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Abstract

Physics-Informed Neural Networks (PINNs) have
been widely used to obtain solutions to various
physical phenomena modeled as Differential Equa-
tions. As PINNs are not naturally equipped with
mechanisms for Uncertainty Quantification, some
work has been done to quantify the different un-
certainties that arise when dealing with PINNs. In
this paper, we use a two-step procedure to train
Bayesian Neural Networks that provide uncertain-
ties over the solutions to differential equation sys-
tems provided by PINNs. We use available error
bounds over PINNs to formulate a heteroscedastic
variance that improves the uncertainty estimation.
Furthermore, we solve forward problems and uti-
lize the obtained uncertainties when doing parame-
ter estimation in inverse problems in cosmology.

1 INTRODUCTION

Physics-Informed Neural Networks (PINNs), first proposed
by Lagaris et al. [1997], solve differential equations (DEs)
by embedding the physics of the problem into the network,
eliminating the need for extra data. PINNs offer advantages
over traditional solvers: they are continuous, differentiable,
and parallelizable, allowing them to bypass the need for pre-
vious time steps. However, challenges remain in computing
solution errors or error bounds, with ongoing research [Liu
et al., 2022, 2023, De Ryck and Mishra, 2022b]. Specific
equations like Navier-Stokes and Elasticity are also under
study [De Ryck and Mishra, 2022a, De Ryck et al., 2022,
Guo and Haghighat, 2022].

Since their introduction, PINNs have rapidly gained atten-
tion, being applied to heat transfer [Cai et al., 2021b], wave
equations [Rasht-Behesht et al., 2022], and fluid mechanics
[Jin et al., 2021, Cai et al., 2021a, Mao et al., 2020]. Efforts
to address failure modes and optimization issues are ongoing

[Nabian et al., 2021, Steger et al., 2022, Krishnapriyan et al.,
2021, Daw et al., 2022], with interest in Bayesian PINNs for
uncertainty quantification (UQ) [Yang et al., 2020, Linka
et al., 2022, Graf et al., 2021, Psaros et al., 2023].

The use of NNs for solving ODEs and PDEs was pioneered
by Lagaris et al. [1997] and later advanced by Raissi et al.
[2019], who introduced PINNs for forward and inverse prob-
lems. Forward problems solve for the solution given the
equation and boundary conditions, while inverse problems
estimate unknown parameters. Inverse problems were imple-
mented by Raissi et al. [2019] by treating these parameters
as trainable variables.

Although effective, this approach lacks a robust mecha-
nism for uncertainty quantification, which Bayesian Neural
Networks (BNN) address by introducing distributions over
network weights. However, simply applying Bayesian meth-
ods does not fully leverage the available information about
solution accuracy. This is where Solution Bundles [Flamant
et al., 2020] come into play. Solution Bundles enable statis-
tical analysis over multiple possible solutions, providing a
more comprehensive view of uncertainty in both the solution
and the equation parameters.

In cosmology, DEs aim to explain the universe’s expan-
sion. Testing new models against observations typically
involves statistical analysis to determine parameter bounds.
By combining Solution Bundles with BNNs, we enhance
uncertainty quantification, offering a more reliable method
for parameter estimation. Our contributions include:

• Introducing error-bound-based heteroscedastic vari-
ance for better uncertainty quality.

• Solving forward problems for cosmological equations
while quantifying uncertainties.

• Applying Solution Bundles to solve inverse problems
for parameter estimation.

mailto:ptflores1@uc.cl?Subject=Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles


2 BACKGROUND

2.1 PROBLEM FORMULATION

We adopt a slightly different formulation from Psaros et al.
[2022]. The DEs we will work with can be defined as fol-
lows:

Fλ[u(x)] = f(x), x ∈ Ω, (1)
Bλ[u(x)] = b(x), x ∈ Γ, (2)

where x is the space-time coordinate, Ω is a bounded domain
with boundary Γ, f(x) is the source term, u is the solution of
the system, Fλ is a differential operator, Bλ and b(x) are the
boundary conditions (BCs) operator and term, respectively,
and λ denotes the parameters of the system.

In this paper, we will focus on problems where the operators
Fλ, Bλ and terms f(x), b(x) are known. If λ is assumed to
be known, the goal is to find the solution u, referred to as
the forward problem. Conversely, if u is known and the aim
is to estimate λ, then this is known as the inverse problem.

2.2 PHYSICS-INFORMED NEURAL NETWORKS

A Physics-Informed Neural Network uses a neural network,
uθ(x), to approximate the true solution u(x) of a differential
equations system. As discussed by Psaros et al. [2023],
PINNs can be trained by minimizing a fitting dataset’s Mean
Squared Error (MSE). A fitting dataset D = {Df ,Db} is
composed of noisy observations of f , Df = {xi, fi}

Nf

i=0,
and noisy BCs data Db = {xi, bi}Nb

i=0

L(θ) = wf

Nf

Nf∑
i=0

∥fθ(xi)− fi∥22 +
wb

Nb

Nb∑
i=0

∥bθ(xi)− bi∥22

(3)

Where wf and wb are weighting constants. Psaros et al.
[2023] call this setup the Forward Deterministic PDE Prob-
lem, they also describe Mixed Deterministic PDE Problem
where the objective is to obtain solutions for u and λ, and the
Mixed Stochastic PDE Problem which deals with stochastic
PDEs.

In this work, we adopt a different optimization problem to
solve the forward deterministic problem and address the
inverse problem separately rather than solving both forward
and inverse problems simultaneously.

2.3 SOLVING FORWARD PROBLEMS

We begin by defining the residual of a differential equation
as

rθ(x) = Fλ[uθ(x)]− f(x) (4)

The computation of Fλ[uθ(x)] is easy to implement thanks
to automatic differentiation provided by Deep Learning

frameworks such as PyTorch [Paszke et al., 2019]. This
formulation allows PINNs to be trained as a self-supervised
network. Since any solution u∗ to the differential equation
satisfies Fλ[u

∗(x)] − f(x) = 0, we train the network to
minimize the square of the residual

min
θ

1

Nr

Nr∑
i

r2θ(xi). (5)

Usually, xi are sampled from Ω with a uniform distribution
or by taking an equally-spaced subset. It is important to
note that we do not deal with noisy data, unlike the work by
Raissi et al. [2019].

2.4 ENFORCING BOUNDARY CONDITIONS

While adding a term for BCs in the loss (see Eq. (3)) when
dealing with data is a good way to incorporate such knowl-
edge, there is no guarantee that the conditions will be satis-
fied. When BCs are known rather than observed in the data,
we can use the transformation introduced by Lagaris et al.
[1997] that enforces the BCs to be always satisfied. This is
achieved by writing the approximate solution as a sum of
two terms:

ũθ(x) := A(x) + F (x, uθ(x)) (6)

where A does not depend on the network parameters θ
and it satisfies the BCs. Since we need ũθ to satisfy BCs,
F is constructed so it does not contribute to them. This
transformation is also used by Graf et al. [2021], Chen et al.
[2020].

One-dimensional Initial Value Problem Given an initial
condition u0 = u(t0), we consider a transformation

ũθ(t) := u0 + (1− e−(t−t0))uθ(t) (7)

In Appendix A of the Supplementary Material we show
the enforcing of two-dimensional Dirichlet BCs. Similar
transformations can be defined for Neumann and mixed
BCs.

2.5 SOLUTION BUNDLES

Solution Bundles [Flamant et al., 2020] extend PINNs by
allowing the network to take equation parameters λ ∈ Λ as
inputs. This modification allows the network to approximate
a variety of solutions to a parameterized differential equation
without the need to retrain for each value of λ.

In Section 2.1 we considered a unique value for λ and one
BC term b(x). When working with Solution Bundles instead,
we have subsets for the equation parameters and BCs.

λ ∈ Λ ⊂ Rp

b(x) ∈ B(x) ⊂ Rn



Λ, B(x) are such subsets that will be used to train the NN.
p and n are the dimensionality of the equation parameters
and the system’s state variable, respectively. The transforma-
tion described in Section 2.4 can also be used for Solution
Bundles. Eq. (6) turns into:

ũθ(x, λ) := A(x, λ) + F (x, uθ(x, λ)) (8)

2.5.1 Training Solution Bundles

Flamant et al. [2020] proposed a weighting function for the
residual loss (Eq. (5)) to influence how the approximation
error is distributed across the training region. However, in
this work, for simplicity, we stick to the unweighted residual
loss

r̃θ := Fλ[uθ(x, λ)]− f(x) (9)

min
θ

N∑
i

M∑
j

r̃2θ(xi, λj). (10)

where we have redefined rθ from Eq. (4) for the Solution
Bundle case as r̃θ.

2.5.2 Solution Bundles for Solving Inverse Problems

So far we have explained how to solve forward problems,
that is, finding a solution to a differential equations system.
As we described, for the case of PINNs, the solving step is
an optimization problem.

On the other hand, inverse problems aim to find a differential
system that best describes some collected data. For this, we
assume the differential system can explain the phenomena
observed and we seek to estimate the system’s parameters
for a given dataset.

An effective approach to addressing the parameter esti-
mation problem involves statistical analysis, specifically
through the application of Bayesian methods. This approach
necessitates multiple computations of the system’s solution,
corresponding to each parameter value. Traditional numeri-
cal methods require the discretization and integration pro-
cess to be performed for each of these solutions. In contrast,
Solution Bundles eliminate the need for retraining for each
parameter value, thereby expediting the computational pro-
cess. A comprehensive explanation of the probabilistic setup
for Bayesian parameter estimation is provided in Section 5.

