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ABSTRACT

Graphs are central to modeling complex systems in domains such as social net-
works, molecular chemistry, and neuroscience. While Graph Neural Networks,
particularly Graph Convolutional Networks, have become standard tools for graph
learning, they remain constrained by reliance on fixed structures and susceptibility
to over-smoothing. We propose the Spectral Preservation Network, a new frame-
work for graph representation learning that generates reduced graphs serving as
faithful proxies of the original, enabling downstream tasks such as community
detection, influence propagation, and information diffusion at a reduced compu-
tational cost. The Spectral Preservation Network introduces two key components:
the Joint Graph Evolution layer and the Spectral Concordance loss. The former
jointly transforms both the graph topology and the node feature matrix, allow-
ing the structure and attributes to evolve adaptively across layers and overcoming
the rigidity of static neighborhood aggregation. The latter regularizes these trans-
formations by enforcing consistency in both the spectral properties of the graph
and the feature vectors of the nodes. We evaluate the effectiveness of Spectral
Preservation Network on node-level sparsification by analyzing well-established
metrics and benchmarking against state-of-the-art methods. The experimental re-
sults demonstrate the superior performance and clear advantages of our approach.

1 INTRODUCTION

Graphs are the natural language of complex systems, from molecules and transportation networks
to social and neural interactions. In recent years, Graph Neural Networks (GNNs) have become the
dominant paradigm for learning from such data (Bronstein et al., 2017; Zhou et al., 2020), enabling
powerful applications in chemistry (Duvenaud et al., 2015), neuroscience (Zhang et al., 2022), and
large-scale network analysis (Hamilton, 2020). Yet, despite their success, standard GNNs suffer
from two fundamental limitations. First, they rely on a fixed graph structure, which prevents them
from adapting connectivity to the task at hand. Second, they quickly run into scalability and ex-
pressiveness issues, as message passing tends to oversmooth node representations (Oono & Suzuki,
2020) and becomes inefficient in large, dense graphs.

A natural way to overcome these challenges is to let the model itself reshape the graph. Rather
than treating the input topology as immutable, one can learn transformations that align structure and
features in a task-driven manner, while discarding redundant information. This perspective opens
the door to two intertwined objectives: designing neural layers that generate adaptive embeddings
by evolving the graph, and introducing principled loss functions that sparsify the topology without
breaking its spectral integrity.

In this work, we address both aspects through a new architecture, the Spectral Preservation Net-
work (SpecNet). Our contributions are twofold:

• The Joint Graph Evolution layer (JGE). A novel mechanism that reparameterizes
the graph Laplacian via bilinear transformations, producing embeddings on dynamically
learned topologies rather than static input graphs. This layer mitigates oversmoothing and
rigidity, enabling richer structure–feature interactions.

• The Spectral Concordance loss (SC). A loss that sparsifies the graph at the node level
by combining Laplacian alignment, feature-geometry preservation, and a sparsity-inducing
trace penalty. This formulation removes uninformative nodes while maintaining global
spectral properties and feature consistency.
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Together, these components allow SpecNet to move beyond static message passing: the graph
is no longer a constraint, but a variable optimized during learning. We show that this approach
provides a principled and flexible framework for node-level sparsification, significantly improving
compression efficiency and downstream performance compared to existing heuristic or task-specific
methods.

In summary, this paper introduces a new paradigm for graph representation learning: embedding
layers that actively reshape structure, coupled with spectral losses that guide sparsification. This
synergy equips GNNs with both flexibility and stability, paving the way for scalable, spectrum-
driven graph learning.

2 SPECTRAL PRESERVATION NETWORK

Spectral Preservation Network (SpecNet) is a novel spectral-based neural architecture that jointly
learns graph structure and node representations through recursive updates of the graph Laplacian
and the node feature space. By operating in the spectral domain and decoupling graph topology
from input features, SpecNet enables the dynamic synthesis of structurally coherent graphs while
preserving global properties and informative node characteristics.

Consider a graph G = (V,E) without self-loops, where V = {1, . . . , n} denotes the set of nodes
and E = {e1, . . . , em} the set of edges. The structure of G can be algebraically represented in
two equivalent forms: via its adjacency matrix or via its incidence matrix. The definition of the
adjacency matrix A ∈ Rn×n depends on whether G is directed or undirected. In directed graphs
each edge ek = ik → jk represents a directed connection from node ik to node jk: the adjacency
matrix A is defined elementwise as Equation 1. In undirected graphs each edge ek = {ik, jk} is an
unordered pair representing a bidirectional connection between nodes ik and jk: the corresponding
adjacency matrix is given by Equation 2.

Aij =

{
1 if i → j ∈ E,

0 otherwise.
(1) Aij = Aji =

{
1 if {i, j} ∈ E,

0 otherwise.
(2)

For undirected graphs, A is symmetric by construction.

The incidence matrix B ∈ {−1, 0,+1}n×m encodes node-edge relationships based on a chosen
orientation for each edge. Its entries are defined as:

Bi,k =


−1 if node i is the tail of edge ek,

+1 if node i is the head of edge ek,

0 otherwise.
(3)

In directed graphs, each edge ek = ik → jk has an intrinsic orientation, with Bik,k = −1 and
Bjk,k = +1. For undirected graphs, an arbitrary but fixed orientation is imposed (e.g., by designat-
ing the node with the smaller index as the tail and the larger as the head) before applying the same
rule.

Let X ∈ Rn×f be the node feature, encoding input features, where each row Xi corresponds to
node i ∈ V and contains an f -dimensional attribute vector. This matrix serves as the initial rep-
resentation of node characteristics. The degree matrix D ∈ Rn×n is diagonal, with entries Dii

equal to the number of edges incident to node i. For directed graphs, D can be decomposed as
D = D+ + D−, where D+ and D− are diagonal matrices capturing in-degrees and out-degrees,
respectively. Specifically, D+

ii counts the number of edges directed toward node i, while D−
ii counts

those originating from it.

2.1 JOINT GRAPH EVOLUTION LAYER

The core of SpecNet is the Joint Graph Evolution (JGE) layer, a novel architectural component
that operates on a pair of input matrices: an adjacency matrix Qt ∈ Rrt×rt and a feature matrix
Ht ∈ Rrt×pt , both sharing the same number of rows. Here, t denotes the layer index within the
network. The transformation produces embeddings as updated matrices Qt+1 ∈ Rrt+1×rt+1 and
Ht+1 ∈ Rrt+1×pt+1 , corresponding to a new node set of size rt+1 and a space of pt+1 features.
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The forward computation of the JGE at layer t is defined as:

Jt+1 = Θt H
⊤
t Ut Qt Vt Ht,

Qt+1 = σ1

(
Jt+1 Φt

)
,

Ht+1 = σ2

(
Jt+1 Ψt

)
,

(4)

where Jt+1 ∈ Rpt×pt is an intermediate representation, and Θt ∈ Rrt+1×pt , Φt ∈ Rpt×rt+1 ,
and Ψt ∈ Rpt×pt+1 are learnable parameter matrices. The functions σ1 and σ2 denote elementwise
nonlinearities. The matrices Ut, Vt ∈ Rrt×rt are diagonal normalization matrices defined as follows.
Define the row-wise and column-wise absolute sums of Qt:

[ut]i =

rt∑
j=1

|(Qt)ij |, [vt]j =

rt∑
i=1

|(Qt)ij |. (5)

The diagonal entries of Ut and Vt are then given by:

[Ut]ii =

{
1/
√

[ut]i, if [ut]i > 0,

0, otherwise,
[Vt]jj =

{
1/
√
[vt]j , if [vt]j > 0,

0, otherwise.
(6)

This normalization ensures that the matrix product Ut Qt Vt is non-expansive with respect to the
Euclidean norm, as discussed in Appendix A. This property contributes to the numerical stability
of the architecture. Non-expansiveness acts as an implicit regularizer, preventing the uncontrolled
growth of feature magnitudes, an issue that can compromise optimization in deep architectures.
Unlike explicit normalization techniques such as batch normalization (Ioffe & Szegedy, 2015) or
spectral normalization (Miyato et al., 2018), this approach enforces norm constraints by construc-
tion, without introducing additional computational branches. Moreover, it contributes to controlling
the Lipschitz constant of the network, which has implications for both generalization and adversarial
robustness (Gouk et al., 2021; Pauli et al., 2022; Zühlke & Kudenko, 2025).

