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Abstract

Identifying changes in individuals’ behaviour001
and mood, as observed via content shared on002
online platforms, is increasingly gaining im-003
portance. Most research to-date on this topic004
focuses on either: (a) identifying individuals at005
risk or with a certain mental health condition006
given a batch of posts or (b) providing equiva-007
lent labels at the post level. A disadvantage of008
such work is the lack of a strong temporal com-009
ponent and the inability to make longitudinal010
assessments following an individual’s trajec-011
tory and allowing timely interventions. Here012
we define a new task, that of identifying mo-013
ments of change in individuals on the basis of014
their shared content online. The changes we015
consider are sudden shifts in mood (switches)016
or gradual mood progression (escalations). We017
have created detailed guidelines for capturing018
moments of change and a corpus of 500 man-019
ually annotated user timelines (18.7K posts).020
We have developed a variety of baseline models021
drawing inspiration from related tasks and show022
that the best performance is obtained through023
context aware sequential modelling. We also024
introduce new metrics for capturing rare events025
in temporal windows.026

1 Introduction027

Linguistic and other content from social media data028

has been used in a number of different studies to029

obtain biomarkers for mental health. This is gain-030

ing importance given the global increase in men-031

tal health disorders, the limited access to support032

services and the prioritisation of mental health as033

an area by the World Health Organization (2019).034

Studies using linguistic data for mental health focus035

on recognising specific conditions related to men-036

tal health (e.g., depression, bipolar disorder) (Hus-037

seini Orabi et al., 2018), or identifying self-harm038

ideation in user posts (Yates et al., 2017; Zirikly039

et al., 2019). However, none of these works, even040

when incorporating a notion of time (Lynn et al.,041

Figure 1: Example of an Escalation (with a darker
“peak”) and a Switch within a user’s timeline.

2018; Losada et al., 2020), identify how an individ- 042

ual’s mental health changes over time. Yet being 043

able to make assessments on a longitudinal level 044

from linguistic and other digital content is impor- 045

tant for clinical outcomes, and especially in mental 046

health (Velupillai et al., 2018). The ability to detect 047

changes in individual’s mental health over time is 048

also important in enabling platform moderators to 049

prioritise interventions for vulnerable individuals 050

(Wadden et al., 2021). Users who currently engage 051

with platforms and apps for mental health support 052

(Neary and Schueller, 2018) would also benefit 053

from being able to monitor their well-being in a 054

longitudinal manner. 055

Motivated by the lack of longitudinal approaches 056

we introduce the task of identifying moments of 057

change from individuals’ shared online content. 058

We focus in particular on two types of changes: (a) 059

Switches – mood shifts from positive to negative, or 060

vice versa – and Escalations – gradual mood pro- 061

gression (see Fig. 1, detailed in § 3). Specifically 062

we make the following contributions: 063

• We present the novel task of identifying mo- 064

ments of change in an individual’s mood by 065

analysing linguistic content shared online over 066

time, along with a longitudinal dataset of 500 067

user timelines (18.7K posts, English language) 068

from 500 users of an online platform. 069

• We propose a number of baseline models for 070
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automatically capturing Switches/Escalations,071

