

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SPECTRAL NEURAL GRAPH SPARSIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graphs are central to modeling complex systems in domains such as social networks, molecular chemistry, and neuroscience. While Graph Neural Networks, particularly Graph Convolutional Networks, have become standard tools for graph learning, they remain constrained by reliance on fixed structures and susceptibility to over-smoothing. We propose the Spectral Preservation Network, a new framework for graph representation learning that generates reduced graphs serving as faithful proxies of the original, enabling downstream tasks such as community detection, influence propagation, and information diffusion at a reduced computational cost. The Spectral Preservation Network introduces two key components: the Joint Graph Evolution layer and the Spectral Concordance loss. The former jointly transforms both the graph topology and the node feature matrix, allowing the structure and attributes to evolve adaptively across layers and overcoming the rigidity of static neighborhood aggregation. The latter regularizes these transformations by enforcing consistency in both the spectral properties of the graph and the feature vectors of the nodes. We evaluate the effectiveness of Spectral Preservation Network on node-level sparsification by analyzing well-established metrics and benchmarking against state-of-the-art methods. The experimental results demonstrate the superior performance and clear advantages of our approach.

1 INTRODUCTION

Graphs are the natural language of complex systems, from molecules and transportation networks to social and neural interactions. In recent years, Graph Neural Networks (GNNs) have become the dominant paradigm for learning from such data (Bronstein et al., 2017; Zhou et al., 2020), enabling powerful applications in chemistry (Duvenaud et al., 2015), neuroscience (Zhang et al., 2022), and large-scale network analysis (Hamilton, 2020). Yet, despite their success, standard GNNs suffer from two fundamental limitations. First, they rely on a *fixed graph structure*, which prevents them from adapting connectivity to the task at hand. Second, they quickly run into scalability and expressiveness issues, as message passing tends to oversmooth node representations (Oono & Suzuki, 2020) and becomes inefficient in large, dense graphs.

A natural way to overcome these challenges is to let the model itself *reshape the graph*. Rather than treating the input topology as immutable, one can learn transformations that align structure and features in a task-driven manner, while discarding redundant information. This perspective opens the door to two intertwined objectives: designing neural layers that generate adaptive embeddings by evolving the graph, and introducing principled loss functions that sparsify the topology without breaking its spectral integrity.

In this work, we address both aspects through a new architecture, the **Spectral Preservation Network** (SpecNet). Our contributions are twofold:

- **The Joint Graph Evolution layer (JGE).** A novel mechanism that reparameterizes the graph Laplacian via bilinear transformations, producing embeddings on dynamically learned topologies rather than static input graphs. This layer mitigates oversmoothing and rigidity, enabling richer structure–feature interactions.
- **The Spectral Concordance loss (SC).** A loss that sparsifies the graph at the node level by combining Laplacian alignment, feature-geometry preservation, and a sparsity-inducing trace penalty. This formulation removes uninformative nodes while maintaining global spectral properties and feature consistency.

Together, these components allow SpecNet to move beyond static message passing: the graph is no longer a constraint, but a variable optimized during learning. We show that this approach provides a principled and flexible framework for *node-level sparsification*, significantly improving compression efficiency and downstream performance compared to existing heuristic or task-specific methods.

In summary, this paper introduces a new paradigm for graph representation learning: embedding layers that actively reshape structure, coupled with spectral losses that guide sparsification. This synergy equips GNNs with both flexibility and stability, paving the way for scalable, spectrum-driven graph learning.

2 SPECTRAL PRESERVATION NETWORK

Spectral Preservation Network (SpecNet) is a novel spectral-based neural architecture that jointly learns graph structure and node representations through recursive updates of the graph Laplacian and the node feature space. By operating in the spectral domain and decoupling graph topology from input features, SpecNet enables the dynamic synthesis of structurally coherent graphs while preserving global properties and informative node characteristics.

Consider a graph $G = (V, E)$ without self-loops, where $V = \{1, \dots, n\}$ denotes the set of nodes and $E = \{e_1, \dots, e_m\}$ the set of edges. The structure of G can be algebraically represented in two equivalent forms: via its adjacency matrix or via its incidence matrix. The definition of the adjacency matrix $A \in \mathbb{R}^{n \times n}$ depends on whether G is directed or undirected. In *directed graphs* each edge $e_k = i_k \rightarrow j_k$ represents a directed connection from node i_k to node j_k : the adjacency matrix A is defined elementwise as Equation 1. In *undirected graphs* each edge $e_k = \{i_k, j_k\}$ is an unordered pair representing a bidirectional connection between nodes i_k and j_k : the corresponding adjacency matrix is given by Equation 2.

$$A_{ij} = \begin{cases} 1 & \text{if } i \rightarrow j \in E, \\ 0 & \text{otherwise.} \end{cases} \quad (1) \quad A_{ij} = A_{ji} = \begin{cases} 1 & \text{if } \{i, j\} \in E, \\ 0 & \text{otherwise.} \end{cases} \quad (2)$$

For undirected graphs, A is symmetric by construction.

The incidence matrix $B \in \{-1, 0, +1\}^{n \times m}$ encodes node-edge relationships based on a chosen orientation for each edge. Its entries are defined as:

$$B_{i,k} = \begin{cases} -1 & \text{if node } i \text{ is the tail of edge } e_k, \\ +1 & \text{if node } i \text{ is the head of edge } e_k, \\ 0 & \text{otherwise.} \end{cases} \quad (3)$$

In directed graphs, each edge $e_k = i_k \rightarrow j_k$ has an intrinsic orientation, with $B_{i_k, k} = -1$ and $B_{j_k, k} = +1$. For undirected graphs, an arbitrary but fixed orientation is imposed (e.g., by designating the node with the smaller index as the tail and the larger as the head) before applying the same rule.

Let $X \in \mathbb{R}^{n \times f}$ be the node feature, encoding input features, where each row X_i corresponds to node $i \in V$ and contains an f -dimensional attribute vector. This matrix serves as the initial representation of node characteristics. The degree matrix $D \in \mathbb{R}^{n \times n}$ is diagonal, with entries D_{ii} equal to the number of edges incident to node i . For directed graphs, D can be decomposed as $D = D^+ + D^-$, where D^+ and D^- are diagonal matrices capturing in-degrees and out-degrees, respectively. Specifically, D_{ii}^+ counts the number of edges directed toward node i , while D_{ii}^- counts those originating from it.

2.1 JOINT GRAPH EVOLUTION LAYER

The core of SpecNet is the Joint Graph Evolution (JGE) layer, a novel architectural component that operates on a pair of input matrices: an adjacency matrix $Q_t \in \mathbb{R}^{r_t \times r_t}$ and a feature matrix $H_t \in \mathbb{R}^{r_t \times p_t}$, both sharing the same number of rows. Here, t denotes the layer index within the network. The transformation produces embeddings as updated matrices $Q_{t+1} \in \mathbb{R}^{r_{t+1} \times r_{t+1}}$ and $H_{t+1} \in \mathbb{R}^{r_{t+1} \times p_{t+1}}$, corresponding to a new node set of size r_{t+1} and a space of p_{t+1} features.

108 The forward computation of the JGE at layer t is defined as:
 109

$$\begin{aligned} 110 \quad J_{t+1} &= \Theta_t H_t^\top U_t Q_t V_t H_t, \\ 111 \quad Q_{t+1} &= \sigma_1(J_{t+1} \Phi_t), \\ 112 \quad H_{t+1} &= \sigma_2(J_{t+1} \Psi_t), \end{aligned} \tag{4}$$

113 where $J_{t+1} \in \mathbb{R}^{p_t \times p_t}$ is an intermediate representation, and $\Theta_t \in \mathbb{R}^{r_{t+1} \times p_t}$, $\Phi_t \in \mathbb{R}^{p_t \times r_{t+1}}$,
 114 and $\Psi_t \in \mathbb{R}^{p_t \times p_{t+1}}$ are learnable parameter matrices. The functions σ_1 and σ_2 denote elementwise
 115 nonlinearities. The matrices $U_t, V_t \in \mathbb{R}^{r_t \times r_t}$ are diagonal normalization matrices defined as follows.
 116 Define the row-wise and column-wise absolute sums of Q_t :
 117

$$118 \quad [u_t]_i = \sum_{j=1}^{r_t} |(Q_t)_{ij}|, \quad [v_t]_j = \sum_{i=1}^{r_t} |(Q_t)_{ij}|. \tag{5}$$

122 The diagonal entries of U_t and V_t are then given by:
 123

$$124 \quad [U_t]_{ii} = \begin{cases} 1/\sqrt{[u_t]_i}, & \text{if } [u_t]_i > 0, \\ 0, & \text{otherwise,} \end{cases} \quad [V_t]_{jj} = \begin{cases} 1/\sqrt{[v_t]_j}, & \text{if } [v_t]_j > 0, \\ 0, & \text{otherwise.} \end{cases} \tag{6}$$

127 This normalization ensures that the matrix product $U_t Q_t V_t$ is non-expansive with respect to the
 128 Euclidean norm, as discussed in Appendix A. This property contributes to the numerical stability
 129 of the architecture. Non-expansiveness acts as an implicit regularizer, preventing the uncontrolled
 130 growth of feature magnitudes, an issue that can compromise optimization in deep architectures.
 131 Unlike explicit normalization techniques such as batch normalization (Ioffe & Szegedy, 2015) or
 132 spectral normalization (Miyato et al., 2018), this approach enforces norm constraints by construc-
 133 tion, without introducing additional computational branches. Moreover, it contributes to controlling
 134 the Lipschitz constant of the network, which has implications for both generalization and adversarial
 135 robustness (Gouk et al., 2021; Pauli et al., 2022; Zühlke & Kudenko, 2025).

136 Since Q_t and H_t correspond to a graph adjacency matrix and a node feature matrix, respectively, in
 137 a new space, the JGE can be interpreted as a learnable mechanism for jointly evolving both graph
 138 structure and node representations. The output Q_{t+1} represents a transformed graph topology with
 139 updated edge weights and a redefined node set, while H_{t+1} encodes node features aligned with this
 140 new structure.

141 A Spectral Preservation Network is constructed by stacking multiple JGE layers. The initial inputs
 142 are defined as:

$$143 \quad H_0 = X, \quad Q_0 = A, \tag{7}$$

145 where $X \in \mathbb{R}^{n \times f}$ is the node feature matrix and $A \in \mathbb{R}^{n \times n}$ is the initial adjacency matrix. This
 146 implies $r_0 = n$ and $p_0 = f$, with the initial normalization matrices given by:

$$147 \quad [U_0]_{ii} = \begin{cases} 1/\sqrt{D_{ii}^-}, & \text{if } D_{ii}^- > 0, \\ 0, & \text{otherwise,} \end{cases} \quad [V_0]_{ii} = \begin{cases} 1/\sqrt{D_{ii}^+}, & \text{if } D_{ii}^+ > 0, \\ 0, & \text{otherwise,} \end{cases} \tag{8}$$

150 where D_{ii} denotes the degree of node i , as aforesaid.