Since Qt and Ht correspond to a graph adjacency matrix and a node feature matrix, respectively, in
a new space, the JGE can be interpreted as a learnable mechanism for jointly evolving both graph
structure and node representations. The output Qt+1 represents a transformed graph topology with
updated edge weights and a redefined node set, while Ht+1 encodes node features aligned with this
new structure.

A Spectral Preservation Network is constructed by stacking multiple JGE layers. The initial inputs
are defined as:

H0 = X, Q0 = A, (7)

where X ∈ Rn×f is the node feature matrix and A ∈ Rn×n is the initial adjacency matrix. This
implies r0 = n and p0 = f , with the initial normalization matrices given by:

[U0]ii =

{
1/
√
D−

ii , if D−
ii > 0,

0, otherwise,
[V0]ii =

{
1/
√
D+

ii , if D+
ii > 0,

0, otherwise,
(8)

where Dii denotes the degree of node i, as aforesaid.

In the case of undirected graphs, where the adjacency matrix A is symmetric, each JGE layer admits
a simplified variant, referred to as the Light Joint Graph Evolution (LJGE) layer. This formulation
exploits the symmetry of Qt to reduce both computational overhead and the number of learnable
parameters. The update equations for the LJGE are given by:

Ht+1 = Θt H
⊤
t Ut Qt Ut Ht,

Qt+1 = σ
(
Ht+1 Θ

⊤
t

)
,

(9)

where Θt ∈ Rrt+1×f is the only learnable parameter matrix at layer t, and σ denotes an elementwise
activation function. By leveraging the symmetry of Qt, this design yields a more lightweight and
efficient alternative to the full JGE formulation.

3
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Figure 1: Node-level sparsification Pipeline. The operator ⊕ denotes the concatenation of the vec-
torized (flattened) forms of QT and HT .

2.2 NODE SPARSIFICATION

SpecNet performs node pruning by leveraging the final representations QT and HT produced by
the last JGE layer (at step T ). These matrices are first vectorized and concatenated into a single
feature vector, which is then fed into a feedforward layer equipped with a Gumbel–sigmoid acti-
vation. The output is a binary selection mask z ∈ {0, 1}n, where each entry zi indicates whether
node i is retained. The mask is transformed into a diagonal matrix Z = diag(z1, . . . , zn), which
is used to extract the subgraph induced by the selected nodes, with updated adjacency matrix ZAZ
and feature matrix ZX . In the case of directed graphs, post-processing may be necessary to elim-
inate isolated nodes resulting from the removal of both their in-neighbors and out-neighbors. The
node-level sparsification approach is visually illustrated in Figure 1.

2.3 SPECTRAL CONCORDANCE

The proposed loss function, termed as Spectral Concordance (SC) loss, measures the discrepancy
between the leading spectra of the Laplacian of the original input graph and that of the graph synthe-
sized by SpecNet. This choice is motivated by the fact that the eigenvalues of the graph Laplacian
capture fundamental structural properties such as connectivity, clustering tendencies, and diffusion
dynamics, as detailed in Appendix E.1.

The combinatorial Laplacian is most commonly defined in terms of the adjacency matrix A ∈
{0, 1}n×n and degree matrix D ∈ Nn×n as L = D−A. While this definition suffices for undirected
graphs (where A is symmetric), it does not generalize cleanly to directed graphs, which admit both
an Out-Degree Laplacian L− = D− − A and an In-Degree Laplacian L+ = D+ − A, that may be
non-symmetrical.

An alternative formulation uses the incidence matrix B ∈ {−1, 0, 1}n×m, in which case L = BB⊤

provides a unified definition that applies equally to directed and undirected graphs. As shown in
Appendix B, this incidence-based Laplacian is symmetric and positive semidefinite. Although valid,
this formulation is computationally inefficient, as the incidence matrix B ∈ Rn×m scales with the
number of edges m, which can be comparable to n2 in dense graphs. Fortunately, an equivalent
and more compact representation for directed graphs is derived in Appendix C, hence the Laplacian
matrix can be computed as:

L = BB⊤ =


D −A, if the graph is undirected,

D − (A+A⊤), otherwise .
(10)

This identity enables Laplacian computation using only node-level structures, avoiding the explicit
construction of the incidence matrix.

To ensure strict positive definiteness, the shifted Laplacian can be defined as:

L∗ = L+ α1 I, (11)

with α1 ∈ R>0 and I as the identity matrix. Appendix D proves that L∗ is nonsingular, symmetric,
and positive definite, implying that all its eigenvalues are real and strictly positive.

Let [λ1 ≥ λ2 ≥ . . .]L∗ denote the eigenvalues of L∗ in descending order, and let Let Z ∈ {0, 1}n×n

be the diagonal selection matrix indicating the retained nodes as output of the SpecNet. The
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spectral component of the SC loss function compares the top k1 eigenvalues of the original and
generated graphs:

LLaplace(L
∗
A, L

∗
ZAZ) =

∥∥[λ1, . . . , λk1

]
L∗

A

−
[
λ1, . . . , λk1

]
L∗

ZAZ

∥∥
2∑n

i,j: i ̸=j [L
∗
A]ij

, (12)

where L∗
A is the shifted Laplacian of the original adjacency matrix A, while L∗

ZAZ is the shifted
Laplacian of the generated adjacency matrix ZAZ. The summation term in the denominator is
introduced to normalize the numerator of the loss function. This normalization is motivated by
Gerschgorin’s Circle Theorem, which provides bounds on the location of the eigenvalues of a ma-
trix (Varga, 2004). In the specific case where the matrix is symmetric and positive definite, all
eigenvalues are real and positive. This implies that the lower bound of the spectrum is zero. The
use of the summation in the denominator thus ensures that the scale of the loss is properly adjusted,
preventing unbounded growth due to large row sums (which influence the Gerschgorin discs), and
guarantees numerical stability by keeping the loss within a meaningful range.

Beyond the spectral structure of the graph Laplacian, we also consider the alignment of the latent
feature space induced by SpecNet. Specifically, we introduce an auxiliary term that penalizes
spectral discrepancies between the input features X ∈ Rn×f and the final feature representation
ZX ∈ RrT×pT .

Define the shifted Gram matrices:

M∗
X = X⊤X + α2I , M∗

ZX = (ZX)⊤ZX + α2I = X⊤ZX + α2I , (13)

where α2 > 0 ensures that both matrices are positive definite. Let [λ1 ≥ λ2 ≥ . . .]M∗
X

and
[λ1 ≥ λ2 ≥ . . .]M∗

ZX
denote their ordered eigenvalues. A loss component, similar to Equation 12,

comparing the top k2 eigenvalues of M∗
X and M∗

HT
, can be defined:

LGram(MX ,MZX) =

∥∥[λ1, . . . , λk2

]
M∗

X

−
[
λ1, . . . , λk2

]
M∗

ZX

∥∥
2∑n

i,j: i ̸=j |[M∗
X ]ij |

. (14)

where the denominator ensures, once again, the normalization by the Gershgorin radius. This term
encourages the dominant modes of variation in the learned features to match those of the original
input, and, as a consequence, it serves as a regularizer, promoting the preservation of global structure
and expressivity in the learned feature space.

The Spectral Concordance (SC) is defined as a weighted combination of the Laplacian and Gram
alignment losses introduced in Equations 12 and 14:

L(L∗
A,M

∗
X , L∗

ZAZ ,M
∗
ZX) = 1− e−LLaplace(L

∗
A,L∗

ZAZ) + β
(
1− e−LGram(M∗

X ,M∗
ZX)

)
, (15)

where β > 0 controls the trade-off between preserving the input graph’s topology and retaining the
feature structure, while the exponential functions contribute to bounding the loss terms in the range
(0, 1]. In the specific setting of node-level sparsification, where the input and output graphs share
the same dimensions, a regularization term is added to discourage trivial identity mappings:

LSpar(L
∗
A,M

∗
X , L∗

ZAZ ,M
∗
ZX) = L(L∗

A,M
∗
X , L∗

ZAZ ,M
∗
ZX) +

λ

n
tr(Z) , (16)

where λ > 0 is a regularization coefficient that controls the degree of sparsification introduced by
the network in the generated graph. The trace term, tr(Z) =

∑
i Zii, penalizes the number of

selected nodes, thereby promoting compact subgraph generations and reducing the risk of trivially
replicating the input.