2.6 ERROR BOUNDS FOR PINNS

Good quality uncertainties should correlate with the true
error of a solution. Since the true error is not accessible, we
use error bounds in Section 4.2 to improve the uncertainty
in the Bayesian NNs.

In [Liu et al., 2022, 2023], the authors present algorithms
for computing error bounds on PINNs. These bounds apply
to linear ODEs, systems of linear ODEs, non-linear ODEs
in the form ϵvk1, as well as certain types of PDEs. These
algorithms are independent of the NN architecture and de-
pend solely on the structure of the equation as defined in
Eq. (1) and the residuals of the DE.

For the Solution Bundle setup, the network error is denoted
as η(x, λ) := u(x, λ) − ũθ(x, λ), and the error bound is
represented by a scalar function B such that

∥η(x, λ)∥ ≤ B(x, λ) (11)

In this work we use the error bounds developed for first-
order linear ODEs with nonconstant coefficient. In Ap-
pendix B of the Supplementary Material provide the al-
gorithm for its computation and for first-order linear ODEs
with constant coefficient. Appendix B.3 and Algorithm 1
describe how obtain tight bounds.

2.7 BAYESIAN NEURAL NETWORKS

To quantify uncertainty, we adopt a Bayesian perspective
on the neural networks. We do this by viewing the neural
network as a probabilistic model p(y|x, θ) and placing a
prior distribution over its parameters p(θ). Using Bayes’
theorem, we can get the posterior distribution of θ:

p(θ|D) = p(D|θ)p(θ)
p(D)

(12)

p(D|θ) is the likelihood distribution over a dataset D =
{(xi, yi)}Ni=1.

The posterior distribution allows us to make predictions
about unseen data by taking expectations. Consider a new
data point x̂, we can obtain the probability of the output y
being ŷ as:

p(ŷ|x̂,D) = Ep(θ|D)[p(ŷ|x̂, θ)] =
∫
Θ

p(ŷ|x̂, θ)p(θ|D)dθ
(13)

Usually, the integral in Eq. (13) is analytically intractable,
and we have to resort to Monte Carlo (MC) approximations
that can be computed as:

p(ŷ|x̂,D) ≈
M∑
i=1

p(ŷ|x̂, θi), where θi ∼ p(θ|D) (14)

3 SHORTCOMINGS OF
RESIDUAL-BASED UQ METHODS IN
PINNS

A direct application of Bayesian Neural Networks to PINNs
is straightforward by placing the likelihood over the resid-

1Here, v is a variable and |ϵ| ≪ 1.



uals r of the PINN solution given a coordinate point x i.e.
p(r|x, θ). For more details see Section 4.3.

However, evaluating a PINN solution based only on the
residual loss Eq. (5) can be misleading. A low residual at
x does not guarantee a low solution error at x. In Control
Theory, for instance, an Integral Controller drives steady-
state error to zero, yet errors may still exist:

u(t) = ki

∫ t

0

e(τ)dτ (15)

where u is the control input, e(τ) := r(τ)− y(τ) the error,
r the reference, y the system output, and ki the integral gain

[Åström and Murray, 2008]. For a DE
du

dt
= f(t) with IC

u(t0) = u0, the approximation error û(τ) − u(τ) can be
expressed as:

û(τ)− u(τ) =

∫ τ

t0

R(t)dt (16)

where R(t) :=
dû

dt
− f(t), given the approximation satis-

fies the ICs. Proof of Eq. (16) is in Proposition F.1 of the
Supplementary Material. Eq. (16) suggests that the residual
at some point x is not enough to characterize the solution
error at the same point x.

These challenges, along with other Failure Modes of PINNs,
remain an active area of research [Krishnapriyan et al., 2021,
Wang et al., 2022, Penwarden et al., 2023]. Notably, Wang
et al. [2022] identify an implicit bias in the PINN framework
that can severely violate the temporal causality of dynamical
systems. As a result, residual minimization at a given time
ti may occur even when predictions at earlier times are
inaccurate.

In Fig. 1 we see how a PINN solution has near maximum
and minimum error for the same residual value. This il-
lustrates the decoupling of residuals from solution errors,
which can be attributed to a violation of temporal causal-
ity. Furthermore, Figs. 13 to 16 show how there is no clear
correlation between residuals and solution errors. These fig-
ures were obtained by training a deterministic PINN on a
cosmological model, the construction details are provided
in Appendix I.

Our experiments demonstrate that the baseline method pro-
duces uncalibrated predictive distributions and, in some
cases, fails to approximate the true solutions. To address
these limitations, we propose a two-step approach that incor-
porates error bounds into the solutions, leading to predictive
distributions with improved calibration.

4 TWO-STEP BAYESIAN PINNS

We use a two-step approach to obtain uncertainties in the
solutions of equations. In the first step, we train a PINN

Figure 1: Normalized Absolute Residual vs Normalized
Absolute Relative Error of a Deterministic NN Solution for
CPL Model.

as a Solution Bundle that we refer to as the deterministic
network. We denote this network as uθdet : Ω,Λ → R and
θ∗det as the parameters resulting after training.

Note that as shown in Eq. (10), this training step is carried
out without the use of any data, but rather sampling from
the network domain (Ω× Λ) and minimizing the network’s
residuals. Fig. 2 shows a diagram of the entire training
process.

4.1 BAYESIAN NEURAL NETWORK TRAINING

In the second step, we use the outputs of uθ∗
det

as targets to
train a Bayesian Neural Network.

We construct a dataset by taking the space-time coordinates
and equation parameters as independent variables, and the
outputs of the deterministic net as dependent variables:

D = {(xi, λi, uθ∗det
(xi, λi)) | xi ∈ Ω, λi ∈ Λ, uθ∗det

(xi, λi) ∈ R}N′
i=1

We define a BNN uθ by assigning distributions to the net-
work parameters and dataset as it is done in [Graf et al.,
2021]. For all three methods described in Section 2.7 we
use a Gaussian prior:

θ ∼ N (0, σprior)

To formulate the likelihood, we assume a Gaussian additive
noise on the observations2

uθ∗
det
(x, λ) = uθ(x, λ) + η(x, λ), (17)

where η(x, λ) ∼ N (0, σLike(x, λ))

2Here we call uθ∗det
(x, λ) observations even though they are

not actual experimental observations.



Figure 2: Diagram of Both Training Steps. In the Second
Step θ∗det are The Resulting Network Parameters From the
First Step and L is The Likelihood Function.

This setup is often used in machine learning, but we employ
it with a different interpretation; see Section 4.2. In this pa-
per, we model the standard deviation σLike(x, λ) as known,
but it can also be modeled as unknown. Given Eq. (17), the
resulting likelihood is:

p(D|θ) =
N ′∏
i=1

N (uθ(x, λ), σLike(x, λ)) (18)

We assume Gaussian noise in Eq. (17) due to its simplicity,
tractability (see Section 4.1.1), and suitability as a start-
ing point for evaluating our methodology. To assess this
assumption, we analyze the distributional behavior of uθdet ,
with details provided in Appendix I. Figs. 4 to 12 illustrate
the solution distributions obtained by a PINN for various
cosmological models. Although these distributions deviate
from a perfect Gaussian, they are not significantly distant,
suggesting that a Gaussian approximation is a reasonable
initial choice.

4.1.1 Posterior Distribution Approximation Methods

To apply the MC approximation in Eq. (13), we must gener-
ate samples from the posterior distribution p(θ|D). Given
the complexity of neural networks and the need for computa-
tional efficiency, we compare three methods: Neural Linear
Models (NLMs), Bayes By Backpropagation (BBB), and
Hamiltonian Monte Carlo (HMC). NLMs offer a lightweight
approach by approximating the posterior in a linearized fea-
ture space, making them suitable for speed-critical appli-
cations. BBB uses variational inference to achieve greater
accuracy while maintaining tractability for larger networks.
HMC is the most advanced method, producing highly ac-
curate samples at the expense of increased computational

complexity. Comparing these techniques allows for an eval-
uation of the trade-offs between accuracy and computational
feasibility.

Neural Linear Models (NLMs) NLM represent Bayesian
linear regression using a neural network for the feature basis,
with only the final layer parameters treated as stochastic.
Using Gaussian prior and likelihood allows for tractable in-
ference, leading to the posterior and predictive distributions
given by:

p(u | x, λ,D) = N (µNLM(x, λ), σNLM(x, λ)) (19)
µNLM(x, λ) = Φθ(x, λ)µpost

σNLM(x, λ) = σ2
Like(x, λ) + Φθ(x, λ)ΣpostΦ

T
θ (x, λ)

where µpost and Σpost are posterior parameters, and Φθ(x, λ)
is the learned feature map. The details of µpost and Σpost com-
putation can be found in Appendix C of the Supplementary
Material.

Bayes By Backpropagation (BBB) BBB approximates
the posterior of network parameters using variational infer-
ence (VI) and minimizes the KL divergence between the true
posterior and a variational distribution q(θ|ρ). This results
in an approximation q(θ|ρ) that is used to generate Monte
Carlo samples for p(θ|D). We assume independent parame-
ters under a mean-field approximation[Bishop, 2006], defin-
ing q(θ|ρ) =

∏N
i=1 q(θi|ρi), using a Gaussian distribution

for the variational posterior [Blundell et al., 2015].

Hamiltonian Monte Carlo (HMC) HMC employs a
Metropolis-Hastings algorithm [Metropolis et al., 2004,
Hastings, 1970] to draw samples from p(θ|D) by simu-
lating particle movement through Hamiltonian dynamics.
To enhance sampling efficiency, we utilize the No-U-Turn
Sampler [Hoffman and Gelman].

