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Abstract

Both the marginal contributions needed for the
computation of Shapley values and the graph pro-
duced by Pearl-Verma theorem rely on the choice
of an ordering of the variables. For Shapley val-
ues, the marginal contributions are averaged over
all orderings, while in causal inference methods,
the typical approach is to select orderings produc-
ing a graph with a minimal number of edges. We
reconcile both approaches by reinterpreting them
from a maximum entropy perspective. Namely,
Shapley values assume no prior knowledge about
the orderings and treat them as equally likely,
while causal inference approaches apply Occam’s
razor and consider only orderings producing the
simplest explanatory graphs. We find that the
blind application of Occam’s razor to Shapley
values does not produce fully satisfactory expla-
nations. Hence, we propose two variations of
Shapley values based on entropy maximization to
appropriately incorporate prior information about
the model.

1. Introduction

Additive feature attribution algorithms are commonly used
in eXplainable Al (XAI) to quantify how a model generates
its output from the input features (Lundberg & Lee, 2017).
However, assessing a feature’s impact on a complex model
is challenging due to interdependencies and non-linear in-
teractions among features (Aas et al., 2021). As noted in
(Lundberg & Lee, 2017; gtrumbelj & Kononenko, 2014;
Datta et al., 2016), the problem is akin to cooperative games,
where individual players contribute to the team’s success,
but how to isolate each player’s contribution to the final out-
come remains unclear. In game theory, Shapley values are a
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prevalent method to disentangle the individual contributions
of each player to the team’s payoff (Shapley, 1953). Specif-
ically, Shapley values are given by the average marginal
contribution of each player in every possible ordering of
the players in the team. When addressing feature attribu-
tion, the authors in (Lundberg & Lee, 2017) quantified the
contribution of each feature to the model’s output by em-
ploying an analogy where the model output is viewed as the
team’s payoff, and each feature is considered as an individ-
ual player. Given a payoff function v(S) defined for each
subset of features S € X = {X;,...,Xn} in a model, a
possible way to compute the Shapley values for a specific
instance of the features X1 = z1,...,Xy = xy is by using
the following Algorithm 1.

Algorithm 1 Calculation of Shapley values

Require: Payoff v, instance of features z = {z1,...,xn}
for Every permutation 7 of {1, ..., N} do

z]' « features preceding x; in the ordering 7

o7 — v (2 uiz}) —v ()

end for
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We refer to the quantity ¢7 as the marginal contribution of
the feature instance x; in the ordering 7 whereas the Shap-
ley value of the feature instance x; is represented by the
output ¢; in Algorithm 1, calculated as the average of these
marginal contributions ¢ across all N'! possible orderings.
Although this algorithm is computationally expensive, our
emphasis is on the theoretical definition of Shapley values,
with no consideration for practical computations.

Given a model f, a common choice (Lundberg & Lee, 2017)
for the payoff function is v(S) = E[f(X)|S] which is the
expectation of the output given the subset of features S. In
essence, the computation of Shapley values involves con-
sidering the marginal contributions of each feature/player,
which, though, are reliant on the ordering of the coalition.
Assuming that there is no preferred natural ordering, Shap-
ley values take the approach of averaging over all of them.
In addition to its simplicity, this approach has the appeal-
ing characteristic of satisfying several seemingly desirable
properties that an additive feature attribution method should
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exhibit (Shapley, 1953). Indeed, Shapley values satisfy the
following properties

 Efficiency: The contributions ¢; fully explain the
outcome of an instance of features X = =z giving

¢o + 2 di(x) = v(x), where ¢o = E[f(X)].
* Missingness: If a feature has zero marginal contribu-

tion in each ordering, then its final contribution ¢; is
zero (V) |97 () = 0 = ¢i(z) = 0).

e Symmetry: If for all orderings of the variables, swap-
ping the variables X; and X; also swaps their marginal
contributions, then ¢;(z) = ¢;(x).

¢ Linearity/Additivity: Given two models f and g, the
contribution of each feature z; preserves the addition
of the functions: ¢;,, () = ¢;,(v) + ¢, (), where
¢i, () and ¢;, (x) are the contributions of feature z;
to the output of model f and g respectively at the set
point x.

Importantly, it can be proven that Shapley values are the
only additive feature attribution method satisfying all these
properties (Shapley, 1953; Lundberg & Lee, 2017).

In cooperative game theory, various adaptations of standard
Shapley values have emerged with the goal of achieving a
more suitable distribution of payoffs among the involved
players in more realistic scenarios. These adaptations often
relax or remove some of the above properties while intro-
ducing additional criteria to better reflect the dynamics of
cooperative interactions (Roth, 1988). For example, (Kalai
& Samet, 1987) define a notion of Weighted Shapley values
where weights on the different orderings are introduced to
shift the payoff distribution in favor of some players instead
of others. (Weber, 1988) instead considers an a priori proba-
bility distribution over the orderings and explores attribution
schemes not necessarily satisfying efficiency or symmetry.

While these studies try to adapt Shapley values to suit dif-
ferent situations in cooperative game theory, the question
of which properties of Shapley values hold relevance and
applicability in a radically different context, such as the ex-
planation of machine learning models, is still largely unan-
swered. Furthermore, while cooperative games often feature
a predefined payoff function, in the use of Shapley values
as an XAl tool, there are some degrees of freedom in the
choice of the payoff function. This flexibility can signifi-
cantly impact the interpretation and utility of Shapley values
as an explanatory method. Indeed, the literature on XAI has
already explored various payoff functions and how they can
be employed to generate explanations of different natures.
Although nomenclature lacks some consistency, a rough
categorization of explanations can be made, distinguishing
between observational explanations and interventional ex-
planations. Observational explanations are geared towards

explaining how the features impact the output of a predictive
model. Conversely, interventional explanations aim at quan-
tifying how intervening on various features can influence the
predicted variable within the actual modeled phenomenon.

Several studies have examined which properties are suit-
able for interventional and observational explanations, and
whether additional properties are desirable for either type.
For example, in (Sundararajan & Najmi, 2020), a property
named “Dummy” is introduced, which encapsulates a notion
of conditional independence of a feature from the output
given the other features. This property proves to be par-
ticularly well-suited for generating simpler observational
explanations by assigning no explanatory power to superflu-
ous features. In (Janzing et al., 2020), the authors introduce
another variation of Shapley Values with a different payoff
function. (Chen et al., 2020) demonstrates that this second
variation also satisfies the Dummy property. However, they
importantly note that Dummy may not be suitable for all
scenarios, as illustrated through a biologically motivated
example where the desired explanation is of an interven-
tional nature. More generally, we could say that Shapley
value explanations of different nature (i.e. observational
vs interventional) might require specific payoff functions
and/or different basic properties.

Furthermore, in the case of interventional explanations the
incorporation of causal information about the modeled phe-
nomenon is often required. This necessitates adapting the
computation of Shapley values to account for causal rela-
tionships among features and output. For instance, in (Frye
et al., 2020), a reweighting scheme is employed that pri-
oritizes feature orderings consistent with a priori causal
knowledge, ensuring that causal relationships are appro-
priately reflected in the computation process. This results
in a variation of Shapley values not necessarily satisfying
the symmetry property. Conversely, (Heskes et al., 2020)
utilizes partial orderings and Chain Graphs to leverage the
principles of do-calculus into the computation of Shapley
values.

In fact, a common tool utilized in the production of interven-
tional explanations is provided by causal graphs, aligning
with the standard literature on causality (Spirtes et al., 2000;
Pearl, 2009). The study outlined in (Ma & Tourani, 2020)
further contextualizes Shapley values within a causal frame-
work by considering that the generative model is a Bayesian
network structure.