A deep and comprehensive discussion about the motivation, stability, and time and space complexity
of SpecNet is provided in Appendix E.

3 EXPERIMENTAL TEST-BED AND RESULTS

We evaluate the proposed approach on five real-world attributed graphs: Cora, Citeseer, Actors,
PubMed and Twitch-EN. A summary of their topological statistics is reported in Table 1, while the
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Table 1: Real-world datasets.
Dataset Graph Type Nodes Edges Attributes Type

Cora Citation 2,708 5,429 1,433 Directed
Citeseer Citation 3,312 4,591 3,703 Directed
Actors Co-occurrence 7,600 29,926 932 Directed

PubMed Citation 19,717 88,648 500 Undirected
Twitch-EN Social 7,126 70,648 128 Undirected

descriptions and the links to access them are reported in Appendix F.

To validate the proposed method, we first conducted a graph-level analysis comparing the
original graph with its sparsified version produced by our approach, focusing on quantitative mea-
sures. In this analysis, we considered two categories of metrics: connection-based, which capture
both local properties such as node degree and global properties related to clustering or community
structure, and spectral-based, derived from the eigenvalues and eigenvectors of the graph. The
connection-based metrics include the size of the Largest Connected Component (LCC) nLCC , the
average node degree k̄ as well as the average in-degree k̄in and out-degree k̄out, and the modularity
M . While the spectral measures include the Minimum Absolute Spectral Similarity (MASS) δmin

and the epidemic threshold τc. The description of each metric is provided in Appendix G.

In a second set of experiments, we compared our method against existing sparsification techniques.
Specifically, we considered: (i) Random Uniform Sparsifier (RUS), which randomly samples edges
from the adjacency matrix to construct a sparsified graph; (ii) Spielman Sparsifier (SS) (Spielman
& Srivastava, 2011), which relies on effective resistance values of edges for sparsification; (iii) the
KSJ (Jaccard Similarity) and KSCT (Common Triangles) methods proposed in (Kim et al., 2022),
which measure edge importance to guide sparsification; and (iv) D-Spar (Liu et al., 2023), a neural-
based sparsification approach. Since our experiments cover both directed and undirected graphs, all
compared methods were adapted to properly account for edge directionality. Further details on these
approaches are provided in Appendix H.

Results. Table 2 shows how the structural and spectral properties of the graphs evolve after spar-
sification via SpecNet, under different reduction levels (i.e., number of preserved eigenvalues
λ), reporting the mean and standard deviation over 10 runs. To show which topological traits are
preserved or altered with respect to the original graph, we also report the reference metric values
computed on the input graph (shown in the row immediately above each dataset’s sparsified results).

After sparsifying with SpecNet, in Cora, the size of the largest connected component does not
decrease monotonically with the number of retained eigenvalues. This is due to the non-monotonic
number of edges preserved by the sparsification procedure: for higher numbers of eigenvalues (e.g.,
32), more edges are selected compared to some intermediate cases, which allows additional nodes to
remain connected or rejoin the LCC. The average degrees decrease proportionally with the reduction
level, while the graph retains its modular structure, as evidenced by stable modularity scores. Also
the MASS remains relatively high (above 0.65), approaching 0.85 for larger numbers of eigenvalues.
This indicates that even after sparsification, the spectral structure of Cora is largely preserved. The
epidemic threshold is preserved hence demonstrating that SpecNet keeps the network robustness
level of the original graph.

Over Citeseer, SpecNet achieves effective sparsification while maintaining the core structure of
the graph. The LCC size and the average degree are reduced as expected, but the size of the largest
connected component decreases as the number of the eigenvalues increases. However, the main
connected component still contains a significant portion of nodes. Modularity remains relatively un-
changed, suggesting that the community structure is preserved. Accordingly, the MASS stays above
0.71, showing that the sparsified graphs retain a substantial part of the original spectral character-
istics, with only moderate deviation. Also on this citation network the functional robustness of the
sparsified graph remains stable.

Also on Actors, despite the sparsification inducted, the modularity remains stable, indicating that
community structures are largely preserved. The MASS values are consistently high (above 0.91
for the smallest eigenvalue counts), showing that the spectral properties of the network are well
maintained. The epidemic threshold is again preserved showing that the sparsification process does
not significantly affect the network’s key dynamical properties.
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Table 2: SpecNet graph quantitative measures computed for different numbers of eigenvalues.
Dataset # of λ nedges nLCC k̄ k̄in k̄out M δmin τc

Cora

- 5,429 2,485 4.01 2.00 2.00 0.82 - 0.07
2 3,599 ± 60 1,810 ± 33 2.66 ± 0.05 1.33 ± 0.02 1.33 ± 0.02 0.82 ± 0.01 0.65 ± 0.09 0.07 ± 0.00
4 3,645 ± 67 1,828 ± 15 2.69 ± 0.05 1.35 ± 0.03 1.35 ± 0.03 0.82 ± 0.01 0.75 ± 0.10 0.07 ± 0.00
8 3,465 ± 79 1,745 ± 30 2.56 ± 0.06 1.28 ± 0.03 1.28 ± 0.03 0.81 ± 0.01 0.80 ± 0.07 0.07 ± 0.00
16 3,067 ± 39 1,559 ± 22 2.27 ± 0.03 1.13 ± 0.01 1.13 ± 0.01 0.80 ± 0.01 0.80 ± 0.08 0.07 ± 0.00
32 3,551 ± 44 1,753 ± 25 2.62 ± 0.03 1.31 ± 0.02 1.31 ± 0.02 0.81 ± 0.01 0.85 ± 0.06 0.07 ± 0.00

Citeseer

- 4,591 2,110 2.77 1.39 1.39 0.89 - 0.07
2 3,396 ± 59 1,499 ± 64 2.05 ± 0.04 1.03 ± 0.02 1.03 ± 0.02 0.89 ± 0.00 0.71 ± 0.11 0.07 ± 0.00
4 3,357 ± 52 1,482 ± 64 2.03 ± 0.03 1.01 ± 0.02 1.01 ± 0.02 0.89 ± 0.00 0.73 ± 0.11 0.07 ± 0.00
8 3,181 ± 55 1,388 ± 61 1.92 ± 0.03 0.96 ± 0.02 0.96 ± 0.02 0.88 ± 0.00 0.76 ± 0.11 0.07 ± 0.00
16 2,812 ± 49 1,192 ± 44 1.70 ± 0.03 0.85 ± 0.02 0.85 ± 0.02 0.87 ± 0.00 0.76 ± 0.10 0.07 ± 0.00
32 2,216 ± 32 908 ± 38 1.34 ± 0.02 0.67 ± 0.01 0.67 ± 0.01 0.86 ± 0.01 0.75 ± 0.10 0.07 ± 0.00

Actors

- 29,926 7,600 7.88 3.94 3.94 0.51 - 0.03
2 18,583 ± 979 5,299 ± 164 4.89 ± 0.26 2.45 ± 0.13 2.45 ± 0.13 0.52 ± 0.01 0.91 ± 0.01 0.03 ± 0.00
4 16,614 ± 5,877 4,548 ± 1,404 4.37 ± 1.55 2.19 ± 0.77 2.19 ± 0.77 0.50 ± 0.01 0.92 ± 0.01 0.03 ± 0.00
8 20,814 ± 1,294 5,756 ± 265 5.48 ± 0.34 2.74 ± 0.17 2.74 ± 0.17 0.52 ± 0.01 0.93 ± 0.01 0.03 ± 0.00
16 20,085 ± 371 5,641 ± 68 5.29 ± 0.10 2.64 ± 0.05 2.64 ± 0.05 0.52 ± 0.00 0.94 ± 0.01 0.03 ± 0.00
32 20,323 ± 227 5,738 ± 44 5.35 ± 0.06 2.67 ± 0.03 2.67 ± 0.03 0.53 ± 0.00 0.94 ± 0.01 0.03 ± 0.00