4.2 IMPROVING PREDICTIVE UNCERTAINTY
WITH ERROR BOUNDS

When learning from observations ŷ, the standard approach
assumes these observations have an error ϵ:

ŷ = yw(x) + ϵ (20)

where yw(x) is a deterministic function parameterized by
w. This formulation attributes all errors to the observations.
However, we can introduce an additional error term η for
model error:

ŷ = yw(x) + η + ϵ (21)

Separating model error η from observational error ϵ is typ-
ically challenging due to their additive nature. If we know
there is no observational error, we can use Eq. (21) similarly



Figure 3: Examples of ΛCDM Bayesian Solutions Obtained Using the Bundle Solver. Analytic Solutions are Presented in
Dotted Lines.

to Eq. (20). This is the case in Section 4.1, where the dataset
has observations uθ∗

det
(x, λ) free of noise:

uθ∗
det
(x, λ) = uθ(x, λ) + �ϵ + η (22)

However, the approximate solution uθ∗
det

may still have pre-
diction errors. We model this error with a Gaussian distribu-
tion with standard deviation σLike(x, λ), which we treat as
known in two ways:

1. Homoscedastic:

σLike(x, λ) =

{
0 x ∈ Γ,

const x ̸∈ Γ

We set σLike to be zero on the boundaries because we
enforce BC always to be met.

2. Error Bounds Based Heteroscedastic:

σLike(x, λ) = B(x, λ)
This choice ensures we are taking into account the error
made by uθ∗

det
in the predictive uncertainty.

4.3 BASELINE

In the literature, the standard approach to formulating the
forward problem with Bayesian PINNs relies on noisy ob-
servations of u(x), f(x) and b(x) [Psaros et al., 2022, Zou

et al., 2023, Yang et al., 2020]. However, since our setup
does not incorporate observations, we adopt as a baseline a
Bayesian neural network with the likelihood defined over
the residuals:

p(Dr|θ) =
Nr∏
i=1

N (rθ(x, λ), σr) (23)

The training procedure follows the approach described in
Section 4.1, with the exception that we could not implement
NLM in this setting. This limitation arises because the resid-
uals depend on the solution, thereby breaking the analytical
tractability required for NLM.

5 PROBABILISTIC FORMULATION OF
INVERSE PROBLEMS

The Bayesian framework can be used to estimate the pa-
rameters λ of a DE system. For a given set of observations
O = {(xi, µi, σi) | xi ∈ Ω, µi ∈ R, σi ∈ R+}Oi=1, we seek
to find the posterior distribution p(λ|O) of the parameters.
Here µi and σi are the mean and standard deviation of the
observations at some point xi, respectively.

Assume we have a probability distribution over the solutions
p(uλ(x)|x, λ), then using Bayes’ Theorem, the posterior



Table 1: Cosmology Equations Variables and Parameters.
Parameters Marked With * are Inputs in the Bundle Solu-
tion, The Remainder are Needed to Compute the Hubble
Parameter.

Equation Type Variables Parameters
ΛCDM Linear Equation xm Ω∗

m,0, H0

CPL Linear Equation xDE w∗
0 , w

∗
1 ,Ωm,0, H0

Quintessence Non-linear System x, y λ∗,Ω∗
m,0, H0

HS Non-linear System x, y, v,Ω, r b∗,Ω∗
m,0, H0

can be computed as p(λ|O) = p(O|λ)/p(λ). The likelihood
p(O|λ) is obtained by marginalizing over the solutions as:

p(xi, µi, σi|λ) =
∫
U
p(xi, µi, σi|uλ(xi)) · p(uλ(xi)|xi, λ)du

(24)

≈ 1

M

M∑
j=1

p(µi, σi|u(j)
λ (xi)) (25)

p(O|λ) =
O∏
i=1

p(xi, µi, σi|λ) (26)

where u
(j)
λ ∼ p(uλ(xi)|xi, λ).

The distribution induced by FCNNs can be interpreted as
a Delta distribution, where the function learned by the net-
work outputs a specific value uθdet(x) for a given input x. In
contrast, BNNs naturally provide a distribution over solu-
tions through their posterior predictive, thus Eq. (24) results
in a marginalization over the posterior predictive distribution
p(u(xi, λ)|xi, λ,D).

We use a uniform distribution to aim for an uninformative
prior for λ. In the same way Chantada et al. [2022] did, to
define the likelihood p(O|λ), we assume the observations
are normally distributed around the true solution, i.e., µi ∼
N (u(xi), σi).

Having defined the prior and likelihood, we can apply a
sampling algorithm to approximate p(λ|O). We use the
emcee Python package [Foreman-Mackey et al., 2013]
which implements the samplers introduced by Goodman
and Weare [2010].

6 EXPERIMENTS ON COSMOLOGY
MODELS

This section specifies the cosmological equations we used
to test our methodology. These equations were solved with
PINNs by Chantada et al. [2022]. For brevity, we describe
the ΛCDM and Parametric Dark Energy models. The details
of Quintessence and f(R) gravity (or HS for the name of
the authors Hu and Sawicki) are provided in Appendix G.
However, Table 1 lists the variables and parameters of each
cosmological model.

ΛCDM The equation and initial conditions are

dxm

dz
=

3xm

1 + z

xm(z = 0) = Ωm,0

where Ωm,0 is a parameter. Having a solution to this equa-
tion, the Hubble parameter can be obtained as

H(z) = H0

√
xm(z) + 1− Ωm,0 (27)

here H0 is also a parameter.

Parametric Dark Energy We refer to this model as CPL
for the names of the authors Chevallier, Polarski and Linder
[Linder, 2003, Chevallier and Polarski, 2001]. The equation
and initial conditions are

dxDE

dz
=

3xDE

1 + z

(
1 + w0 +

w1z

1 + z

)
xDE(z = 0) = 1− Ωm,0

where w0, w1 and Ωm,0 are parameters. Having a solution
to this equation, the Hubble parameter can be obtained as

H(z) = H0

√
Ωm,0(1 + z)3 + xDE(z) (28)

here H0 is also a parameter.

For brevity, we provide the error bounds computation details
in Appendix B of the Supplementary Material.

Forward Problems We trained uθ∗
det

using methods from
[Chantada et al., 2022], then built a dataset D to train
the BNNs. We compared homoscedastic and error-bounds-
based heteroscedastic variance for ΛCDM and CPL equa-
tions, while providing homoscedastic variance results for
Quintessence and HS. The networks were trained using reg-
ular PINNs and Solution Bundles, referred to as Forward
and Bundle, respectively, with implementation details in
Appendix H of the Supplementary Material. We provide the
complete implementation in a code repository.3

We evaluated the NN solutions by calculating the Me-
dian Relative Error (MRE) against analytical solutions for
ΛCDM and CPL, and numerical solutions for Quintessence
and HS, using a Runge-Kutta method. We also computed
the median residual, and miscalibration area (MA) [Chung
et al., 2021] to assess uncertainty quality. Results are sum-
marized in Table 2, with additional metrics in Tables 13
to 15.

For the CPL model, we utilized a reparameterization from
[Chantada et al., 2022] that separates equation parameters
from Bundle Network training, although this method is
incompatible with Neural Linear Models (NLM).

3https://github.com/ptflores1/
improved-pinn-uq

https://github.com/ptflores1/improved-pinn-uq
https://github.com/ptflores1/improved-pinn-uq


Table 2: Evaluation Metrics of All Bundle Networks and
Equations in the Testing Region. Here we Use 2S for Two-
step and EB for Error Bounds.

Equation Method Median RE Median Residual Miscal. Area

Λ
C

D
M

FCNN 0.001 0.0 -
BBB 0.978 0.147 0.491
HMC 0.084 0.198 0.4

NLM + 2S 0.018 8.157 0.183
BBB + 2S 0.035 0.963 0.143
HMC + 2S 0.004 0.197 0.123

NLM + 2S + EB 0.002 10.783 0.063
BBB + 2S + EB 0.047 2.476 0.05
HMC + 2S + EB 0.003 0.272 0.098

C
PL

FCNN 0.0 0.001 -
BBB 0.128 0.014 0.199
HMC 0.0 0.01 0.317

BBB + 2S 0.063 0.006 0.15
HMC + 2S 0.004 0.005 0.255

BBB + 2S + EB 0.033 0.003 0.177
HMC + 2S + EB 0.011 0.004 0.145

Q
ui

nt
.

FCNN 0.007 0.0 -
BBB 0.094 0.012 0.151
HMC 0.002 0.005 0.147

NLM + 2S 0.096 0.175 0.136
BBB + 2S 0.12 0.011 0.119
HMC + 2S 0.016 0.002 0.048

H
S

FCNN 0.001 0.0 -
BBB 0.393 0.083 0.449
HMC 0.226 0.01 0.455

NLM + 2S 0.259 1.666 0.315
BBB + 2S 0.296 0.13 0.396
HMC + 2S 0.286 0.345 0.486

Inverse Problems For the inverse problem, we used 30
measurements of the Hubble parameter H from the Cosmic
Chronometers (CC) method [Simon et al., 2005, Stern et al.,
2010, Moresco et al., 2012, Cong et al., 2014, Moresco,
2015, Moresco et al., 2016]. Each measurement includes a
tuple (zi, H

obs, σHobs), indicating redshift, observed mean
Hubble parameters, and their standard deviation. The CC
dataset is available in Table 9 of the Supplementary Material,
with Eq. (41) used as the likelihood of observations.