152 In the case of undirected graphs, where the adjacency matrix A is symmetric, each JGE layer admits
 153 a simplified variant, referred to as the Light Joint Graph Evolution (LJGE) layer. This formulation
 154 exploits the symmetry of Q_t to reduce both computational overhead and the number of learnable
 155 parameters. The update equations for the LJGE are given by:

$$\begin{aligned} 156 \quad H_{t+1} &= \Theta_t H_t^\top U_t Q_t U_t H_t, \\ 157 \quad Q_{t+1} &= \sigma(H_{t+1} \Theta_t^\top), \end{aligned} \tag{9}$$

160 where $\Theta_t \in \mathbb{R}^{r_{t+1} \times f}$ is the only learnable parameter matrix at layer t , and σ denotes an elementwise
 161 activation function. By leveraging the symmetry of Q_t , this design yields a more lightweight and
 efficient alternative to the full JGE formulation.

162

163

164

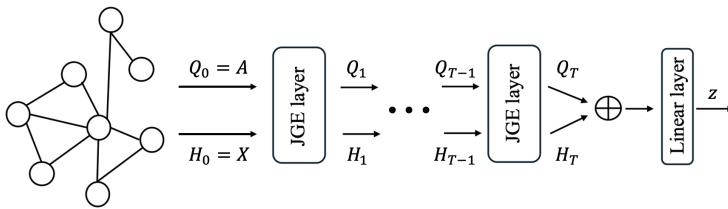
165

166

167

168

169

170 Figure 1: Node-level sparsification Pipeline. The operator \oplus denotes the concatenation of the vec-
171 torized (flattened) forms of Q_T and H_T .

172

173

2.2 NODE SPARSIFICATION

174

175 SpecNet performs node pruning by leveraging the final representations Q_T and H_T produced by
 176 the last JGE layer (at step T). These matrices are first vectorized and concatenated into a single
 177 feature vector, which is then fed into a feedforward layer equipped with a Gumbel–sigmoid activa-
 178 tion. The output is a binary selection mask $z \in \{0, 1\}^n$, where each entry z_i indicates whether
 179 node i is retained. The mask is transformed into a diagonal matrix $Z = \text{diag}(z_1, \dots, z_n)$, which
 180 is used to extract the subgraph induced by the selected nodes, with updated adjacency matrix ZAZ
 181 and feature matrix ZX . In the case of directed graphs, post-processing may be necessary to elim-
 182 inate isolated nodes resulting from the removal of both their in-neighbors and out-neighbors. The
 183 node-level sparsification approach is visually illustrated in Figure 1.

184

185

2.3 SPECTRAL CONCORDANCE

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

The proposed loss function, termed as Spectral Concordance (SC) loss, measures the discrepancy
 between the leading spectra of the Laplacian of the original input graph and that of the graph synthe-
 sized by SpecNet. This choice is motivated by the fact that the eigenvalues of the graph Laplacian
 capture fundamental structural properties such as connectivity, clustering tendencies, and diffusion
 dynamics, as detailed in Appendix E.1.

The combinatorial Laplacian is most commonly defined in terms of the adjacency matrix $A \in \{0, 1\}^{n \times n}$ and degree matrix $D \in \mathbb{N}^{n \times n}$ as $L = D - A$. While this definition suffices for undirected
 graphs (where A is symmetric), it does not generalize cleanly to directed graphs, which admit both
 an Out-Degree Laplacian $L^- = D^- - A$ and an In-Degree Laplacian $L^+ = D^+ - A$, that may be
 non-symmetrical.

An alternative formulation uses the incidence matrix $B \in \{-1, 0, 1\}^{n \times m}$, in which case $L = BB^\top$
 provides a unified definition that applies equally to directed and undirected graphs. As shown in
 Appendix B, this incidence-based Laplacian is symmetric and positive semidefinite. Although valid,
 this formulation is computationally inefficient, as the incidence matrix $B \in \mathbb{R}^{n \times m}$ scales with the
 number of edges m , which can be comparable to n^2 in dense graphs. Fortunately, an equivalent
 and more compact representation for directed graphs is derived in Appendix C, hence the Laplacian
 matrix can be computed as:

$$L = BB^\top = \begin{cases} D - A, & \text{if the graph is undirected,} \\ D - (A + A^\top), & \text{otherwise.} \end{cases} \quad (10)$$

This identity enables Laplacian computation using only node-level structures, avoiding the explicit
 construction of the incidence matrix.

To ensure strict positive definiteness, the shifted Laplacian can be defined as:

$$L^* = L + \alpha_1 I, \quad (11)$$

with $\alpha_1 \in \mathbb{R}_{>0}$ and I as the identity matrix. Appendix D proves that L^* is nonsingular, symmetric,
 and positive definite, implying that all its eigenvalues are real and strictly positive.

Let $[\lambda_1 \geq \lambda_2 \geq \dots]_{L^*}$ denote the eigenvalues of L^* in descending order, and let $Z \in \{0, 1\}^{n \times n}$
 be the diagonal selection matrix indicating the retained nodes as output of the SpecNet. The

216 spectral component of the SC loss function compares the top k_1 eigenvalues of the original and
217 generated graphs:

$$219 \quad \mathcal{L}_{\text{Laplace}}(L_A^*, L_{ZAZ}^*) = \frac{\|[\lambda_1, \dots, \lambda_{k_1}]_{L_A^*} - [\lambda_1, \dots, \lambda_{k_1}]_{L_{ZAZ}^*}\|_2}{\sum_{i,j: i \neq j}^n [L_A^*]_{ij}}, \quad (12)$$

222 where L_A^* is the shifted Laplacian of the original adjacency matrix A , while L_{ZAZ}^* is the shifted
223 Laplacian of the generated adjacency matrix ZAZ . The summation term in the denominator is
224 introduced to normalize the numerator of the loss function. This normalization is motivated by
225 *Gerschgorin's Circle Theorem*, which provides bounds on the location of the eigenvalues of a
226 matrix (Varga, 2004). In the specific case where the matrix is symmetric and positive definite, all
227 eigenvalues are real and positive. This implies that the lower bound of the spectrum is zero. The
228 use of the summation in the denominator thus ensures that the scale of the loss is properly adjusted,
229 preventing unbounded growth due to large row sums (which influence the Gerschgorin discs), and
230 guarantees numerical stability by keeping the loss within a meaningful range.

231 Beyond the spectral structure of the graph Laplacian, we also consider the alignment of the latent
232 feature space induced by SpecNet. Specifically, we introduce an auxiliary term that penalizes
233 spectral discrepancies between the input features $X \in \mathbb{R}^{n \times f}$ and the final feature representation
234 $ZX \in \mathbb{R}^{r_T \times p_T}$.

235 Define the shifted Gram matrices:

$$236 \quad M_X^* = X^\top X + \alpha_2 I, \quad M_{ZX}^* = (ZX)^\top ZX + \alpha_2 I = X^\top ZX + \alpha_2 I, \quad (13)$$

237 where $\alpha_2 > 0$ ensures that both matrices are positive definite. Let $[\lambda_1 \geq \lambda_2 \geq \dots]_{M_X^*}$ and
238 $[\lambda_1 \geq \lambda_2 \geq \dots]_{M_{ZX}^*}$ denote their ordered eigenvalues. A loss component, similar to Equation 12,
239 comparing the top k_2 eigenvalues of M_X^* and M_{ZX}^* , can be defined:

$$241 \quad \mathcal{L}_{\text{Gram}}(M_X, M_{ZX}) = \frac{\|[\lambda_1, \dots, \lambda_{k_2}]_{M_X^*} - [\lambda_1, \dots, \lambda_{k_2}]_{M_{ZX}^*}\|_2}{\sum_{i,j: i \neq j}^n |[M_X^*]_{ij}|}. \quad (14)$$

244 where the denominator ensures, once again, the normalization by the Gershgorin radius. This term
245 encourages the dominant modes of variation in the learned features to match those of the original
246 input, and, as a consequence, it serves as a regularizer, promoting the preservation of global structure
247 and expressivity in the learned feature space.

248 The Spectral Concordance (SC) is defined as a weighted combination of the Laplacian and Gram
249 alignment losses introduced in Equations 12 and 14:

$$251 \quad \mathcal{L}(L_A^*, M_X^*, L_{ZAZ}^*, M_{ZX}^*) = 1 - e^{-\mathcal{L}_{\text{Laplace}}(L_A^*, L_{ZAZ}^*)} + \beta \left(1 - e^{-\mathcal{L}_{\text{Gram}}(M_X^*, M_{ZX}^*)} \right), \quad (15)$$

253 where $\beta > 0$ controls the trade-off between preserving the input graph's topology and retaining the
254 feature structure, while the exponential functions contribute to bounding the loss terms in the range
255 $(0, 1]$. In the specific setting of node-level sparsification, where the input and output graphs share
256 the same dimensions, a regularization term is added to discourage trivial identity mappings:

$$257 \quad \mathcal{L}_{\text{Spar}}(L_A^*, M_X^*, L_{ZAZ}^*, M_{ZX}^*) = \mathcal{L}(L_A^*, M_X^*, L_{ZAZ}^*, M_{ZX}^*) + \frac{\lambda}{n} \text{tr}(Z), \quad (16)$$

259 where $\lambda > 0$ is a regularization coefficient that controls the degree of sparsification introduced by
260 the network in the generated graph. The trace term, $\text{tr}(Z) = \sum_i Z_{ii}$, penalizes the number of
261 selected nodes, thereby promoting compact subgraph generations and reducing the risk of trivially
262 replicating the input.

263 A deep and comprehensive discussion about the motivation, stability, and time and space complexity
264 of SpecNet is provided in Appendix E.