We follow an approach similar to (Ma & Tourani, 2020) by
considering linear structural equation models (LSEMs) as
our generative class in order to evaluate the merit of different
explanatory approaches via Shapley values. However, our
primary contribution lies in drawing an analogy between the
computation of standard Shapley values and causal discov-
ery algorithms. This analogy enables us to interpret Shapley
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values as an explanatory tool that operates independently
of any prior information about the structure of the genera-
tive model. Given that no a priori information is assumed,
standard Shapley values distribute equal weight across all
potential explanations (given by different orderings of the
features). This, as outlined by (Weber, 1988), is analogous
to applying a uniform probability distribution to all order-
ings, which we notice is equivalent to choosing the distribu-
tion with maximum entropy. Building upon this observation,
our approach is straightforward: when provided with a pri-
ori information regarding the generative model, we compute
Shapley values by assigning weights to the obtained expla-
nations. As mentioned previously, the reweighting scheme
based on a priori causal information has already been pro-
posed in (Frye et al., 2020). The authors present a general
and flexible framework for incorporating causal informa-
tion into the explanation process using different weights
on the orderings of the variables. Within this framework,
they outline two specific weighting schemes (“distal” and
“proximate”) that can be utilized to generate different types
of explanations. Our approach follows the general idea of
employing different weights on various explanations from
(Frye et al., 2020) and complements their work by proposing
the selection of a probability distribution that maximizes
entropy while remaining consistent with the provided in-
formation. Specifically, we exemplify this approach in two
scenarios: one observational and one interventional. For the
observational scenario, we introduce the concept of Markov
Blanket Shapley values. This approach differs from (Weber,
1988) as the weights are determined post facto (after the
computation of the marginal contributions for all orderings)
to exploit certain sparsity characteristics. In the interven-
tional scenario, we assume that prior causal knowledge can
be represented by a class of causal graphs, on which do-
calculus can be independently applied. This means that
each graph in the class of plausible graphs will provide an
interventional explanation for the phenomenon. Follow-
ing entropy maximization, the calculated explanations are
subsequently averaged placing weights on the graphs.

2. Faithfulness in Causal Inference

Apart from the computation of marginal contributions, an-
other scenario in which different orderings of variables pro-
duce different results in the interpretation of their role in a
model arises in the area of causal inference. This is exempli-
fied by the application of Pearl-Verma Theorem (Theorem
2 in (Verma & Pearl, 1990a)), a fundamental result in the
area of graphical models, to derive a graphical structure
representing the conditional independence relations among
a set of random variables. Pearl-Verma Theorem guaran-
tees the existence and uniqueness of a DAG G with certain
properties for a fixed ordering 7 over [N variables. As a
first property, the ancestry relation in G must be compatible

with the ordering 7. As a second property, G must be a
minimal /-map (Verma & Pearl, 1990a; Koller & Friedman,
2009) for the joint probability distribution of the /N vari-
ables, namely the relation of d-separation in the graph G
has to imply conditional independence among the random
variables (Koller & Friedman, 2009).

Pearl-Verma Theorem also provides a way to construct such
a graph G. Let X; be a variable and ZT be the set of all
variables preceding X; in the ordering 7. Pearl-Verma The-
orem constructs a minimal /-map based on the ordering
m by finding the largest set P < ZT such that X; and
ZT\PF are conditionally independent given P. The re-
sulting graph G is obtained by connecting all nodes P to
X;. Tt is important to note that, as in the computation of
the marginal contributions ¢™, the directed acyclic graph G
output by the application of Pearl-Verma Theorem depends
on the specific ordering 7. In other words, the presence or
absence of edges between variables in the graphical model
G is in general determined by the choice of .

The approaches followed by Shapley values and Pearl-
Verma Theorem differ in how they address the dependence
of their results on the ordering 7. Shapley values address
the issue by averaging the contributions over all possible or-
derings, while Pearl-Verma assumes an ordering a priori and
outputs a DAG G. If we wanted to remove the dependence
of the graph G on the a priori ordering, we could think of
computing an “average” graph over all possible orderings of
the variables, similar to the approach used in Shapley values.
This average graph could be a weighted graph where the
weight w;; € (0,1] on the edge connecting X; and X is
given by the frequency with which that edge appears when
applying Pearl-Verma Theorem on every possible ordering
of the variables.

We illustrate the effect of this averaging procedure with
an example. As a ground truth, assume a generative SEM
with connectivity given by the 3-node graph in Figure 1(a).
There are 3! = 6 possible orderings for the three nodes in
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Figure 1: (a) is the original causal graph. (b-g) are the Pearl-
Verma reconstruction given the ordering 7s. (h) is the average
graph of all the orderings.

100%
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the graph. Applying Pearl-Verma to each ordering w, we
obtain the directed acyclic graphs shown in Figures 1(b-
g). If we disregard the orientation of the edges, and, for
simplicity, only apply our averaging procedure to their skele-
tons (the unoriented version of these graphs), we obtain the
weighted graph in Figure 1(h). Since all weights are dif-
ferent from zero, such a graph is complete. However, it
has to be noted that the edges that have a 100% recovery
rate are the same edges that are present in the true structure
shown in Figure 1(a). This is because two adjacent nodes in
the actual causal graph cannot be d-separated by any set Z,
and therefore they will always be connected in any graph
reconstructed by Pearl-Verma theorem, regardless of the
ordering.

This observation is a cornerstone of most algorithms or
meta-algorithms for causal inference, such as IC (Inductive
Causation) (Pearl & Verma, 1995), SGS or PC algorithms
(Spirtes et al., 2000). Indeed, a basic assumption made by
all these algorithms is that the joint probability distribution
of the variables is faithful to its underlying causal structure
(Spirtes et al., 2000; Pearl, 2009; Raskutti & Uhler, 2018).
Formally, faithfulness is defined by saying that the actual
causal structure of the model is both an /-map and a D-
map for the joint distribution (Koller & Friedman, 2009).
However, a more captivating way of interpreting faithfulness
is that the causal structure has the minimum number of
edges possible given the observed conditional probability
relations (Pearl, 2009). In other words, faithfulness is a form
of Occam’s razor looking for simplest causal explanation,
where “simplicity” is defined as the graph’s edge count.
Judea Pearl captures this idea perfectly in this quote:

“[T]he scientist can never rule out the possibility that the
underlying structure is a complete, acyclic, and arbitrar-
ily ordered graph — a structure that (with the right choice
of parameters) can mimic the behavior of any model, re-
gardless of the variable ordering. However, following
standard norms of scientific induction, it is reasonable
to rule out any theory for which we find a simpler, less
elaborate theory that is equally consistent with the data.”
[J. Pearl, “Causality”, Chapter 2, emphasis added.]