PubMed

- 44,324 19,717 4.50 4.50 4.50 0.77 - 0.04
2 21,629 ± 734 10,812 ± 133 2.19 ± 0.07 2.19 ± 0.07 2.19 ± 0.07 0.78 ± 0.00 0.40 ± 0.13 0.05 ± 0.00
4 23,478 ± 668 11,109 ± 119 2.38 ± 0.07 2.38 ± 0.07 2.38 ± 0.07 0.77 ± 0.01 0.44 ± 0.11 0.05 ± 0.00
8 30,823 ± 3,256 13,933 ± 1,490 3.13 ± 0.33 3.13 ± 0.33 3.13 ± 0.33 0.76 ± 0.01 0.52 ± 0.14 0.05 ± 0.00
16 29,086 ± 2,800 13,677 ± 1,139 2.95 ± 0.28 2.95 ± 0.28 2.95 ± 0.28 0.77 ± 0.01 0.51 ± 0.14 0.05 ± 0.00
32 22,844 ± 844 11,239 ± 331 2.32 ± 0.09 2.32 ± 0.09 2.32 ± 0.09 0.78 ± 0.01 0.48 ± 0.20 0.05 ± 0.00

Twitch-EN

- 35,324 7,126 9.91 9.91 9.91 0.45 - 0.02
2 24,790 ± 526 5,013 ± 84 6.96 ± 0.15 6.96 ± 0.15 6.96 ± 0.15 0.44 ± 0.01 0.73 ± 0.15 0.02 ± 0.00
4 23,906 ± 721 4,604 ± 138 6.71 ± 0.20 6.71 ± 0.20 6.71 ± 0.20 0.44 ± 0.01 0.74 ± 0.14 0.02 ± 0.00
8 25,768 ± 3,368 4,838 ± 777 7.23 ± 0.95 7.23 ± 0.95 7.23 ± 0.95 0.43 ± 0.01 0.78 ± 0.10 0.02 ± 0.00
16 25,659 ± 4,675 4,846 ± 1,078 7.20 ± 1.31 7.20 ± 1.31 7.20 ± 1.31 0.44 ± 0.01 0.85 ± 0.07 0.02 ± 0.00
32 24,915 ± 2,443 4,519 ± 633 6.99 ± 0.69 6.99 ± 0.69 6.99 ± 0.69 0.44 ± 0.01 0.86 ± 0.03 0.02 ± 0.00

In PubMed, the LCC size decreases proportionally with the reduction in the number of edges, while
the average degree similarly decreases. Modularity remains again stable across sparsification levels,
MASS values, however, are lower compared to the other smaller datasets. This is expected given
the large size and density of the graph: sparsification with few retained eigenvalues removes a
substantial fraction of edges, inducing more pronounced deviations in the spectral structure, and
thus a lower minimum abstract spectral similarity. The epidemic threshold shows a minor increase:
this minor change, typical when sparsifying large networks Kuga & Tanimoto (2022), is due to a
small reduction in the largest eigenvalue of the adjacency matrix, reflecting a minimal loss in the
network’s diffusion capacity. Overall, the sparsification preserves the robustness of the network.

For Twitch-EN, the LCC size and average degree both decrease as expected with stronger sparsifica-
tion. The network maintains a relatively low modularity but consistent with the original, reflecting
its weak community structure. MASS values remain above 0.73, indicating that the main spectral
characteristics are preserved. Finally, also for this dataset, the epidemic threshold remains stable.

The results in Table 3 demonstrate that SpecNet consistently achieves high MASS values across
all datasets, particularly on Cora, Citeseer, and Pubmed, effectively preserving the original spectral
structure compared to locally-based methods (KSJ, KSCT) and D-Spar, which show much lower
values in many cases. This indicates that the reduction performed by SpecNet maintains the
global properties of the graph, which is critical for tasks such as community detection or infor-
mation propagation. Compared to RUS, SpecNet is more stable, especially on datasets like Actors
where random edge selection leads to higher variance, while Spielman Sparsifier (SS) performs
well as expected for a spectral method, yet SpecNet is often competitive or superior, particularly
at medium-to-high values of λ (8–32), highlighting the effectiveness of its spectral regularization
component. Local attribute-based variants such as KSJ and KSCT generally achieve lower MASS
on datasets like Citeseer and Pubmed, indicating that purely local methods struggle to preserve
the global characteristics of large graphs, whereas SpecNet maintains consistent values thanks to
its joint transformation of topology and node features. D-Spar shows very low MASS values on
Cora and Citeseer, demonstrating that, while useful for GNN preprocessing, it does not preserve the
global structure of the sparsified graphs, unlike SpecNet, which produces graphs that remain faith-
ful to the original. Finally, SpecNet maintains relatively high MASS even for small numbers of
eigenvalues (λ = 2–4), showing that a good global representation can be retained with few spectral
dimensions, while larger values of λ (16–32) result in stable or improved performance, confirming
the model’s ability to leverage additional spectral information without introducing noise.

4 RELATED WORK

Our contributions address two complementary aspects of graph learning: (i) the design of a novel
neural layer that jointly embeds node features and structural information, and (ii) a loss function for
spectral sparsification that removes nodes while preserving global properties. We therefore orga-
nize the related work into two groups: methods for graph embeddings and joint structure–feature
learning, and approaches to graph sparsification.
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Table 3: Comparison with other state-of-the-art sparsification methods in terms of MASS. For all
the sparsifiers, the number of network links that are kept, i.e., the sparsification threshold, is the
same adopted by our sparsifier.

Dataset # of λ RUS SS KSJ KSCT D-SPAR SpecNet

Cora

2 0.55 ± 0.03 0.65 ± 0.00 0.64 ± 0.01 0.54 ± 0.01 0.18 ± 0.00 0.65 ± 0.09
4 0.55 ± 0.04 0.75 ± 0.00 0.73 ± 0.01 0.65 ± 0.02 0.18 ± 0.00 0.75 ± 0.10
8 0.54 ± 0.03 0.76 ± 0.01 0.72 ± 0.00 0.64 ± 0.01 0.18 ± 0.00 0.80 ± 0.07
16 0.45 ± 0.04 0.78 ± 0.01 0.74 ± 0.01 0.67 ± 0.02 0.20 ± 0.00 0.80 ± 0.08
32 0.56 ± 0.04 0.83 ± 0.00 0.80 ± 0.01 0.63 ± 0.01 0.18 ± 0.00 0.85 ± 0.06

Citeseer

2 0.42 ± 0.03 0.61 ± 0.00 0.52 ± 0.00 0.52 ± 0.00 0.21 ± 0.00 0.71 ± 0.11
4 0.41 ± 0.02 0.61 ± 0.01 0.52 ± 0.00 0.52 ± 0.00 0.22 ± 0.01 0.73 ± 0.11
8 0.40 ± 0.03 0.61 ± 0.01 0.52 ± 0.00 0.52 ± 0.00 0.21 ± 0.00 0.76 ± 0.11
16 0.39 ± 0.05 0.61 ± 0.01 0.52 ± 0.00 0.52 ± 0.00 0.18 ± 0.01 0.76 ± 0.10
32 0.39 ± 0.05 0.61 ± 0.01 0.52 ± 0.00 0.52 ± 0.00 0.21 ± 0.00 0.75 ± 0.10

Actors

2 0.63 ± 0.04 0.82 ± 0.00 0.41 ± 0.00 0.83 ± 0.00 0.73 ± 0.00 0.91 ± 0.01
4 0.59 ± 0.21 0.58 ± 0.47 0.47 ± 0.00 0.83 ± 0.03 0.71 ± 0.02 0.92 ± 0.01
8 0.71 ± 0.04 0.82 ± 0.00 0.41 ± 0.00 0.86 ± 0.00 0.73 ± 0.01 0.93 ± 0.01
16 0.67 ± 0.02 0.59 ± 0.47 0.47 ± 0.45 0.57 ± 0.47 0.68 ± 0.15 0.94 ± 0.01
32 0.68 ± 0.02 0.82 ± 0.00 0.58 ± 0.22 0.88 ± 0.00 0.76 ± 0.02 0.94 ± 0.01

Pubmed

2 0.40 ± 0.08 0.40 ± 0.00 0.40 ± 0.10 0.38 ± 0.13 0.02 ± 0.02 0.40 ± 0.13
4 0.40 ± 0.01 0.41 ± 0.09 0.41 ± 0.00 0.41 ± 0.02 0.02 ± 0.02 0.44 ± 0.11
8 0.49 ± 0.06 0.46 ± 0.00 0.48 ± 0.04 0.47 ± 0.08 0.07 ± 0.07 0.52 ± 0.14
16 0.44 ± 0.02 0.48 ± 0.15 0.41 ± 0.03 0.41 ± 0.03 0.04 ± 0.04 0.51 ± 0.14
32 0.38 ± 0.06 0.42 ± 0.01 0.41 ± 0.19 0.41 ± 0.10 0.02 ± 0.02 0.48 ± 0.20