inspired by sentence- and sequence-level state-072

of-the-art NLP approaches in related tasks.073

• We introduce a range of temporally sensitive074

evaluation metrics for longitudinal NLP tasks075

adapted from the fields of change point detec-076

tion (van den Burg and Williams, 2020) and077

image segmentation (Arbelaez et al., 2010).078

• We provide a thorough qualitative linguistic079

analysis of model performance.080

2 Related Work081

Social Media and Mental Health: Online user-082

generated content provides a rich resource for com-083

putational modelling of wellbeing at both popula-084

tion and individual levels. Research has examined085

mental health conditions by analysing data from086

platforms such as Twitter and Reddit (De Choud-087

hury et al., 2013; Coppersmith et al., 2014; Cohan088

et al., 2018) as well as peer-support networks such089

as TalkLife (Pruksachatkun et al., 2019). Most090

such work relies on proxy signals for annotations091

(e.g., self-disclosure of diagnoses, posts on support092

networks) and is characterised by a lack of stan-093

dardisation in terms of annotation and reporting094

practices (Chancellor and De Choudhury, 2020).095

We have provided thorough annotation guidelines096

for MoC that can aid mental health monitoring over097

time irrespective of the underlying condition.098

Moments of Change: Little work has specifically099

focussed on automatically capturing changes in100

user behaviour. De Choudhury et al. (2016) pro-101

posed to identify shifts to suicide ideation by pre-102

dicting (or not) a transition from posting on a reg-103

ular forum to a forum for suicide support. Pruk-104

sachatkun et al. (2019) examined moments of af-105

fective change in TalkLife users by identifying pos-106

itive changes in sentiment at post-level with respect107

to a distressing topic earlier in a user’s thread. In108

both cases MoCs are overly specific and modelled109

through binary classification without any notion of110

temporal modelling.111

NLP for Mental Health: More advanced NLP112

methods have been used for predicting psychiatric113

conditions from textual data, including self-harm,114

suicide ideation, eating disorder, and depression115

(Benton et al., 2017; Kshirsagar et al., 2017; Yates116

et al., 2017; Husseini Orabi et al., 2018; Jiang117

et al., 2020; Shing et al., 2020). Researchers are118

increasingly adopting sequential modelling to cap-119

ture temporal dynamics of language use and mental120

health. For example, Cao et al. (2019) encode mi- 121

croblog posts using suicide-oriented embeddings 122

fed to a LSTM network to assess the suicidality 123

risk at post level. Sawhney et al. (2020b, 2021) 124

improves further on predicting suicidality at post- 125

level by jointly considering an emotion-oriented 126

post representation and the user’s emotional state 127

as reflected through their posting history with tem- 128

porally aware models. The recent shared tasks in 129

eRisk also consider sequences of user posts in order 130

to classify a user as a “positive” (wrt self-harm or 131

pathological gambling) or “control” case (Losada 132

et al., 2020; Parapar et al., 2021). While such work 133

still operates at the post- or user-level it highlights 134

the importance of temporally aware modelling. 135

Related Temporal NLP Tasks: Semantic change 136

detection (SCD) aims to identify words whose 137

meaning has changed over time. Given a set of 138

word representations in two time periods, the domi- 139

nant approach is to learn the optimal transformation 140

using Orthogonal Procrustes (Schönemann, 1966) 141

and measure the level of semantic change of each 142

word via the cosine distance of the resulting vec- 143

tors (Hamilton et al., 2016). A drawback of this is 144

the lack of connection between consecutive win- 145

dows. Tsakalidis and Liakata (2020) addressed this 146

through sequential modeling by encoding word em- 147

beddings in consecutive time windows and taking 148

the cosine distance between future predicted and 149

actual word vectors. Both approaches are consid- 150

ered as baselines for our task. First story detection 151

(FSD) aims to detect new events reported in streams 152

of textual data. Having emerged in the Informa- 153

tion Retrieval community (Allan et al., 1998), FSD 154

has been applied to streams of social media posts 155

(Petrović et al., 2010). FSD methods assume that 156

a drastic change in the textual content of a docu- 157

ment compared to previous documents signals the 158

appearance of a new story. A baseline from FSD is 159

considered in §4.2. 160

3 Dataset creation 161

We describe the creation of a dataset of individu- 162

als’ timelines annotated with Moments of Change 163

(MoC). A user’s timeline P
(u)
s:e is a subset of their 164

history, a series of posts [p0, ..., pn] shared by 165

user u between dates s and e. A “Moment of 166

Change” (MoC) is a particular point or range of 167

time points within [s, e] where the behaviour of a 168

user changes. We address two types of Moments 169

of Change (MoC): Switches (sudden mood shifts 170
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from positive to negative, or vice versa) and Esca-171

lations (gradual mood progression from neutral or172

positive to more positive or neutral or negative to173

more negative). Capturing both sudden and gradual174

changes in individuals’ mood over time is recog-175

nised as important for monitoring mental health176

conditions (Lutz et al., 2013; Shalom and Aderka,177

2020) and is one of the dimensions to measure in178

psychotherapy (Barkham et al., 2021), Ch.4.179

3.1 Data Acquisition180

Individual’s timelines are extracted from Talklife1,181

a peer-to-peer network for mental health support.182

Talklife incorporates all the common features of183

social networks – post sharing, reacting, comment-184

ing, etc. Importantly it provides a rich resource185

for computational analysis of mental health (Pruk-186

sachatkun et al., 2019; Sharma et al., 2020; Saha187

and Sharma, 2020) given that content by its users188

focusses on their daily lives and well-being.189

A complete collection between Aug’11–Aug’20190

(12.3M posts, 1.1M users) was anonymised and191

provided to the first author in a secure environment192

upon signing a License Agreement. In this environ-193

ment, 500 user timelines were extracted (§3.2) and194

an additional anonymisation step was performed to195

ensure that usernames were properly hashed when196

present in the text. The 500 timelines were sub-197

sequently annotated using our bespoke annotation198

tool (§3.3) to derive the longitudinal dataset (§3.4).199

3.2 Timeline Extraction200

Existing work extracts user timelines either based201

on a pre-determined set of timestamps (e.g., con-202

sidering the most recent posts by a user) (Sawhney203

et al., 2020b) or by selecting a window of posts204

around mentions of specific phrases (e.g., around205

self-harm) (Mishra et al., 2019). The latter intro-206

duces potential bias into subsequent linguistic anal-207

ysis (Olteanu et al., 2019), while the former could208

result into selecting timelines from a particular time209

period – hence potentially introducing temporally-210

dependent linguistic or topical bias (e.g., a focus on211

the COVID-19 pandemic). Here we instead extract212

timelines around points in time where a user’s post-213

ing behaviour has changed. Our hypothesis is that214

such changes in a user’s posting frequency could215

be indicative of changes in their lives and/or mental216

health. Such association between changes in post-217

ing behaviour on mental health fora and changes in218

1https://www.talklife.com/

(a) Posts per Timeline (b) Posts per MoC Area

Figure 2: Distributions in our dataset.

