandwidth (VBW) signals.
Level-crossing (LC) sampling, a practical event-based sampling
technique, adapts the sampling rate to the instantaneous band-
width of a signal, but the inherent irregular sample spacing
complicates signal reconstruction. In this paper, we analyze the
effectiveness of time-warping in improving LC sample spacing
for VBW signals and its impact on minimum energy (ME)
reconstruction. By time-warping LC samples, we demonstrate
a reduction in sample spacing variability, leading to a more
stable reconstruction process. We evaluate the sample spacing
distribution before and after time-warping and compare the
reconstruction performance of ME reconstruction with and
without time-warping. Numerical results show that time-warping
significantly enhances reconstruction accuracy, reducing numer-
ical instability in the ME method. This study highlights the
potential of time-warping as an effective preprocessing step for
LC sampled VBW signals.

Index Terms—Event-Based Sampling, Instantaneous Band-
width, Time-warping

I. INTRODUCTION

The frequency content of many practical signals we want
to acquire changes significantly over time. This is especially
the case for speech signals [1] [2], frequency modulated (FM)
signals [3], and electrocardiograms [4] [5].

Since the Nyquist-Shannon sampling theorem states that
signals can be perfectly reconstructed from equidistant sam-
ples, we sample most signals dependent on the maximum
frequency component of the signal and keep this rate fixed in
conventional signal processing systems. As it dictates sampling
based on the maximum signal frequency, it does not account
for periods with narrowband spectral components, resulting
in an unnecessarily high sampling rate and excessive signal
sampling. There exist several approaches to sample signals
more efficiently, including compressive sensing [6], finite rate
of innovation [7], and event-based sampling [8].

A different approach, called time-warping extends the clas-
sical sampling theorem by adding support for variable band-
width (VBW) signals [3]. VBW signals are fully characterized
by a sequence of nonuniform samples taken according to an
instantaneous, rather than a globally defined, signal bandwidth.
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A distortion function derived from the instantaneous signal
bandwidth warps the time-axis of the signal such that the
nonuniform samples become uniformly distributed. This al-
lows simple signal recovery based on the Nyquist-Shannon
interpolation method. Although an interesting concept, sam-
pling requires a priori knowledge and is therefore impractical.

A far more convenient approach to nonuniform sampling
which does not require a priori knowledge of a signals
instantaneous bandwidth is the event-based sampling tech-
nique level-crossing (LC) sampling. Here, a signal is sampled
whenever it crosses a predefined amplitude threshold. This
leads to a highly nonuniform sampling grid with potentially
large distances between samples when the signal activity is
low. It has been shown that samples are taken at a variable rate
in relation to the bandwidth or, in the case of a VBW signal,
the instantaneous bandwidth of the signal [9]. Consequently,
signal recovery is challenging and complex reconstruction
techniques are required. Existing methods include spline-
based filtering [10], projections onto convex sets [11] and a
technique that combines time-warping with minimum energy
(ME) reconstruction [12].

In this paper we want to investigate the effect of time-
warping on the spacing of the nonuniform LC sample grid
for VBW signals and that it can be used to enhance the
ME reconstruction performance. To this end, we will first
introduce ME reconstruction, the theory behind time-warping,
and then examine the relationship between the bandwidth of
a signal and its LC sample distribution. Then, we will discuss
the effect of time-warping on the LC sample grid for an
example signal and subsequently analyze the distribution of
the sample spacing numerically. Finally, we will compare the
ME reconstruction from LC samples with and without prior
time-warping.

II. NYQUIST-SHANNON SAMPLING THEOREM

A signal y(t) that is bandlimited to the bandwidth B0

∀|f | > B0 : Y (f) =

∫ ∞

−∞
y(t)e−j2πftdt = 0, (1)

can be fully recovered from uniformly spaced samples
y( n

2B0
), n ∈ N taken at a constant rate of f0 = 2B0.



For recovery, we most commonly use the Whittaker-Shannon
interpolation formula:

y(t) =

∞∑
n=−∞

y

(
n

2B0

)
· sinc(2B0t− n). (2)

III. MINIMUM ENERGY RECONSTRUCTION

If we now sample y(t) irregularly, resulting in N nonuni-
form samples y(tn), then (2) will not provide an error free
reconstruction. Instead, we can use ME reconstruction [13],
which by finding a bandlimited ŷ(t) minimizes the least
squares error:

e(c) = min
c

∥y(t)− ŷ(t)∥2. (3)

This is accomplished by selecting a finite number of recon-
struction functions:

ŷ(t) =

M∑
m=1

c[m]gm(t), (4)

where c can be found from the observations y(tn) by solving:

y(tn) =

M∑
m=1

c[m]sinc(2B (tn − tm)) (5)

for all y(tn). This leads to a linear equation system to solve
for all N samples:

y = Gc. (6)

G is an N ×M matrix containing the reconstruction kernels

G[n,m] = sinc(2B(tn − tm)) (7)

and y ∈ RN×1 are our observations y[n] = y(tn).
When the sample times tn are highly nonuniformly dis-

tributed, the matrix G is ill-conditioned [14]. Inverting G can
thus lead to large numerical errors in the reconstruction. To
compensate, Miller regularization is usually applied [12].