266 3 EXPERIMENTAL TEST-BED AND RESULTS

268 We evaluate the proposed approach on five real-world attributed graphs: Cora, Citeseer, Actors,
269 PubMed and Twitch-EN. A summary of their topological statistics is reported in Table 1, while the

270
271
272
273
274
275
276
277

Dataset	Graph Type	Nodes	Edges	Attributes	Type
Cora	Citation	2,708	5,429	1,433	Directed
Citeseer	Citation	3,312	4,591	3,703	Directed
Actors	Co-occurrence	7,600	29,926	932	Directed
PubMed	Citation	19,717	88,648	500	Undirected
Twitch-EN	Social	7,126	70,648	128	Undirected

278 descriptions and the links to access them are reported in Appendix F.
279280 To validate the proposed method, we first conducted a graph-level analysis comparing the
281 original graph with its sparsified version produced by our approach, focusing on quantitative
282 measures. In this analysis, we considered two categories of metrics: *connection-based*, which capture
283 both local properties such as node degree and global properties related to clustering or community
284 structure, and *spectral-based*, derived from the eigenvalues and eigenvectors of the graph. The
285 connection-based metrics include the size of the Largest Connected Component (LCC) n_{LCC} , the
286 average node degree \bar{k} as well as the average in-degree \bar{k}_{in} and out-degree \bar{k}_{out} , and the modularity
287 M . While the spectral measures include the Minimum Absolute Spectral Similarity (MASS) δ_{min}
288 and the epidemic threshold τ_c . The description of each metric is provided in Appendix G.
289290 In a second set of experiments, we compared our method against existing sparsification techniques.
291 Specifically, we considered: (i) Random Uniform Sparsifier (RUS), which randomly samples edges
292 from the adjacency matrix to construct a sparsified graph; (ii) Spielman Sparsifier (SS) (Spielman
293 & Srivastava, 2011), which relies on effective resistance values of edges for sparsification; (iii) the
294 KSJ (Jaccard Similarity) and KSCT (Common Triangles) methods proposed in (Kim et al., 2022),
295 which measure edge importance to guide sparsification; and (iv) D-Spar (Liu et al., 2023), a neural-
296 based sparsification approach. Since our experiments cover both directed and undirected graphs, all
297 compared methods were adapted to properly account for edge directionality. Further details on these
298 approaches are provided in Appendix H.
299300 **Results.** Table 2 shows how the structural and spectral properties of the graphs evolve after spar-
301 sification via SpecNet, under different reduction levels (i.e., number of preserved eigenvalues
302 λ), reporting the mean and standard deviation over 10 runs. To show which topological traits are
303 preserved or altered with respect to the original graph, we also report the reference metric values
304 computed on the input graph (shown in the row immediately above each dataset’s sparsified results).
305306 After sparsifying with SpecNet, in Cora, the size of the largest connected component does not
307 decrease monotonically with the number of retained eigenvalues. This is due to the non-monotonic
308 number of edges preserved by the sparsification procedure: for higher numbers of eigenvalues (e.g.,
309 32), more edges are selected compared to some intermediate cases, which allows additional nodes to
310 remain connected or rejoin the LCC. The average degrees decrease proportionally with the reduction
311 level, while the graph retains its modular structure, as evidenced by stable modularity scores. Also
312 the MASS remains relatively high (above 0.65), approaching 0.85 for larger numbers of eigenvalues.
313 This indicates that even after sparsification, the spectral structure of Cora is largely preserved. The
314 epidemic threshold is preserved hence demonstrating that SpecNet keeps the network robustness
315 level of the original graph.
316317 Over Citeseer, SpecNet achieves effective sparsification while maintaining the core structure of
318 the graph. The LCC size and the average degree are reduced as expected, but the size of the largest
319 connected component decreases as the number of the eigenvalues increases. However, the main
320 connected component still contains a significant portion of nodes. Modularity remains relatively un-
321 changed, suggesting that the community structure is preserved. Accordingly, the MASS stays above
322 0.71, showing that the sparsified graphs retain a substantial part of the original spectral character-
323 istics, with only moderate deviation. Also on this citation network the functional robustness of the
324 sparsified graph remains stable.
325326 Also on Actors, despite the sparsification inducted, the modularity remains stable, indicating that
327 community structures are largely preserved. The MASS values are consistently high (above 0.91
328 for the smallest eigenvalue counts), showing that the spectral properties of the network are well
329 maintained. The epidemic threshold is again preserved showing that the sparsification process does
330 not significantly affect the network’s key dynamical properties.
331

324

325 Table 2: SpecNet graph quantitative measures computed for different numbers of eigenvalues.

Dataset	# of λ	n_{edges}	n_{LCC}	\bar{k}	\bar{k}_{in}	\bar{k}_{out}	M	δ_{\min}	τ_c
Cora	-	5,429	2,485	4.01	2.00	2.00	0.82	-	0.07
	2	3,599 \pm 60	1,810 \pm 33	2.66 \pm 0.05	1.33 \pm 0.02	1.33 \pm 0.02	0.82 \pm 0.01	0.65 \pm 0.09	0.07 \pm 0.00
	4	3,645 \pm 67	1,828 \pm 15	2.69 \pm 0.05	1.35 \pm 0.03	1.35 \pm 0.03	0.82 \pm 0.01	0.75 \pm 0.10	0.07 \pm 0.00
	8	3,465 \pm 79	1,745 \pm 30	2.56 \pm 0.06	1.28 \pm 0.03	1.28 \pm 0.03	0.81 \pm 0.01	0.80 \pm 0.07	0.07 \pm 0.00
	16	3,067 \pm 39	1,559 \pm 22	2.27 \pm 0.05	1.13 \pm 0.01	1.13 \pm 0.01	0.80 \pm 0.01	0.80 \pm 0.06	0.07 \pm 0.00
	32	2,551 \pm 44	1,476 \pm 25	2.62 \pm 0.03	1.21 \pm 0.02	1.21 \pm 0.02	0.81 \pm 0.01	0.85 \pm 0.06	0.07 \pm 0.00
Citeseer	-	2,110	1,200	1.30	1.30	1.30	0.82	-	0.07
	2	1,396 \pm 59	1,099 \pm 64	2.05 \pm 0.04	1.03 \pm 0.02	1.03 \pm 0.02	0.89 \pm 0.00	0.71 \pm 0.11	0.07 \pm 0.00
	4	3,357 \pm 52	1,482 \pm 64	2.03 \pm 0.03	1.01 \pm 0.02	1.01 \pm 0.02	0.89 \pm 0.00	0.73 \pm 0.11	0.07 \pm 0.00
	8	3,181 \pm 55	1,388 \pm 61	1.92 \pm 0.03	0.96 \pm 0.02	0.96 \pm 0.02	0.88 \pm 0.00	0.76 \pm 0.11	0.07 \pm 0.00
	16	2,812 \pm 49	1,192 \pm 44	1.70 \pm 0.05	0.85 \pm 0.02	0.85 \pm 0.02	0.87 \pm 0.00	0.76 \pm 0.10	0.07 \pm 0.00
	32	2,216 \pm 32	908 \pm 38	1.34 \pm 0.02	0.67 \pm 0.01	0.67 \pm 0.01	0.83 \pm 0.01	0.75 \pm 0.10	0.07 \pm 0.00
Actors	-	29,926	7,600	7.88	3.94	3.94	0.51	-	0.03
	2	18,583 \pm 979	5,299 \pm 164	4.89 \pm 0.26	2.45 \pm 0.13	2.45 \pm 0.13	0.52 \pm 0.01	0.91 \pm 0.01	0.03 \pm 0.00
	4	16,014 \pm 5,877	4,548 \pm 1,404	4.37 \pm 1.58	2.19 \pm 0.77	2.19 \pm 0.77	0.50 \pm 0.01	0.92 \pm 0.01	0.03 \pm 0.00
	8	20,814 \pm 1,294	5,749 \pm 268	5.87 \pm 0.34	2.54 \pm 0.17	2.54 \pm 0.17	0.54 \pm 0.01	0.93 \pm 0.01	0.03 \pm 0.00
	16	16,447 \pm 1,000	5,291 \pm 10	5.29 \pm 0.30	2.64 \pm 0.13	2.64 \pm 0.13	0.52 \pm 0.01	0.94 \pm 0.01	0.03 \pm 0.00
	32	20,323 \pm 227	5,738 \pm 44	5.35 \pm 0.06	2.67 \pm 0.03	2.67 \pm 0.03	0.53 \pm 0.00	0.94 \pm 0.01	0.03 \pm 0.00
PubMed	-	44,324	19,717	4.50	4.50	4.50	0.77	-	0.04
	2	21,629 \pm 734	10,812 \pm 133	2.19 \pm 0.07	2.19 \pm 0.07	2.19 \pm 0.07	0.78 \pm 0.00	0.40 \pm 0.13	0.05 \pm 0.00
	4	23,478 \pm 668	11,109 \pm 119	2.38 \pm 0.07	2.38 \pm 0.07	2.38 \pm 0.07	0.77 \pm 0.01	0.44 \pm 0.11	0.05 \pm 0.00
	8	30,823 \pm 3,256	13,933 \pm 1,496	3.13 \pm 0.33	3.13 \pm 0.33	3.13 \pm 0.33	0.76 \pm 0.01	0.52 \pm 0.14	0.05 \pm 0.00
	16	29,086 \pm 2,800	13,677 \pm 1,139	2.95 \pm 0.28	2.95 \pm 0.28	2.95 \pm 0.28	0.77 \pm 0.01	0.51 \pm 0.14	0.05 \pm 0.00
	32	22,844 \pm 844	11,239 \pm 331	2.32 \pm 0.09	2.32 \pm 0.09	2.32 \pm 0.09	0.78 \pm 0.01	0.48 \pm 0.20	0.05 \pm 0.00
Twitch-EN	-	35,324	7,126	9.91	9.91	9.91	0.45	-	0.02
	2	24,464 \pm 526	5,076 \pm 84	6.96 \pm 0.15	6.96 \pm 0.15	6.96 \pm 0.15	0.69 \pm 0.01	0.73 \pm 0.15	0.05 \pm 0.00
	4	24,906 \pm 721	4,693 \pm 138	6.09 \pm 0.20	6.09 \pm 0.20	6.71 \pm 0.20	0.44 \pm 0.01	0.74 \pm 0.14	0.05 \pm 0.00
	8	25,768 \pm 3,368	4,838 \pm 777	7.23 \pm 0.95	7.23 \pm 0.95	7.23 \pm 0.95	0.43 \pm 0.01	0.78 \pm 0.10	0.05 \pm 0.00
	16	25,659 \pm 4,675	4,846 \pm 1,078	7.20 \pm 1.31	7.20 \pm 1.31	7.20 \pm 1.31	0.44 \pm 0.01	0.85 \pm 0.07	0.02 \pm 0.00
	32	24,915 \pm 2,443	4,219 \pm 633	6.99 \pm 0.69	6.99 \pm 0.69	6.99 \pm 0.69	0.44 \pm 0.01	0.86 \pm 0.03	0.02 \pm 0.00

In PubMed, the LCC size decreases proportionally with the reduction in the number of edges, while the average degree similarly decreases. Modularity remains again stable across sparsification levels, MASS values, however, are lower compared to the other smaller datasets. This is expected given the large size and density of the graph: sparsification with few retained eigenvalues removes a substantial fraction of edges, inducing more pronounced deviations in the spectral structure, and thus a lower minimum abstract spectral similarity. The epidemic threshold shows a minor increase: this minor change, typical when sparsifying large networks Kuga & Tanimoto (2022), is due to a small reduction in the largest eigenvalue of the adjacency matrix, reflecting a minimal loss in the network’s diffusion capacity. Overall, the sparsification preserves the robustness of the network.

For Twitch-EN, the LCC size and average degree both decrease as expected with stronger sparsification. The network maintains a relatively low modularity but consistent with the original, reflecting its weak community structure. MASS values remain above 0.73, indicating that the main spectral characteristics are preserved. Finally, also for this dataset, the epidemic threshold remains stable.