We estimated equation parameters using the Solution Bun-
dles from the forward step and performed inference with the
emcee package [Foreman-Mackey et al., 2013], running
32 chains for 10,000 steps, resulting in 320,000 samples
per parameter. Tables 11 and 12 show the results and their
concordance with values found in the literature, respectively.

7 DISCUSSION

The FCNN consistently achieves the lowest median RE and
mean residual across all equations, outperforming Bayesian
methods in terms of accuracy. This highlights a tradeoff
between equipping PINNs with uncertainty quantification
and maintaining accuracy. In this work, our primary focus is
on uncertainty rather than pure accuracy, as a well-calibrated
model with higher error is generally more desirable than
an uncalibrated model with low error. Properly calibrated
uncertainties enable a meaningful assessment of prediction
reliability.

From Table 2, we observe that the baseline Bayesian meth-
ods—BBB and HMC with a residual likelihood—exhibit
significantly higher errors compared to the deterministic
network, particularly for the CPL and HS equations. This
effect is especially pronounced for BBB, which fails to
approximate the ΛCDM solution. Additionally, both meth-
ods exhibit high miscalibration areas, indicating that their
uncertainty estimates are poorly calibrated.

Introducing our two-step (2S) method substantially im-
proves calibration, as evidenced by the reduction in mis-
calibration areas across all cases. For instance, applying 2S
to BBB in the ΛCDM equation reduces the miscalibration
area from 0.491 to 0.143.

Further incorporating error bounds into the two-step method
enhances uncertainty calibration even further. Notably, BBB
+ 2S + EB achieves the lowest miscalibration area (0.05)
for the ΛCDM equation, while HMC + 2S + EB provides
the best calibration in CPL (0.145). However, certain cases
exhibit excessively large mean residuals, such as in CPL,
where BBB + 2S + EB results in a residual of 9.58 × 108.
This suggests that while error bounds improve calibration,
they may introduce numerical instability in the metrics due
to some samples’ extremely large errors.

For the Quintessence equation, HMC + 2S achieves the
best calibration (0.048) while maintaining a low median RE
(0.016), demonstrating an effective balance between accu-
racy and uncertainty quantification. In contrast, for the HS
equation, while the two-step method improves calibration,
overall performance remains suboptimal, with high median
RE and residuals persisting across all Bayesian approaches.

In Tables 3 and 4, we present results separately for the
training and OOD regions. In the training region, the two-
step approach consistently improves both accuracy and mis-
calibration, and the addition of error bounds further en-
hances calibration across most equations. For example, in
the ΛCDM case, combining two steps with error bounds
yields the lowest miscalibration area among all methods,
indicating effective uncertainty correction when the model
operates within its training distribution.

In the OOD region, results are more mixed. For ΛCDM,
the combination of two steps and error bounds significantly
reduces miscalibration. However, in the CPL model, ap-
plying two steps increases miscalibration for BBB but re-
duces it for HMC; adding error bounds reverses this be-
havior—improving BBB but slightly worsening HMC. As
shown in Fig. 26, this is likely because FCNN closely tracks
the ground truth in the OOD region, leading to narrow error
bounds, while BBB and HMC tend to drift from the true
function, which error bounds fail to capture accurately. For
the more complex equations, Quintessence and HS, the ben-
efits of the two-step method are less consistent, and no clear
advantage is observed over the baseline approaches.



Table 3: Evaluation Metrics of All Bundle Networks and
Equations in the Training Region. Here we Use 2S for Two-
step and EB for Error Bounds.

Equation Method Median RE Median Residual Miscal. Area

Λ
C

D
M

FCNN 0.0 0.0 -
BBB 0.961 0.12 0.491
HMC 0.041 0.07 0.358

NLM + 2S 0.003 4.212 0.402
BBB + 2S 0.008 0.238 0.269
HMC + 2S 0.001 0.038 0.307

NLM + 2S + EB 0.001 4.211 0.016
BBB + 2S + EB 0.01 0.228 0.248
HMC + 2S + EB 0.001 0.014 0.251

C
PL

FCNN 0.0 0.001 -
BBB 0.052 0.016 0.161
HMC 0.0 0.009 0.482

BBB + 2S 0.024 0.009 0.085
HMC + 2S 0.001 0.008 0.436

BBB + 2S + EB 0.007 0.005 0.14
HMC + 2S + EB 0.001 0.008 0.159

Q
ui

nt
.

FCNN 0.003 0.0 -
BBB 0.059 0.005 0.09
HMC 0.001 0.003 0.279

NLM + 2S 0.063 0.097 0.326
BBB + 2S 0.047 0.002 0.165
HMC + 2S 0.006 0.0 0.179

H
S

FCNN 0.0 0.0 -
BBB 0.373 0.162 0.426
HMC 0.257 0.121 0.43

NLM + 2S 0.244 0.201 0.252
BBB + 2S 0.284 0.094 0.387
HMC + 2S 0.279 0.111 0.427

Table 4: Evaluation Metrics of All Bundle Networks and
Equations in the OOD Region. Here we Use 2S for Two-step
and EB for Error Bounds.

Equation Method Median RE Median Residual Miscal. Area

Λ
C

D
M

FCNN 0.374 0.027 -
BBB 0.986 0.168 0.495
HMC 0.316 11.979 0.444

NLM + 2S 0.449 10.569 0.43
BBB + 2S 0.363 12.672 0.495
HMC + 2S 0.31 12.054 0.424

NLM + 2S + EB 0.287 14.778 0.113
BBB + 2S + EB 0.375 10.695 0.155
HMC + 2S + EB 0.329 11.463 0.168

C
PL

FCNN 0.033 0.0 -
BBB 0.373 0.013 0.357
HMC 0.082 0.012 0.152

BBB + 2S 0.59 0.001 0.495
HMC + 2S 0.275 0.001 0.072

BBB + 2S + EB 0.958 0.001 0.216
HMC + 2S + EB 0.648 0.001 0.194

Q
ui

nt
.

FCNN 0.022 0.016 -
BBB 0.125 0.089 0.349
HMC 0.006 0.011 0.021

NLM + 2S 0.138 0.335 0.334
BBB + 2S 0.221 0.13 0.377
HMC + 2S 0.038 0.03 0.096

H
S

FCNN 0.374 0.027 -
BBB 0.374 0.161 0.427
HMC 0.257 0.121 0.43

NLM + 2S 6.999 0.592 0.412
BBB + 2S 2.124 1.616 0.452
HMC + 2S 0.885 0.984 0.487

In Table 11 we can see how the Bayesian methods pro-
vide tighter intervals than deterministic nets. This is due
to observations being more likely under the distributions
generated by Bayesian methods. These uncertainties can
be propagated through the approximated solution to obtain
solution distributions that account for the uncertainties in
the equation parameters.

Table 12 shows the level of agreement of our results with
the literature. Most of our results are in an agreement of 1σ
or 2σ. ΛCDM is an exception, where we observe higher dis-
agreement due to the tight bounds obtained and discrepancy
in the means.

Overall, our results demonstrate that leveraging error bounds
within a two-step framework significantly enhances uncer-
tainty quantification, particularly in calibration. However,
the observed tradeoff between calibration and numerical
stability suggests the need for further refinement, especially
for highly complex equations such as HS.

Among Bayesian approaches, HMC generally achieves su-
perior accuracy and calibration, but its computational cost
is substantial. BBB, on the other hand, performs well when
combined with our two-step procedure, offering a more
computationally efficient and flexible alternative. There is
considerable potential for improving BBB by adopting more
expressive variational posterior distributions. Finally, NLM
also demonstrates strong performance while being the least
expensive method, though its applicability is limited by the
underlying distributional assumptions.
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A ENFORCING IC/BC

A.1 TWO-DIMENSIONAL DIRICHLET BOUNDARY VALUE PROBLEM

In the Dirichlet problem, also known as first boundary value problem, the values of the solution function at the boundaries Γ
are known [Boyce and DiPrima, 2008]. In this case the re-parameterization is

ũθ(x, y) := A(x, y) + x̃
(
1− x̃

)
ỹ
(
1− ỹ

)
uθ(x, y)

where

A(x, y) =
(
1− x̃

)
u(x0, y) + x̃u(x1, y)

+
(
1− ỹ

)(
u(x, y0)−

(
1− x̃

)
u(x0, y0) + x̃u(x1, y0)

)
+ ỹ

(
u(x, y1)−

(
1− x̃

)
u(x0, y1) + x̃u(x1, y1)

)
x̃ =

x− x0

x1 − x0

ỹ =
y − y0
y1 − y0

(x0, y),(x1, y), (x, y0), (x, y1) ∈ Γ

B ERROR BOUNDS COMPUTATION

B.1 FIRST ORDER LINEAR ODE WITH CONSTANT COEFFICIENT

A first-order linear ODE with constant coefficient has the general form

u′(t) + (λ+ iω)u(t) = f(t) (29)

As shown by Liu et al. [2022], the error of a PINN solution uθ to Eq. (29) can be bounded as

|uθ(t)− u(t)| ≤ εe−λt

∫ t

t0

eλτdτ (30)

when the initial conditions are satisfied i.e uθ(t0) = u(t0). Here, ε is an upper bound on the residuals

|u′(t) + (λ+ iω)u(t)− f(t)| ≤ ε ∀t ∈ I (31)

where I can be any of the forms (t0, t), (t0, t], (t0,∞).
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Algorithm 1 Tight Error Bounds

Input: Domain I = [Tmin, Tmax], residual network r(t), an expression for eP (t) we will call EP(t), an expression for∫ t

Tmin
eP (τ)dτ we will call IntEP(t), number of partitions N , number of points in each partition K.