mental health has been assumed in prior literature 219

(De Choudhury et al., 2016). 220

Identifying changes in posting frequency: We 221

create a time series of each user’s daily posting fre- 222

quency based on their entire history. We then em- 223

ploy a change-point detection model to predict the 224

intensity of daily post frequency by the given user. 225

Bayesian Online Change-point Detection (Adams 226

and MacKay, 2007) with a Poisson-Gamma under- 227

lying predictive model (Zachos, 2018) was chosen 228

as our model, due to its highly competitive perfor- 229

mance (van den Burg and Williams, 2020) and the 230

fact that extracted timelines using this method had 231

the highest density of MoCs compared to a num- 232

ber of different timeline extraction methods for the 233

same dataset (Anonymous, 2022). 234

Extracting timelines around change-points: 235

Upon detecting candidate MoCs as change-points 236

in posting frequency, we generated candidate time- 237

lines for annotation by extracting all of the user’s 238

posts within a seven-day window around each 239

change-point. We controlled for timeline length 240

(between 10 and 150 posts) so that they were long 241

enough to enable annotators to notice a change 242

but not so long as to hinder effective annota- 243

tion. Finally, to ensure linguistic diversity in our 244

dataset, 500 timelines thus extracted were chosen 245

for annotation (one per user, randomly selected). 246

There resulting dataset consists of 18,702 posts 247

(µ=35, SD=22 per timeline; range of timeline 248

length=[10,124], see Fig. 2(a)). 249

3.3 Annotations of MoC 250

Annotation Interface. An annotation interface 251

was developed to allow efficient viewing and an- 252

notation of a timeline (see snippet in Fig. 3). Each 253

post in a timeline was accompanied by its times- 254

tamp, the user’s self-assigned emotion and any as- 255

sociated comments (color-coded, to highlight re- 256

current users involved within the same timeline). 257

Given the context of the entire timeline, annota- 258
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Figure 3: Annotating a ‘Switch’ on our interface (§3.3).

Label Perfect Agreement Majority
None (O) 0.69 0.89
Switch (IS) 0.08 0.30
Escalation (IE) 0.19 0.50

Table 1: IAA

tions for MoC were performed at post level: if an259

annotator marks a post as a MoC, then they spec-260

ify whether it is (a) the beginning of a Switch or261

(b) the peak of an Escalation (i.e., the most posi-262

tive/negative post of the Escalation). Finally, the263

range of posts pertaining to a MoC (i.e., all posts264

in the Switch/Escalation) needed to be specified.265

Data annotation. After a round of annotations for266

guideline development with PhD students within267

the research group, we recruited three annotators268

to manually label the 500 timelines. They all have269

University degrees in humanities disciplines and270

come from three different countries; one of them271

is an English native speaker. Annotators were pro-272

vided with a set of annotation guidelines containing273

specific examples, which were enriched and ex-274

tended during the annotation process.2 Annotators275

completed 2 hands-on training sessions with a sepa-276

rate set of 10 timelines, where they were able to ask277

questions and discuss opinions to address cases of278

disagreement. Following the initial training phase,279

we performed spot checks to provide feedback and280

answer any questions while they labelled the full281

dataset (n=500 timelines). Annotators were encour-282

aged to take breaks whenever needed, due to the283

nature of the content.284

3.4 Deriving the final gold standard285

The annotation of MoCs is akin to assessment of286

anomaly detection methods since MoCs (Swithces287

and Escalations) are rare, with the majority of posts288

2guidelines will be made publicly available

not being annotated (label ‘None’). Measuring the 289

agreement in such settings is therefore complex, 290

as established metrics such as Krippendorff’s Al- 291

pha and Fleiss’ Kappa would generally yield a low 292

score. This is due to the unrealistically high ex- 293

pected chance agreement (Feinstein and Cicchetti, 294

1990), which cannot be mitigated by the fact that 295

annotators do agree on the majority of the annota- 296

tions (especially on the ‘None’ class). For this rea- 297

son, we have used as the main indicator the per la- 298

bel positive agreement computed as the ratio of the 299

number of universally agreed-upon instances (the 300

intersection of posts associated with that label) over 301

the total number of instances (the union of posts 302

associated with that label). As highlighted in Ta- 303

ble 1, while perfect agreement for ‘None’ is at 70%, 304

perfect agreement on Escalations and Switches is 305

at 19% and 8%. However, if instead of perfect 306

agreement we consider majority agreement (where 307

two out of three annotators agree), these numbers 308

drastically increase (30% for Switches and 50% 309

for Escalations). Moreover, by examining the sys- 310

tematic annotation preferences of our annotators 311

we have observed that the native speaker marked 312

almost double the amount of Switches compared 313

to the other two annotators, in particular by spot- 314

ting very subtle cases of mood change. We have 315

thus decided to generate a gold standard based on 316

majority decisions, comprising only cases where 317

at least two out of three annotators agree with the 318

presence of a MoC. The rare cases of complete 319

disagreement have been labelled as ‘None’, lead- 320

ing to 2,018 Escalations and 885 Switches from an 321

overall of 18,702 posts (see Fig. 2(b) for the asso- 322

ciated lengths in #posts). In future work we plan 323

to consider aggregation methods based on all an- 324

notations or approaches for learning from multiple 325

noisy annotations (Paun and Simpson, 2021). 326

4 Models & Experiment Design 327

Given a user’s timeline, the aim is to classify each 328

post within it as belonging to a “Switch” (IS), an 329

“Escalation” (IE), or “None” (O). At this point we 330

don’t distinguish between beginnings of switches/ 331

peaks of escalations and other posts in the re- 332

spective ranges. While the task is sequential by 333

definition, we train models operating both at the 334

post level in isolation and sequential models at the 335

timeline-level (i.e., accounting for user’s posts over 336

time), as detailed in §4.2. We contrast model per- 337

formance using common post-level classification 338
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metrics as well as novel timeline-level evaluation339