The results in Table 3 demonstrate that SpecNet consistently achieves high MASS values across all datasets, particularly on Cora, Citeseer, and Pubmed, effectively preserving the original spectral structure compared to locally-based methods (KSJ, KSCT) and D-Spar, which show much lower values in many cases. This indicates that the reduction performed by SpecNet maintains the global properties of the graph, which is critical for tasks such as community detection or information propagation. Compared to RUS, SpecNet is more stable, especially on datasets like Actors where random edge selection leads to higher variance, while Spielman Sparsifier (SS) performs well as expected for a spectral method, yet SpecNet is often competitive or superior, particularly at medium-to-high values of λ (8–32), highlighting the effectiveness of its spectral regularization component. Local attribute-based variants such as KSJ and KSCT generally achieve lower MASS on datasets like Citeseer and Pubmed, indicating that purely local methods struggle to preserve the global characteristics of large graphs, whereas SpecNet maintains consistent values thanks to its joint transformation of topology and node features. D-Spar shows very low MASS values on Cora and Citeseer, demonstrating that, while useful for GNN preprocessing, it does not preserve the global structure of the sparsified graphs, unlike SpecNet, which produces graphs that remain faithful to the original. Finally, SpecNet maintains relatively high MASS even for small numbers of eigenvalues ($\lambda = 2$ –4), showing that a good global representation can be retained with few spectral dimensions, while larger values of λ (16–32) result in stable or improved performance, confirming the model’s ability to leverage additional spectral information without introducing noise.

4 RELATED WORK

Our contributions address two complementary aspects of graph learning: (i) the design of a novel neural layer that jointly embeds node features and structural information, and (ii) a loss function for spectral sparsification that removes nodes while preserving global properties. We therefore organize the related work into two groups: methods for *graph embeddings and joint structure–feature learning*, and approaches to *graph sparsification*.

Table 3: Comparison with other state-of-the-art sparsification methods in terms of MASS. For all the sparsifiers, the number of network links that are kept, i.e., the sparsification threshold, is the same adopted by our sparsifier.

Dataset	# of λ	RUS	SS	KSJ	KSCT	D-SPAR	SpecNet
Cora	2	0.55 \pm 0.03	0.65 \pm 0.00	0.64 \pm 0.01	0.54 \pm 0.01	0.18 \pm 0.00	0.65 \pm 0.09
	4	0.55 \pm 0.04	0.75 \pm 0.00	0.73 \pm 0.01	0.65 \pm 0.02	0.18 \pm 0.00	0.75 \pm 0.10
	8	0.54 \pm 0.03	0.76 \pm 0.01	0.72 \pm 0.00	0.64 \pm 0.01	0.18 \pm 0.00	0.80 \pm 0.07
	16	0.45 \pm 0.04	0.78 \pm 0.01	0.74 \pm 0.01	0.67 \pm 0.02	0.20 \pm 0.00	0.80 \pm 0.08
	32	0.56 \pm 0.04	0.83 \pm 0.00	0.80 \pm 0.01	0.63 \pm 0.01	0.18 \pm 0.00	0.83 \pm 0.06
Citeseer	2	0.42 \pm 0.03	0.61 \pm 0.00	0.52 \pm 0.00	0.52 \pm 0.00	0.21 \pm 0.00	0.71 \pm 0.11
	4	0.41 \pm 0.02	0.61 \pm 0.01	0.52 \pm 0.00	0.52 \pm 0.00	0.22 \pm 0.01	0.73 \pm 0.11
	8	0.40 \pm 0.03	0.61 \pm 0.01	0.52 \pm 0.00	0.52 \pm 0.00	0.21 \pm 0.00	0.76 \pm 0.11
	16	0.39 \pm 0.05	0.61 \pm 0.01	0.52 \pm 0.00	0.52 \pm 0.00	0.18 \pm 0.01	0.76 \pm 0.10
	32	0.39 \pm 0.05	0.61 \pm 0.01	0.52 \pm 0.00	0.52 \pm 0.00	0.21 \pm 0.00	0.75 \pm 0.10
Actors	2	0.63 \pm 0.04	0.82 \pm 0.00	0.41 \pm 0.00	0.83 \pm 0.00	0.73 \pm 0.00	0.91 \pm 0.01
	4	0.59 \pm 0.21	0.58 \pm 0.47	0.47 \pm 0.00	0.83 \pm 0.03	0.71 \pm 0.02	0.92 \pm 0.00
	8	0.71 \pm 0.04	0.82 \pm 0.00	0.41 \pm 0.00	0.88 \pm 0.00	0.73 \pm 0.01	0.93 \pm 0.01
	16	0.67 \pm 0.02	0.59 \pm 0.47	0.47 \pm 0.45	0.57 \pm 0.47	0.68 \pm 0.15	0.94 \pm 0.01
	32	0.68 \pm 0.02	0.82 \pm 0.00	0.58 \pm 0.22	0.88 \pm 0.00	0.76 \pm 0.02	0.94 \pm 0.01
Pubmed	2	0.40 \pm 0.08	0.40 \pm 0.00	0.40 \pm 0.10	0.38 \pm 0.13	0.02 \pm 0.02	0.40 \pm 0.13
	4	0.40 \pm 0.01	0.41 \pm 0.09	0.41 \pm 0.00	0.41 \pm 0.02	0.02 \pm 0.02	0.44 \pm 0.11
	8	0.49 \pm 0.06	0.46 \pm 0.00	0.48 \pm 0.04	0.47 \pm 0.08	0.07 \pm 0.07	0.52 \pm 0.14
	16	0.44 \pm 0.02	0.48 \pm 0.15	0.41 \pm 0.03	0.41 \pm 0.03	0.04 \pm 0.04	0.51 \pm 0.14
	32	0.38 \pm 0.06	0.42 \pm 0.01	0.41 \pm 0.19	0.41 \pm 0.10	0.02 \pm 0.02	0.48 \pm 0.20
Twitch-EN	2	0.61 \pm 0.08	0.70 \pm 0.20	0.02 \pm 0.00	0.33 \pm 0.08	0.35 \pm 0.07	0.73 \pm 0.15
	4	0.58 \pm 0.02	0.62 \pm 0.00	0.01 \pm 0.00	0.34 \pm 0.00	0.34 \pm 0.00	0.74 \pm 0.14
	8	0.58 \pm 0.05	0.72 \pm 0.14	0.01 \pm 0.00	0.34 \pm 0.04	0.35 \pm 0.02	0.78 \pm 0.10
	16	0.55 \pm 0.02	0.72 \pm 0.00	0.01 \pm 0.00	0.33 \pm 0.03	0.34 \pm 0.00	0.85 \pm 0.07
	32	0.60 \pm 0.07	0.72 \pm 0.16	0.01 \pm 0.00	0.34 \pm 0.06	0.35 \pm 0.05	0.86 \pm 0.03

4.1 GRAPH EMBEDDINGS AND JOINT STRUCTURE–FEATURE LEARNING

Learning expressive node embeddings has been a cornerstone of graph representation learning. Early unsupervised models such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) rely on random walks to capture local connectivity patterns, but they neglect node attributes and provide no control over graph structure. Spectral clustering (von Luxburg, 2007) similarly embeds nodes in eigenspaces of the Laplacian, but operates on fixed graphs and lacks feature integration.

Message-passing neural networks, including GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018), combine structural neighborhoods with node features through aggregation schemes. These models enable inductive learning and leverage both topology and attributes, but they assume static input graphs and suffer from oversmoothing in deeper layers (Li et al., 2018; Oono & Suzuki, 2020). Moreover, structure and features are typically entangled into a single embedding space, limiting flexibility. Extensions such as DropEdge (Rong et al., 2020) or attention-weight pruning (Veličković et al., 2018) introduce heuristic sparsification, but without principled guarantees.

Our proposed layer departs from these approaches by *jointly learning embeddings and structural transformations*. Through bilinear reparameterizations of the Laplacian, it synthesizes adaptive graph topologies that are not restricted to subgraphs of the input. This allows the model to discover intermediate structures aligned with both node features and spectral properties, providing richer and more flexible embeddings than static or purely feature-agnostic methods.

4.2 GRAPH SPARSIFICATION

Graph reduction techniques can be broadly divided into sparsification, coarsening, and condensation (Hashemi et al., 2024). We focus on sparsification, which seeks sparse graphs that approximate the original structure while reducing complexity.

Classical and spectral methods. Benczúr & Karger (1996) introduced cut-preserving sparsifiers, while Spielman & Srivastava (2011) and Batson et al. (2013) developed nearly-linear algorithms sampling edges according to effective resistance. These approaches preserve Laplacian spectra and commute times with strong guarantees, but rely on costly pseudoinverses and do not scale easily. Extensions address weighted, directed, and dynamic graphs (Kapralov et al., 2014), yet remain detached from learning objectives.

Heuristic and geometric pruning. Simpler approaches remove weak or redundant edges by weight thresholding (Yan et al., 2018), neighborhood similarity (Satuluri et al., 2011), or community-preserving heuristics (Leskovec et al., 2009). Backbone extraction methods such as Noise-Corrected

432 filtering (Coscia & Neffke, 2017; Coscia & Rossi, 2019) retain statistically significant edges, while
 433 Ricci curvature (Zhang et al., 2024) or walk-based pruning (Razin et al., 2023) exploit local geometry or
 434 stochastic connectivity. These methods are efficient but heuristic, offering no formal control
 435 over spectral preservation.

436 **Neural sparsification.** Recent models integrate sparsification into learning pipelines. NeuralSparse
 437 (Zheng et al., 2020) learns edge scores for supervised tasks, but outputs strict subgraphs
 438 tied to labels. GSGAN (Wu & Chen, 2020) uses adversarial training to preserve communities via
 439 random walks, while GraphSAINT (Zeng et al., 2020) samples subgraphs for mini-batch training.
 440 PRI (Yu et al., 2022) matches Laplacian spectra through Jensen–Shannon divergence, but fixes graph
 441 size and requires large matrices. DSpars (Liu et al., 2023) approximates effective resistance by node
 442 degrees to accelerate training. While effective, these models rely on supervision, heuristics, or re-
 443 stricted formulations.

444 **Our sparsification.** In contrast, our approach formulates sparsification as a *spectral alignment*
 445 problem with feature integration. A Laplacian-based loss preserves global spectral properties, a
 446 Gram-matrix loss enforces feature geometry alignment, and a trace penalty provides explicit spar-
 447 sity control. This differentiable formulation enables node-level pruning within end-to-end training,
 448 offering a general and unsupervised alternative to heuristic, task-specific, or structure-only methods.

449 Unlike prior work in the literature, we are able to provide both the adjacency matrix and the feature
 450 matrix in a way that remains consistent with the intrinsic properties of the nodes. The only exception
 451 occurs when the features are purely structural, in which case they can be recomputed from the
 452 reduced adjacency matrix.

454 5 CONCLUSION AND FUTURE WORK

455 We introduced Spectral Preservation Network (SpecNet), a novel neural architecture that stacks
 456 Joint Graph Evolution (JGE) layers to jointly evolve both a graph structure and its node representa-
 457 tions. The model is equipped with a new loss function, Spectral Concordance (SC), which enables
 458 principled node-level sparsification by aligning structural and feature spectra. By reparameterizing
 459 the graph Laplacian, SpecNet preserves global properties while overcoming the rigidity of static
 460 message passing that characterizes the existing graph neural network literature. Empirically, our
 461 method outperforms current state-of-the-art approaches on standard benchmarks, particularly under
 462 the MASS metric, demonstrating the effectiveness of spectrum-driven sparsification.