Output: A set of times and error bounds at those times {ti, bi}Ni=1.
{ti}Ni=0 ← Linspace(Tmin, Tmax, N + 1)
Initialize b0 := 0
for i← 1 . . . N do

Ii ← Linspace(ti−1, ti,K)
εi ← maxτ∈Ii |r(τ)|
bi ← bi−1 + εi

IntEP(ti)−IntEP(ti−1)
EP(ti)

▷ Implementation of Eq. (37)
end for

Note: Linspace(a, b, n) returns an array of n points equally spaced in the range [a, b].

B.2 FIRST ORDER LINEAR ODE WITH NONCONSTANT COEFFICIENT

A first-order linear ODE with nonconstant coefficient has the general form

u′(t) + (p(t) + iq(t))u(t) = f(t) (32)

As shown by Liu et al. [2022], when the initial conditions are satisfied, the error of a PINN solution uθ to Eq. (32) can be
bounded as

|uθ(t)− u(t)| ≤ εe−P (t)

∫ t

t0

eP (τ)dτ (33)

Where P (t) =
∫ t

t0
p(τ)dτ , and ε is an upper bound on the residuals

|u′(t) + (λ+ iω)u(t)− f(t)| ≤ ε ∀t ∈ I (34)

where I can be any of the forms (t0, t), (t0, t], (t0,∞).

B.3 TIGHT BOUNDS COMPUTATION

In Section 2.6, we described how to obtain a bound using the global maximum residual ε in I . However, we can compute a
tighter error bound by partitioning the domain I = I1 ⊎ I2 ⊎ · · · ⊎ In.

The tight bound for the first-order ODE with nonconstant coefficients turns out to be

|uθ(t)− u(t)| ≤ e−P (t)

∫ t

t0

|rθ(τ)|eP (τ)dτ (35)

To use the partitions Ik, we define the maximum local residual

εk := max
τ∈Ik
|rθ(τ)| (36)

and we compute the bounds as

|uθ(t)− u(t)| ≤
n∑

i=1

εie
−P (t)

∫ τ=ti

τ=ti−1

eP (τ)dτ (37)

where tk = max Ik and tn = t. Algorithm 1 in the Supplementary Material shows the implementation of tight bounds
computation.

C NLM DETAILS

We now provide details on the NLM derivation presented in Section 4.1.1.

Σpost =
(
ΦT

θ ΣΦθ + σ−2
priorI

)−1

(38)

µpost = Σpost
(
Σ−1Φθ

)T
uθdet (39)



we have writen ΦT
θ and Σ instead of ΦT

θ (xD, λD) and Σ(xD, λD) respectively, to simplify notation. In Eq. (38) and Eq. (39),

xD = [x1, ...,xN ]T

λD = [λ1, ..., λN ]T

Σ(xD, λD) = diag([σ2
Like(x1, λ1), ..., σ

2
Like(xM , λM )])

D COMPUTING PREDICTIVE UNCERTAINTY

The computation of predictive uncertainty is straightforward as it is the standard deviation of the posterior predictive
distribution. We can obtain it by applying the law of total variance

Var(u|x, λ,D) = Eθ|D [Var(u|x, λ, θ)] + Varθ|D [E(u|x, λ, θ)] (40)

= Eθ|D
[
σ2

Like(x, λ)
]
+ Varθ|D[uθ(x, λ)]

≈ σ2
Like(x, λ) +

1

M

M∑
i=1

(uθi(x, λ)− u(x, λ))2

where θi ∼ p(θ|D) and u(x, λ) = 1
M

∑M
i=1 uθi(x, λ) is the sample mean of the network outputs.

The latter approximation applies to BBB and NUTS; for BBB, the samples are taken from the variational posterior, and for
NUTS, we use the samples of the true posterior the method yields. We have the analytical expression for NLM as shown in
Eq. (38).

E STATISTICAL ANALYSIS

It may also be the case that the observed values are a function f of the solution. In that scenario, the dataset would become
Of = {(xi, µ

f
i , σ

f
i ) | xi ∈ Ω, µf

i ∈ R, σf
i ∈ R+}Of

i=1, where µf
i and σf

i are the mean and standard deviation of the
observed function, respectively. Here f is a function of the true solution and possibly other parameters λf , which can also
be included in the set of parameters to be estimated. In a similar way to Eq. (24), we can compute the likelihood:

p(xi, µi, σi|λ, λf ) =

∫
U
p(xi, µ

f
i , σ

f
i |f(uλ(xi), λ

f )) · p(uλ(xi)|xi, λ)du (41)

F PROOFS

Proposition F.1. Given a differential equation of the form
du

dt
= f(t) for some function f and an initial condition

u(t0) = u0. The error of an approximation û of u is:

û(τ)− u(τ) =

∫ τ

t0

R(t)dt (42)

if the approximation satisfies the ICs, where R(t) :=
dû

dt
− f(t).

Proof. Let us take some approximate solution to the DE

û(t) = u(t) + eu(t)

where û(t) is the approximation, u(t) is the true solution and eu(t) is an error term. We can do the same for the first
derivative of the solution. Using Newton’s notation:

ˆ̇u(t) = u̇(t) + eu̇(t) (43)



Using the definition of R(t)

R(t) = u̇(t) + eu̇(t)− f(t)

Since u̇(t) is the derivative of the true solution, u̇(t)− f(t) = 0, thus R(t) = eu̇(t). Substituting that in Eq. (43), we get

R(t) = ˆ̇u(t)− u̇(t)

Integrating both sides with respect to t:∫ τ

t0

R(t)dt =

∫ τ

t0

ˆ̇u(t)dt−
∫ τ

t0

u̇(t)dt∫ τ

t0

R(t)dt = û(τ)− û(t0) + u(t0)− u(τ)∫ τ

t0

R(t)dt+ eu(t0) = û(τ)− u(τ)

If u(t0) = û(t0), which is the case for our PINNs because we enforce ICs, then

û(τ)− u(τ) =

∫ τ

t0

R(t)dt

G COSMOLOGY MODELS

G.1 ΛCDM ERROR BOUNDS COMPUTATION

Error Bounds Computation Since this model is a first-order linear system with non-constant coefficients, it is possible to
compute its error bounds. To compute the error bounds with Algorithm 1 we need an expression for eP (z) and

∫ z

0
eP (s)ds.

In the ΛCDM model, we have p(z) = 3/(1 + z), thus

P (z) =

∫ z

0

− 3

(1 + s)
ds = −3ln(1 + s) (44)

then

eP (s) = e−3ln(1+s) (45)∫ z

0

eP (s)ds =

∫ z

0

e−3ln(1+s)ds =
1

2
− 1

2(1 + z)2
(46)

which are the inputs needed for Algorithm 1.

G.2 PARAMETRIC DARK ENERGY ERROR BOUNDS COMPUTATION

Once again, we need to find an expression for the inputs to Algorithm 1. CPL’s equation is also a first-order linear with a
non-constant coefficient equation, so the procedure is the same as for ΛCDM. First, we have

p(z) =
−3
1 + z

(1 + w0 +
w1z

1 + z
) (47)

P (z) =

∫ z

0

−3
1 + s

(1 + w0 +
w1s

1 + s
)ds (48)

= −3((w0 + w1 + 1)ln(z + 1) +
w1

z + 1
− w1) (49)



we can then simplify the expression eP (z) as

eP (z) = e−3((w0+w1+1)ln(z+1)+
w1
z+1−w1) (50)

= −3((w0 + w1 + 1)ln(z + 1) +
w1

z + 1
− w1) (51)

= (z + 1)−3(w0+w1+1)e
3w1z
z+1 (52)

Finally, the integral turns out to be∫ z

0

eP (s)ds = e3w1(s+ 1)1−3(w0+w1+1)E2−3(w0+w1+1)

(
3w1

s+ 1

) ∣∣∣∣∣
s=z

s=0

(53)

Where En(x) is the exponential integral defined as En(x) =
∫∞
1

e−xt

tn dt. We used computational tools to find the
antiderivative of eP (s).

G.3 QUINTESSENCE

The Quintessence [Caldwell et al., 1998, Armendariz-Picon et al., 2000, Copeland et al., 1998, Zlatev et al., 1999] system of
equations is

dx

dN
= −3x+

√
6

2
λy2 +

3

2
x(1 + x2 − y2)

dy

dN
=

√
6

2
xyλ+

3

2
y(1 + x2 − y2)

with the following initial conditions

x0 = 0

y0 =

√
1− ΩΛ

m,0

ΩΛ
m,0(1 + z0)3 + 1− ΩΛ

m,0

where λ,ΩΛ
m,0 are parameters. Given a solution to the system, the Hubble parameter is computed as

H(z) = HΛ
0

√
ΩΛ

m,0(1 + z)3

1− x2 − y2

Here HΛ
0 is also a parameter.