approaches (§4.1). We thus investigate the impact340

of (a) accounting for severe class imbalance and (b)341

longitudinal modelling. We have randomly divided342

the annotated dataset into 5 folds (each containing343

posts from 100 timelines) to allow reporting results344

on all of the data through cross-validation.345

4.1 Evaluation Settings346

Post-level We first assess model performance on347

the basis of standard evaluation metrics at the post348

level (Precision, Recall, F1 score). These are ob-349

tained per class and macro-averaged, to better em-350

phasize performance in the two minority class la-351

bels (IS & IE). However, post-level metrics are352

unable to show: (a) the expected accuracy at the353

timeline level (see example in Fig. 4) and (b) model354

suitability in predicting regions of change. These355

aspects are particularly important since we aim to356

build models capturing MoCs over time.357

Timeline-level. Our first set of timeline-level eval-358

uation metrics are inspired from work in change-359

point detection (van den Burg and Williams, 2020)360

and mirror the post-level ones, albeit operating on361

a window and timeline basis. Specifically, working362

on each timeline and label type independently, we363

calculate Recall R(l)
w (Precision P

(l)
w ) by counting364

as “correct” a model prediction for label l if the365

prediction falls within a window of w posts around366

post labelled l in the gold standard. Formally:367

R
(l)
w = |TPw(M(l),GS(l))|

|GS(l)| , P
(l)
w = |TPw(M(l),GS(l))|

|M(l)| ,368

where TPw denotes the true positives that fall369

within a range of w posts and M (l)/GS(l) are the370

predicted/actual labels l, respectively. Note that371

each prediction can only be counted once as “cor-372

rect”. R(l)
w and P

(l)
w are calculated on every time-373

line and are then macro-averaged.374

The second set of our timeline-level evaluation375

metrics is adapted from the field of image segmen-376

tation (Arbelaez et al., 2010). Here we aim at eval-377

uating model performance based on its ability to378

capture regions of change (e.g., Fig 4 shows a time-379

line with three (two) such regions of Escalations380

(Switches)). For each such true region R
(l)
GS , we de-381

fine its overlap O(R
(l)
GS , R

(l)
M ) with each predicted382

region R
(l)
M as the intersection over union between383

the two sets. This way, we can get recall and preci-384

sion oriented coverage metrics as follows:385

386

C
(l)
r (M → GS) = 1∑

R
(l)
GS

|R(l)
GS |

∑
R

(l)
GS

|R(l)
GS | ·max

R
(l)
M

{O(R
(l)
GS , R

(l)
M )}, 387

C
(l)
p (M → GS) = 1∑

R
(l)
M

|R(l)
M |

∑
R

(l)
M

|R(l)
M | ·max

R
(l)
GS

{O(R
(l)
GS , R

(l)
M )}. 388

The coverage metrics are calculated on the time- 389

line basis and macro-averaged similarly to R
(l)
w and 390

P
(l)
w . Using a set of evaluation metrics, each cap- 391

turing a different aspect of the task, ensures assess 392

to model performance from many different angles. 393

4.2 Baseline Models 394

We have considered different approaches to ad- 395

dressing our task: 396

(i) Naïve methods, specifically a Majority classi- 397

fier (predicting always “None”) and a “Random” 398

predictor, picking a label based on the overall label 399

distribution in the dataset. It has been shown that 400

comparisons against such simple baselines is es- 401

sential to assess performance in computational ap- 402

proaches to mental health (Tsakalidis et al., 2018). 403

(ii) Post-level supervised models operating on 404

posts in isolation (i.e., ignoring post sequence in 405

a user’s timeline): (a) Random Forest (Breiman, 406

2001) on tfidf post representations (RF-tfidf); 407

(b) BiLSTM (Huang et al., 2015) operating on se- 408

quences of word embeddings (BiLSTM-we);(c) 409

BERT(ce) (Devlin et al., 2019) using the cross- 410

entropy loss; and (d) BERT(f) trained using the 411

alpha-weighted focal loss (Lin et al., 2017), which 412

is more appropriate for imbalanced datasets. 413

(iii) Emotion Classification We used DeepMoji 414

(EM-DM) (Felbo et al., 2017) and Twitter-roBERTa- 415

base (EM-TR) from TweetEval ’20 (Barbieri et al., 416

2020) operating on the post-level, to generate soft- 417

max probabilities for each emotion (64 for EM-DM, 418

4 for EM-TR). These provide meta-features to a 419

BiLSTM to obtain timeline-sensitive models for 420

identifying MoC. 421

(iv) First Story Detection (FSD). We have used 422

two common approaches for comparing a post to 423

the n previous ones: representing the previous posts 424

as (i) a single centroid or (ii) the nearest neighbour 425

to the current post among them (Allan et al., 1998; 426

Petrović et al., 2010). In both cases, we calculate 427

the cosine similarity of the current and previous 428

posts. The scores are then fed into a BiLSTM as 429

meta-features for a sequential model. Results are 430

reported for the best method only. 431

(v) Semantic Change Detection (SCD). Instead 432

of the standard task of comparing word representa- 433

tions in consecutive time windows, we consider a 434
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Figure 4: Actual (GS, shown twice) vs Predicted labels for each post (square) of a single timeline, by two models
(M1, M2). Although M2 provides a more faithful ‘reconstruction’ of the user’s mood over time (the predictions are
identical but shifted slightly in time), all post-level evaluation metrics for M1 are greater or equal to those obtained
by M2 for the two minority classes (IE and IS).

