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Abstract

Evaluating AI models in the field of medical imaging, particularly for tasks such as
nodule detection, is a challenging endeavor due to the scarcity of large, diverse, and
well-annotated datasets. These constraints hinder the ability to accurately assess
model performance and limit generalization to real-world scenarios. To address
these challenges, we introduce SynNodBench, a generative Al-based demo that
generates synthetic lung nodules of varying sizes, shapes, and locations on chest
X-rays. Our method employs a diffusion-based inpainting model trained on the
NODE21 dataset, allowing for the creation of realistic and customizable synthetic
nodules.

We conducted multiple experiments to illustrate the utility of the demo in un-
derstanding nodule detection model behavior. First, by generating a large-scale
synthetic test set, we were able to identify a positive correlation between nodule
size and model confidence, a relationship that was not observed with smaller real-
world datasets. We also demonstrated how the number of nodules in an image
influences detection sensitivity, finding that the presence of additional nodules can
increase sensitivity in detecting otherwise missed lesions. In another experiment,
we examined whether a nodule detection model would correctly ignore nodules in
anatomically impossible regions, such as air-leak areas, and confirmed the model’s
robustness in these cases. Our findings show that using synthetic data provides a
scalable and effective solution for evaluating Al models in healthcare.

1 Introduction

Evaluating Al models for biomedical image analysis requires large and diverse datasets[1]], but
obtaining such data is challenging due to ethical, legal, geographical, and financial constraints. This
scarcity can lead to biased testing datasets, limiting the accuracy of model performance evaluation
and restricting their ability to generalize to real-world scenarios[2, 3]]. Furthermore, ensuring the
transparency and robustness of medical Al models demands comprehensive evaluations[4], which
typically require densely annotated datasets that are both costly and time-consuming to produce.

For instance, a recent study[5] on chest X-ray nodule detection, using a test set of 144 nodules,
found no significant correlation between nodule size and detection rate, despite the expectation
that larger nodules should be easier to detect. This unexpected result highlights the difficulty of
analyzing correlations between detection rates and factors like nodule size in small datasets, where
other variables such as nodule location, opacity, and shape can have a significant impact.
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Several studies utilize synthetic data to address the issue of data scarcity in the medical field[6].
Most of this research has focused on employing synthetic data for model training, and it has been
reported that this approach can significantly enhance performance[7, 8, 9]. We aim to demonstrate
that synthetic data can also be valuable for evaluation. Some recent research has explored the use
of generative Al to create synthetic test sets[10, [11,[12]]. For example, studies have used synthetic
tabular data to reduce evaluation errors in minority groups(L1], or to enhance the interpretability of
models that assess skin cancer[12]. In our research, we trained a diffusion-based model[13] to inpaint
nodules in chest X-rays, generating synthetic nodule datasets to evaluate nodule detection models.
We created a demo called SynNodBench, which allows users to generate nodules with desired size,
shape, and location in any chest X-ray. The tool also enables conditioning on radiomic features,
providing a comprehensive framework for evaluating nodule detection models. Additionally, we have
made YOLOvVS and YOLOv9[14] models, trained on the NODE21 dataset[15], available as examples
for evaluation.

In our demonstration of SynNodBench, we analyzed the correlation between nodule size and model
confidence. Unlike previous research, which found no correlation in 144 nodules, our large-scale
synthetic test set revealed a clear positive correlation between nodule size and model confidence. Our
synthetic approach also highlighted the impact of other factors, such as decreased detection accuracy
near the hilar region and diaphragm.

The SynNodBench demo offers a robust solution to data scarcity and annotation challenges in chest
X-ray lung cancer Al research, enabling more thorough and reliable model assessments.

2 Methods

2.1 Dataset

We utilized the NODE21 dataset[|15] to train the nodule inpainting and detection models. NODE21
dataset is a comprehensive collection of frontal chest x-rays specifically curated for pulmonary
nodule detection. It comprises 4,882 images, of which 1,134 contain 1,476 annotated nodules, each
delineated by bounding boxes. The remaining 3,748 images serve as negative samples, containing
no nodules. This dataset is constructed from publicly available repositories that permit remixing
and redistribution, including the Japanese Society of Radiological Technology (JSRT) dataset[16],
PadChest[[17], ChestX-ray14[18], and the Open-I dataset[[19]. The diverse origins of these images
contribute to a robust and representative sample, essential for developing and evaluating effective
nodule detection and generation tasks.