G.4 f(R) GRAVITY

The f(R) gravity [Clifton et al., 2012, Buchdahl, 1970] model, which we refer to as HS for the authors Hu and Sawicki
[2007] consists of a system of 5 equations.

dx

dz
=

1

z + 1
(−Ω− 2v + x+ 4y + xv + x2)

dy

dz
=
−1
z + 1

(vxΓ− xy + 4y − 2yv)

dv

dz
=
−v
z + 1

(xΓ + 4− 2v)

dΩ

dz
=

Ω

z + 1
(−1 + 2v + x)

dr

dz
= − rΓx

z + 1



where

Γ(r) =
(r + b)

[
(r + b)2 − 2b

]
4br

The initial conditions are

x0 = 0

y0 =
ΩΛ

m,0(1 + z0)
3 + 2(1− ΩΛ

m,0)

2
[
ΩΛ

m,0(1 + z0)3 + (1− ΩΛ
m,0)

]
v0 =

ΩΛ
m,0(1 + z0)

3 + 4(1− ΩΛ
m,0)

2
[
ΩΛ

m,0(1 + z0)3 + (1− ΩΛ
m,0)

]
Ω0 =

ΩΛ
m,0(1 + z0)

3

ΩΛ
m,0(1 + z0)3 + (1− ΩΛ

m,0)

r0 =
ΩΛ

m,0(1 + z0)
3 + 4(1− ΩΛ

m,0)

1− ΩΛ
m,0

where b,ΩΛ
m,0 are the system parameters. Given a solution to the system, the Hubble parameter is computed as

H(z) = HΛ
0

√
r

2v
(1− ΩΛ

m,0)

Here HΛ
0 is also a parameter.

H IMPLEMENTATION DETAILS

As described in Section 6, we followed the implementation from [Chantada et al., 2022] to train the FCNNs in the first step.
Architecture and hyperparameter details are shown in Tables 5 to 8. NLM shares FCNN details since it builds on FCNN.

We used Pytorch [Paszke et al., 2019] for FCNNs, Pyro [Bingham et al., 2018] for BNNs, and Neurodiffeq [Chen et al.,
2020] for aiding in PINNs training.

Table 5: Implementation Details For FCNN.

Equation Input Dim. Output
Dim.

Hidden
Units

Activation Iterations Samples per
Dim. in a

Batch

Learning
Rate

ΛCDM 1 1 (32, 32) Tanh 100,000 64 0.001
CPL 1 2 (32, 32) Tanh 100,000 128 0.001

Quintessence 1 1 (32, 32) Tanh 100,000 32 0.001
HS 1 1 (32, 32) Tanh 600,000 32 0.001

Table 6: Implementation Details For NLM.

Equation Samples per Dim. Likelihood Std.
ΛCDM 100 0.1

Quintessence 32 0.005
HS 32 0.005



Table 7: Implementation Details For BBB.

Equation Input
Dim.

Output
Dim.

Hidden
Units

Activation Iterations Samples
per Dim.

Prior
Std.

Learning
Rate

Likelihood
Std.

ΛCDM 1 1 (32, 32) Tanh 20,000 64 1 0.001 0.1
CPL 1 2 (32, 32) Tanh 20,000 128 1 0.001 0.01

Quintessence 1 1 (32, 32) Tanh 20,000 32 1 0.001 0.005
HS 1 1 (32, 32) Tanh 20,000 32 1 0.001 0.005

Table 8: Implementation Details For HMC.

Equation Input Dim. Output Dim. Hidden Units Activation Posterior Samples Tune Samples Samples per Dim. Prior Std. Likelihood Std.
ΛCDM 1 1 (32, 32) Tanh 10,000 1,000 32 1 0.1

CPL 1 2 (32, 32) Tanh 10,000 1,000 128 1 0.01
Quintessence 1 1 (32, 32) Tanh 10,000 1,000 32 1 0.005

HS 1 1 (32, 32) Tanh 10,000 1,000 32 1 0.005

Table 9: Measurements Of The Hubble Parameter H Using The Cosmic Chronometers Technique

z H(z)± σH

[
km/s
Mpc

]
Ref.

0.09 69 ± 12

[Simon et al., 2005]

0.17 83 ± 8
0.27 77 ± 14
0.4 95 ± 17
0.9 117 ± 23
1.3 168 ± 17

1.43 177 ± 18
1.53 140 ± 14
1.75 202 ± 40
0.48 97 ± 62 [Stern et al., 2010]0.88 90 ± 40

0.1791 75 ± 4

[Moresco et al., 2012]

0.1993 75 ± 5
0.3519 83 ± 14
0.5929 104 ± 13
0.6797 92 ± 8
0.7812 105 ± 12
0.8754 125 ± 17
1.037 154 ± 20
0.07 69 ± 19.6

[Cong et al., 2014]0.12 68.6 ± 26.2
0.2 72.9 ± 29.6

0.28 88.8 ± 36.6
1.363 160 ± 33.6 [Moresco, 2015]1.965 186.5 ± 50.4

0.3802 83 ± 13.5

[Moresco et al., 2016]
0.4004 77 ± 10.2
0.4247 87.1 ± 11.2
0.4497 92.8 ± 12.9
0.4783 80.9 ± 9



Table 10: Implementation Details of Appendix I.

Equation Number of NN (N) Iterations (I) Time Steps (T)
ΛCDM 1000 1000 50

CPL 1000 1000 50
Quintessence 1500 1000 50

HS 200 5000 50

I EXPLORATION OF SOLUTIONS, RESIDUALS AND ERRORS

To analyze the behavior of residuals and errors in PINNs, we conducted a systematic data collection process. We trained N
deterministic PINNs for I iterations to solve each of the cosmological models under study. Throughout training, we recorded
solutions and residuals every 10 iterations, evaluating them on a fixed, equidistant set of T time steps. Detailed specifications
for each cosmological model are provided in Table 10.

Distribution of Solutions After collecting the data, we generated histograms of the solutions throughout training, as
shown in Figs. 4 to 12. For reference, we overlaid Gaussian distributions with the sample mean and variance in orange. The
distribution of solutions varies across cosmological models, with ΛCDM and CPL being the closest to Gaussian, while HS
exhibits noticeable bimodality.

Residuals and Errors Relationship Understanding the relationship between solution errors and residuals is crucial for
assessing whether residuals can serve as a reliable source of calibrated uncertainties. Ideally, a perfect correlation between
residuals and errors would indicate that residuals effectively capture uncertainty.

In Figs. 13 to 16, we plot the absolute, normalized values of relative errors against their corresponding residuals for all
cosmological models. The results indicate no clear correlation; in fact, the trend often shows higher errors associated with
lower residuals. This behavior aligns with the implicit bias described by Wang et al. [2022], where PINNs exhibit lower
convergence rates near initial conditions.



Figure 4: Distribution of xm(z) from ΛCDM. Samples were collected as described in I. Orange lines show a Gaussian
distribution with sample mean and variance.



Figure 5: Distribution of xDE(z) from CPL. Samples were collected as described in I. Orange lines show a Gaussian
distribution with sample mean and variance.



Figure 6: Distribution of x(N) from Quintessence. Samples were collected as described in I. Orange lines show a Gaussian
distribution with sample mean and variance.



Figure 7: Distribution of y(N) from Quintessence. Samples were collected as described in I. Orange lines show a Gaussian
distribution with sample mean and variance.



Figure 8: Distribution of x(z) from HS. Samples were collected as described in I. Orange lines show a Gaussian distribution
with sample mean and variance.



Figure 9: Distribution of y(z) from HS. Samples were collected as described in I. Orange lines show a Gaussian distribution
with sample mean and variance.



Figure 10: Distribution of v(z) from HS. Samples were collected as described in I. Orange lines show a Gaussian distribution
with sample mean and variance.



Figure 11: Distribution of Ω(z) from HS. Samples were collected as described in I. Orange lines show a Gaussian distribution
with sample mean and variance.



Figure 12: Distribution of r(z) from HS. Samples were collected as described in I. Orange lines show a Gaussian distribution
with sample mean and variance.



Figure 13: Relationship Between Solution Errors and Residuals from ΛCDM. Samples were collected as described in I.

Figure 14: Relationship Between Solution Errors and Residuals from CPL. Samples were collected as described in I.

Figure 15: Relationship Between Solution Errors and Residuals from Quintessence. Samples were collected as described in
I. Colors differentiate variables in the system.



Figure 16: Relationship Between Solution Errors and Residuals from HS. Samples were collected as described in I. Colors
differentiate variables in the system.

J ADITIONAL RESULTS

Table 11: Parameters Mean And Standard Deviation Estimation Of All Cosmology Models.

Equation Method w0 w1 λ b Ωm,0 H0

Λ
C

D
M

FCNN - - - - 0.31 ± 0.05 68.5 ± 2.63
BBB - - - - 0.1 ± 0.01 79.95 ± 0.75
HMC - - - - 0.34 ± 0.01 68.23 ± 0.4

NLM + 2S - - - - 0.33 ± 0.01 67.5 ± 0.51
BBB + 2S - - - - 0.33 ± 0.01 67.42 ± 0.68
HMC + 2S - - - - 0.32 ± 0.01 68.05 ± 0.4

NLM + 2S + EB - - - - 0.32 ± 0.01 68.14 ± 0.36
BBB + 2S + EB - - - - 0.31 ± 0.01 68.42 ± 0.43
HMC + 2S + EB - - - - 0.32 ± 0.01 68.16 ± 0.37

C
PL

FCNN -1.03 ± 0.3 -2.49 ± 2.55 - - 0.34 ± 0.12 65.76 ± 7.61
BBB -1.0 ± 0.25 -2.53 ± 3.06 - - 0.32 ± 0.13 66.08 ± 6.47
HMC -1.05 ± 0.3 -2.46 ± 2.88 - - 0.32 ± 0.14 65.8 ± 7.06

NLM + 2S -1.06 ± 0.32 -2.91 ± 2.76 - - 0.3 ± 0.16 64.33 ± 7.58
BBB + 2S -1.01 ± 0.3 -2.82 ± 2.48 - - 0.31 ± 0.16 65.01 ± 6.63
HMC + 2S -1.07 ± 0.33 -3.02 ± 2.45 - - 0.34 ± 0.15 66.74 ± 7.27