user being represented via their posts at particular435

points in time. We follow two approaches. The436

first is an Orthogonal Procrustes approach (Schöne-437

mann, 1966) operating on post vectors (SCD-OP).438

Our aim here is to find the optimal transforma-439

tion across consecutive representations, with higher440

errors being indicative of a change in the user’s441

behaviour. In the second approach (SCD-FP) a442

BiLSTM is trained on the user’s k previous posts443

in order to predict the next one (Tsakalidis and444

Liakata, 2020). Errors in prediction are taken to445

signal changes in the user. In both cases, we cal-446

culate the dimension-wise difference between the447

actual and the transformed/predicted representa-448

tions (post vectors) and use this as a meta-feature449

to a BiLSTM to obtain a time-sensitive model.450

(vi) Timeline-sensitive. From our (ii) post-level451

classifiers, BERT(f) tackles the problem of im-452

balanced data but fails to model the task in a lon-453

gitudinal manner. To remedy this, we employ454

BiLSTM-bert, which treats a timeline as a se-455

quence of posts to be modelled, each being repre-456

sented via the [CLS] representation of BERT(f).457

To convert the post-level scores/representations458

from (iii)-(v) above into time-sensitive models we459

used the same BiLSTM from (vi), operating at the460

timeline-level. Details for each model and associ-461

ated hyperparameters are in the Appendix.462

5 Results & Discussion463

5.1 Quantitative Comparison464

Model Comparison. Table 2 summarises the re-465

sults of all models; Fig. 5 further shows the Pw/Rw466

metrics for IE/IS for the best-performing models.467

BiLSTM-bert confidently outperforms all com-468

peting models in terms of post-level macro-F1. It469

provides a 8.6% relative improvement (14% for470

the IS/IE labels) against the second best perform-471

ing model (BERT(f)). Furthermore, it achieves472

a great balance between precision- and recall-473

oriented timeline-level metrics, being consistently474

the second-best performing model. This perfor-475

mance is largely attributed to two factors, which476

are studied further below: (a) the use of the Focal 477

loss on BERT, generating [CLS] representations 478

that are much more focused on the minority classes 479

(IE/IS), and (b) its longitudinal aspect. 480

Post-level. The BERT variants perform better than 481

the rest in all metrics. Their coverage metrics 482

though suggest that while they manage to predict 483

better the regions compared to most timeline-level 484

methods (i.e., high Cr), they tend to predict more 485

regions than needed (i.e., low Cp) – partially due 486

to their lack of contextual (temporal-wise) infor- 487

mation. Finally, as expected, BERT(f) achieves 488

much higher recall for the minority classes (IE/IS), 489

in exchange for a drop in precision compared to 490

BERT(ce) and in recall for the majority class (O). 491

Models from Related Tasks. EM-DM achieves 492

very high precision (P , Pw) for the minority 493

classes, showing a clear link between the tasks 494

of emotion recognition and detecting changes in a 495

user’s mood – indeed, emotionally informed mod- 496

els have been successfully applied to post-level 497

classification tasks in mental health (Sawhney et al., 498

2020a); however, both EM models achieve low re- 499

call (R, Rw) for IE/IS compared to the rest. For 500

the SCD inspired models, SCD-FP outperforms 501

SCD-OP on most metrics. This is largely due to 502

the fact that the former uses the previous k=3 posts 503

to predict the next post in a user’s timeline (instead 504

of aligning it based on the previous post only.Thus 505

SCD-FP benefits from its longitudinal component 506

– a finding consistent with work in semantic change 507

detection (Tsakalidis and Liakata, 2020). 508

Representation vs Fine-tuning vs Focal Loss. 509

While BiLSTM-bert yields the highest macro- 510

F1 and the most robust performance across all 511

metrics, it is not clear which of its components 512

contributes the most to our task.To answer this, 513

we perform a comparison against the exact same 514

BiLSTM, albeit fed with different input types: 515

(a) average word embeddings as in BiLSTM-we, 516

(b) Sentence-BERT representations (Reimers and 517

Gurevych, 2019) and (c) fine-tuned representations 518

from BERT(ce). As shown in Table 3, fine-tuning 519
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Post-level Evaluation Coverage-based Metrics
IS IE O macro-avg IS IE O macro-avg

P R F1 P R F1 P R F1 P R F1 Cp Cr Cp Cr Cp Cr Cp Cr

N
aï

ve Majority – .000 .000 – .000 .000 .845 1.000 .916 .282 .333 .305 – .000 – .000 .619 .559 .206 .186
Random .047 .047 .047 .108 .108 .108 .845 .845 .845 .333 .333 .333 .031 .045 .033 .096 .386 .452 .150 .198

Po
st

-l
ev

el RF-tfidf .294 .006 .011 .568 .087 .151 .852 .991 .917 .571 .361 .360 .250 .005 .152 .087 .632 .602 .345 .231
BiLSTM-we .245 .119 .160 .416 .347 .378 .878 .923 .900 .513 .463 .479 .173 .091 .138 .330 .557 .606 .289 .342
BERT(ce) .285 .186 .222 .454 .368 .406 .883 .921 .901 .540 .492 .510 .247 .163 .172 .344 .578 .621 .332 .376
BERT(f) .260 .321 .287 .401 .478 .436 .898 .864 .881 .520 .554 .534 .227 .269 .160 .423 .503 .567 .297 .420

Ti
m

el
in

e-
le

ve
l FSD – .000 .000 – .000 .000 .845 1.000 .916 .282 .333 .305 – .000 – .000 .619 .559 .206 .186