For the nodule inpainting model, we augmented the dataset by extracting 256x256 pixel patches from
the original images. This resulted in a larger dataset comprising 14,764 patches for training (13,492
normal, 1,272 with nodules) and 1,652 patches for testing (1,500 normal, 152 with nodules). For
the nodule detection model, we employed a dataset split of 4,393 images for training (3,373 normal,
1,020 with nodules) and 489 images for testing (375 normal, 114 with nodules).

2.2 Lung Nodule Inpainting Model

We employed a diffusion-based architecture for nodule inpainting, based mainly on RadiomicsFill-
Mammo|13], an inpainting framework designed for generating mass lesions in masked regions of
mammograms. To enhance tumor generation, the standard text encoder is replaced with a tabular
encoder (MET)[20] that leverages radiomics features[21] such as shape, histogram, and textures. The
denoising U-Net is fine-tuned for mass inpainting, improving the realism and clinical relevance of the
generated images.

Our research adapts this approach for chest X-ray images and nodule inpainting as shown in figure
We utilized the NODE21 dataset to segment nodules and extract radiomics features. The structure of
the tabular encoder is identical to the original MET([20]. We trained it using the extracted radiomics
features while progressively increasing the masking rate up to 0.9 to enhance robustness. Unlike
breast masses, where clinical conditions are categorized, the presence or absence of nodules is
indicated.

After training the tabular encoder, we froze its parameters and used its features to condition the
denoising U-Net, which was then fine-tuned for nodule inpainting. We maintained the original
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Figure 1: Overview of the nodule inpainting model, a stable diffusion-based architecture. This model
performs iterative denoising for nodule inpainting within masked regions on a noisy latent vector,
utilizing information from unmasked regions and specific radiomics conditions.

training configuration from [13], fine-tuning the "stabilityai/stable-diffusion-2-inpainting" pretrained
model [22] using nodule data from CXR images under the same settings—a batch size of 64 over
1,000 epochs on four NVIDIA RTX 6000 GPUs.

For comparison, in addition to the method using the diffusion model, we also experimented with more
straightforward approaches, such as applying Gaussian blur to mimic nodules or creating synthetic
nodules using segmented nodule patches from the CT scan provided in the NODE21 dataset, similar
to approaches explored in the previous study[23]]. These methods have the advantage of generating
synthetic nodules more easily without the diffusion process, but unlike the diffusion method, they
are limited in their ability to adjust nodule characteristics under various conditions. Details of these
methods can be found in the appendix [A.2]

2.3 Lung Nodule Detection Model

We utilize YOLOvV8 and YOLOV9[[14] as nodule detection models, which are enhanced versions of
the original YOLOJ[24]. Both models were utilized with their baseline configurations without any
modifications. We chose the YOLOvV8-x version, which was trained using a single RTX6000 GPU
with a batch size of 8 for 100 epochs. Similarly, we selected the YOLOvV9-C version, which was
trained using two RTX6000 GPUs with a batch size of 16 for 500 epochs. Input images were resized
to a resolution of 1024x1024 pixels for both models, and mosaic data augmentation was applied to
improve the generalization of the training process.

3 Results

3.1 SynNodBench Demo

We have developed SynNodBench, a demo that allows users to generate synthetic nodules in chest
X-rays. In this demo, users can upload a chest X-ray image as the background, select the location
and size of the nodule using a bounding box, and adjust radiomics features to generate the nodule.
The adjustable radiomics features include Sphericity, Contrast, Energy, Entropy, Inverse Difference
Moment, and Gray Level Variance, with the full list provided in the appendix [AT]

The generated chest X-ray image with the synthetic nodule can be exported at a resolution of
1024x1024, and users can also view the inference results from YOLOvV8 and YOLOV9 models,
trained on the NODE21 dataset. On the NODE21 test set, mAP scores of 0.641 and 0.673 were
achieved, while on the Synthetic test set, scores of 0.566 and 0.578 were obtained, respectively.
Figure [2 shows an example of a synthetic nodule created using the nodule inpainting model, along
with the interface of SynNodBench.
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Figure 2: (a) SynNodBench, users can upload a desired chest X-ray, specify the region for nodule
generation using a bounding box, adjust radiomics features, and generate a nodule. The results of
YOLOVS and YOLOV9 can also be reviewed. (b) Example of synthetic nodule using the proposed
demo.