NLM + 2S + EB -0.91 ± 0.29 -2.61 ± 2.63 - - 0.44 ± 0.14 63.53 ± 6.46
BBB + 2S + EB -1.06 ± 0.25 -2.24 ± 2.85 - - 0.32 ± 0.11 66.41 ± 6.7
HMC + 2S + EB -1.12 ± 0.28 -2.57 ± 3.18 - - 0.32 ± 0.14 67.65 ± 6.62

Q
ui

nt
. FCNN - - 1.24 ± 1.0 - 0.27 ± 0.07 67.36 ± 7.14

BBB - - 0.88 ± 1.16 - 0.29 ± 0.07 66.33 ± 5.28
HMC - - 0.92 ± 1.15 - 0.3 ± 0.06 67.96 ± 4.43

NLM + 2S - - 1.36 ± 0.83 - 0.32 ± 0.1 64.5 ± 4.95
BBB + 2S - - 1.13 ± 1.19 - 0.3 ± 0.05 68.05 ± 5.46
HMC + 2S - - 0.8 ± 1.14 - 0.3 ± 0.06 65.7 ± 5.62

H
S

FCNN - - - 2.53 ± 1.87 0.28 ± 0.07 69.03 ± 7.94
BBB - - - 1.82 ± 1.95 0.3 ± 0.06 66.75 ± 6.75
HMC - - - 2.06 ± 1.96 0.27 ± 0.08 66.73 ± 6.5

NLM + 2S - - - 2.34 ± 1.84 0.28 ± 0.12 57.44 ± 8.81
BBB + 2S - - - 1.98 ± 1.87 0.28 ± 0.07 72.78 ± 10.01
HMC + 2S - - - 2.29 ± 1.67 0.28 ± 0.09 67.82 ± 10.38



Table 12: Smallest Number Of Sigmas Within Which The Results From [D’Agostino and Nunes, 2020, Motta et al., 2021,
Akrami et al., 2019] Fall.

Equation Method w0 w1 λ b Ωm,0 H0

Λ
C

D
M

FCNN - - - - 1σ 1σ
BBB - - - - 19σ 15σ
HMC - - - - 5σ 3σ
NLM - - - - 4σ 4σ
BBB - - - - 3σ 3σ
HMC - - - - 4σ 3σ

NLM + EB - - - - 4σ 3σ
BBB + EB - - - - 3σ 2σ
HMC + EB - - - - 4σ 3σ

C
PL

FCNN 2σ 1σ - - 1σ 1σ
BBB 3σ 1σ - - 1σ 2σ
HMC 2σ 1σ - - 1σ 2σ
NLM 2σ 1σ - - 1σ 2σ
BBB 2σ 2σ - - 1σ 2σ
HMC 2σ 2σ - - 1σ 1σ

NLM + EB 3σ 1σ - - 2σ 2σ
BBB + EB 2σ 1σ - - 1σ 1σ
HMC + EB 2σ 1σ - - 1σ 1σ

Q
ui

nt
.

FCNN - - 2σ - 1σ -
BBB - - 1σ - 1σ -
HMC - - 1σ - 1σ -
NLM - - 2σ - 1σ -
BBB - - 1σ - 1σ -
HMC - - 1σ - 1σ -

H
S

FCNN - - - 2σ 1σ 1σ
BBB - - - 1σ 1σ 1σ
HMC - - - 1σ 1σ 1σ
NLM - - - 2σ 1σ 2σ
BBB - - - 1σ 1σ 1σ
HMC - - - 2σ 1σ 1σ



Figure 17: ΛCDM Bayesian Solutions. The Analytic Solution Is Presented In Dotted Lines.

Figure 18: ΛCDM Bayesian Solutions With Error Bounds. The Analytic Solution Is Presented In Dotted Lines.

Figure 19: CPL Bayesian Solutions. The Analytic Solution Is Presented In Dotted Lines.



Figure 20: CPL Bayesian Solutions With Error Bounds. The Analytic Solution Is Presented In Dotted Lines.

Figure 21: Quintessence Bayesian Solutions Residual Likelihood. The Numerical Solution Is Presented In Dotted Lines.



Figure 22: Quintessence Bayesian Solutions. The Numerical Solution Is Presented In Dotted Lines.



Figure 23: HS Bayesian solutions Residual Likelihood. The Numerical Solution Is Presented In Dotted Lines.



Figure 24: HS Bayesian solutions. The Numerical Solution Is Presented In Dotted Lines.



Figure 25: Examples Of CPL Bayesian Solutions Obtained Using The Bundle Solver. Analytic Solutions Are Presented In
Dotted Lines.



Figure 26: Examples Of CPL Bayesian Solutions Obtained Using The Bundle Solver With Error Bounds. Analytic Solutions
Are Presented In Dotted Lines.

Figure 27: Examples of Quintessence Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value
Ωm,0 = 0.1. Numerical Solutions Are Presented In Dotted Lines.



Figure 28: Examples of Quintessence Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value
Ωm,0 = 0.2. Numerical Solutions Are Presented In Dotted Lines.

Figure 29: Examples of Quintessence Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value
Ωm,0 = 0.3. Numerical Solutions Are Presented In Dotted Lines.



Figure 30: Examples of Quintessence Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value
Ωm,0 = 0.4. Numerical Solutions Are Presented In Dotted Lines.



Figure 31: Examples Of HS Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value Ωm,0 = 0.1.
Numerical Solutions Are Presented In Dotted Lines.



Figure 32: Examples Of HS Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value Ωm,0 = 0.2.
Numerical Solutions Are Presented In Dotted Lines.



Figure 33: Examples Of HS Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value Ωm,0 = 0.3.
Numerical Solutions Are Presented In Dotted Lines.



Figure 34: Examples Of HS Bayesian Solutions Obtained Using The Bundle Solver For The Parameter Value Ωm,0 = 0.4.
Numerical Solutions Are Presented In Dotted Lines.



Table 13: Error Quantiles Of The NN Solutions Relative To The Analytical Solution For ΛCDM And CPL, And The
Numerical Solution For Quintessence And HS.

Equation Method Forward Bundle
Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q100 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q100

Λ
C

D
M

FCNN 0.0 0.0 0.0 0.0 0.0 0.162 0.394 0.558 0.669 0.746 0.0 0.0 0.0 0.001 0.001 0.017 0.248 0.48 0.647 0.819
NLM 0.0 0.0 0.001 0.001 0.007 0.184 0.418 0.577 0.685 0.759 0.001 0.002 0.003 0.006 0.018 0.058 0.32 0.554 0.701 0.843
BBB 0.0 0.0 0.0 0.001 0.004 0.162 0.397 0.56 0.671 0.748 0.0 0.0 0.001 0.001 0.002 0.017 0.236 0.47 0.639 0.814
HMC 0.001 0.001 0.002 0.004 0.019 0.228 0.443 0.593 0.696 0.767 0.001 0.001 0.002 0.003 0.007 0.051 0.212 0.415 0.597 0.799

NLM + EB 0.0 0.0 0.0 0.0 0.0 0.17 0.406 0.569 0.679 0.754 0.0 0.0 0.001 0.001 0.002 0.017 0.184 0.381 0.537 0.717
BBB + EB 0.0 0.0 0.0 0.0 0.0 0.156 0.391 0.559 0.666 0.75 0.001 0.002 0.004 0.005 0.007 0.025 0.254 0.49 0.657 0.835
HMC + EB 0.0 0.0 0.0 0.0 0.004 0.202 0.432 0.58 0.69 0.765 0.0 0.0 0.001 0.001 0.002 0.033 0.152 0.353 0.541 0.78

C
PL

FCNN 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.003 0.006 0.013 0.0 0.0 0.0 0.001 0.001 0.017 0.248 0.48 0.647 0.819
BBB 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.003 0.006 0.011 0.0 0.001 0.002 0.006 0.073 0.302 0.684 2.283 98.738 9.53e+08
HMC 0.0 0.0 0.0 0.0 0.001 0.008 0.022 0.041 0.066 0.095 0.001 0.002 0.004 0.007 0.033 0.13 0.363 1.711 100.003 8.31e+08

BBB + EB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.004 0.009 0.002 0.004 0.007 0.014 0.034 0.239 0.743 2.333 21.77 9.01e+08
HMC + EB 0.0 0.0 0.0 0.0 0.0 0.01 0.038 0.078 0.124 0.173 0.002 0.004 0.006 0.01 0.021 0.305 0.999 28.567 6.67e+05 3.88e+26

Q
ui

nt
.

FCNN 0.0 0.0 0.0 0.0 0.001 0.006 0.039 0.103 0.171 0.223 0.001 0.001 0.002 0.004 0.007 0.012 0.021 0.039 0.077 0.26
NLM 0.003 0.006 0.009 0.016 0.034 0.058 0.094 0.16 0.237 0.288 0.014 0.027 0.042 0.065 0.096 0.145 0.211 0.325 0.708 164.163
BBB 0.001 0.002 0.003 0.005 0.012 0.027 0.067 0.129 0.197 0.918 0.001 0.003 0.005 0.008 0.013 0.02 0.034 0.057 0.104 24.699
HMC 0.012 0.02 0.026 0.043 0.065 0.135 0.218 0.29 0.348 1.31 0.001 0.003 0.005 0.008 0.015 0.026 0.044 0.071 0.119 18.676

H
S

FCNN 0.0 0.0 0.0 0.0 0.0 0.162 0.394 0.558 0.669 0.746 0.0 0.0 0.0 0.001 0.001 0.017 0.248 0.48 0.647 0.819
NLM 0.003 0.007 0.01 0.015 0.026 0.905 8.203 23.657 40.486 147.148 0.078 0.135 0.182 0.213 0.247 0.635 3.403 16.619 88.025 1.33e+09
BBB 0.002 0.003 0.003 0.005 0.008 0.022 0.031 0.042 0.119 0.831 0.039 0.089 0.143 0.23 0.429 0.715 1.434 3.463 9.211 7.52e+05
HMC 0.121 0.305 0.521 0.674 0.742 1.308 2.71 7.066 16.963 59.125 0.067 0.123 0.169 0.217 0.294 0.368 0.629 2.291 8.942 9.06e+05

Table 14: Metrics of the NN Forward Solutions.