Let us highlight a deeper connection between the computa-
tion of Shapley values and causal inference by recasting a
variation of IC algorithm. While IC algorithm recovers the
causal relationships between all the nodes, discovering the
entire unoriented graph structure, our approach concentrates
on recovering edges adjacent to a single node in a proba-
bilistic graphical model with faithful structure G. Without
any loss of generality, let us assume that we are recover-
ing the edges adjacent to X 1 in the probabilistic model
P(Xy,..., XN, Xn4+1). The following Edge Discovery Al-
gorithm 2 determines all edges adjacent to X1 under
the faithfulness assumption. In the algorithm, the term

Algorithm 2 Edge Discovery

Require: Joint probability distribution P over variables
X ={Xy,... XN, XNnt1}
for every permutation 7 of {1, ..., N} do
ZT <« Variables preceding X; in the ordering 7
if I(X;,ZT, Xn+1) then
ET — FALSE
else
ET «— TRUE
end if
end for
By — N\, ET

I(X;, ZT, X Nn11) refers to a conditional independence test
checking whether X; is independent of X, given the set
ZT. The output is the set of boolean variables F; represent-
ing the presence of the unoriented edge X; — X 1. The
variable F; is TRUE if and only if there is an edge con-
necting X; and X in every ordering 7 of the variables
X1, ..., Xn. Interestingly, we observe that Algorithm 2 has
striking similarities with the computation of Shapley val-
ues in Algorithm 1. Indeed, both algorithms loop over all
possible orderings m of N variables and compute quanti-
ties associated with the same set Z defined as the set of
variables preceding X in the ordering 7. A more nuanced
similarity lies in the fact that both algorithms check for a
form of conditional independence. While Pearl-Verma tests
for standard conditional independence, the computation of
Shapley values, at least for the payoff v(S) = E[f(X)|S],
computes marginal contributions which, when vanishing,
could be interpreted as a form of conditional mean indepen-
dence (Teneggi et al., 2022). The fundamental difference
between the two algorithms is in their outputs. Shapley
value algorithm outputs the average (an evenly weighted
sum) of the marginal contributions for all orderings, while
Edge Discovery outputs the intersection (a product) of all
edges appearing in all orderings. We can highlight this dif-
ference via an example. Assume a generative SEM faithful
to the graph of Figure 2(a). Edge discovery applied to node
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Figure 2: (a) represents the graphical representation of a
SEM. (b) represents the unoriented structure recovered by
Algorithm 2. (c) illustrates the unoriented graph obtained
by applying an averaging scheme similar to the computation
of Shapley values.
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Xg outputs the graph of Figure 2(b) containing all and only
the unoriented edges adjacent to node Xy in the generative
graph. Replacing the intersection (product) operation of
Edge Discovery with an average (in the spirit of Shapley val-
ues) leads to the graph of Figure 2(c). In this case, node Xg
is connected to all other nodes and the weights on the edges
are all strictly positive. Again, we observe that the edges
which are present in all orderings are the edges actually
present in the generative graph.

3. Adapting Concepts of Sparsity in Causal
Inference to Shapley Values

Causal inference algorithms typically postulate that the prob-
abilistic model is faithful to its graph in order to reconstruct
the edges linked to a single node. Under faithfulness, all
orderings resulting in the minimum number of edges will
consistently yield graphs with the same skeleton (Verma &
Pearl, 1990b; Koller & Friedman, 2009). Conversely, in the
standard computation of Shapley values no a priori assump-
tions are made and all orderings are taken into account and
given an equal weight when producing the output. This com-
parison between the standard computation of Shapley values
and causal inference algorithms seems to suggest that all
orderings should be treated equally when no a priori knowl-
edge is available, however, if some additional information
about the model is given (e.g. faithfulness in a SEM), there
could be reasons to favor some orderings over others. If we
take a more general stance, as previously examined in the
game theory literature (Weber, 1988) and in XAI literature
(Frye et al., 2020), we could now start investigating the im-
plications of restricting the computation of Shapley values
only to a subset of orderings, or weighting them in a non-
necessarily uniform way. Algorithm 3 is an extension of

Algorithm 3 Weighted Shapley

Require: Payoff v, instance of features = = {z1, ..
for every permutation 7 of {1,..., N} do
2] < features preceding x; in the ordering 7
o7 — vz vir}) —v (=)
end for

Gi — D w"PT

'7$N}

Algorithm 1 that employs a more general weighting scheme
to calculate the Shapley values of features. Specifically,
Algorithm 3 uses weights w™ > 0, such that Zﬁ w™ =1,
to account for the likelihood of different orderings or to
incorporate prior knowledge about them. When the weights
w™ are all equal to % we recover the standard definition
of Shapley values, but alternative weighting choices could
lead to explanations with different properties (Weber, 1988;
Frye et al., 2020).

3.1. Sparsity Is Not Fair to the Spouses!

Inspired by the approach followed by causal inference al-
gorithms, we focus on a scenario where we compute the
Weighted Shapley values by applying a similar form of
Occam’s razor principle. Namely, in Algorithm 3 we are
going to consider only the orderings 7 leading to the spars-
est vectors of marginal contributions ¢”. For example, if
7 gives rise to a ¢ that does not have the highest degree
of sparsity, we set w™ to zero. Otherwise, we assign a posi-
tive weight. In order to examine the consequences of this
choice, let’s consider again a generative SEM faithful to the
graph given by Figure 2(a) where we observe the variables
X1, ..., X7 and we build a predictive model for the variable
Xs. Assume that the predictionis Y = f(X7, ..., X7) and
is obtained by minimizing a least square criterion. Because
of faithfulness, all the sparsest marginal contributions ¢™
have the entries ¢73, ¢3, ¢g, @7 that are non-zero. Conse-
quently the Weighted sparsest Shapley values ¢s, @3, g, P7
are the only non-zero ones. This property can be stated
in a more general way for linear SEMs via the following
theorem.

Theorem 3.1. Consider a generative linear SEM with the
variables X1, ..., X n, X ny1 faithful to the graph G*. Let
f(Xy,.... XN) = E[XNn11| X1, ..., XN] be the conditional
expectation for Xni1. Let ¢; be the Weighted Shapley
values computed by assigning the weight w™ = 0 to any
ordering m which does not provide a marginal contribution
vector ¢™ with the highest degree of sparsity. Then, ¢; # 0
implies that X; is either a parent or a child of X n 1 in G*.

Informally, Theorem 3.1 states that, when explaining a
minimum least square error prediction model, limiting our-
selves to the sparsest marginal contribution vectors leads
to Weighted Shapley values ¢ where the non-zero entries
are only associated with the parents and children of the
predicted variable in G*. The formal proofs of this theo-
rem (and the following theorems) are in the Supplementary
Material.

Even though such an explanation is the sparsest possible,
there are reasons not to consider it as satisfactory. Indeed,
it is a well-known fact that the least square prediction of a
random variable in a probabilistic model faithful to a graph
G™* relies not only on the parents and children, but also on
the spouses of the predicted variable (Koller & Friedman,
2009). We define spouses of a node, as the other nodes
sharing at least a child with it. Spouses have an active con-
tribution in the prediction by explaining away their effect
on the shared children. In statistical modeling, “explain-
ing away” is a fundamental causal reasoning phenomenon
that occurs when a particular variable or feature predicts
the outcome of interest by diminishing the effect of other
variables. Therefore, while the sparsest Weighted Shapley
values may identify the immediate connections, neglecting
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the contribution of spouses results in explanations that fail
to capture a complete picture of the prediction process.

3.2. Including “Explaining Away”’: Markov Blanket
Shapley Values

As observed in the previous section, the inclusion of spouses
in the prediction is necessary as they play a fundamental
role in explaining away the effect on their children. Specif-
ically, parents provide information about observed causes
for X1 and children provide information about observed
effects of X 41. Given that this information is available,
the spouses contribute to the prediction by providing in-
formation about alternative causes for the effects of X1
explaining away the effects of other causes. In order to
incorporate the contribution of spouses to the prediction, we
need to determine the appropriate orderings of variables to
consider in computing the Weighted Shapley values. Since
spouses contribute to the prediction merely by providing
information about alternative explanations for observed ef-
fects, it is natural to consider orderings where the set of
spouses follows the sets of parents and children. We recall
that the set of parents, children, and spouses of a node is
referred to as the Markov blanket of the node (Pearl, 1988;
Koller & Friedman, 2009). The Markov blanket of a node
is the minimal set that d-separates the node from the others.
Thus, if we consider the orderings of the variables that be-
gin with all the parents and children of the predicted node,
adding solely its spouses would be sufficient to fully explain
the outcome of the prediction since the Markov Blanket
is the smallest set shielding the node from the rest of the
variables in the model.