3.2 Exploring the Relationship between Nodule Size and Model Confidence

As an example of analysis using our proposed method, we examined the relationship between
model confidence and nodule size, which previous study[5]] failed to identify. We segmented the
region of interest (ROI) where nodules can be found in chest X-rays and generated 5,710 samples,
each containing one nodule ranging in size from 4mm to 40mm, for evaluation. The FID score
of the generated samples was 3.22. The evaluation was conducted using one of the commercial
models(Lunit-CXR) employed in prior research[3], and we calculated the Spearman’s correlation
between nodule size and model confidence. For comparison, we also assessed 863 nodules from the
NODE21 dataset[13]] that were 4mm to 40mm.

The results showed a Spearman’s correlation of 0.5779 for the 5,710 synthetic nodules, indicating
a moderate positive correlation. In contrast, the test using 863 real nodules yielded a Spearman
correlation of 0.1228, showing no significant correlation. These findings suggest that using synthetic
data to generate nodules on a large scale under controlled conditions opens up the possibility of
analyzing relationships between specific variables, such as nodule size and model confidence, which
may not be easily detected with traditional methods. Figure [3]illustrates how model confidence
changes as nodule size increases.

3.3 Additional Insights into Model Behavior

Two experiments were conducted using the proposed demo to gain further insights into how the
nodule detection model operates.

Effect of Multiple Nodules on Detection Sensitivity Figure [ (a) illustrates a case where the
behavior of the detection model was examined based on the number of nodules. First, a nodule was
generated near the heart on a normal chest X-ray, and an additional nodule was created in the lung
area for the image on the left. As a result, the detection model was able to identify the nodule in the
left image, while it failed to detect it in the right image. This indicates that when a clearly visible
nodule is present, the AI model becomes more sensitive in detecting regions that could be suspected
as nodules.

Detection Behavior of the Model in Air-leak Regions Figure[d(b) demonstrates an experiment
designed to determine whether the given nodule detection model would detect nodules in anatomically
impossible locations. For example, lung nodules occur in the lung parenchyma, and in cases of
pneumothorax, nodules cannot be found in air-leak regions. Thus, nodules were generated across the
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Figure 3: Sample image and graph illustrating how model confidence changes as nodule size increases.
The first row shows examples of nodules generated at the same location with different sizes. The
second row visualizes the model confidence across various regions when nodules are generated
throughout the entire chest X-ray. The graph at the bottom shows the average model confidence for
each nodule size (blue line), while the orange and green lines represent the detection rates when
model confidence exceeds 15% and 50%, respectively.

(b)

Figure 4: (a) Changes in nodule detection sensitivity based on the number of nodules. In the left
image, where two nodules are present, the model sensitively detects the nodule near the heart, while
in the right image, where only one nodule is present near the heart, the model fails to detect it. (b)
When a nodule was generated in the air-leak region, the detection model did not classify it as a nodule.
The left image shows the pneumothorax region and the right image visualizes the model confidence
when nodules were generated across various regions of the pleural cavity.

entire pleural cavity on a chest X-ray with pneumothorax, and we tested whether the model would
detect nodules in the air-leak region. Interestingly, the model did not classify the nodule in the air-leak
area as a nodule. This shows that the model produces robust detection results, even within the pleural
cavity, by correctly identifying that nodules cannot exist in air-leak regions.

4 Discussion

We have demonstrated how generative Al can be effectively used for model evaluation in healthcare
through our proposed method. The generative Al-based approach shows potential for efficiently
creating large-scale test datasets for medical imaging Al evaluations. Moreover, it allows data
generation with specific variables controlled, enabling analysis of the relationship between lesion
characteristics and model performance. This approach could also be extended to other areas, such as
detecting lesions beyond nodules in chest X-rays, mass detection in mammography, or lung nodule
detection in chest CT scans, making further studies highly valuable.

However, the inherent limitation of using synthetic data is that it is not equivalent to real data. While
we used the FID score to evaluate the realism of the synthetic data, more robust assessments may be
necessary, such as a visual Turing test by clinicians.
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A Appendix

A.1 Radiomics Features Used in the Nodule Inpainting Model

The proposed nodule inpainting model can accept a total of 67 radiomics features as input. The full
list of radiomics features is provided below.