EM-TR .344 .036 .065 .444 .248 .318 .865 .957 .909 .551 .414 .431 .297 .024 .273 .104 .639 .589 .403 .239
EM-DM .533 .118 .193 .479 .351 .405 .880 .948 .913 .631 .472 .504 .347 .023 .363 .177 .646 .592 .452 .264
SCD-OP .200 .005 .009 .478 .408 .440 .882 .947 .913 .520 .453 .454 .167 .001 .344 .180 .663 .609 .391 .263
SCD-FP .270 .082 .126 .503 .370 .426 .880 .944 .911 .551 .465 .488 .227 .039 .317 .254 .649 .611 .398 .301
BiLSTM-bert .397 .264 .316 .568 .461 .508 .898 .936 .917 .621 .553 .580 .331 .197 .345 .340 .664 .656 .447 .398

Table 2: Post-level and Coverage-based evaluation for each model (first and second highest scores are highlighted).

Figure 5: Timeline-level Precision Pw and Recall Rw of the best performing models.

Post Timeline Coverage
P R F1 P1 R1 Cp Cr

Word emb. .589 .488 .508 .577 .450 .412 .282
Sent.-BERT .610 .535 .546 .601 .499 .428 .333
BERT(ce) .612 .518 .554 .624 .520 .434 .378
BERT(f) .621 .553 .580 .622 .545 .447 .398

Table 3: Macro-avg performance of timeline-level BiL-
STM operating on different input representations (see
Representation vs Fine-tuning vs Focal Loss in §5.1).

with BERT(ce) outperforms Sentence-BERT rep-520

resentations. While the contextual nature of all of521

the BERT-based models offers a clear improvement522

over the static word embeddings, it becomes evi-523

dent that the use of the focal loss during training524

the initial BERT(f) is vital, offering a relative im-525

provement of 6% in post-level macro-F1 (13.7%526

for IS/IE). Calibrating the parameters in the focal527

loss could provide further improvements for our528

task in the future (Mukhoti et al., 2020).529

Timeline- vs Post-level Modelling. The im-530

portance of longitudinal modelling is shown via531

the difference between the BERT and BiLSTM532

variants when operating on single posts vs on533

the timeline-level (e.g., see the post-level re-534

sults of BERT(ce)/Word emb. in Table 3 vs535

BERT(ce)/BiLSTM-we in Table 2, respectively).536

We further examine the role of longitudinal mod-537

elling in the rest of our best-performing models538

from Table 2. In particular, we replace the timeline-539

level BiLSTM in EM-DM and SCD-FP with a two-540

layer feed-forward network, operating on post-level541

Figure 6: Gains/losses in performance (%) when incor-
porating a longitudinal component for each model (see
Timeline- vs Post-level Modelling in §5.1).

input representations – treating each post in isola- 542

tion. The differences across all pairwise combi- 543

nations with and without the longitudinal compo- 544

nent are shown in Fig. 6. Timeline-level models 545

achieve much higher precision (6.1%/6.9%/11.1% 546

for P /P1/Cp, respectively) in return for a small sac- 547

rifice in the timeline-level recall-oriented metrics 548

(-2.8%/1.9%/2.3% for R/R1/Cr), further highlight- 549

ing the longitudinal nature of the task. 550

5.2 Qualitative Analysis 551

Here we analyse the cases of Switches/Escalations 552

identified or missed by our best performing model 553

(BiLSTM-bert). 554

Switches (IS) are the most challenging to iden- 555

tify, largely due to being the smallest class with 556

the lowest inter-annotator agreement. However, 557

the EM-based models achieve high levels of preci- 558

sion on Switches, even during post-level evalua- 559
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Text True Pred.
Oh, forgot :) Stay safe you lovely people all around the world! O IS
Hope you are all having a good night! Stay safe! :D O IS
Don’t wanna deal with anyone.. Hope school finishes so I can go home soon IS O
Tired of my leg hurting so badly today. I really can’t do any training :( IS O
Hope you’re all great! <3 Love you all! O IS

Table 5: Example of a Switch in part of a user’s (para-
phrased) timeline, missed by BiLSTM-bert.

tion (see Table 2). We therefore employ EM-TR560

(Barbieri et al., 2020), assigning probability scores561

for anger/joy/optimism/sadness to each post, and562

use them to characterise the predictions made by563

BiLSTM-bert. Fig. 7 and Table 4 show that our564

model predicts more often (in most cases, correctly)565

a ‘Switch’ when the associated posts express posi-566

tive emotions (joy/optimism), but misses the vast567

majority of cases when these emotions are absent.568

The reason for this is that TalkLife users discuss is-569

sues around their well-being, with a negative mood570

prevailing. Therefore, BiLSTM-bert learns that571

the negative tone forms the users’ baseline and de-572

viations from this form cases of ‘Switches’ (see573

example in Table 5). We plan to address this in574

the future by incorporating transfer learning ap-575

proaches to our model (Ruder et al., 2019).576

Figure 7: Histogram of
positive emotion scores
in True Positive & False
Negative distributions,
for the Switch label.

angry joy optim. sad.
TP .03 .76 .14 .07
FP .06 .60 .19 .15
FN .13 .44 .18 .25

Table 4: Average prob-
ability of each emotion
per classification case on
‘Switches’ (see Switches
in §5.2).