IV. TIME-WARPING

Clark et al. [3] introduced an extension of the sampling
theorem for nonuniform sample sequences of VBW signals
called time-warping. We again define a signal x(τ) that is
bandlimited, now to B = 1

2 in a bandwidth-normalized τ -
domain. In the τ -domain, we can describe the signal x(τ) by
uniformly spaced samples x(n). We define a function γ(t)
which we require to be invertible and strictly monotonically
increasing. For a signal y(t) = x(τ) with τ = γ(t) the
resulting samples y(γ−1(n)) lie not necessarily on a uniform
grid, but their spacing is defined by the shape of γ(t). The
time axis of our signal y(t) (t-domain) and of our signal x(τ)
(τ -domain) are thus related by τ = γ(t). If γ(t) is not a
linear function, then the samples y(γ−1(n)) are nonuniformly
distributed over the t-domain as shown in Fig. 1.

Substituting the time-warping function γ(t) into the
Whittaker-Shannon interpolation formula (2) gives:

y(t) = x(γ(t)) =

∞∑
n=−∞

x(n) · sinc(γ(t)− n). (8)
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Fig. 1. The signal x(τ) with its uniform samples x(n) in the τ -domain and
its representation y(t) in the t-domain with nonuniform samples y(tn).

We can express the τ -domain samples x(n) as the samples
y(γ−1(n)), since γ(t) is a bijective function, to obtain the
time-warped interpolation formula:

y(t) =

∞∑
n=−∞

y(γ−1(n)) · sinc(γ(t)− n). (9)

Thus, the signal y(t) can be fully recovered from nonuni-
form samples y(tn) given by the inverse time-warping func-
tion:

tn = γ−1(n). (10)

Since the sampling times are the integer crossings of γ(t), the
derivative of γ(t) describes the instantaneous sampling rate:

fs(t) =
δγ(t)

δt
(11)

from which we can define bandwidth as a function of t:

B(t) :=
1

2
· δγ(t)

δt
. (12)

Likewise, if the instantaneous bandwidth B(t) of the signal,
is known, we can find the time-warping function γ(t) by
integration:

γ(t) = 2 ·
∫

B(t)dt. (13)

In summary, time-warping allows signal recovery from
nonuniformly samples, if B(t) is known and the nonuniform
samples are taken at the exact times we obtain from γ(t).

V. LEVEL-CROSSING SAMPLING

A more practical approach to nonuniform sampling in
relation to the instantaneous bandwidth of a signal is level-
crossing (LC) sampling. A LC sampler samples a signal x(t)
whenever the signal amplitude crosses a certain threshold. For
a sampler with a single level L, crossing its level would yield
the sample x(tk) = L.

In the following, we define x(t) as a stationary Gaussian
process. The average number of crossings in the interval [0, T ]

KT (L) = # {t ∈ [0, T ] : x(tk) = L} (14)



can then be described by the Rice formula [15]:

E [KT (L)] =
T

π

√
λx
2

λx
0

· e
−L2

2λx
0 . (15)

Here, λx
0 = var [x(t)] and λx

2 = var
[
x(1)(t)

]
are the first

and second spectral moments of x(t) and its first derivative
x(1)(t). There is a direct link between the process bandwidth
and the expected number of transitions, since the mean process
bandwidth B̄ of x(t) can be found from its spectral moments:

B̄ =

√
λx
2

λx
0

. (16)

Applying the time-warping method, we can model a non-
stationary Gaussian process y(t) as a VBW signal by time-
warping a stationary process y(t) = x(γ(t)). Rzepka et
al. showed in [9] that a similar relationship between the
instantaneous bandwidth B(t) of y(t) and the average number
of LC samples can be established:

E [KT (L)] =
1

π
e

−L2

2λ
y
0

∫ T

0

√
λy
2

λy
0

2πB(t)dt. (17)

VI. APPLICATION OF TIME-WARPING TO SIGNAL
RECOVERY FROM LC SAMPLES

In the following section we want to analyze the time-
warping projection and its effects on the ME reconstruction
of a VBW signal from its nonuniform LC samples. We will
first project the LC samples of an example signal onto the τ -
domain and analyze the resulting sample distances. Then, we
will look at the reconstruction performance of the combined
time-warping and ME reconstruction approach as described by
Rzepka et al. [12].

A. Example VBW Signal

For our test signal, we define a VBW signal y(t) with
a known instantaneous bandwidth B(t). We limit our ob-
servation interval to t ∈ [0, 1] s and require that B(t) is a
bandlimited function with a bandwidth Υ = 2Hz. We con-
struct B(t) from random amplitudes Bn ∈ U (0.01Hz, 10Hz)
using (2). From B(t) we can find a time-warping function
γ(t) by integration, and its resulting nonuniform samples by
solving (10). Then, by randomly selecting N amplitudes y(tn),
we can construct our VBW signal y(t) by using (9). We
choose yn ∈ N (0, 1) from the normal distribution such that
−4 ≤ y(t) ≤ 4. Fig. 2 shows the random instantaneous
bandwidth B(t), the signal y(t) and its N nonuniform samples
y(tn).