» Shape Features (2D): Elongation, Major Axis Length, Maximum Diameter, Mesh Surface,
Minor Axis Length, Perimeter, Perimeter Surface Ratio, Pixel Surface, Sphericity.

* First Order Features: 10 Percentile, 90 Percentile, Energy, Entropy, Interquartile Range,
Kurtosis, Maximum, Mean Absolute Deviation, Mean, Median, Minimum, Range, Ro-
bust Mean Absolute Deviation, Root Mean Squared, Skewness, Total Energy, Uniformity,
Variance.

* Gray Level Co-occurrence Matrix (GLCM) Features: Autocorrelation, Cluster Promi-
nence, Cluster Shade, Cluster Tendency, Contrast, Correlation, Difference Average, Differ-
ence Entropy, Difference Variance, Id, Idm, Idmn, Idn, Imc1, Imc2, Inverse Variance, Joint
Average, Joint Energy, Joint Entropy, MCC, Maximum Probability, Sum Average, Sum
Entropy, Sum Squares.

* Gray Level Size Zone Matrix (GLSZM) Features: Gray Level Non-Uniformity, Gray
Level Non-Uniformity Normalized, Gray Level Variance, High Gray Level Zone Emphasis,
Large Area Emphasis, Large Area High Gray Level Emphasis, Large Area Low Gray Level
Emphasis, Low Gray Level Zone Emphasis, Size Zone Non-Uniformity, Size Zone Non-
Uniformity Normalized, Small Area Emphasis, Small Area High Gray Level Emphasis,
Small Area Low Gray Level Emphasis, Zone Entropy, Zone Percentage, Zone Variance.

A.2 Comparison with methods utilizing Gaussian blur and segmented nodule patches from

CT scans
(b)

Figure 5: Examples of synthetic nodules generated using (a) Gaussian blur and (b) projected nodule
patches.

(a)

In addition to the proposed method using the diffusion model, we evaluated the model with simpler
approaches for generating synthetic nodules, such as Gaussian blur and segmented nodule patches
from CT scans. Gaussian blur was used to create synthetic nodules with precise circular shapes, which
were then blended onto chest X-rays. Segmented nodule patches were obtained from 3D nodules
provided by CT scans from the NODE21 dataset and projected onto X-rays before blending. Previous
studies inserted 3D nodules into chest CT scans and used Digitally Reconstructed Radiographs (DRR)
for evaluation. However, because DRR images have lower resolution and differ in shape from real
chest X-rays, we opted to use blending techniques instead. Examples of synthetic nodules generated
using Gaussian blur and projected nodule patches can be seen in Figure[5]

We first experimented with synthetic nodules created using Gaussian blur, increasing the size from
4mm to 40mm to observe changes in model confidence, as described in Section 3.2. As shown
in Figure @ similar to the diffusion model, model confidence tended to increase with nodule size.
However, since the Gaussian blur nodules have consistent and well-defined shapes, they appear more
easily detected on the graph.

We also attempted to observe model confidence variations using projected nodule patches by altering
their sizes. However, we observed a substantial drop in detection performance when the nodule size
deviated significantly from its original dimensions. Therefore, we selected six nodule patches with
similar sizes between 21mm and 25mm, standardized them to 20mm, and analyzed how their shapes
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Figure 6: Sample image and graph illustrating how model confidence changes as nodule size increases.
The first row shows examples of Gaussian blur nodules generated at the same location with different
sizes. The second row visualizes the model confidence across various regions when nodules are
generated throughout the entire chest X-ray. The graph at the bottom shows the average model
confidence for each nodule size (blue line), while the orange and green lines represent the detection

rates when model confidence exceeds 15% and 50%, respectively.
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Figure 7: Sample image and graph illustrating how model confidence changes as nodule shape
changes. The first row shows examples of projected nodule patches from CT scans. The second row
visualizes the model confidence across various regions when nodules are generated throughout the
entire chest X-ray.

affected model confidence. As shown in Figure [7] nodules with more circular and larger shapes
exhibited higher model confidence, while elongated and smaller nodules tended to result in lower
model confidence.
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