Twitch-EN

2 0.61 ± 0.08 0.70 ± 0.20 0.02 ± 0.00 0.33 ± 0.08 0.35 ± 0.07 0.73 ± 0.15
4 0.58 ± 0.02 0.62 ± 0.00 0.01 ± 0.00 0.34 ± 0.00 0.34 ± 0.00 0.74 ± 0.14
8 0.58 ± 0.05 0.72 ± 0.14 0.01 ± 0.00 0.34 ± 0.04 0.35 ± 0.02 0.78 ± 0.10
16 0.55 ± 0.02 0.72 ± 0.00 0.01 ± 0.00 0.33 ± 0.03 0.34 ± 0.00 0.85 ± 0.07
32 0.60 ± 0.07 0.72 ± 0.16 0.01 ± 0.00 0.34 ± 0.06 0.35 ± 0.05 0.86 ± 0.03

4.1 GRAPH EMBEDDINGS AND JOINT STRUCTURE–FEATURE LEARNING

Learning expressive node embeddings has been a cornerstone of graph representation learning. Early
unsupervised models such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec,
2016) rely on random walks to capture local connectivity patterns, but they neglect node attributes
and provide no control over graph structure. Spectral clustering (von Luxburg, 2007) similarly
embeds nodes in eigenspaces of the Laplacian, but operates on fixed graphs and lacks feature inte-
gration.

Message-passing neural networks, including GCN (Kipf & Welling, 2017), GraphSAGE (Hamil-
ton et al., 2017), and GAT (Veličković et al., 2018), combine structural neighborhoods with node
features through aggregation schemes. These models enable inductive learning and leverage both
topology and attributes, but they assume static input graphs and suffer from oversmoothing in deeper
layers (Li et al., 2018; Oono & Suzuki, 2020). Moreover, structure and features are typically entan-
gled into a single embedding space, limiting flexibility. Extensions such as DropEdge (Rong et al.,
2020) or attention-weight pruning (Veličković et al., 2018) introduce heuristic sparsification, but
without principled guarantees.

Our proposed layer departs from these approaches by jointly learning embeddings and structural
transformations. Through bilinear reparameterizations of the Laplacian, it synthesizes adaptive
graph topologies that are not restricted to subgraphs of the input. This allows the model to discover
intermediate structures aligned with both node features and spectral properties, providing richer and
more flexible embeddings than static or purely feature-agnostic methods.

4.2 GRAPH SPARSIFICATION

Graph reduction techniques can be broadly divided into sparsification, coarsening, and condensa-
tion (Hashemi et al., 2024). We focus on sparsification, which seeks sparse graphs that approximate
the original structure while reducing complexity.

Classical and spectral methods. Benczúr & Karger (1996) introduced cut-preserving sparsifiers,
while Spielman & Srivastava (2011) and Batson et al. (2013) developed nearly-linear algorithms
sampling edges according to effective resistance. These approaches preserve Laplacian spectra and
commute times with strong guarantees, but rely on costly pseudoinverses and do not scale easily.
Extensions address weighted, directed, and dynamic graphs (Kapralov et al., 2014), yet remain
detached from learning objectives.

Heuristic and geometric pruning. Simpler approaches remove weak or redundant edges by weight
thresholding (Yan et al., 2018), neighborhood similarity (Satuluri et al., 2011), or community-
preserving heuristics (Leskovec et al., 2009). Backbone extraction methods such as Noise-Corrected
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filtering (Coscia & Neffke, 2017; Coscia & Rossi, 2019) retain statistically significant edges, while
Ricci curvature (Zhang et al., 2024) or walk-based pruning (Razin et al., 2023) exploit local geom-
etry or stochastic connectivity. These methods are efficient but heuristic, offering no formal control
over spectral preservation.

Neural sparsification. Recent models integrate sparsification into learning pipelines. Neu-
ralSparse (Zheng et al., 2020) learns edge scores for supervised tasks, but outputs strict subgraphs
tied to labels. GSGAN (Wu & Chen, 2020) uses adversarial training to preserve communities via
random walks, while GraphSAINT (Zeng et al., 2020) samples subgraphs for mini-batch training.
PRI (Yu et al., 2022) matches Laplacian spectra through Jensen–Shannon divergence, but fixes graph
size and requires large matrices. DSpar (Liu et al., 2023) approximates effective resistance by node
degrees to accelerate training. While effective, these models rely on supervision, heuristics, or re-
stricted formulations.

Our sparsification. In contrast, our approach formulates sparsification as a spectral alignment
problem with feature integration. A Laplacian-based loss preserves global spectral properties, a
Gram-matrix loss enforces feature geometry alignment, and a trace penalty provides explicit spar-
sity control. This differentiable formulation enables node-level pruning within end-to-end training,
offering a general and unsupervised alternative to heuristic, task-specific, or structure-only methods.

Unlike prior work in the literature, we are able to provide both the adjacency matrix and the feature
matrix in a way that remains consistent with the intrinsic properties of the nodes. The only exception
occurs when the features are purely structural, in which case they can be recomputed from the
reduced adjacency matrix.

5 CONCLUSION AND FUTURE WORK

We introduced Spectral Preservation Network (SpecNet), a novel neural architecture that stacks
Joint Graph Evolution (JGE) layers to jointly evolve both a graph structure and its node representa-
tions. The model is equipped with a new loss function, Spectral Concordance (SC), which enables
principled node-level sparsification by aligning structural and feature spectra. By reparameterizing
the graph Laplacian, SpecNet preserves global properties while overcoming the rigidity of static
message passing that characterizes the existing graph neural network literature. Empirically, our
method outperforms current state-of-the-art approaches on standard benchmarks, particularly under
the MASS metric, demonstrating the effectiveness of spectrum-driven sparsification.

This work opens several promising directions for future research. First, beyond node pruning, the
JGE layer naturally supports graph condensation: rather than selecting subsets of the original graph,
it can synthesize entirely new graphs and feature matrices that retain the information content of the
input data. Second, extending the formulation beyond square adjacency matrices would allow JGE
to operate on heterogeneous relational data, where multiple groups of objects (potentially belong-
ing to different domains and containing varying numbers of elements) interact through non-square
incidence patterns. Such a generalization would substantially broaden the applicability of our frame-
work to domains ranging from multi-relational networks to cross-modal representation learning.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide both theoretical and experimental support.
Intuitions, motivation, formal proofs of the main theorems and additional derivations are in-
cluded in the appendix, which clarify the assumptions, the applicability domain, and the limi-
tations of the proposed model. For the experimental validation, we release the full implemen-
tation of our method, together with the preprocessing pipeline and training scripts, available at
https://anonymous.4open.science/r/CA43. These materials allow independent
researchers to reproduce the reported results and explore further applications of our approach.
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A STABILITY OF THE JOINT GRAPH EVOLUTION LAYER

Theorem 1. Let Q ∈ Rr×s be any real matrix. Define its row– and column–absolute sums by

ui =

s∑
j=1

|Qij |, vj =

r∑
i=1

|Qij |.

Form the diagonal scaling matrices U ∈ Rr×r and V ∈ Rs×s via

Uii =

{
1/
√
ui, ui > 0,

0, ui = 0,
Vjj =

{
1/
√
vj , vj > 0,

0, vj = 0.

Then the normalized matrix
Q̂ = U QV

satisfies
∥Q̂∥op ≤ 1,

i.e. Q̂ is non-expansive in the Euclidean norm, indicating by ∥Q̂∥op the induced spectral operator
norm, i.e., the square root of the largest eigenvalue of Q̂⊤ Q̂.

Proof. Recall that for any matrix M the induced spectral operator norm is:

∥M∥op := sup
x̸=0

∥Mx∥2
∥x∥2

= sup
∥x∥2=1

∥Mx∥2,

where ∥x∥2 = (
∑

j x
2
j )

1/2 is the Euclidean norm. It suffices to show ∥Q̂x∥2 ≤ 1 for all unit vectors
x ∈ Rs.

Let y = V x, then:
Q̂x = U (Qy).