577

Escalations (IE) are better captured by our models.578

Here we examine more closely the cases of ‘Peaks’579

in the escalations (i.e., the posts indicating the most580

negative/positive state of the user within an escala-581

tion – see §3.3). As expected, the post-level recall582

of BiLSTM-bert in these cases is much higher583

than its recall for the rest of IE cases (.557 vs .408).584

In Fig. 8 we analyse the recall of our model in585

capturing and associated posts denoting escalations586

in relation to the length of escalations. We can587

see that our model is more effective in capturing588

longer escalations. As opposed to the Switch class,589

we found no important differences in the expressed590

emotion between TP and FN cases. By carefully ex-591

amining the cases of Peaks in isolation, we found592

that the majority of them express very negative593

emotions, very often including indication of self- 594

harm. A Logistic Regression trained on bigrams at 595

the post-level to distinguish between identified vs 596

missed cases of Peaks showed that the most pos- 597

itively correlated features for the identified cases 598

were directly linked to self-harm (e.g., “kill my- 599

self”, “to die”, “kill me”). However, this was not 600

necessarily the case with missed cases. Neverthe- 601

less, there were several cases of self-harm ideation 602

that were missed by BiLSTM-bert, as well as 603

misses due to the model “ignoring” the user’s base- 604

line, as is the case with Switches (see Table 6). 605

Transfer learning and domain adaptation strategies 606

as well as self-harm detection models operating at 607

the post level can help in mitigating this problem. 608

Figure 8: Recall for
IE cases per cumulative
length of Escalation (see
Escalations in §5.2).

Text
When my parents go out, I am gonna cut.
I feel so horrible. I really don’t want to
be here anymore.
Someone please text me... I swear I am
about to harm myself... Please, anyone!’
Had an awesome day with my gf and she
tagged me! I am not alone! :)
Have not cut for the past year!! Yay!!

Table 6: Examples of
Peaks of Escalations
(isolated paraphrased
posts) missed by
BiLSTM-bert.

609

6 Conclusion and Future Work 610

We present a novel longitudinal dataset and associ- 611

ated models for personalised monitoring of a user’s 612

well-being over time based on linguistic online 613

content. Our dataset contains annotations for: (a) 614

sudden shifts in a user’s mood (switches) and (b) 615

gradual mood progression (escalations). Proposed 616

methods are inspired by state-of-the-art contextual 617

models and longitudinal NLP tasks. Importantly 618

we have introduced temporally sensitive evaluation 619

metrics, adapted from the fields of change-point de- 620

tection and image segmentation. Our results high- 621

light the importance of considering the temporal 622

aspect of the task and the rarity of mood changes. 623

Future work could follow four main directions: 624

(a) integrating longitudinal models of detecting 625

changes, with post-level models for emotion and 626

self-harm detection (see §5.2); (b) incorporating 627

transfer learning methods (Ruder et al., 2019) to 628

adapt more effectively to unseen users’ timelines; 629

(c) adjusting our models to learn from multiple 630

(noisy) annotators (Paun and Simpson, 2021)and 631

(d) calibrating the parameters of Focal loss and 632

testing other loss functions suited to heavily imbal- 633

anced classification tasks (Jadon, 2020). 634
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7 Ethical statement635

Ethics institutional review board (IRB) approval636

was obtained from the corresponding ethics board637

of the host University prior to engaging in this638

research study. Our work involves ethical consider-639

ations around the analysis of user generated content640

shared on a peer support network (TalkLife). A li-641

cense was obtained to work with the user data from642

TalkLife and a project proposal was submitted to643

them in order to embark on the project. The cur-644

rent paper focuses on the identification of moments645

of change (MoC) on the basis of content shared646

by individuals. These changes involve recognising647

sudden shifts in mood (switches or escalations).648

Annotators were given contracts and paid fairly in649

line with University payscales. They were alerted650

about potentially encountering disturbing content651

and were advised to take breaks. The annotations652

are used to train and evaluate natural language pro-653

cessing models for recognising moments of change654

as described in our detailed guidelines. Working655

with datasets such as TalkLife and data on online656

platforms where individuals disclose personal infor-657

mation involves ethical considerations (Mao et al.,658

2011; Keküllüoğlu et al., 2020). Such consider-659

ations include careful analysis and data sharing660

policies to protect sensitive personal information.661

The data has been de-identified both at the time of662

sharing by TalkLife but also by the research team663

to make sure that no user handles and names are664

visible. Any examples used in the paper are either665

paraphrased or artificial. Potential risks from the666

application of our work in being able to identify667

moments of change in individuals’ timelines are668

akin to those in earlier work on personal event iden-669

tification from social media and the detection of670

suicidal ideation. Potential mitigation strategies671

include restricting access to the code base and an-672

notation labels used for evaluation.673
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A Hyperparameters 965