Indeed, if we consider all the orderings 7 of the variables
starting with the set of parents and children (given by The-
orem 3.1) of the predicted variable, and among those or-
derings choose the ones that have the sparsest marginal
contribution vector ¢™ to have weights w™ # 0, the non-
zero entries of these ¢™ correspond to the members of the
Markov Blanket of the predicted variable. We can formally
state this property in the following theorem.

Theorem 3.2. Consider a generative linear SEM with the
variables X1, ..., Xy, X 11 faithful to the graph G*. Let
f(X1,.... XN) = E[XNn+1]| X1, ..., XN] be the conditional
expectation for X 1. In Algorithm 3, assign w™ = 0 to
any ordering of the variables that do not start with parents
and children of node X 1. Let vectors ¢™ be the marginal
contribution vectors computed by Algorithm 3 for all the
orderings m that start with the parents and children of node
Xn41. Assign weight w™ = 0 to any ordering ™ which
does not provide a marginal contribution vector ¢™ with the
highest degree of sparsity. Then, ¢; # 0 implies that X; is
either a parent or child or a spouse of X1 in G*.

3.3. Weighting via Maximum Entropy Principle

Both Theorem 3.1 and Theorem 3.2 provide sparsity prop-
erties for the Weighted Shapley values computed by Algo-
rithm 3. They achieve sparsity by setting the weight w™ = 0
for any ordering 7 that is deemed irrelevant for the com-
putation of the contributions. However, these results do
not explicitly specify the weights for the orderings that are
being considered. In comparison, standard Shapley values,
computed by Algorithm 1, allocate equal weights to all or-
derings of the variables as no preference is given among
them.

This approach can be seen as a maximum entropy prin-
ciple, where weights are chosen to match the probability
distribution that maximizes entropy in the absence of any
other information (Jaynes, 1957; 1982). Following an en-
tropy maximization approach we can define Markov Blanket
Shapley values.

Definition 3.3. (Markov Blanket Shapley Values) Markov
Blanket Shapley values are the output of Algorithm 3 setting
w™ = 0 as per Theorem 3.2 and assigning equal weights to
all other orderings.

Numerical examples comparing Markov Blanket Shapley
values and Sparsest Shapley values, along with more effi-
cient algorithms for calculating Markov Blanket Shapley
values, are presented in Section C of the Supplementary
Material.

4. Explaining the Model or Explaining What
the Model Has Learned

As already observed in (Chen et al., 2020), an important
distinction has to be made about the type of explanation we
are trying to obtain when computing additive feature attri-
bution values. In the previous section, we were primarily
concerned about explaining how a model predicts or esti-
mates a variable Xy given the observations of the other
variables X1, ..., Xx which led us to consider the payoff
v(S) = E[f(X)|S]. The authors in (Chen et al., 2020)
refer to this type of explanation as “observational”, where
the attribution values represent how much each observation
contributes to the final estimate. Another type of explana-
tion that may be of interest, also highlighted by (Chen et al.,
2020), is of an “interventional” nature. In this case, the
goal is to understand how manipulating the input variables
affects the outcome, rather than simply assessing their pre-
dictive value. This form of explanation focuses on what
the model has actually learned from a causal perspective.
To capture the interventional impact of input variables on
the output, we need to choose a different payoff function.
As pointed out by (Heskes et al., 2020; Chen et al., 2020),
in this situation a natural choice for the payoff function
is v(S) = E[f(X)|do(S)]. This calculation relies on the
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knowledge of the underlying causal structure of the data
(Pearl, 2009) as different causal structures lead to different
interventional distributions. Results in (Heskes et al., 2020;
Frye et al., 2020) assume prior knowledge about the causal
structure in the form of a graph or partial causal ordering of
variables where the output is last in the ordering. However,
these assumptions can be limiting in some situations given
the various forms that prior knowledge about the causal
structure can take.

As an example, consider a dataset obtained by sampling
from a linear SEM with variables X, X», X3, X4 which
follow a multivariate Gaussian distribution with an unknown
causal structure. We train a linear model f to predict vari-
able X4 from variables {X;, X5, X3}. The only given a
priori information is that the joint probability distribution of
the variables is faithful to the causal graph. The estimated
covariance matrix of the distribution, under faithfulness,
can be used to infer the skeleton of the generative model
(the unoriented structure) and all possible orientations com-
patible with the data. Suppose the estimated covariance
matrix indicates that variables X5 and X3 are conditionally
independent given X, and variables X; and X, are con-
ditionally independent given { X5, X3}. These constraints
narrow down the candidate causal structures to those in Fig-
ures 3(a-c). Given our understanding of the chain graph
based approach of (Heskes et al., 2020), the only partial
ordering of the variables that can represent this specific
causal uncertainty is {(1, 2, 3)} with dependencies induced
by mutual interactions. This chain graph is illustrated in
Figure 3(d). As shown in the chain graph and detailed with
calculations in Section D.2 of the appendix, this representa-
tion neglects the a priori knowledge about the conditional
independence present in the causal structure and therefore
cannot fully incorporate this a priori causal information.

R 8 ®
QOO DD
PGP &

(2) (b) (©) (d

Figure 3: (a-c) are the candidate graphs inferred from the
data under faithfulness. (d) illustrates the chain graph with
partial ordering {(1,2,3)} and dependencies induced by
mutual interactions.

We can take each graph in Figures 3(a-c) separately and com-
pute the interventional Shapley values using Algorithm 1
with the payoff function v (S) = E[f(X)|dog, (x)] where
G, is the graph under consideration. In this way, each graph
G, provides potentially distinct plausible explanations.

We can again adopt our new framework based on entropy
maximization and reconcile all these potentially conflicting
explanations. Indeed, more generally, we can assume that
prior knowledge about the causal structure of the variables
is represented by a class of graphs for which we can cal-
culate v (S) = E[f(X)|dog, (S)]. This class, denoted as
G* = {G1,G,,...,Gp}, encompasses graphs compatible
with the a priori knowledge of the phenomenon modeled by
f. To calculate the interventional contribution of the input
features while respecting our prior knowledge, we adopt a
two-step approach. For each graph G, (k = 1, ..., M) in the
set, we compute the associated Shapley value vector ¢(*) ac-
cording to the payoff function v, (S) = E[f(X)|dog, (S)]-
Subsequently, we calculate the p4s = = >, ¢(¥) and take
it as the feature attribution vector. It’s worth noting that, to
have a non-zero contribution, an input feature must be an
ancestor of the output variable in at least one of the graphs
within G*. We formalize this idea with this definition.

Definition 4.1. (Ancestor Shapley Values) Given a set of di-
rected graphs G* = {G1, Gy, ..., Gy}, define ¢(F) as the
Shapley value vector obtained using Algorithm 1 with the
payoff function v (S) = E[f(X)|dog, (S)]. The uniform
Ancestor Shapley values ¢ 45 are the average of ¢(¥) over
all M graphs in G*.

Ancestor Shapley values have been defined for simplicity
on a set of directed graphs G*. However, they can be readily
generalized considering any set G* containing graphical
structures for which interventional distributions can be com-
puted (e.g. Chain Graphs (Lauritzen & Richardson, 2002;
Heskes et al., 2020)).

5. Discussion on Lost and Preserved Properties

As discussed in Section 1, Shapley values are uniquely de-
fined by the properties of Efficiency, Missingness, Symme-
try, and Linearity. However, with non-uniformly weighted
marginal contributions and a payoff function influenced by
a priori knowledge, some of these properties may no longer
hold. In this regard, we present the following theorem which
characterizes the properties preserved by our proposed def-
inition of Markov Blanket Shapley values and Ancestor
Shapley values.