463 This work opens several promising directions for future research. First, beyond node pruning, the
 464 JGE layer naturally supports *graph condensation*: rather than selecting subsets of the original graph,
 465 it can synthesize entirely new graphs and feature matrices that retain the information content of the
 466 input data. Second, extending the formulation beyond square adjacency matrices would allow JGE
 467 to operate on heterogeneous relational data, where multiple groups of objects (potentially belong-
 468 ing to different domains and containing varying numbers of elements) interact through non-square
 469 incidence patterns. Such a generalization would substantially broaden the applicability of our frame-
 470 work to domains ranging from multi-relational networks to cross-modal representation learning.

473 REPRODUCIBILITY STATEMENT

474 To ensure reproducibility of our results, we provide both theoretical and experimental support.
 475 Intuitions, motivation, formal proofs of the main theorems and additional derivations are in-
 476 cluded in the appendix, which clarify the assumptions, the applicability domain, and the limi-
 477 tations of the proposed model. For the experimental validation, we release the full implemen-
 478 tation of our method, together with the preprocessing pipeline and training scripts, available at
 479 <https://anonymous.4open.science/r/CA43>. These materials allow independent
 480 researchers to reproduce the reported results and explore further applications of our approach.

483 REFERENCES

484 Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification
 485 of graphs: theory and algorithms. *Communications of the ACM*, 56(8):87–94, 2013.

486 András A Benczúr and David R Karger. Approximating st minimum cuts in $\tilde{O}(n^2)$ time. In
 487 *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, pp. 47–55,
 488 1996.

489 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
 490 of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008
 491 (10):P10008, 2008.

492 Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
 493 metric deep learning: Going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):
 494 18–42, 2017. doi: 10.1109/MSP.2017.2693418.

495 Claudio Castellano and Romualdo Pastor-Satorras. Thresholds for epidemic spreading in networks.
 496 *Physical review letters*, 105(21):218701, 2010.

497 Yuhang Chen, Haojie Ye, Sanketh Vedula, Alex Bronstein, Ronald Dreslinski, Trevor Mudge, and
 498 Nishil Talati. Demystifying graph sparsification algorithms in graph properties preservation.
 499 *arXiv preprint arXiv:2311.12314*, 2023.

500 Fan R. K. Chung. *Spectral Graph Theory*, volume 92 of *CBMS Regional Conference Series in
 501 Mathematics*. American Mathematical Society, Providence, RI, 1997. ISBN 978-0-8218-0315-8.

502 Michele Coscia and Frank MH Neffke. Network backboning with noisy data. In *2017 IEEE 33rd
 503 international conference on data engineering (ICDE)*, pp. 425–436. IEEE, 2017.

504 Michele Coscia and Luca Rossi. The impact of projection and backboning on network topologies.
 505 In *Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks
 506 Analysis and Mining*, pp. 286–293, 2019.

507 Jane Cullum and Ralph A. Willoughby. *Lanczos Algorithms for Large Symmetric Eigenvalue Com-
 508 putations*, volume 1. Society for Industrial and Applied Mathematics, 2002.

509 Inderjit S. Dhillon, Beresford N. Parlett, and Christof Vömel. The design and implementation of
 510 the mrrr algorithm. *ACM Transactions on Mathematical Software*, 32(4):533–560, 2006. ISSN
 0098-3500. doi: 10.1145/1186785.1186788.

511 Ling Ding, Chao Li, Di Jin, and Shifei Ding. Survey of spectral clustering based on graph theory.
 512 *Pattern Recognition*, pp. 110366, 2024.

513 David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
 514 othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
 515 learning molecular fingerprints. In *Proceedings of the 29th International Conference on Neural
 516 Information Processing Systems - Volume 2*, NIPS’15, pp. 2224–2232. MIT Press, 2015.

517 Gene H. Golub and Charles F. van Loan. *Matrix Computations*. JHU Press, fourth edition, 2013.
 518 ISBN 9781421407944.

519 Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural networks
 520 by enforcing lipschitz continuity. *Machine Learning*, 110(2):393–416, 2021. doi: 10.1007/s109
 521 94-020-05929-w. URL <https://doi.org/10.1007/s10994-020-05929-w>.

522 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings
 523 of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
 524 KDD ’16*, pp. 855–864, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
 525 9781450342322. doi: 10.1145/2939672.2939754. URL <https://doi.org/10.1145/2939672.2939754>.

526 William L Hamilton. Graph representation learning. *Synthesis Lectures on Artificial Intelligence
 527 and Machine Learning*, 14(3):1–159, 2020. doi: 10.2200/S01057ED1V01Y202009AIM046.

528 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
 529 graphs. In *Proceedings of the 31st International Conference on Neural Information Processing
 530 Systems*, NIPS’17, pp. 1025–1035. Curran Associates Inc., 2017. ISBN 9781510860964.

540 Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash, and Wei Jin. A
 541 comprehensive survey on graph reduction: Sparsification, coarsening, and condensation. *arXiv*
 542 *preprint arXiv:2402.03358*, 2024.

543

544 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 545 reducing internal covariate shift. In Francis Bach and David Blei (eds.), *International Conference*
 546 *on Machine Learning (ICLR)*, volume 37 of *Proceedings of Machine Learning Research*, pp.
 547 448–456. PMLR, 2015.

548 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford. Single
 549 pass spectral sparsification in dynamic streams. In *Proceeding of the IEEE 55th Annual Symposi-*
 550 *um on Foundations of Computer Science*, pp. 561–570, 2014. doi: 10.1109/FOCS.2014.66.

551 Jeongseon Kim, Soohwan Jeong, and Sungsu Lim. Link pruning for community detection in social
 552 networks. *Applied Sciences*, 12(13):6811, 2022. doi: 10.3390/app12136811. URL <https://www.mdpi.com/2076-3417/12/13/6811>.

553

554 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 555 works. In *5th International Conference on Learning Representations ICLR*. OpenReview.net,
 556 2017.

557 Douglas J Klein and Milan Randić. Resistance distance. *Journal of mathematical chemistry*, 12(1):
 558 81–95, 1993.

559

560 Kazuki Kuga and Jun Tanimoto. Effects of void nodes on epidemic spreads in networks. *Scientific*
 561 *reports*, 12(1):3957, 2022.

562

563 Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community Struc-
 564 *ture in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters.*
 565 *Internet Mathematics*, 6(1):29–123, 2009.

566

567 C Li, H Wang, W De Haan, CJ Stam, and Piet Van Mieghem. The correlation of metrics in complex
 568 networks with applications in functional brain networks. *Journal of Statistical Mechanics: Theory*
 569 *and Experiment*, 2011(11):P11018, 2011.

570

571 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
 572 works for semi-supervised learning. In *Proceedings of the Thirty-Second AAAI Conference on*
 573 *Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence*
 574 *Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,*
 575 *AAAI'18/IAAI'18/EAII'18*. AAAI Press, 2018. ISBN 978-1-57735-800-8.

576

577 Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. DSpars:
 578 An embarrassingly simple strategy for efficient GNN training and inference via degree-based
 579 sparsification. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL
<https://openreview.net/forum?id=SaVEXFuozg>.

580

581 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
 582 for generative adversarial networks. In *International Conference on Learning Representations*
 583 *(ICLR)*, 2018.

584

585 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 586 classification. In *8th International Conference on Learning Representations, ICLR 2020, Addis*
 587 *Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020.

588

589 Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust
 590 neural networks using lipschitz bounds. *IEEE Control Systems Letters*, 6:121–126, 2022. doi:
 10.1109/LCSYS.2021.3050444.

591

592 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social repre-
 593 *sentations*. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge*
 594 *Discovery and Data Mining*, KDD '14, pp. 701–710, New York, NY, USA, 2014. Association
 595 for Computing Machinery. ISBN 9781450329569. doi: 10.1145/262330.2623732. URL
<https://doi.org/10.1145/262330.2623732>.

594 Noam Razin, Tom Verbin, and Nadav Cohen. On the ability of graph neural networks to model
 595 interactions between vertices. In *Proceedings of the 37th International Conference on Neural*
 596 *Information Processing Systems*, NIPS '23. Curran Associates Inc., 2023.

597

598 Juan G Restrepo, Edward Ott, and Brian R Hunt. Approximating the largest eigenvalue of network
 599 adjacency matrices. *Physical Review E*, 76(5):056119, 2007.

600

601 Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
 602 convolutional networks on node classification. In *8th International Conference on Learning Rep-*
 603 *resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020.

604

605 Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scalable
 606 clustering. In *Proceedings of the 2011 ACM SIGMOD International Conference on Management*
 607 *of Data*, SIGMOD '11, pp. 721–732, New York, NY, USA, 2011. Association for Computing
 608 Machinery. ISBN 9781450306614. doi: 10.1145/1989323.1989399.

609

610 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. *SIAM*
 611 *Journal on Computing*, 40(6):1913–1926, 2011. doi: 10.1137/080734029.

612

613 Piet Van Mieghem, Jasmina Omic, and Robert Kooij. Virus spread in networks. *IEEE/ACM Trans.*
 614 *Netw.*, 17(1):1–14, February 2009. ISSN 1063-6692.

615

616 Piet Van Mieghem, Huijuan Wang, Xin Ge, Siyu Tang, and Fernando A Kuipers. Influence of
 617 assortativity and degree-preserving rewiring on the spectra of networks. *The European Physical*
 618 *Journal B*, 76(4):643–652, 2010.

619

620 Richard S. Varga. *Gershgorin and His Circles*, volume 36 of *Springer Series in Computational*
 621 *Mathematics*. Springer, Berlin, Heidelberg, 2004. doi: 10.1007/978-3-642-17798-9.

622

623 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 624 Bengio. Graph attention networks. In *International Conference on Learning Representations*
 625 *(ICLR)*, 2018.

626

627 Ulrike von Luxburg. A tutorial on spectral clustering. *Statistics and Computing*, 17(4):395–416,
 628 2007. doi: 10.1007/s11222-007-9033-z.

629

630 Hang-Yang Wu and Yi-Ling Chen. Graph sparsification with generative adversarial network. In
 631 *2020 IEEE International Conference on Data Mining (ICDM)*, pp. 1328–1333, 2020. doi: 10.1109/ICDM50108.2020.00172.

632

633 Xiaoran Yan, Lucas G. S. Jeub, Alessandro Flammini, Filippo Radicchi, and Santo Fortunato.
 634 Weight thresholding on complex networks. *Physical Review E*, E98:042304, 2018.

635

636 Shujian Yu, Francesco Alesiani, Wenzhe Yin, Robert Jenssen, and Jose C. Principe. Principle of rel-
 637 evant information for graph sparsification. In James Cussens and Kun Zhang (eds.), *Proceedings*
 638 *of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence*, volume 180 of *Proceed-*
 639 *ings of Machine Learning Research*, pp. 2331–2341. PMLR, 2022.

640

641 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
 642 Graphsaint: Graph sampling based inductive learning method. In *8th International Conference*
 643 *on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenRe-
 644 view.net, 2020.

645

646 Lu Zhang, Li Wang, and Daqiang Zhu. Predicting brain structural network using functional connec-
 647 tivity. *Medical Image Analysis*, 79:102463, 2022. doi: <https://doi.org/10.1016/j.media.2022.102463>. URL <https://www.sciencedirect.com/science/article/pii/S1361841522001104>.