Hence:

∥Q̂x∥22 =

r∑
i=1

U2
ii

 s∑
j=1

Qijyj

2

.

Since U2
ii = 1/ui when ui > 0 and zero otherwise,

∥Q̂x∥22 =
∑

i:ui>0

1

ui

 s∑
j=1

Qijyj

2

.

Bounding each summand using the triangle inequality followed by Cauchy–Schwarz:∣∣∣ s∑
j=1

Qijyj

∣∣∣ ≤ s∑
j=1

|Qij | |yj | =
s∑

j=1

√
|Qij | ·

√
|Qij | |yj |.
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Thus, applying Cauchy–Schwarz on nonnegative vectors: s∑
j=1

Qijyj

2

≤ ui

s∑
j=1

|Qij | y2j .

and thus:

∥Q̂ x∥22 ≤
r∑

i=1

s∑
j=1

|Qij | y2j =

s∑
j=1

( r∑
i=1

|Qij |
)
y2j =

s∑
j=1

vj y
2
j .

Finally, since yj = xj/
√
vj whenever vj > 0 (and xj = yj = 0 if vj = 0):

s∑
j=1

vj y
2
j =

s∑
j=1

x2
j = ∥x∥22 = 1.

Hence ∥Q̂ x∥22 ≤ 1 for all unit x, and taking the supremum yields ∥Q̂∥op ≤ 1, as claimed.

B PROPERTIES OF THE LAPLACIAN MATRIX

Theorem 2. Let B ∈ Rn×m be any real matrix. Define:

L = BBT ∈ Rn×n,

then L is symmetric and positive semidefinite.

Proof. First:
LT = (BBT )T = BBT = L,

so L is symmetric. Next, for any x ∈ Rn, set y = BTx ∈ Rm. Then

xTLx = xT (BBT )x = (BTx)T (BTx) = yT y =

m∑
k=1

y2k ≥ 0.

Hence L is positive semidefinite.

C LAPLACIAN MATRIX FOR DIRECTED GRAPHS

Theorem 3. Let G = (V,E) be a directed graph on n nodes (without self-loops), with adjacency
matrix A ∈ {0, 1}n×n. Define a signed incidence matrix

B ∈ {−1, 0, 1}n×m,

where m = |E|, by choosing an arbitrary but fixed orientation of each edge ek and setting

Bi,k =


−1, if node i is the tail of edge ek,
+1, if node i is the head of edge ek,
0, otherwise.

Let D ∈ Nn×n be the diagonal matrix whose ith entry Dii equals the total degree of node i, i.e. the
sum of its in- and out-degrees. Then

BB⊤ = D −
(
A+A⊤).

That is, for general (asymmetric) A, the incidence-based Laplacian recovers the symmetrized com-
binatorial Laplacian.

Proof. We verify the equality entry-wise.

Diagonal entries (i = j). [
BB⊤]

ii
=

m∑
k=1

B2
i,k =

∑
k: i∈ek

1 = Dii.

14
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Off-diagonal entries (i ̸= j). [
BB⊤]

ij
=

m∑
k=1

Bi,kBj,k.

A nonzero contribution arises only when ek connects i and j. If ek is oriented i → j, then Bi,k =
−1, Bj,k = +1, so Bi,kBj,k = −1. If ek is oriented j → i, then Bi,k = +1, Bj,k = −1, again
Bi,kBj,k = −1. Hence

m∑
k=1

Bi,k Bj,k = −
(
δ{i → j ∈ E}+ δ{j → i ∈ E}

)
= −(Aij +Aji).

Where δ{·} is a binary function whose value is 1 if its argument is True, 0 otherwise. That is,[
BB⊤]

ij
= −

(
A+A⊤)

ij
.

Combining diagonal and off-diagonal cases yields

BB⊤ = D − (A+A⊤),

as claimed.

D ON THE SINGULARITY OF L+ αI

Theorem 4. Let L ∈ Rn×n be a symmetric and positive semidefinite matrix, and let α ∈ R>0 be
a positive scalar that is not an eigenvalue of L. Then L + αI is symmetric, positive definite, and
therefore nonsingular.

Proof. Since both L and the identity matrix I are symmetric, their sum L+αI is symmetric as well.
To prove that L+ αI is positive definite, consider any nonzero vector x ∈ Rn. Then,

xT (L+ αI)x = xTLx+ αxTx.

Because L is positive semidefinite, xTLx ≥ 0. Moreover, since α > 0 and x ̸= 0, we have
αxTx > 0. Thus, xT (L + αI)x > 0 for all x ̸= 0, and hence L + αI is positive definite. Positive
definite matrices are invertible, so L+ αI is nonsingular.

E INTUITION AND ANALYSIS OF THE SPECTRAL PRESERVATION NETWORK

E.1 MOTIVATION

Spectral sparsification Batson et al. (2013) has emerged as a principled approach for reducing the
density of large graphs while preserving their global structural and dynamical properties. Unlike
heuristic or naive pruning strategies scoring all edges/nodes uniformly and pruning them based on a
prefixed sparsity level Chen et al. (2023) considering the lowest weights or local topological criteria
(e.g., low node degree or triangle count Liu et al. (2023)), spectral sparsification explicitly preserves
the global spectral geometry of the graph, that is maintaining the essential eigenstructure of the
graph’s Laplacian matrix, which encodes rich information about the global topology, connectivity,
and dynamics of the network Chung (1997); von Luxburg (2007). While weight-based thresholding
may eliminate edges that appear weak or redundant, it provides no formal guarantees about the
impact on connectivity, diffusion processes, or the spectrum of the Laplacian. In contrast, spectral
sparsification methods construct subgraphs that maintain critical algebraic and dynamical properties
of the original graph within a well-defined approximation bound.

Specifically, a graph G′ is said to be an ε-spectral sparsifier of a graph G if the quadratic form of
the Laplacians satisfies (1 − ε)xTLx ≤ xTL′x ≤ (1 + ε)xTLx for all vectors x ∈ Rn, where
L and L′ denote the Laplacian matrices of G and G′, respectively. This condition ensures that
key properties such as effective resistance, commute times, and spectral clustering behavior are ap-
proximately maintained in the sparsified representation. In particular, the effective resistance Klein
& Randić (1993) between nodes, which quantifies the influence of an edge on global connectiv-
ity, plays a central role in modeling diffusion and current flow through the network. Maintaining
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approximate effective resistances guarantees that edge importance in terms of global communica-
tion is preserved. Similarly, commute times, defined as the expected number of steps a random
walker takes to travel from one node to another and return, are tightly linked to the spectrum of the
Laplacian and to resistance distances. These metrics reflect how efficiently information or influence
spreads in the network. Furthermore, preserving the Laplacian spectrum also retains the embedding
space used in spectral clustering Ding et al. (2024), where the eigenvectors of the Laplacian encode
low-dimensional representations that capture community structure, modularity, or functional sub-
systems. As a result, spectral sparsification allows the reduced graph to faithfully approximate the
original graph’s geometry and signal propagation behavior, which is essential in applications such
as brain network analysis, semi-supervised learning, and the design of graph neural network filters.

E.2 ON EXACT BINARY OPTIMIZATION

An alternative approach to node-level sparsification would be to solve the combinatorial problem

min
Z∈{0,1}n

L(L∗
A,M

∗
X , L∗

ZAZ ,M
∗
ZX) + λ tr(Z) . (17)

However, this formulation entails a combinatorial search over 2n binary masks, making it intractable
even for moderately sized graphs. Instead, our method leverages a continuous relaxation of Z via
Gumbel-sigmoid sampling, enabling efficient gradient-based optimization. This allows for scalable
training while still encouraging discrete sparsification through the trace penalty. Additionally, the
use of spectral alignment losses ensures a balanced trade-off between structural and feature preser-
vation.

E.3 COMPUTATIONAL COMPLEXITY AND STABILITY

To assess the theoretical and practical feasibility of the proposed Spectral Preservation Network, an
analysis of its stability, space complexity, and time complexity is presented.

E.3.1 MODEL STABILITY

As detailed in Appendix A, the normalization of the structural matrix Qt via diagonal matrices Ut

and Vt ensures that the transformation Ut Qt Vt remains non-expansive with respect to the Euclidean
norm, satisfying ∥Ut Qt Vt∥2 ≤ 1. This property constrains the Lipschitz constant of each JGE
layer, mitigating risks of feature explosion or vanishing across multiple layers.