Theorem 5.1. Markov Blanket Shapley values satisfy Ef-
ficiency, Missingness, and Symmetry. Ancestor Shapley
values satisfy Missingness and Efficiency (with a modified
definition of total payoff). Ancestor Shapley values sat-
isfy Symmetry subject to the condition that if two variables
X; and X provide the same marginal contributions when
swapped in every ordering w, then for any graph Gy, in the
set G*, swapping the nodes X; and X; in Gy, results in a
graph Gy € G*.

Hence, for the weighting schemes introduced in Defini-
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tions 3.3, we observe that Efficiency, Missingness, and Sym-
metry are preserved. In the context of Ancestor Shapley
values, the symmetry of two input variables, as per standard
definition mentioned in Section 1, yields identical interven-
tional contributions when our prior knowledge about the
causal structure aligns with this symmetry. However, if
prior knowledge does not support the symmetry between
the two input features, Ancestor Shapley values might end
up being different.

In the case of the Efficiency property, it is important to note
that the computation of the payoff function, vk (x), varies
depending on each causal graph G, € G*. For example,
consider a scenario where the a priori causal knowledge
about the phenomenon is compatible with a graph G,, € G*
in which the output variable has no ancestors. This implies
that intervening on any subsets of the input variables will
not change the distribution of the output variable leading to
¢§p ) 0 for all 4. However, if the output variable does have
ancestors in a different graph in G, € G*, intervening on
these ancestors will impact the interventional distribution
of the output variable, resulting in qﬁgh) # 0 for the ances-

tors. This means that the value Zf\[:l ¢Z(-k) is not necessarily
unique across all graphs in G*. Thus, for Ancestor Shapley
values, we define a total payoff function in the following
way:

o) = 27 Sele) = 12 Y B (X)ldog, ()] (1)
k k

The detailed proof of Theorem 5.1 is given in the Supple-
mentary Material.

The inconsistency in the values of vg(z) prompts us to in-
troduce a new concept called intervenability. Intervenability
quantifies the extent of interventional power over the output
variable via the model’s explanation through Shapley values,
taking into account our prior knowledge.

Definition 5.2 (Intervenability). Given a model f with input
variables X1, ..., Xy and output variable Xy and a pri-
ori information about the causal structure given in the form
of a set of graphs G* = {G1, ..., G}, intervenability is
defined in the following way:

1
M

M=

z |ELf(X)|dog, ()] = E[f(X)]]. ()

k=1

For instance, if our a priori information G* contains only
graphs in which the output variable X 11 has descendants,
the intervenability is 0. This implies that the input features
lack interventional power over the output variable, meaning
we can not alter the output by intervening on the inputs.
Conversely, if G* contains graphs where the output variable
has no descendants, such as those in Figures 3(a-c), then

the intervenability is equal to f(z). In this case, the output
variable can be fully altered by intervening on the input
variables. It is also important to interpret intervenability
in comparison to |f(z)|. For example, if |f(z)| = 1000
and intervenability is 10, this indicates that intervening on
the input features will not significantly change the output
variable.

We also observe that in both Markov Blanket and Ancestor
Shapley values the Linearity property is lost. Other de-
sirable properties for linear attribution methods have been
formulated as well. The authors in (Sundararajan & Na-
jmi, 2020) propose an additional property, referred to as
“Dummy.” A feature X; is dummy for f if for any two values
T; and SU; we have f(Xh vy Xifl, X, XZ'+1, ceny XN+1) =
f(Xy, e X1, 2}, Xiv1, ., Xn+1).  According to the
Dummy property, every dummy feature should get a van-
ishing attribution. We have that Markov Blanket Shapley
values satisfy Dummy, but Ancestor Shapley values do not.

Theorem 5.3. Markov Blanket Shapley values satisfy
Dummy.

6. Comparison with Other Methods

While a more detailed numerical analysis can be found in
the Appendix, we briefly discuss some key insights here
about different variations of interventional Shapley values.
Specifically, we would like to compare Ancestor Shapley
values, Causal Shapley values (Heskes et al., 2020) and
Asymmetric Shapley values (Frye et al., 2020), using a
minimalistic linear SEM, so that results can be verified
against a known causal structure. This controlled setting
eliminates complicating factors present in real-world data.

Figure 4: Different prior knowledge for the minimalistic
SEM of Section 6

We choose a linear SEM that is faithful to the graph 4(a),
with a high correlation between the zero mean variables
X; and Xs (px,x, = 0.98). We train a linear model f
that predicts variable X5 using a least square error criterion.
Assume we want an explanation for the point 1 = 0.57,
29 = 0.55, f(x) = 0.39. Using standard Shapley values
with payoff v(s) = E[f(X)|S] we find nearly identical
Shapley values for X and X3 (¢ = (0.2,0.19)). Now, we
investigate the impact of causal a priori knowledge exploring
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three different scenarios. The numerical results are shown
in Table 1.

Table 1: Comparison of different variations of interventional
Shapley values with different a priori knowledge. The last
column represents intervenability.

Asymmetric Causal Ancestor T
Gi¥ | (0.39,—.005) | (0.2,0.19) | (0.2,0.19) | 0.39
G (0.2,0.19) (0.2,0.19) | (0.1,0.29) | 0.39
g3 - - (0.07,0.19) | 0.26

First, we assume knowledge of the exact causal structure.
Namely, the set G; contains only the actual generative graph
(Figure 4(a)). With perfect causal knowledge, Causal Shap-
ley values and Ancestor Shapley values provide identical
explanations. The results align well with intuition as X; and
Xo are highly correlated and are known to be ancestors of
X5 based on the a priori knowledge. For the computation of
Asymmetric Shapley values, we used the “distal” approach,
which, as already observed in (Heskes et al., 2020), concen-
trates the interventional power in the root nodes of a DAG
(X in this case). In cases where both Ancestor Shapley
values and Asymmetric Shapley values can be computed,
obtaining both explanations can be valuable. Ancestor Shap-
ley values reflect the expected relative effects on the output
from intervening on input variables. For instance, interven-
ing on X7, which almost completely drives X, affects X3.
Alternatively, directly intervening on X5 achieves a similar
effect on X3, explaining the nearly equal Ancestor Shapley
values. On the other hand, obtaining an explanation that
highlights the interventional power of the root causes could
be valuable, necessitating the calculation of Asymmetric
Shapley values.

For the second case, the a priori information is that the joint
probability distribution is faithful to the causal graph and
that the output is the last in the causal ordering, resulting
in the graphs in set G5 of Figure 4(b). In order to compute
Causal Shapley values, we consider the partial causal or-
dering {(1,2)} with mutual interactions between X; and
X, to be compatible with the a priori information given by
G5 . Causal Shapley values produce the same explanation
as in the previous case without taking into account the ad-
ditional uncertainty. For Asymmetric Shapley values, we
observe that the orderings compatible with the graphs in
G3 are (1,2) and (2, 1). This yields an explanation identi-
cal to that provided by Causal Shapley values. Conversely,
Ancestor Shapley values give a larger contribution to Xo,
because they take into account the fact that X is definitely
an ancestor of the output, while X is not necessarily an
ancestor.

For the third case, we assume that the a priori information

boils down to just faithfulness of joint probability distribu-
tion to the casual graph, leading to the set G& in Figure 4(c).
Both Causal Shapley values and Asymmetric Shapley val-
ues assume that the output variable is the last variable in
the orderings compatible with the graph. Consequently, no
partial ordering of the features, as defined by (Heskes et al.,
2020; Frye et al., 2020), is compatible with all three graphs
in the set. Thus, in this case, we can only calculate Ancestor
Shapley values. We can see that both contributions have
decreased from the previous case. This is because the addi-
tional graph in the set GI suggests that the output variable
might be uncontrollable from all inputs. We also observe
that this decreases intervenability from 0.39 for the previous
cases to just 0.26. Furthermore, the variable X, gets more
contribution than the variable X because it is an ancestor
of the output in two graphs in G, whereas X7 is an ancestor
of X3 in only one graph.