648

649 Xikun Zhang, Dongjin Song, and Dacheng Tao. Ricci curvature-based graph sparsification for
 650 continual graph representation learning. *IEEE Transactions on Neural Networks and Learning*
 651 *Systems*, 35(12):17398–17410, 2024. doi: 10.1109/TNNLS.2023.3303454.

648 Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen, and
 649 Wei Wang. Robust graph representation learning via neural sparsification. In Hal Daumé III
 650 and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*,
 651 volume 119 of *Proceedings of Machine Learning Research*, pp. 11458–11468. PMLR, 13–18 Jul
 652 2020.

653 Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
 654 Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
 655 tions. *AI Open*, 1:57–81, 2020. doi: 10.1016/j.aiopen.2021.01.001.
 656

657 Monty-Maximilian Zühlke and Daniel Kudenko. Adversarial robustness of neural networks from
 658 the perspective of lipschitz calculus: A survey. *ACM Computing Surveys*, 57(6), 2025. ISSN
 659 0360-0300. doi: 10.1145/3648351. URL <https://doi.org/10.1145/3648351>.
 660

661 A STABILITY OF THE JOINT GRAPH EVOLUTION LAYER

663 **Theorem 1.** Let $Q \in \mathbb{R}^{r \times s}$ be any real matrix. Define its row- and column-absolute sums by

$$665 \quad u_i = \sum_{j=1}^s |Q_{ij}|, \quad v_j = \sum_{i=1}^r |Q_{ij}|.$$

666 Form the diagonal scaling matrices $U \in \mathbb{R}^{r \times r}$ and $V \in \mathbb{R}^{s \times s}$ via

$$667 \quad U_{ii} = \begin{cases} 1/\sqrt{u_i}, & u_i > 0, \\ 0, & u_i = 0, \end{cases} \quad V_{jj} = \begin{cases} 1/\sqrt{v_j}, & v_j > 0, \\ 0, & v_j = 0. \end{cases}$$

668 Then the normalized matrix

$$669 \quad \hat{Q} = U Q V$$

670 satisfies

$$671 \quad \|\hat{Q}\|_{\text{op}} \leq 1,$$

672 i.e. \hat{Q} is non-expansive in the Euclidean norm, indicating by $\|\hat{Q}\|_{\text{op}}$ the induced spectral operator
 673 norm, i.e., the square root of the largest eigenvalue of $\hat{Q}^\top \hat{Q}$.
 674

675 *Proof.* Recall that for any matrix M the induced spectral operator norm is:

$$676 \quad \|M\|_{\text{op}} := \sup_{x \neq 0} \frac{\|Mx\|_2}{\|x\|_2} = \sup_{\|x\|_2=1} \|Mx\|_2,$$

677 where $\|x\|_2 = (\sum_j x_j^2)^{1/2}$ is the Euclidean norm. It suffices to show $\|\hat{Q}x\|_2 \leq 1$ for all unit vectors
 678 $x \in \mathbb{R}^s$.
 679

680 Let $y = Vx$, then:

$$681 \quad \hat{Q}x = U(Qy).$$

682 Hence:

$$683 \quad \|\hat{Q}x\|_2^2 = \sum_{i=1}^r U_{ii}^2 \left(\sum_{j=1}^s Q_{ij} y_j \right)^2.$$

684 Since $U_{ii}^2 = 1/u_i$ when $u_i > 0$ and zero otherwise,

$$685 \quad \|\hat{Q}x\|_2^2 = \sum_{i:u_i>0} \frac{1}{u_i} \left(\sum_{j=1}^s Q_{ij} y_j \right)^2.$$

686 Bounding each summand using the triangle inequality followed by Cauchy–Schwarz:

$$687 \quad \left| \sum_{j=1}^s Q_{ij} y_j \right| \leq \sum_{j=1}^s |Q_{ij}| |y_j| = \sum_{j=1}^s \sqrt{|Q_{ij}|} \cdot \sqrt{|Q_{ij}|} |y_j|.$$

702 Thus, applying Cauchy–Schwarz on nonnegative vectors:
 703

$$704 \quad \left(\sum_{j=1}^s Q_{ij} y_j \right)^2 \leq u_i \sum_{j=1}^s |Q_{ij}| y_j^2.$$

$$705$$

$$706$$

707 and thus:

$$708 \quad \|\widehat{Q} x\|_2^2 \leq \sum_{i=1}^r \sum_{j=1}^s |Q_{ij}| y_j^2 = \sum_{j=1}^s \left(\sum_{i=1}^r |Q_{ij}| \right) y_j^2 = \sum_{j=1}^s v_j y_j^2.$$

$$709$$

$$710$$

711 Finally, since $y_j = x_j / \sqrt{v_j}$ whenever $v_j > 0$ (and $x_j = y_j = 0$ if $v_j = 0$):

$$712 \quad \sum_{j=1}^s v_j y_j^2 = \sum_{j=1}^s x_j^2 = \|x\|_2^2 = 1.$$

$$713$$

$$714$$

715 Hence $\|\widehat{Q} x\|_2^2 \leq 1$ for all unit x , and taking the supremum yields $\|\widehat{Q}\|_{\text{op}} \leq 1$, as claimed. \square
 716

718 B PROPERTIES OF THE LAPLACIAN MATRIX

719 **Theorem 2.** *Let $B \in \mathbb{R}^{n \times m}$ be any real matrix. Define:*

$$720 \quad L = BB^T \in \mathbb{R}^{n \times n},$$

$$721$$

722 *then L is symmetric and positive semidefinite.*

723 *Proof.* First:

$$724 \quad L^T = (BB^T)^T = BB^T = L,$$

$$725$$

726 so L is symmetric. Next, for any $x \in \mathbb{R}^n$, set $y = B^T x \in \mathbb{R}^m$. Then

$$727 \quad x^T L x = x^T (BB^T)x = (B^T x)^T (B^T x) = y^T y = \sum_{k=1}^m y_k^2 \geq 0.$$

$$728$$

$$729$$

$$730$$

731 Hence L is positive semidefinite. \square
 732

733 C LAPLACIAN MATRIX FOR DIRECTED GRAPHS

734 **Theorem 3.** *Let $G = (V, E)$ be a directed graph on n nodes (without self-loops), with adjacency
 735 matrix $A \in \{0, 1\}^{n \times n}$. Define a signed incidence matrix*

$$736 \quad B \in \{-1, 0, 1\}^{n \times m},$$

$$737$$

738 *where $m = |E|$, by choosing an arbitrary but fixed orientation of each edge e_k and setting*

$$739 \quad B_{i,k} = \begin{cases} -1, & \text{if node } i \text{ is the tail of edge } e_k, \\ 1, & \text{if node } i \text{ is the head of edge } e_k, \\ 0, & \text{otherwise.} \end{cases}$$

$$740$$

$$741$$

$$742$$

$$743$$

744 Let $D \in \mathbb{N}^{n \times n}$ be the diagonal matrix whose i th entry D_{ii} equals the total degree of node i , i.e. the
 745 sum of its in- and out-degrees. Then

$$746 \quad B B^T = D - (A + A^T).$$

$$747$$

748 That is, for general (asymmetric) A , the incidence-based Laplacian recovers the symmetrized combinatorial Laplacian.
 749

750 *Proof.* We verify the equality entry-wise.

751 **Diagonal entries ($i = j$).**

$$752 \quad [BB^T]_{ii} = \sum_{k=1}^m B_{i,k}^2 = \sum_{k: i \in e_k} 1 = D_{ii}.$$

$$753$$

$$754$$

$$755$$

756 **Off-diagonal entries ($i \neq j$).**

757

$$758 [BB^\top]_{ij} = \sum_{k=1}^m B_{i,k} B_{j,k}.$$

759

760 A nonzero contribution arises only when e_k connects i and j . If e_k is oriented $i \rightarrow j$, then $B_{i,k} =$
 761 -1 , $B_{j,k} = +1$, so $B_{i,k} B_{j,k} = -1$. If e_k is oriented $j \rightarrow i$, then $B_{i,k} = +1$, $B_{j,k} = -1$, again
 762 $B_{i,k} B_{j,k} = -1$. Hence

763

$$764 \sum_{k=1}^m B_{i,k} B_{j,k} = -(\delta\{i \rightarrow j \in E\} + \delta\{j \rightarrow i \in E\}) = -(A_{ij} + A_{ji}).$$

765

766 Where $\delta\{\cdot\}$ is a binary function whose value is 1 if its argument is True, 0 otherwise. That is,
 767 $[BB^\top]_{ij} = -(A + A^\top)_{ij}$.

768

769 Combining diagonal and off-diagonal cases yields

770

771

$$BB^\top = D - (A + A^\top),$$

772

773 as claimed. \square

774 D ON THE SINGULARITY OF $L + \alpha I$

775

776 **Theorem 4.** Let $L \in \mathbb{R}^{n \times n}$ be a symmetric and positive semidefinite matrix, and let $\alpha \in \mathbb{R}_{>0}$ be
 777 a positive scalar that is not an eigenvalue of L . Then $L + \alpha I$ is symmetric, positive definite, and
 778 therefore nonsingular.

779 *Proof.* Since both L and the identity matrix I are symmetric, their sum $L + \alpha I$ is symmetric as well.
 780 To prove that $L + \alpha I$ is positive definite, consider any nonzero vector $x \in \mathbb{R}^n$. Then,

781

$$x^T (L + \alpha I) x = x^T L x + \alpha x^T x.$$

782

783 Because L is positive semidefinite, $x^T L x \geq 0$. Moreover, since $\alpha > 0$ and $x \neq 0$, we have
 784 $\alpha x^T x > 0$. Thus, $x^T (L + \alpha I) x > 0$ for all $x \neq 0$, and hence $L + \alpha I$ is positive definite. Positive
 785 definite matrices are invertible, so $L + \alpha I$ is nonsingular. \square

786 E INTUITION AND ANALYSIS OF THE SPECTRAL PRESERVATION NETWORK

787

788 E.1 MOTIVATION

789

790 Spectral sparsification Batson et al. (2013) has emerged as a principled approach for reducing the
 791 density of large graphs while preserving their global structural and dynamical properties. Unlike
 792 heuristic or naive pruning strategies scoring all edges/nodes uniformly and pruning them based on a
 793 prefixed sparsity level Chen et al. (2023) considering the lowest weights or local topological criteria
 794 (e.g., low node degree or triangle count Liu et al. (2023)), spectral sparsification explicitly preserves
 795 the global spectral geometry of the graph, that is maintaining the essential eigenstructure of the
 796 graph’s Laplacian matrix, which encodes rich information about the global topology, connectivity,
 797 and dynamics of the network Chung (1997); von Luxburg (2007). While weight-based thresholding
 798 may eliminate edges that appear weak or redundant, it provides no formal guarantees about the
 799 impact on connectivity, diffusion processes, or the spectrum of the Laplacian. In contrast, spectral
 800 sparsification methods construct subgraphs that maintain critical algebraic and dynamical properties
 801 of the original graph within a well-defined approximation bound.