The non-expansiveness contributes to enhanced numerical stability and consistent gradient propa-
gation, which in turn supports more reliable convergence during optimization. These benefits are
particularly relevant in deep graph architectures, where instabilities are commonly encountered.

Additional stability is provided by the use of shifted Laplacian and Gram matrices (Equations 11
and 13), whose eigenvalues are strictly positive, as demonstrated in Appendix D. This guarantees
that the transformations remain well-conditioned, avoiding numerical issues associated with near-
singular matrices.

Collectively, these mechanisms promote robustness to input perturbations and enable stable end-to-
end training of deep graph networks.

E.3.2 SPACE COMPLEXITY

Each JGE layer introduces a temporary tensor Jt+1 ∈ Rpt×pt and three learnable parameter matri-
ces: Θt ∈ Rrt+1×pt , Φt ∈ Rpt×rt+1 , and Ψt ∈ Rpt×pt+1 , for every t ∈ {1, . . . , T}. The size of
the learnable parameters remains both tractable and explicitly controllable, as their dimensions are
specified by design and are independent of the size or structure of the input graph. The only excep-
tion is the first layer, where p0 = f depends on the dimensionality of the input features. In typical
applications, however, f is significantly smaller than the number of nodes n or edges m, making
this dependency negligible. In cases where f is unusually large, standard dimensionality reduction
techniques, such as Principal Component Analysis (PCA), can be applied to the input feature matrix
X during preprocessing.
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Assuming constant dimensions across layers, i.e., rt = r and pt = p for all t, the total space required
by the SpecNet model is given by:

O
(
T p (p+ r)

)
. (18)

In the node-level sparsification setting, an additional feedforward layer processes a concatenation of
the flattened matrices QT and HT , producing an output vector of size n. This results in an overall
space complexity of:

O
(
T p (p+ r) + r (r + f)n

)
. (19)

This accounts for both model parameters and the additional memory required by the final selection
mechanism.

E.3.3 TIME COMPLEXITY

Forward Pass. To analyze the time complexity of the SpecNet architecture, the operations
within each JGE layer, as defined in Equation 4, are examined in detail. Let rt = r and pt = p for
all layers t ∈ {1, . . . , T}, as is typically assumed for simplicity.

Each layer involves the following steps:

• Construction of diagonal normalization matrices Ut, Vt ∈ Rr×r from Qt ∈ Rr×r, requiring
O(r2).

• Elementwise normalization to compute Q′
t = UtQtVt, which adds another O(r2) (as Ut

and Vt are diagonal).
• Bilinear projection Q′′

t = H⊤
t Q′

tHt, resulting in a matrix in Rp×p and costing O(pr2 +
rp2).

• Computation of the intermediate tensor Jt+1 = ΘtQ
′′
t ∈ Rr×p, which requires O(rp2).

• Final updates of Qt+1 ∈ Rr×r and Ht+1 ∈ Rr×p through nonlinear transformations, both
costing O(pr2).

Summing the dominant terms, the per-layer cost is O(pr2+rp2), therefore, the total time complexity
of the forward pass through a SpecNet network with T JGE layers is:

O
(
T (pr2 + rp2)

)
. (20)

This estimate represents the worst-case scenario. In practice, the use of optimized GPU matrix
libraries can reduce the empirical cost significantly via parallelization and memory-efficient algo-
rithms, often achieving sub-cubic runtime behavior.

In the case of node-level graph sparsification, a final projection to the original node space is required,
introducing an additional cost of O(r (r + p)n). The overall forward complexity then becomes:

O
(
T (pr2 + rp2) + r (r + p)n

)
. (21)

Loss Function Complexity. The computation of the shifted Laplacian matrix L∗
ZAZ ∈ Rn×n

(Equations 2.3, 10, and 11) depends on the type of graph:

• Undirected graphs: computing L = D − ZAZ costs O(n2), as D is diagonal and Z is
diagonal and binary.

• Directed graphs: computing L = D − (ZAZ + (ZAZ)⊤) incurs O(n2) as well.

The shifted Laplacian, by adding the scalar shift α1I , costs O(n), thus, in the worst case (directed
setting), its computation O(n2) time. In contrast, the shifted Gram matrix M∗

ZX ∈ Rf×f (Equa-
tion 13) is formed from X⊤ZX + α2I , which has cost O(nf2).

The cost of computing all eigenvalues of a dense matrix in Rn×n is typically O(n3) Golub & van
Loan (2013). However, when the matrix is symmetric and positive definite, as in the case of this
work, efficient algorithms exist:

• In the dense setting, the MRRR algorithm (Multiple Relatively Robust Representations) can
reduce the cost to O(n2) under favorable conditions Dhillon et al. (2006).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• In the sparse setting, iterative methods such as the Lanczos algorithm Cullum &
Willoughby (2002) compute the top-k eigenvalues and corresponding eigenvectors with
cost O(k · nnz), where nnz is the number of non-zero entries.

Computing the norm of the difference of the two sets of eigenvalues costs O(k), assuming k1 =
k2 = k, that is negligible.

Overall, the asymptotical worst-case upper bound for computing the full Spectral Concordance loss
function is:

O(min(n2, k · nnz) + nf2) . (22)

In the node-level sparsification setting, the trace regularization term (Equation 16) adds a negligible
O(n).

Summary. Let s denote the number of training epochs. Table 4 summarizes the overall time
complexity for both training and inference.

Phase Time Complexity

Training O
(
s (T (pr2 + rp2) + r (r + p)n + min(n2, k · nnz) + nf2))

)
Inference O(T (pr2 + rp2) + r (r + p)n)

Table 4: Time complexity of the SpecNet architecture in its two principal configurations, for both
training and inference.

F DATA

In our experimental assessement, we used the following datasets:

• Cora1 is a citation network where nodes represent scientific publications and edges denote
citation links, i.e., a citation from a publication to another. Node features are bag-of-words
vectors built from a dictionary of unique terms, with binary indicators for word presence.

• Citeseer2 is another citation graph of research papers. As in Cora, nodes correspond to
publications and edges to citation links, with bag-of-words feature vectors.

• Actors3 is a directed co-occurrence graph in which nodes represent actors and directed
edges indicate that one actor is mentioned in the Wikipedia page of another. Node features
are bag-of-words representations of the corresponding page content.

• PubMed4 is a large-scale citation graph where nodes are scientific articles and edges rep-
resent citation relationships, treated as undirected. Node attributes are TF-IDF vectors
extracted from textual content.

• Twitch-EN5 is a social network where each node corresponds to a Twitch user and edges
represent mutual follow relationships. Node features encode user-level metadata. The
dataset contains overlapping communities and densely connected subgroups.

All graphs are pre-processed by removing self-loops and duplicate edges.

1https://linqs.org/datasets/#cora
2https://github.com/ZPowerZ/citeseer-dataset/tree/master, https://linqs.

org/datasets/#citeseer-doc-classification
3https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geo

metric.datasets.Actor.html#torch_geometric.datasets.Actor
4https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geo

metric.datasets.CitationFull.html#torch_geometric.datasets.CitationFull
5https://pytorch-geometric.readthedocs.io/en/2.6.0/generated/torch_geo

metric.datasets.Twitch.html#torch_geometric.datasets.Twitch
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G EVALUATION METRICS

Connection-based metrics. Connection-based metrics capture both local connectivity and global
network behavior through community-level structure. We consider three metrics: (i) the size of the
Largest Connected Component (LCC) nLCC , (ii) the average node degree k̄, and (iii) the modularity
M .

The size of the largest connected component nLCC measures the number of nodes in the largest
connected subgraph in G. Tracking the LCC provides a straightforward estimate of how many
nodes remain part of the principal connected structure.

The degree of a node i is defined as ki =
∑

j ̸=i aij , where aij denotes the adjacency matrix entry of
the graph G. This metric corresponds to the number of neighbors of a node. In our analysis, we focus
on the average node degree k̄, which measures the mean number of neighbors per node and provides
a concise measure of the network’s overall connectivity. For directed graphs, we also consider the
average in-degree k̄in, i.e., the mean number of incoming edges, and the average out-degree k̄out,
i.e., the mean number of outgoing edges.