7. Conclusions

In this article, we started by exploring the parallels between
the computation of Shapley values and causal discovery
algorithms. We find that, methodologically, the primary
distinction lies in their treatment of multiple plausible ex-
planations for an outcome. This brings us to conclude that
Standard Shapley values can be seen as a maximum entropy
approach when no prior knowledge is available. We formal-
ize two distinct approaches for calculating Shapley values
in the presence of certain additional information about the
underlying phenomenon. The first approach quantifies the
role of a feature in the output of the model, while the second
approach quantifies the potential interventional impact of
a feature on the variable that the model is predicting. We
argue that these approaches are inspired by the maximum
entropy principle trying to reflect the additional information
available.

Impact Statement

This article presents work whose goal is to advance the field
of trustworthy machine learning. There might be poten-
tial societal consequences, none of which we feel must be
specifically highlighted here.
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A. Proofs of Theorems
A.1. Proof of Theorem 3.1

Proof. Since the generative structural equation model is linear, mean conditional independence is equivalent to conditional
independence. Furthermore, since the model is faithful to its underlying directed acyclic graph, we can conclude that if
two nodes are conditionally independent given some set of variables, they do not share an edge in the underlying graph.
Therefore, when a variable exhibits a vanishing marginal contribution, it implies that it does not share an edge with X 1.
It is evident that orderings of the variables that have the least number of non-zero marginal contributions exhibit ¢J # 0
only for variables that are directly connected to X 4 and thus are either a parent or child of X 4. O

A.2. Proof of Theorem 3.2

Proof. Similar to the argument presented in the proof of Theorem 1, for a linear structural equation model faithful to DAG
G*, a vanishing marginal contribution is equivalent to both conditional independence in the model and d-separation in the
underlying DAG G*. From the theory of graphical models, one node and its spouse can never be d-separated by any set that
includes their common child (Verma & Pearl, 1990a; Pearl & Verma, 1995). Thus, for all orderings of the variables that
start with parents and children of X1, a spouse X; of X will always exhibit ¢T # 0. Furthermore, the set of parents,
children, and spouses of a node forms the minimal set that d-separates it from all other variables in the graph. Hence, the
non-zero entries of ¢™ for orderings that start with parents and children of X 1 which are also the sparsest only include
parents, children, or spouses of X 1. O

A.3. Proof of Theorem 5.1

Proof. 1t is clear that Markov Blanket Shapley values satisfy efficiency since no variable or set of variables is excluded
from the computation of Shapley values and only a different weighting scheme is applied to the ordering of the variables
(We know that >}, ¢7 = v(z) — E[f(X)] for all m). The missingness property holds for both Markov Blanket and
Ancestor Shapley since the choice of non-negative weights does not affect the contribution ¢; of a variable if that variable
has zero marginal contribution in every ordering of variables. For Markov Blanket Shapley Values the symmetry property is
preserved because we are following a maximum entropy approach where all orderings with the same sparsity pattern receive
equal weights. In the case of Ancestor Shapley values, consider two nodes X; and X; with identical marginal contributions
when swapped in every ordering. The symmetry property follows since the class G* contains a graph Gy, if and only if
swapping the two nodes X; and X; in it creates a graph G/ that is still in G*. Ancestor Shapley values maintain efficiency.
The value vi(z) = E[f(X)|dog, (z1, 22, ..., 2xn)] may vary depending on the structure of the graph Gj,. However, for
each graph, we apply the standard Shapley value calculation with uniform weights for all possible orderings, as outlined in
Algorithm 1 in the main text. Consequently, efficiency holds for each graph. If we consider the set G* and define the total
payoff v(z) for the set to as:

1
v(x) = 57 D E[f(X)|dog, (2)] 3
k
Then,
1 Ly 0
il (k) — —
k k i=0
1
= 57 LEU(X)ldos, (0]
= v(x)
Thus, efficiency is preserved for Ancestor Shapley values. O

A.4. Proof of Theorem 5.3

Proof. The Dummy property states that variables that do not directly affect the computation of model f should receive
a vanishing attribution. This property is satisfied by Markov Blanket Shapley values since this approach determines the
minimal set that explains the model f.

11
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In fact, the Dummy property embodies a condition that explicitly requires explanations to attribute potentially non-zero
contributions only to the elements of the Markov Blanket in the case of linear structural equation models. O

B. Brief Discussion on the Linearity Property

We mentioned that neither Ancestor Shapley values nor Markov Blanket Shapley values satisfy the Linearit/Additivity
property. Among the four main properties satisfied by Standard Shapley values, it has been argued that Linearity is the one
with less support from common intuition. Indeed, as observed by Osborne and Rubinstein (Osborne & Rubinstein, 1994)
and reported in (Kumar et al., 2020)

[T]he notion of the sum of two games is not especially meaningful, the additivity [linearity] axiom has been described by
game theorists as “mathematically convenient” and “not nearly so innocent” (Osborne & Rubinstein, 1994).

This observation can be exemplified within the context of faithful Bayesian networks, as the generative class of models.
When considering both observational and interventional explanations, enforcing linearity implies that the explanation of a
function predicting the sum of two variables should be equivalent to the sum of their individual explanations. However, in
the case of Bayesian networks, this does not always hold true, leading to situations where such an explanation may not be
acceptable.

C. Numerical Experiments: Markov Blanket vs. Sparsest Shapley values

This example aims to draw a comparison between the computed standard, sparsest, and Markov Blanket Shapley values for
a structural equation model. This comparison confirms that averaging only the sparsest sets of marginal contributions (an
extreme form of Occam’s razor) can lead to unsatisfactory explanations.

Consider the following structural equation model

X1 =¢e
Xo = 0.707 %« X1 + 0.707 = eo
X3 =e3
Xy=e4

X5 = 0.707 % X3 + 0.707 * e5
Xg = 0.57 % X4 + 0.57  Xo + 0.57 = eg
X7 = 0.57 % X5 + 0.57 * Xg + 0.57 % e7
Xg = 0.707 % Xo + 0.707 * eg
Xo = 0.57 # Xo + 0.57 X5 + 0.57 = eg

faithful to DAG shown in Figure 5, where ¢ = (eq, ..., e9)” are mutually independent Gaussian variables with mean equal
to 0 and variance equal to 1.

We create a data set D with 10000 samples from this structural equation model. We train a linear regression model f that
minimizes the mean square error of predicting Xg from all the other variables in the structural equation model. We compute
the Standard, Sparsest, and Markov Blanket Shapley values for the following data instance:

x1 = 1.804, x5 = 1.124, 23 = 0.336, x4 = —1.877,
w5 = 0.498, 16 = —0.938, 27 = 0.171, 25 = —0.997,
fz1,...,zg) =0.28

To compute the Standard Shapley values, we follow the steps outlined in Algorithm 1 in the article. In this example, our
focus is on observational Shapley values and thus the computation of marginal contributions involves the computation of
expected value over the conditional probability distribution. Indeed, the payoff function for observational Shapley values
is defined as v(S) = E[f(X)|S]. Given that the generative model is linear, we employ linear regressions to estimate the
conditional expectations. The resulting standard Shapley values for the data instance are reported in Figure 6(a). We observe

12



Incorporating Information into Shapley Values

Figure 5: The underlying graph of structural equation model discussed in section C

that variable X; which does not play a role in any estimator derived through a mean square error minimization receives a
larger Shapley value than most of the variables in the Markov Blanket of Xg. In other words, in this example we see that
standard Shapley values do not satisfy the Dummy property defined in (Sundararajan & Najmi, 2020).