Equation Method MRE Mean Residual Miscal. Area RMS Cal. MA Cal. Sharpness NLL CRPS Check Interval Acc. MAE Acc. RMSE Acc. MDAE Acc. MARPD

Λ
C

D
M

FCNN 0.216 0.0 - - - - - - - - - - - -
BBB 0.955 0.154 0.491 0.566 0.486 0.101 27843.2 20.019 10.01 208.426 20.073 28.172 12.83 187.161
HMC 0.361 3.127 0.491 0.566 0.486 0.516 319.717 11.214 5.612 113.07 11.453 19.039 2.687 49.016

NLM + 2S 0.226 6.544 0.224 0.258 0.222 0.546 247.862 9.743 4.876 98.293 9.939 17.917 0.023 32.164
BBB + 2S 0.29 3.807 0.185 0.222 0.183 0.3 1100.191 11.292 5.648 116.159 11.41 19.662 0.459 41.833
HMC + 2S 0.23 3.842 0.203 0.235 0.201 0.634 135.058 9.739 4.875 97.661 9.977 17.878 0.075 32.568

NLM + 2S + EB 0.221 6.623 0.148 0.186 0.147 17.23 −0.472 5.948 3.004 25.502 9.792 17.737 0.005 31.357

BBB + 2S + EB 0.266 3.69 0.114 0.137 0.113 17.265 2.216 6.958 3.513 30.458 11.066 19.178 0.855 38.671
HMC + 2S + EB 0.222 3.841 0.111 0.138 0.11 17.251 -0.208 5.953 3.006 25.627 9.788 17.707 0.055 31.387

C
PL

FCNN 0.002 0.0 - - - - - - - - - - - -
BBB 0.008 0.014 0.359 0.394 0.355 0.023 -3.196 0.006 0.003 0.036 0.006 0.011 0.001 0.766
HMC 0.009 0.014 0.268 0.288 0.266 0.016 -4.458 0.004 0.002 0.02 0.007 0.012 0.0 0.905

BBB + 2S 0.036 0.026 0.103 0.114 0.102 0.019 -2.284 0.021 0.01 0.123 0.026 0.043 0.004 3.444
HMC + 2S 0.016 0.019 0.267 0.3 0.265 0.034 -3.87 0.008 0.004 0.041 0.012 0.02 0.001 1.592

BBB + 2S + EB 0.021 0.015 0.115 0.137 0.114 0.007 -2.376 0.013 0.006 0.093 0.015 0.027 0.001 1.993
HMC + 2S + EB 0.158 0.257 0.389 0.443 0.385 0.07 5.18 0.093 0.047 0.7 0.11 0.292 0.0 10.464

Q
ui

nt
es

se
nc

e

FCNN 0.044 0.054 - - - - - - - - - - - -
BBB 0.838 0.109 0.482 0.553 0.477 0.025 163.756 0.127 0.064 1.113 0.14 0.171 0.135 nan
HMC 0.06 0.07 0.176 0.204 0.174 0.01 -4.034 0.013 0.006 0.08 0.015 0.03 0.0 nan

NLM + 2S 0.073 0.257 0.19 0.23 0.188 0.015 -3.317 0.017 0.008 0.109 0.021 0.041 0.0 9.054

BBB + 2S 0.201 0.147 0.128 0.181 0.126 0.004 40.068 0.036 0.018 0.352 0.038 0.068 0.002 nan
HMC + 2S 0.072 0.084 0.124 0.142 0.123 0.016 −4.948 0.014 0.007 0.068 0.019 0.036 0.0 nan

H
S

FCNN 0.216 0.0 - - - - - - - - - - - -
BBB 1.224 0.215 0.487 0.56 0.482 0.013 2094.883 0.324 0.162 3.284 0.33 0.378 0.347 nan
HMC 0.268 0.128 0.44 0.512 0.436 0.013 723.293 0.138 0.069 1.326 0.144 0.169 0.148 nan

NLM + 2S 0.353 0.324 0.152 0.184 0.151 0.409 −1.279 0.149 0.075 0.862 0.197 0.341 0.012 35.335

BBB + 2S 0.158 0.326 0.219 0.253 0.216 0.012 59.506 0.028 0.014 0.239 0.031 0.068 0.007 nan
HMC + 2S 0.262 0.212 0.265 0.304 0.263 0.021 90.284 0.024 0.012 0.182 0.028 0.066 0.006 nan



Table 15: Metrics of the NN Bundle Solutions.

Equation Method MRE Mean Residual Miscal. Area RMS Cal. MA Cal. Sharpness NLL CRPS Check Interval Acc. MAE Acc. RMSE Acc. MDAE Acc. MARPD

Λ
C

D
M

FCNN 0.178 0.0 - - - - - - - - - - - -
BBB 0.94 0.199 0.491 0.566 0.486 0.076 67151.127 24.692 12.347 257.601 24.73 36.873 14.224 181.346
HMC 0.196 5.169 0.4 0.455 0.396 0.822 139.806 10.309 5.161 102.634 10.61 22.142 0.752 25.336

NLM + 2S 0.206 8.278 0.183 0.211 0.182 0.45 604.068 12.215 6.111 124.943 12.369 25.205 0.032 29.855
BBB + 2S 0.204 5.386 0.143 0.173 0.141 0.487 935.006 11.829 5.918 121.119 11.965 24.362 0.092 28.573
HMC + 2S 0.171 5.446 0.123 0.148 0.122 1.4 39.06 10.346 5.182 100.22 10.809 22.873 0.011 23.62

NLM + 2S + EB 0.145 9.714 0.063 0.074 0.063 25.004 −0.532 5.74 2.898 26.943 9.357 20.003 0.015 19.212

BBB + 2S + EB 0.198 5.17 0.05 0.058 0.05 25.008 1.647 7.004 3.536 31.722 11.421 23.284 0.294 26.712
HMC + 2S + EB 0.168 5.104 0.098 0.122 0.097 25.033 -0.243 6.36 3.212 28.814 10.597 22.323 0.029 23.026

C
PL

FCNN 0.062 0.001 - - - - - - - - - - - -
BBB 0.683 1410.627 0.2 0.222 0.198 5777.129 -2.261 3545.896 1777.486 33236.555 3770.007 76032.127 0.005 28.948
HMC 0.362 1722.466 0.317 0.341 0.314 1.05e+05 −6.292 1324.918 668.959 7053.056 1969.836 41625.811 0.0 13.055

BBB + 2S 2.751 818.487 0.15 0.164 0.149 2121.18 8.885 5054.062 2529.02 51204.587 5148.735 96419.681 0.004 37.724
HMC + 2S 15.533 2213.885 0.255 0.272 0.252 2.92e+05 -5.211 2891.45 1459.777 18215.13 2540.452 45826.617 0.0 31.464

BBB + 2S + EB 2.09e+05 9.58e+08 0.177 0.212 0.175 2.85e+09 26693.418 2.68e+08 1.35e+08 2.10e+09 3.09e+08 1.23e+10 0.003 61.241
HMC + 2S + EB 2.35e+05 7.49e+05 0.145 0.165 0.143 2.89e+06 90.949 2.74e+05 1.38e+05 2.06e+06 3.20e+05 1.03e+07 0.001 47.367

Q
ui

nt
es

se
nc

e

FCNN 0.024 0.027 - - - - - - - - - - - -
BBB 0.128 0.079 0.148 0.193 0.147 0.004 7.61e+09 0.017 0.009 0.159 0.019 0.041 0.002 nan
HMC 0.009 0.019 0.147 0.165 0.146 0.007 7.61e+09 0.002 0.001 0.009 0.002 0.007 0.0 nan

NLM + 2S 0.39 0.33 0.136 0.158 0.135 0.006 51.905 0.039 0.019 0.375 0.04 0.099 0.002 24.652

BBB + 2S 0.159 0.12 0.119 0.165 0.118 0.004 7.61e+09 0.027 0.014 0.265 0.029 0.064 0.002 nan
HMC + 2S 0.041 0.037 0.048 0.054 0.047 0.014 8.50e+09 0.005 0.003 0.026 0.007 0.02 0.0 nan

H
S

FCNN 0.178 0.0 - - - - - - - - - - - -
BBB 0.663 0.136 0.449 0.518 0.445 0.015 5.90e+12 0.264 0.132 2.649 0.27 0.343 0.227 nan
HMC 0.408 0.152 0.455 0.52 0.45 0.041 5.90e+12 0.126 0.064 1.003 0.145 0.193 0.125 nan

NLM + 2S 3740.057 2.27e+06 0.315 0.363 0.312 0.027 20707.105 0.38 0.19 3.926 0.384 0.551 0.264 41.024

BBB + 2S 0.417 0.361 0.396 0.454 0.392 0.049 5.90e+12 0.2 0.101 1.824 0.216 0.349 0.113 nan
HMC + 2S 2.739 3.456 0.486 0.561 0.482 0.003 5.98e+12 0.136 0.068 1.401 0.137 0.201 0.096 nan
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