The modularity M quantifies the extent to which a network is organized into densely connected clus-
ters of nodes, with relatively few connections between different clusters. To assess each subject’s
community modularity, in our analysis, we first identify the communities within the networks by us-
ing the Louvain algorithm Blondel et al. (2008). Once the communities are detected, the modularity
M of the partitioning is computed as:

M =
1

2m

∑
ij

(
ωij −

kikj
2m

)
δ(ci, cj) (23)

where m is the sum of the edge weights of G, wij is the weight of edge (i, j) in G, ki and kj are
the weighted degrees of nodes i and j respectively, ci and cj are the communities of the correspond-
ing nodes, and δ is the Kronecker function which yields 1 if i and j are in the same community,
that is ci = cj , zero otherwise. Networks with high modularity are characterized by strong intra-
community connectivity and weak inter-community connectivity. If the modularity of the input
graph and the modularity of the sparsified graph remain similar, the sparsification preserves the
community structure, meaning the sparsified graph retains key intra-community edges, removing
edges likely belonging to inter-community connections, which are less critical for modularity.

Since sparsification inherently reduces the number of nodes/edges, both the size of the largest con-
nected component and the average node degree decrease accordingly. These measures are therefore
not used to assess structural preservation, but rather to provide an estimate of the reduction rate in
terms of node connectivity. In contrast, metrics such as modularity are employed to evaluate the
extent to which the community structure is preserved after sparsification.

Spectral-based metrics. Spectral measures derive from the eigenvalues and eigenvectors of graph
matrices. We consider three metrics: (i) the Minimum Absolute Spectral Similarity (MASS) δmin

and (ii) the epidemic threshold τc.

The Minimum Absolute Spectral Similarity Yan et al. (2018) δmin is a quality index measuring the
difference between the spectral properties of a graph and its sparsified version after edge removals.
The measure specifically quantifies the difference between the Laplacian L of G and the Laplacian
L′ of the sparsifier G′. The minimum relative spectral similarity (MRSS) between L′ and L is
usually computed as:

δRmin = min∀z
zTL′z

zTLz
(24)

where z can be any vector with N elements and zTL′z is the Laplacian quadratic form. The vector z
intuitively represents the direction along which the difference between the two graphs is measured.
As such, the minimum value of similarity reflects the worst case. However, if G′ disconnects into
components, the MRSS value becomes zero, making the use of this measure unstable for many
optimization algorithms. An alternative viable measure is the absolute spectral similarity proposed
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in Yan et al. (2018):

δ(z) = 1− zT∆Lz

zT [λ1]L z
(25)

where [λ1 ≥ λ2 ≥ . . .]L are the eigenvalues of L, and ∆L = ∆D − ∆A is the Laplacian of the
difference graph ∆G having the same set of nodes of G and the set of edges removed during the
sparsification. Since the input vector z is variable, considering the worst-case scenario, the minimum
absolute spectral similarity (MASS) is

δmin = min|z|=1

(
1− zT∆Lz

[λ1]L

)
= 1− [λ1]∆L

[λ1]L
(26)

where [λ1 ≥ λ2 ≥ . . .]∆L are the eigenvalues of the difference Laplacian ∆L and, without loss of
generality, only the unit length vectors |z| = 1 are considered.

The MASS is able to practically quantify the robustness of a network at a mesoscopic (i.e., com-
munities) level when edges are removed and the network disconnects. Ranging between 0 and 1,
the MASS offers a practical and computationally efficient similarity measure between the origi-
nal graph and its version after the edge reduction, indicating whether the spectral properties of the
original graph are kept or not after its perturbation.

The epidemic threshold τc: the largest eigenvalue of the adjacency matrix of G also known as
spectral radius and denoted with λ1, is considered a powerful character of dynamic processes on
complex networks since it characterizes the spread of viruses and synchronization processes Li et al.
(2011) Van Mieghem et al. (2009). It is a common practice to choose the inverse of the spectral
radius, the epidemic threshold τc as a measure for robustness: the larger the epidemic threshold, the
more robust a network is against the spread of a virus. In epidemiology theory, the inverse of λ1,
in fact, characterizes the threshold of a phase transition Castellano & Pastor-Satorras (2010) over
which the network shifts from a virus-free state with zero infected nodes to fractions of infected
nodes where the virus is persistent. The epidemic threshold formula

τc =
1

λ1
(27)

is rigorously demonstrated in the N-intertwined approximation, named NIMFA, of the exact SIS
(Susceptible-Infected-Susceptible) model Van Mieghem et al. (2009). The spectral radius which is
computed in O(m), and hence the epidemic threshold, is strictly related to the path capacity of the
network. In Restrepo et al. (2007), it is demonstrated that λ1 can be approximated by N3/N2,
where Nk is the total number of walks in k hops. Van Mieghem et al. proved that N3/N2 is a
lower bound for the spectral radius Van Mieghem et al. (2010). If the sparsified graph has a similar
epidemic threshold, the sparsification preserves the network’s robustness and also its ability to trans-
mit information or infections, retaining key high-degree and central edges. The epidemic threshold
thus serves as an indicator of both network robustness and information preservation, reflecting the
network’s ability to maintain connectivity and support effective information propagation despite
sparsification.

H CONTESTANT METHODS

SpecNet is compared by considering the following contestant methods:

• Random Uniform Sparsifier (RUS): randomly samples edges from a given adjacency matrix
A to create a sparsified graph. The sparsification is performed uniformly, meaning each
edge is equally likely to be selected, regardless of its weight or structural role. The approach
is simple and unbiased, but may discard important edges.

• Spielman Sparsifier (SS): spectral sparsification through the effective resistance values of
the edges. Based on the foundational work by Spielman and Srivastava (Spielman & Sri-
vastava, 2011), the approach retain edges with higher effective resistance ωij computed
as

ωij = l+ii + l+jj − 2l+ij , (28)
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where l+ij are the elements of the Moore-Penrose pseudoinverse matrix L+ of the weighted
Laplacian matrix of G.

• Kim et al. (Kim et al., 2022) edge attribute based sparsification (KS): a class of meth-
ods assigning edge importance based on topological features computed locally for each
edge. Edges are then sparsified by selecting those with the highest attribute-based scores,
enhancing local structure preservation. Specifically, three variants are considered:

– KSJ (Jaccard Similarity): edge weight is computed as the Jaccard index between the
neighborhoods of its two endpoints i and j:

J(i, j) =
|N(i) ∩N(j)|
|N(i) ∪N(j)|

. (29)

– KSCT (Common Triangles): edge weight is proportional to the number of triangles
that include the edge, promoting edges involved in tightly connected clusters:

T(i, j) = |N(i) ∩N(j)| − 2 . (30)

• D-Spar Liu et al. (2023): prepares a smaller graph for a GNN (e.g., GCN, GraphSAGE,
GAT, etc.) to train or infer on. D-Spar indirectly affects the GNN by deciding what structure
the GNN will see and learn from. More specifically, this preprocessing strategy computes
a score for each edge as

Dscore(i, j) =
1

Dii
+

1

Djj
, (31)

where Dii and Djj are the degrees of nodes i and j respectively. Then, a percentage of
edges with the highest scores are kept, while all the other edges are removed. This scoring
scheme prioritizes edges connecting low-degree nodes, which are typically more crucial
for maintaining the global structure of sparse graphs.

Since our experiments involve both directed and undirected graphs, the compared sparsification
methods were adapted accordingly to handle directionality. Edge-based scores like Jaccard simi-
larity and common triangles were computed using both in- and out-neighbors, and triangle counts
considered directed motifs such as cycles and feedforward structures. Finally, degree-based quanti-
ties were computed by distinguishing in-degree and out-degree of each node (i.e., D+

ii , D−
ii ).

21


	Introduction
	Spectral Preservation Network
	Joint Graph Evolution Layer
	Node Sparsification
	Spectral Concordance

	Experimental Test-bed and Results
	Related Work
	Graph Embeddings and Joint Structure–Feature Learning
	Graph Sparsification

	Conclusion and Future Work
	Stability of the Joint Graph Evolution Layer
	Properties of the Laplacian Matrix
	Laplacian Matrix for Directed Graphs
	On the Nonsingularity of L + alpha I
	Intuition and Analysis of the Spectral Preservation Network
	Motivation
	On Exact Binary Optimization
	Computational Complexity and Stability
	Model Stability
	Space Complexity
	Time Complexity


	Data
	Evaluation Metrics
	Contestant methods