In order to compute the sparsest Shapley values, we follow the procedure described in Theorem 1. A practical way to
determine whether ¢ is significantly different from zero would be to check the condition via a statistical test (e.g. via
a F'-test since the distribution is linear and Gaussian). However, in this example, for simplicity, we have assumed the
presence of an oracle that can assess whether ¢ is vanishing or not, so that our results are not going to be affected by
false positives/negatives in the computation of the statistical tests. Furthermore, during the computation process, we use
uniformly distributed weights for w™ # 0. The explanation provided by averaging over orderings of the variables that have
the sparsest ¢™ is shown in Figure 6(b). We observe that variables with non-zero contributions are the exact same variables
sharing an edge with Xy in Figure 5 (X5, X3, X4, X7). In this case we notice that the Dummy property is verified, but as
explained in the main article, the effect of explaining away from the spouses of Xg is not taken into account.

By leveraging the results obtained from sparsest Shapley values, we can compute Markov Blanket Shapley values from
Definition 1 in the article. For Markov Blanket Shapley values, we solely consider orderings of the variables starting
with parents and children of X9 and among those orderings choose the ones with fewest non-zero entries in ¢. The
resulting explanation, presented in Figure 6(c), shows that all elements of the Markov Blanket of node Xg receive a non-zero
contribution and variable X; which is not part of the Markov Blanket receives zero contribution. In this case, we see that the
Dummy property is still verified.

Furthermore, by comparing the results of sparsest Shapley values and Markov Blanket Shapley values shown in Figure 6(b,c),
we can gain some insights into why the former fail to provide a fully satisfactory explanation of the prediction process.
In model f, the regression coefficients of variables Xg and X7 are positive values. However, the explanation provided
by sparsest Shapley values in Figure 6(b) suggests that their contribution to the outcome of the model is in the opposite
direction of their realized value. This can be attributed to the exclusion of spouses, which are necessary to account for the
phenomenon known as “explaining away”. Indeed, the regression coefficients associated with nodes X4 and X5 in model f
are negative which is reflected in their contributions calculated by Markov Blanket Shapley values.

As an additional note, the evaluation of Markov Blanket Shapley values can be made more computationally attractive by
using properties of factorized probability distributions. Specifically, if g is the number of parents and children of the predicted
node, the computation of Markov Blanket Shapley values requires computing marginal contributions for ¢! x (N — ¢)!
orderings of the variables instead of the standard N!. If our objective is to obtain a plausible explanation of the prediction
process and, therefore, we solely intend to compute Markov Blanket Shapley values, exploring computationally efficient
methods to determine the set of parents and children can expedite the calculation of Markov Blanket Shapley values without
the necessity of computing sparsest Shapley values.

C.1. A More Efficient Calculation of Markov Blanket Shapley Values

Causal inference techniques can guide us to find computationally efficient approaches for determining the elements of the
Markov Blanket and the set of parents and children of the predicted node. Indeed, since the Markov Blanket of a node is the
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Figure 6: (a), (b), and (c) report the Standard Shapley values, sparsest contributions, and the Markov Blanket Shapley values,
respectively, for the variables in the example discussed in Section C.

minimal set that shields the node from the other nodes in a probabilistic model, the following Algorithm 4 can effectively
identify the elements of the Markov Blanket with O(N) computational complexity.

Algorithm 4 Markov Blanket discovery

Require: Payoff v(S) = E[f(X)|S], instance of features x = {z1, ...
MB « {}
for instance of variable x; in  do
zi — x/{x}
bi v (2 v {wi}) —v(z)
if ¢; # 0 then
Add X; to M B
end if
end for

axN}

In this algorithm, we focus on scenarios where the possibility of ¢; = 0 arises solely from the condition where X; is mean
independent from X given all other variables. Other potential causes leading to ¢; = 0 are disregarded in this context.
Since the Markov Blanket of a node consists of its parents, children, and spouses, an algorithm that aims to discover the set
of parents and children can iterate over this set rather than the set of all the features leading to more computationally efficient
algorithms. Inspired by methods in causal discovery, we can devise the following algorithm to find the set of parents and
children of node X 11 (Algorithm 5).

This algorithm can identify the set of parents and children in O(|M B|?), where |M B is the number of variables in the
Markov Blanket identified from Algorithm 4.

14



Incorporating Information into Shapley Values

Algorithm 5 Retrieving the set of Parents and Children

Require: Payoff v(S) = E[f(X)|S], instance of features x = {z1, ...,y }, and Markov Blanket of the predicted node
MB
PaCh, Sp,Ch « {}
for every x; € M B do
for every x; # x; € M B do
zji — MB/{z;, x;}
¢ — v (zji v {x;}) — v (z)
if 9; = 0 then
Add X; to Sp
Add X; to Ch
end if
end for
end for
PaCh « MB/Sp

D. Numerical Experiments: Ancestor Shapley Values
D.1. Minimalistic Example

In this section, we will begin by providing a comprehensive description of the minimalistic example presented in the main
body of the article. Consider the following linear SEM:

Xl = €1
X9 =0.98% X7 +0.2 % e9
X35 =0.707 % X5 + 0.707 * e3,

faithful to the directed graph shown in Figure 4(a). We assume e = (e1,...,e3)” are mutually independent Gaussian
variables with mean equal to 0 and variance equal to 1. We create a data set D with 100000 samples from this structural
equation model. We note that the variables X; and X are chosen such that px, x, = 0.98 indicating that these variables are
strongly correlated. We train a linear model f that predicts variable X5 using a least square error criterion. Assume we want
a local explanation for the arbitrarily chosen point 1 = 0.57, zo = 0.55, f(z) = 0.39 from an interventional perspective.

Calculating the standard Shapley values with payoff function v(s) = E[f(X)|S], we find nearly identical Shapley values
for X; and X5 (¢ = (0.2,0.19)). Note that ¢, is slightly larger than ¢ due to the slightly higher value of z at the chosen
test data point. Now, we investigate the impact of causal a priori knowledge exploring three different scenarios. The
numerical results are shown in Table 1.

First, we assume that we have precise a priori knowledge of the causal structure. In this case, the set G exclusively
contains the true generative graph, as illustrated in Figure 4(a). The respective explanations provided by various methods are
documented in Table 1. We used the code from (Remman et al., 2022) to calculate the Causal Shapley values.

For the computation of Asymmetric Shapley values, we used the “distal” approach, which, as already observed in (Heskes
et al., 2020), concentrates the interventional power in the root nodes of a DAG (X in this case).

In the case of our example, Asymmetric Shapley values would consider this weighting for the orderings:
wh? =1, w3 =0, 4)

where (1, 2) refers to ordering m = (X7, X5). This results in giving all the interventional power to X;.

For Causal Shapley values and Ancestor Shapley values, we see that both X; and X5 receive nearly identical contributions.
This outcome aligns with our intuition since the a priori knowledge indicates that both X; and X5 are ancestors of the
output variable and thus should both definitely have non-zero interventional contributions. Given their high correlation, it is
reasonable to conclude that they should exhibit similar contributions from an interventional standpoint. We also note that
with perfect causal knowledge, Causal Shapley values and Ancestor Shapley values give identical explanations.
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For the second case, the a priori information is that the joint probability distribution is faithful to the causal graph.
Furthermore, it is assumed that the output variable is the last in the causal ordering, resulting in the graphs in set G5 depicted
Figure 4(b). Asymmetric Shapley values would consider this weighting for the orderings:

w? = 0.5, w>Y) =0.5. 5)

This is because each of the orderings are compatible with one of the graphs in G¥. On the other hand, we can compute
Causal Shapley values as defined in (Heskes et al., 2020) considering the partial causal ordering {(X7, X5)} with mutual
interactions between X and X,. Causal Shapley values produce the same explanation as in the previous case without taking
into account the additional uncertainty. Conversely, Ancestor Shapley values give a larger contribution to X, because they
take into account the fact that X5 is definitely an ancestor of the output, while X is not necessarily an ancestor. We note
that in both cases we have that Z = f(z) because in both graphs parents of the output variables in the generative model are
also its parents in all the candidate graphs in both G and G5.