Here we provide details on the hyperparameters 966

used by each of our models, presented in §4.2: 967

• RF: Number of trees: [50, 100, 250, 500] 968

• BiLSTM-we: Two hidden layers 969

([64,128,256] units), each followed by 970

a drop-out layer (rate: [.25, .5, .75]) and a 971

final dense layer for the prediction. Trained 972

for 100 epochs (early stopping if no improve- 973

ment on 5 consecutive epochs) using Adam 974

optimizer (lr: [0.001, 0.0001]) optimzing the 975

Cross-Entropy loss with batches of size [128, 976

256], limited to modelling the first 35 words 977

of each post. 978

• BiLSTM-bert: Two hidden layers 979

([64,128,256] and [124] units, respectively), 980

each followed by a drop-out layer (rate: [.25, 981

.5, .75]) and a final dense layer on each 982

timestep for the prediction. Trained for 100 983

epochs (early stopping if no improvement 984

on 5 consecutive epochs) using Adam 985

optimizer (lr: [0.001, 0.0001]) optimizing the 986

11

https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.619
https://doi.org/10.18653/v1/2020.emnlp-main.619
https://doi.org/10.18653/v1/2020.emnlp-main.619
https://doi.org/10.18653/v1/2020.emnlp-main.619
https://doi.org/10.18653/v1/2020.emnlp-main.619
https://doi.org/https://doi.org/10.1016/j.cpr.2020.101827
https://doi.org/https://doi.org/10.1016/j.cpr.2020.101827
https://doi.org/https://doi.org/10.1016/j.cpr.2020.101827
https://doi.org/https://doi.org/10.1016/j.cpr.2020.101827
https://doi.org/https://doi.org/10.1016/j.cpr.2020.101827
https://doi.org/10.18653/v1/2020.acl-main.723
https://doi.org/10.18653/v1/2020.acl-main.723
https://doi.org/10.18653/v1/2020.acl-main.723
https://doi.org/10.18653/v1/2020.emnlp-main.682
https://doi.org/10.18653/v1/2020.emnlp-main.682
https://doi.org/10.18653/v1/2020.emnlp-main.682
https://doi.org/10.18653/v1/2020.emnlp-main.682
https://doi.org/10.18653/v1/2020.emnlp-main.682
https://doi.org/10.18653/v1/D17-1322
https://doi.org/10.18653/v1/D17-1322
https://doi.org/10.18653/v1/D17-1322


Cross-Entropy loss with batches of size [16,987

32, 64].988

• EM-DM & EM-TR: Same architecture as989

BiLSTM-bert, albeit operating on the990

EM-DM’s (EM-TR’s) output.991

• FSD: Same architecture as BiLSTM-bert.992

For the FSD part, we experimented with993

word embeddings3 and representations from994

Sentence-BERT. We extract features either by995

considering the nearest neighbor or by consid-996

ering the centroid, on the basis of the previous997

[1,2,...,10] posts, as well as on the basis of998

the complete timeline preceding the current999

post (11 features, overall). The two versions1000

(nearest neighbor, centroid) were run indepen-1001

dently from each other.1002

• SCD-OP & SCD-FP: We experimented with1003

average post-level word embeddings and rep-1004

resentations from Sentence-BERT (results are1005

reported for the latter, as it performed better).1006

For SCD-FP, we stacked two BiLSTM layers1007

(128 units each), each followed by a dropout1008

(rate: 0.25), and a final dense layer for the1009

prediction, with its size being the same as1010

the desired output size (300 for the case of1011

word embeddings, 768 for Sentence-BERT).1012

We train in batches of 64, optimising the co-1013

sine similarity via the Adam Optimizer with a1014

learning rate of .0001, and employing an early1015

stopping criterion (5 epochs patience). The fi-1016

nal model (i.e., after the SCD part) follows the1017

exact same specifications as BiLSTM-bert,1018

operating on the outputs from the SCD com-1019

ponents.1020

• BERT(ce) & BERT(f): We used BERT-1021

base (uncased) as our base model and added a1022

Dropout layer (rate: .25) operating on top of1023

the [CLS] output, followed by a linear layer1024

for the class prediction. We trained our mod-1025

els for 3 epochs using Adam (learning rate:1026

[1e-5, 3e-5]) and perform five runs with differ-1027

ent random seeds (0, 1, 12, 123, 1234). Batch1028

sizes of 8 are used in train/dev/test sets. For1029

the alpha-weighted Focal loss in BERT(f),1030

we used γ = 2 and at =
√
1/pt, where pt is1031

the probability of class t in our training data.1032

Results reported in the paper (as well as the1033

3en-core-web-lg @ https://github.com/
explosion/spacy-models/releases/
download/en_core_web_lg-3.0.0/en_core_
web_lg-3.0.0-py3-none-any.whl

results for BiLSTM-bert) are averaged across 1034

the five runs with the different random seeds. 1035

We trained each model on five folds and selected 1036

the best-performing combination of hyperparame- 1037

ters on the basis of macro-F1 on a dev set (33% of 1038

training data) for each test fold. 1039

B Libraries 1040

The code for the experiments is written in Python 1041

3.8 and relies on the following libraries: keras 1042

(2.7.0), numpy (1.19.5), pandas (1.2.3), scikit- 1043

learn (1.0.1), sentence_trasformers (1.1.0), spacy 1044

(3.0.5), tensorflow (2.5.0), torch (1.8.1), transform- 1045

ers (4.5.1). 1046

C Infrastructure 1047

All experiments were conducted on virtual ma- 1048

chines (VM) deployed on the cloud computing plat- 1049

form Microsoft Azure. We have used two different 1050

VMs in our work: 1051

• the experiments that involved the use of BERT 1052

were ran on a Standard NC12_Promo, with 12 1053

cpus, 112 GiB of RAM and 2 GPUs; 1054

• all other experiments were ran on a Standard 1055

F16s_v2, with 16 cpus and 32 GiB of RAM. 1056

12

https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.0.0/en_core_web_lg-3.0.0-py3-none-any.whl
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.0.0/en_core_web_lg-3.0.0-py3-none-any.whl
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.0.0/en_core_web_lg-3.0.0-py3-none-any.whl
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.0.0/en_core_web_lg-3.0.0-py3-none-any.whl