We then sample y(t) with a LC sampler with NL = 15
equally distributed levels between [−4, 4], resulting in the sam-
ples y(tm). During times when B(t) is large, more nonuniform
samples y(tn) are required to describe y(t). Additionally, more
LC samples y(tm) are generated at those times due to the
higher signal activity. The opposite is true when B(t) is low.

Since the LC samples y(tm) do not overlap with the nonuni-
form samples y(tn), thus not forming a uniform sampling grid
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Fig. 2. An example instantaneous bandwidth B(t), the resulting VBW signal
y(t) and its nonuniform samples y(tn), sampled with a LC sampler, resulting
in the samples y(tm).
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Fig. 3. Time-warping function γ(t) of Fig. 2 and the nonuniform sample
times tn and the LC sample times tm in t-and τ -domain.

in the τ -domain, a direct reconstruction with the time-warped
interpolation formula (9) is not feasible.

Fig. 3 shows the projection of the LC samples y(tm)
to the τ -domain using γ(t). We can observe that for most
nonuniform sample times tn, which form a uniform sampling
grid in the τ -domain, adjacent LC samples tm occur. Although
there are still large gaps in the τ -domain LC sample grid, the
clustered LC samples are now close to evenly spaced with
different rates per cluster.

B. Sample Time Distance Distribution

In the following section we want to extend the previous
observations by examining the distributions of the sample
spacings of LC samples in the t and τ domains. To this end we
construct 1000 VBW signals. To generate the instantaneous
bandwidths we choose Bn ∈ U (5Hz, 100Hz) for greater
variability in sample rates and sample them with LC samplers
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Fig. 4. Sample time distance distribution in t-and τ -domain.

with varying number of levels NL ∈ {3, 5, . . . , 95, 97},
resulting in the samples y(tm).

We then calculate the distances between all LC samples:

∆tm = tm+1 − tm, m ∈ {0, . . . ,M − 1} (18)

for all signals and sampler configurations and repeat the
process for the time-warped samples:

∆τm =
(τm+1 − τm)

γ(tmax)− γ(tmin)
, m ∈ {0, . . . ,M − 1}. (19)

The resulting distributions of the sample distances over
the number of levels NL shown in Fig. 4 are all positively
skewed. We can observe that projection to the τ -domain
reduces the interquartile range of the box plots. The whiskers
have been configured to show the 1% and 99% minimum
and maximum to better represent the spread of the distances
without plotting the outliers. It shows that the variation of
the distances between levels is reduced after the projection.
This is especially important when considering the stability of
the ME reconstruction, since nonuniform sample sequences
with varying large distances lead to numerical instability when
solving (6). However, the projection to the τ -domain slightly
increases the overall median distance.

C. Signal Reconstruction

To confirm the suggestion of the previous section that time-
warping improves our sampling grid, we want to compare the
reconstruction performance using ME reconstruction in the t-
domain and the τ -domain. Furthermore, we want to compare
these results with the reconstruction performance using only
the time-warped LC samples closest to the samples y(tn).

To reconstruct from our τ -domain samples, we need to
modify (5) [12]:

y(tn) =

M∑
m=1

c[m]sinc((n− τm)) (20)

and (7):
G[n,m] = sinc(n− τm). (21)
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Fig. 5. Reconstruction comparison between ME, ME in τ -domain (TW) and
ME in τ -domain from selected samples only (NO).

We can then plug the resulting c into the time-warping
interpolation formula (9):

y(t) =

∞∑
n=−∞

cn · sinc(γ(t)− n). (22)

Fig. 5 shows the normalized mean squared error (NMSE)
over the number of levels NL. As the number of levels
increases, the number of LC samples to reconstruct from
also increases, thus reducing the reconstruction error in all
three variants of the ME reconstruction. In comparison, the
reconstruction error is drastically reduced by projecting to the
τ -domain.

If we now select only the LC samples closest to the sample
times tn that fully describe a VBW signal, we discard a lot
of information about our signal. Although we suffer a hit in
reconstruction performance compared to reconstruction with
all samples, the reconstruction still improves sufficiently as
we add more levels. This shows that for signal recovery, we
are most interested in the LC samples closest in time to the
signal samples y(tn).

VII. CONCLUSION

This paper presents the advantage of projecting LC samples
onto the τ -domain prior to ME reconstruction for VBW signals
with known instantaneous bandwidths. We show that projec-
tion reduces large distances between sampling times at the cost
of a slightly higher median sampling distance. Furthermore,
we compared the performance of ME reconstruction with and
without time-warping, and with selected samples only, high-
lighting the reconstruction benefits. However, since the B(t) of
a signal is not known in practice, these results remain a best-
case analysis. Due to the unique property of the LC sampler
to sample proportionally to the instantaneous bandwidth, we
expect a satisfactory estimate of B(t) to be possible. There
is an ongoing effort to estimate B(t) directly from the LC
samples of a signal [9], [16]. Using the information inherent
to the sampling process is, in our opinion, a promising way
to successfully recover signals from LC samples.
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