For the third case, we assume that the priori information boils down to just faithfulness of joint probability distribution to
the generative causal graph, leading to the set G in Figure 4(c). Since no partial ordering of the features is compatible
with all three graphs in the set, we can only calculate Ancestor Shapley values. We can see that both contributions have
decreased from the previous case. This is because the additional graph in the set G5 suggests that the output variable might
be uncontrollable from all inputs. Observe that this decreases intervenability from 0.39 for the previous cases to just 0.26.

D.2. Diamond Example

In this section, we present another simple example to further demonstrate our methodology and the intuition behind it. We
also compare our results with Causal Shapley values and Asymmetric Shapley values. Consider variables X7, X2, X3, Xy
which follow a zero mean multivariate Gaussian distribution with covariance matrix:

1 0.707 0.707 0.707
0.707 1 0.5 0.75
0.707 0.5 1 0.75
0.707 075 0.75 1

We train a linear regression model using the minimum mean square criterion to predict variable X, from variables
X1, X5, X3. The resulting model is f(X7, X2, X3) = 0.5X2 + 0.5X3. Assume we want an explanation for the data point
x = (x1,%2,23). We assume that the multivariate Gaussian distribution is faithful to its underlying graph. Under this
assumption, we use the covariance matrix to find all directed acyclic graphs compatible with the data. The resulting graphs
are shown in Figure 7.

Figure 7: The set of graphs compatible with our a priori knowledge of the phenomenon

In order to calculate Ancestor Shapley Values, we calculate the payoff function v(x) = E[f(X)|dogx (x)] for all the subsets
of the variables X1, X5, X3. The results are reported in Table 2.

In order to calculate the Causal Shapley values, we need a partial causal ordering that is compatible with the a priori
information about the phenomenon. We consider ordering {(1, 2, 3)} to be the only partial ordering that can be compatible
with all three graph in Figure 7. We also assume that the dependencies within the chain component result from mutual
interactions rather than a common confounder. The results of calculating the payoff function for all subsets of the variables,
given this chain graph, are reported in the last row of Table 2.
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Table 2: The calculation of the payoff function for each subset of the variables.

v(z1) v(za) | wv(xs) v(x1,T2) v(z2,x3) v(xy,x3)
()
@.@ 0.707z1 | 0525 | 0.5w3 | 0.352; +05zy | 0.5y + 0525 | 0.352, +0.5x;
&)
&)
@.@ 0.351 | 0.75z5 | 0525 | 03521 + 0.5z | 0.5z + 0.5 0.5
&)
)
@'@ 0.3521 | 0.5y | 0.75z5 0.5 0.5 + 0.5z3 | 0.35z; + 0.523
()
T1
&2,
GFX5)| | 070721 | 07525 | 0.752; | 03521 + 0522 | 0.5 +0.5x5 | 03521 + 0.525

In order to calculate the Asymmetric Shapley values compatible with the given a priori information, we consider all
ordering of the variables that are compatible with at least one of the graphs in G*. Thus, we consider the orderings
(2,1,3),(1,2,3),(1,3,2),and (3,1, 2) with w™ = % and w™ = 0 for the rest of the orderings. Namely, we follow the distal
weighting approach discussed in (Frye et al., 2020). The computed Asymmetric, Causal, and Ancestor Shapley values are
reported in Table 3.

Table 3: Comparison of different variations of interventional Shapley values for the a priori information given by Figure 7.

Ancestor
0.24x1 — 0.014z5 — 0.01423
0.53x9 — 0.1227 — 0.0142x3

Causal
0.35z1 — 0.042x9 — 0.042x3
0.58x5 — 0.18z1 — 0.042z3
0.58z3 — 0.18x7 — 0.042x9

Asymmetric

¢1 | 0.5321 — 0.0622 — 0.06z3
0.56z2 — 0.2621
0.56x3 — 0.2621

We argue that Ancestor Shapley values is the only approach that explicitly encodes the information extracted from the
data into the calculation of Shapley values. Namely, faithfulness assumption allows us to infer that variables Xo, X3
are conditionally independent given variable X; and variables X, X, are conditionally independent given the variables
{Xs, X3}. This information is not included in the chain graph considered by Causal Shapley values nor captured by the
weighting scheme that Asymmetric Shapley values use.

D.3. Dealing with Unmeasured Variables

In this section, we examine a simple example with an unmeasured variable to study its influence on Ancestor Shapley values
in a linear SEM. Consider the following linear SEM:

U=e,
X1 =0.707+«U 4+ 0.707 = e
Xo =0.707 % X1 + 0.707 = eg
X3 =050%U +0.50 % X5 + 0.5 e3.

faithful to the directed graph shown in Figure 8(a). We assume e = (e, e1, ..., e3)T are mutually independent Gaussian
variables with mean equal to 0 and variance equal to 1. We create a data set D with 100000 samples from variables
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(a) b)

Figure 8: (a) is the true causal structure of the example given in section D.3. (b) is the set of the candidate graphs.

X1, X5, X3 of this structural equation model. We train a linear model f that predicts variable X5 from variables X7, Xo
using a least square error criterion. Let’s assume that we want an explanation for data point X; = 1.213 and Xy = 1.229
and the prediction f(X) = 1.045 from an interventional perspective.

Let’s assume that as a priori knowledge, we are given the set of candidate graphs in G* as shown in Figure 8(b). This
information suggests the presence of an unmeasured variable that contributes to the correlation between X; and Xj.
However, it remains unclear whether this unmeasured variable is a confounder or a unobserved parallel path of causation
from X; to X3. We note that since the unmeasured variable is a parent of X3, our approach for computing the payoff
function v(S) = E[f(X)|do(S)] simply requires the application of some rules of do-calculus.

The computation of the different interventions dog, (z1), dog, (z2) and dog, (%1, z2) are reported in Table 4.

Table 4: The calculation of the payoff function for each subset of the variables.

ELf(X)|do(z1)] ELf(X)|do(x2)] ELf(X)|do(x1, 22)]

Eom
()X
@ [ £(21, X2) P(X3|21)dX;5 = 0.86 [ £(X1,22)P(X1)dX; = 0.62 fle1,@3) = 1.045

§P(Xalz1) § (X1, X2)P(X1)dX1dXe = 0.43 | §f(X1,22)P(X1)dX1 =0.62 | §f(X1,22)P(X1)dX; = 0.62

The final interventional contributions for each graph and also the Ancestor Shapley values for the a priori information G* is
presented in Table 5.

This example highlights that Ancestor Shapley values provide a means to calculate Shapley values from an interventional
perspective even when the given information includes hidden variables and the calculation of the payoff function is not
straightforward.

Remark D.1. We observe that Ancestor Shapley values adopt the entropy maximization approach, assigning equal weight
to all graphs. Yet, in cases where prior knowledge suggests preferences for certain graphs or deems them more probable
than others, an analogous weighting scheme, akin to the one outlined in the Weighted Shapley Algorithm in the primary
article, can be employed. This approach accommodates such information and facilitates the computation of interventional
contributions that incorporate all available a priori knowledge.
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Table 5: Shapley values computed for each graph using E[ f(X)|dog, (x)], and the Ancestor Shapley values for G* given
by averaging the Shapley values of the two graphs.

g E[f(X)|dog, (x)] — E[f(X)]
@ (0.215, 0.405) 0.62
@ (0.64, 0.403) 1.045
1) T
(0.428, 0.404) 0.83
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