802 Specifically, a graph G' is said to be an ε -spectral sparsifier of a graph G if the quadratic form of
 803 the Laplacians satisfies $(1 - \varepsilon)x^T L x \leq x^T L' x \leq (1 + \varepsilon)x^T L x$ for all vectors $x \in \mathbb{R}^n$, where
 804 L and L' denote the Laplacian matrices of G and G' , respectively. This condition ensures that
 805 key properties such as *effective resistance*, *commute times*, and *spectral clustering behavior* are ap-
 806 proximately maintained in the sparsified representation. In particular, the *effective resistance* Klein
 807 & Randić (1993) between nodes, which quantifies the influence of an edge on global connectiv-
 808 ity, plays a central role in modeling diffusion and current flow through the network. Maintaining

approximate effective resistances guarantees that edge importance in terms of global communication is preserved. Similarly, *commute times*, defined as the expected number of steps a random walker takes to travel from one node to another and return, are tightly linked to the spectrum of the Laplacian and to resistance distances. These metrics reflect how efficiently information or influence spreads in the network. Furthermore, preserving the Laplacian spectrum also retains the embedding space used in *spectral clustering* Ding et al. (2024), where the eigenvectors of the Laplacian encode low-dimensional representations that capture community structure, modularity, or functional subsystems. As a result, spectral sparsification allows the reduced graph to faithfully approximate the original graph’s geometry and signal propagation behavior, which is essential in applications such as brain network analysis, semi-supervised learning, and the design of graph neural network filters.

E.2 ON EXACT BINARY OPTIMIZATION

An alternative approach to node-level sparsification would be to solve the combinatorial problem

$$\min_{Z \in \{0,1\}^n} \mathcal{L}(L_A^*, M_X^*, L_{AZ}^*, M_{ZX}^*) + \lambda \text{tr}(Z). \quad (17)$$

However, this formulation entails a combinatorial search over 2^n binary masks, making it intractable even for moderately sized graphs. Instead, our method leverages a continuous relaxation of Z via Gumbel-sigmoid sampling, enabling efficient gradient-based optimization. This allows for scalable training while still encouraging discrete sparsification through the trace penalty. Additionally, the use of spectral alignment losses ensures a balanced trade-off between structural and feature preservation.

E.3 COMPUTATIONAL COMPLEXITY AND STABILITY

To assess the theoretical and practical feasibility of the proposed Spectral Preservation Network, an analysis of its stability, space complexity, and time complexity is presented.

E.3.1 MODEL STABILITY

As detailed in Appendix A, the normalization of the structural matrix Q_t via diagonal matrices U_t and V_t ensures that the transformation $U_t Q_t V_t$ remains non-expansive with respect to the Euclidean norm, satisfying $\|U_t Q_t V_t\|_2 \leq 1$. This property constrains the Lipschitz constant of each JGE layer, mitigating risks of feature explosion or vanishing across multiple layers.

The non-expansiveness contributes to enhanced numerical stability and consistent gradient propagation, which in turn supports more reliable convergence during optimization. These benefits are particularly relevant in deep graph architectures, where instabilities are commonly encountered.

Additional stability is provided by the use of shifted Laplacian and Gram matrices (Equations 11 and 13), whose eigenvalues are strictly positive, as demonstrated in Appendix D. This guarantees that the transformations remain well-conditioned, avoiding numerical issues associated with near-singular matrices.

Collectively, these mechanisms promote robustness to input perturbations and enable stable end-to-end training of deep graph networks.

E.3.2 SPACE COMPLEXITY

Each JGE layer introduces a temporary tensor $J_{t+1} \in \mathbb{R}^{p_t \times p_t}$ and three learnable parameter matrices: $\Theta_t \in \mathbb{R}^{r_{t+1} \times p_t}$, $\Phi_t \in \mathbb{R}^{p_t \times r_{t+1}}$, and $\Psi_t \in \mathbb{R}^{p_t \times p_{t+1}}$, for every $t \in \{1, \dots, T\}$. The size of the learnable parameters remains both tractable and explicitly controllable, as their dimensions are specified by design and are independent of the size or structure of the input graph. The only exception is the first layer, where $p_0 = f$ depends on the dimensionality of the input features. In typical applications, however, f is significantly smaller than the number of nodes n or edges m , making this dependency negligible. In cases where f is unusually large, standard dimensionality reduction techniques, such as Principal Component Analysis (PCA), can be applied to the input feature matrix X during preprocessing.

864 Assuming constant dimensions across layers, i.e., $r_t = r$ and $p_t = p$ for all t , the total space required
 865 by the SpecNet model is given by:

$$866 \quad \mathcal{O}(T p (p + r)). \quad (18)$$

868 In the node-level sparsification setting, an additional feedforward layer processes a concatenation of
 869 the flattened matrices Q_T and H_T , producing an output vector of size n . This results in an overall
 870 space complexity of:

$$871 \quad \mathcal{O}(T p (p + r) + r (r + f) n). \quad (19)$$

872 This accounts for both model parameters and the additional memory required by the final selection
 873 mechanism.

874 E.3.3 TIME COMPLEXITY

876 **Forward Pass.** To analyze the time complexity of the SpecNet architecture, the operations
 877 within each JGE layer, as defined in Equation 4, are examined in detail. Let $r_t = r$ and $p_t = p$ for
 878 all layers $t \in \{1, \dots, T\}$, as is typically assumed for simplicity.

879 Each layer involves the following steps:

- 881 • Construction of diagonal normalization matrices $U_t, V_t \in \mathbb{R}^{r \times r}$ from $Q_t \in \mathbb{R}^{r \times r}$, requiring
 $\mathcal{O}(r^2)$.
- 882 • Elementwise normalization to compute $Q'_t = U_t Q_t V_t$, which adds another $\mathcal{O}(r^2)$ (as U_t
 883 and V_t are diagonal).
- 884 • Bilinear projection $Q''_t = H_t^\top Q'_t H_t$, resulting in a matrix in $\mathbb{R}^{p \times p}$ and costing $\mathcal{O}(pr^2 +$
 885 $rp^2)$.
- 886 • Computation of the intermediate tensor $J_{t+1} = \Theta_t Q''_t \in \mathbb{R}^{r \times p}$, which requires $\mathcal{O}(rp^2)$.
- 887 • Final updates of $Q_{t+1} \in \mathbb{R}^{r \times r}$ and $H_{t+1} \in \mathbb{R}^{r \times p}$ through nonlinear transformations, both
 888 costing $\mathcal{O}(pr^2)$.

889 Summing the dominant terms, the per-layer cost is $\mathcal{O}(pr^2 + rp^2)$, therefore, the total time complexity
 890 of the forward pass through a SpecNet network with T JGE layers is:

$$891 \quad \mathcal{O}(T (pr^2 + rp^2)). \quad (20)$$

892 This estimate represents the worst-case scenario. In practice, the use of optimized GPU matrix
 893 libraries can reduce the empirical cost significantly via parallelization and memory-efficient algo-
 894 rithms, often achieving sub-cubic runtime behavior.

895 In the case of node-level graph sparsification, a final projection to the original node space is required,
 896 introducing an additional cost of $\mathcal{O}(r (r + p) n)$. The overall forward complexity then becomes:

$$897 \quad \mathcal{O}(T (pr^2 + rp^2) + r (r + p) n). \quad (21)$$

903 **Loss Function Complexity.** The computation of the shifted Laplacian matrix $L_{ZAZ}^* \in \mathbb{R}^{n \times n}$
 904 (Equations 2.3, 10, and 11) depends on the type of graph:

- 906 • *Undirected graphs:* computing $L = D - ZAZ$ costs $\mathcal{O}(n^2)$, as D is diagonal and Z is
 907 diagonal and binary.
- 908 • *Directed graphs:* computing $L = D - (ZAZ + (ZAZ)^\top)$ incurs $\mathcal{O}(n^2)$ as well.

910 The shifted Laplacian, by adding the scalar shift $\alpha_1 I$, costs $\mathcal{O}(n)$, thus, in the worst case (directed
 911 setting), its computation $\mathcal{O}(n^2)$ time. In contrast, the shifted Gram matrix $M_{ZX}^* \in \mathbb{R}^{f \times f}$ (Equa-
 912 tion 13) is formed from $X^\top ZX + \alpha_2 I$, which has cost $\mathcal{O}(nf^2)$.

913 The cost of computing all eigenvalues of a dense matrix in $\mathbb{R}^{n \times n}$ is typically $\mathcal{O}(n^3)$ Golub & van
 914 Loan (2013). However, when the matrix is symmetric and positive definite, as in the case of this
 915 work, efficient algorithms exist:

- 916 • In the dense setting, the *MRRR algorithm* (Multiple Relatively Robust Representations) can
 917 reduce the cost to $\mathcal{O}(n^2)$ under favorable conditions Dhillon et al. (2006).

918 • In the sparse setting, *iterative methods* such as the *Lanczos algorithm* Cullum &
 919 Willoughby (2002) compute the top- k eigenvalues and corresponding eigenvectors with
 920 cost $\mathcal{O}(k \cdot \text{nnz})$, where nnz is the number of non-zero entries.
 921

922 Computing the norm of the difference of the two sets of eigenvalues costs $\mathcal{O}(k)$, assuming $k_1 =$
 923 $k_2 = k$, that is negligible.

924 Overall, the asymptotical worst-case upper bound for computing the full Spectral Concordance loss
 925 function is:

$$926 \quad \mathcal{O}(\min(n^2, k \cdot \text{nnz}) + nf^2). \quad (22)$$

928 In the node-level sparsification setting, the trace regularization term (Equation 16) adds a negligible
 929 $\mathcal{O}(n)$.
 930

931 **Summary.** Let s denote the number of training epochs. Table 4 summarizes the overall time
 932 complexity for both training and inference.
 933

Phase	Time Complexity
Training	$\mathcal{O}(s(T(pr^2 + rp^2) + r(r + p)n + \min(n^2, k \cdot \text{nnz}) + nf^2)))$
Inference	$\mathcal{O}(T(pr^2 + rp^2) + r(r + p)n)$

938 Table 4: Time complexity of the SpecNet architecture in its two principal configurations, for both
 939 training and inference.

942 F DATA

944 In our experimental assessment, we used the following datasets:
 945

946 • **Cora**¹ is a citation network where nodes represent scientific publications and edges denote
 947 citation links, i.e., a citation from a publication to another. Node features are bag-of-words
 948 vectors built from a dictionary of unique terms, with binary indicators for word presence.
 949

950 • **Citeseer**² is another citation graph of research papers. As in Cora, nodes correspond to
 951 publications and edges to citation links, with bag-of-words feature vectors.
 952

953 • **Actors**³ is a directed co-occurrence graph in which nodes represent actors and directed
 954 edges indicate that one actor is mentioned in the Wikipedia page of another. Node features
 955 are bag-of-words representations of the corresponding page content.
 956

957 • **PubMed**⁴ is a large-scale citation graph where nodes are scientific articles and edges rep-
 958 resent citation relationships, treated as undirected. Node attributes are TF-IDF vectors
 959 extracted from textual content.
 960

961 • **Twitch-EN**⁵ is a social network where each node corresponds to a Twitch user and edges
 962 represent mutual follow relationships. Node features encode user-level metadata. The
 963 dataset contains overlapping communities and densely connected subgroups.

964 All graphs are pre-processed by removing self-loops and duplicate edges.

965 ¹<https://linqs.org/datasets/#cora>

966 ²<https://github.com/ZPowerZ/citeseer-dataset/tree/master>, <https://linqs.org/datasets/#citeseer-doc-classification>

967 ³[https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geometric.datasets.Actor](https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geometric.datasets.Actor.html#torch_geometric.datasets.Actor)

968 ⁴[https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geometric.datasets.CitationFull](https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geometric.datasets.CitationFull.html#torch_geometric.datasets.CitationFull)

969 ⁵[https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geometric.datasets.Twitch](https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geometric.datasets.Twitch.html#torch_geometric.datasets.Twitch)

972 **G EVALUATION METRICS**
973

974 **Connection-based metrics.** Connection-based metrics capture both local connectivity and global
975 network behavior through community-level structure. We consider three metrics: (i) the size of the
976 Largest Connected Component (LCC) n_{LCC} , (ii) the average node degree \bar{k} , and (iii) the modularity
977 M .
978

979 The size of the largest connected component n_{LCC} measures the number of nodes in the largest
980 connected subgraph in G . Tracking the LCC provides a straightforward estimate of how many
981 nodes remain part of the principal connected structure.
982

983 The degree of a node i is defined as $k_i = \sum_{j \neq i} a_{ij}$, where a_{ij} denotes the adjacency matrix entry of
984 the graph G . This metric corresponds to the number of neighbors of a node. In our analysis, we focus
985 on the average node degree \bar{k} , which measures the mean number of neighbors per node and provides
986 a concise measure of the network's overall connectivity. For directed graphs, we also consider the
987 average in-degree \bar{k}_{in} , i.e., the mean number of incoming edges, and the average out-degree \bar{k}_{out} ,
988 i.e., the mean number of outgoing edges.
989

990 The modularity M quantifies the extent to which a network is organized into densely connected clusters
991 of nodes, with relatively few connections between different clusters. To assess each subject's
992 community modularity, in our analysis, we first identify the communities within the networks by using
993 the *Louvain* algorithm Blondel et al. (2008). Once the communities are detected, the modularity
994 M of the partitioning is computed as:
995

996
$$M = \frac{1}{2m} \sum_{ij} \left(\omega_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j) \quad (23)$$

997 where m is the sum of the edge weights of G , ω_{ij} is the weight of edge (i, j) in G , k_i and k_j are
998 the weighted degrees of nodes i and j respectively, c_i and c_j are the communities of the corresponding
999 nodes, and δ is the Kronecker function which yields 1 if i and j are in the same community,
1000 that is $c_i = c_j$, zero otherwise. Networks with high modularity are characterized by strong intra-
1001 community connectivity and weak inter-community connectivity. If the modularity of the input
1002 graph and the modularity of the sparsified graph remain similar, the sparsification preserves the
1003 community structure, meaning the sparsified graph retains key intra-community edges, removing
1004 edges likely belonging to inter-community connections, which are less critical for modularity.
1005

1006 Since sparsification inherently reduces the number of nodes/edges, both the size of the largest connected
1007 component and the average node degree decrease accordingly. These measures are therefore
1008 not used to assess structural preservation, but rather to provide an estimate of the reduction rate in
1009 terms of node connectivity. In contrast, metrics such as modularity are employed to evaluate the
1010 extent to which the community structure is preserved after sparsification.
1011

1012 **Spectral-based metrics.** Spectral measures derive from the eigenvalues and eigenvectors of graph
1013 matrices. We consider three metrics: (i) the Minimum Absolute Spectral Similarity (MASS) δ_{min}
1014 and (ii) the epidemic threshold τ_c .
1015

1016 The Minimum Absolute Spectral Similarity Yan et al. (2018) δ_{min} is a quality index measuring the
1017 difference between the spectral properties of a graph and its sparsified version after edge removals.
1018 The measure specifically quantifies the difference between the Laplacian L of G and the Laplacian
1019 L' of the sparsifier G' . The minimum relative spectral similarity (MRSS) between L' and L is
1020 usually computed as:
1021

1022
$$\delta_{min}^R = \min_{\forall z} \frac{z^T L' z}{z^T L z} \quad (24)$$

1023 where z can be any vector with N elements and $z^T L' z$ is the Laplacian quadratic form. The vector z
1024 intuitively represents the direction along which the difference between the two graphs is measured.
1025 As such, the minimum value of similarity reflects the worst case. However, if G' disconnects into
1026 components, the MRSS value becomes zero, making the use of this measure unstable for many
1027 optimization algorithms. An alternative viable measure is the *absolute spectral similarity* proposed
1028

1026 in Yan et al. (2018):

$$1027 \quad 1028 \quad 1029 \quad \delta(z) = 1 - \frac{z^T \Delta L z}{z^T [\lambda_1]_L z} \quad (25)$$

1030 where $[\lambda_1 \geq \lambda_2 \geq \dots]_L$ are the eigenvalues of L , and $\Delta L = \Delta D - \Delta A$ is the Laplacian of the
1031 difference graph ΔG having the same set of nodes of G and the set of edges removed during the
1032 sparsification. Since the input vector z is variable, considering the worst-case scenario, the *minimum*
1033 *absolute spectral similarity* (MASS) is

$$1034 \quad 1035 \quad 1036 \quad \delta_{min} = \min_{|z|=1} \left(1 - \frac{z^T \Delta L z}{[\lambda_1]_L} \right) = 1 - \frac{[\lambda_1]_{\Delta L}}{[\lambda_1]_L} \quad (26)$$

1037 where $[\lambda_1 \geq \lambda_2 \geq \dots]_{\Delta L}$ are the eigenvalues of the difference Laplacian ΔL and, without loss of
1038 generality, only the unit length vectors $|z| = 1$ are considered.

1039 The MASS is able to practically quantify the robustness of a network at a mesoscopic (i.e., com-
1040 munities) level when edges are removed and the network disconnects. Ranging between 0 and 1,
1041 the MASS offers a practical and computationally efficient similarity measure between the origi-
1042 nal graph and its version after the edge reduction, indicating whether the spectral properties of the
1043 original graph are kept or not after its perturbation.

1044 The epidemic threshold τ_c : the largest eigenvalue of the adjacency matrix of G also known as
1045 *spectral radius* and denoted with λ_1 , is considered a powerful character of dynamic processes on
1046 complex networks since it characterizes the spread of viruses and synchronization processes Li et al.
1047 (2011) Van Mieghem et al. (2009). It is a common practice to choose the inverse of the spectral
1048 radius, the *epidemic threshold* τ_c as a measure for *robustness*: the larger the epidemic threshold, the
1049 more robust a network is against the spread of a virus. In epidemiology theory, the inverse of λ_1 ,
1050 in fact, characterizes the threshold of a phase transition Castellano & Pastor-Satorras (2010) over
1051 which the network shifts from a virus-free state with zero infected nodes to fractions of infected
1052 nodes where the virus is persistent. The epidemic threshold formula

$$1053 \quad 1054 \quad 1055 \quad \tau_c = \frac{1}{\lambda_1} \quad (27)$$

1056 is rigorously demonstrated in the N-intertwined approximation, named NIMFA, of the exact SIS
1057 (Susceptible-Infected-Susceptible) model Van Mieghem et al. (2009). The spectral radius which is
1058 computed in $O(m)$, and hence the epidemic threshold, is strictly related to the path capacity of the
1059 network. In Restrepo et al. (2007), it is demonstrated that λ_1 can be approximated by N_3/N_2 ,
1060 where N_k is the total number of walks in k hops. Van Mieghem et al. proved that N_3/N_2 is a
1061 lower bound for the spectral radius Van Mieghem et al. (2010). If the sparsified graph has a similar
1062 epidemic threshold, the sparsification preserves the network's robustness and also its ability to trans-
1063 mit information or infections, retaining key high-degree and central edges. The epidemic threshold
1064 thus serves as an indicator of both network robustness and *information preservation*, reflecting the
1065 network's ability to maintain connectivity and support effective information propagation despite
1066 sparsification.

1068 H CONTESTANT METHODS

1069 SpecNet is compared by considering the following contestant methods:

- 1070 • Random Uniform Sparsifier (RUS): randomly samples edges from a given adjacency matrix
1071 A to create a sparsified graph. The sparsification is performed uniformly, meaning each
1072 edge is equally likely to be selected, regardless of its weight or structural role. The approach
1073 is simple and unbiased, but may discard important edges.
- 1074 • Spielman Sparsifier (SS): spectral sparsification through the effective resistance values of
1075 the edges. Based on the foundational work by Spielman and Srivastava (Spielman & Sri-
1076 vastava, 2011), the approach retain edges with higher effective resistance ω_{ij} computed
1077 as

$$1078 \quad 1079 \quad \omega_{ij} = l_{ii}^+ + l_{jj}^+ - 2l_{ij}^+, \quad (28)$$

1080 where l_{ij}^+ are the elements of the Moore-Penrose *pseudoinverse* matrix L^+ of the weighted
 1081 Laplacian matrix of G .

1082 • Kim et al. (Kim et al., 2022) edge attribute based sparsification (KS): a class of meth-
 1083 ods assigning edge importance based on topological features computed locally for each
 1084 edge. Edges are then sparsified by selecting those with the highest attribute-based scores,
 1085 enhancing local structure preservation. Specifically, three variants are considered:
 1086 – KSJ (Jaccard Similarity): edge weight is computed as the Jaccard index between the
 1087 neighborhoods of its two endpoints i and j :

$$1089 \quad J(i, j) = \frac{|N(i) \cap N(j)|}{|N(i) \cup N(j)|}. \quad (29)$$

1090 – KSCT (Common Triangles): edge weight is proportional to the number of triangles
 1091 that include the edge, promoting edges involved in tightly connected clusters:

$$1092 \quad T(i, j) = |N(i) \cap N(j)| - 2. \quad (30)$$

1093 • D-Spar Liu et al. (2023): prepares a smaller graph for a GNN (e.g., GCN, GraphSAGE,
 1094 GAT, etc.) to train or infer on. D-Spar indirectly affects the GNN by deciding what structure
 1095 the GNN will see and learn from. More specifically, this preprocessing strategy computes
 1096 a score for each edge as

$$1097 \quad Dscore(i, j) = \frac{1}{D_{ii}} + \frac{1}{D_{jj}}, \quad (31)$$

1098 where D_{ii} and D_{jj} are the degrees of nodes i and j respectively. Then, a percentage of
 1099 edges with the highest scores are kept, while all the other edges are removed. This scoring
 1100 scheme prioritizes edges connecting low-degree nodes, which are typically more crucial
 1101 for maintaining the global structure of sparse graphs.

1102 Since our experiments involve both directed and undirected graphs, the compared sparsification
 1103 methods were adapted accordingly to handle directionality. Edge-based scores like Jaccard simi-
 1104 larity and common triangles were computed using both in- and out-neighbors, and triangle counts
 1105 considered directed motifs such as cycles and feedforward structures. Finally, degree-based quanti-
 1106 ties were computed by distinguishing in-degree and out-degree of each node (i.e., D_{ii}^+ , D_{ii}^-).

1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133