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Abstract
We approach designing a state-space model for
deep learning applications through its dual rep-
resentation, the transfer function, and uncover a
highly efficient sequence parallel inference algo-
rithm that is state-free: unlike other proposed
algorithms, state-free inference does not incur
any significant memory or computational cost
with an increase in state size. We achieve this
using properties of the proposed frequency do-
main transfer function parametrization, which
enables direct computation of its correspond-
ing convolutional kernel’s spectrum via a single
Fast Fourier Transform. Our experimental re-
sults across multiple sequence lengths and state
sizes illustrates, on average, a 35% training speed
improvement over S4 layers – parametrized in
time-domain – on the Long Range Arena bench-
mark, while delivering state-of-the-art down-
stream performances over other attention-free
approaches. Moreover, we report improved per-
plexity in language modeling over a long con-
volutional Hyena baseline, by simply introduc-
ing our transfer function parametrization. Our
code is available at https://github.com/
ruke1ire/RTF.

1. Introduction
Central to the success of a certain class of sequence model-
ing layers are linear recurrences, which unlike the nonlin-
ear case (Hochreiter & Schmidhuber, 1997; Chung et al.,
2014; Kidger et al., 2020; Massaroli et al., 2021), are com-
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Figure 1: An illustration depicting the scaling of memory
consumption on a scan-based algorithm (S5) and the pro-
posed state-free inference algorithm denoted as RTF. We
note that with larger state sizes, inference with S5 becomes
prohibitively memory-intensive.

patible with exact sequence parallel algorithms i.e., paral-
lel scans (Blelloch, 1990; Martin & Cundy, 2018; Smith
et al., 2023; Gu & Dao, 2023; Katsch, 2023), or (with time-
invariance) the Fast Fourier Transform (FFT) (Gu et al.,
2022b;a; Zhang et al., 2023). Such recurrent layers, of-
ten referred to in deep learning simply as state-space mod-
els, depending on their parametrization, also boast efficient
constant time and memory autoregressive inference, lower-
ing latency and memory costs.

Despite recent advancements, current SSMs exhibit certain
limitations that this paper aims to address.

With the goal of enabling parallel inference, many algo-
rithms such as S5 (Smith et al., 2023), LRU (Orvieto et al.,
2023) S4 (Gu et al., 2022b) and DSS (Gupta et al., 2022)
employ a modal (diagonal) SSM representation, wherein
the state transition matrix A is diagonal, potentially limit-
ing the model’s expressive capacity for a given state dimen-
sion. Additionally, along with Mamba (Gu & Dao, 2023),
S5 and LRU rely on the parallel scan directive (Martin &
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Rational Transfer Function (a)

H(z) = h0 +
b1z

−1 + · · ·+ bnz
−n

1 + a1z−1 + · · ·+ anz−n
= h0 +

0 + b1z
−1 + · · ·+ bnz

−n + 0z−n−1 + · · ·+ 0z−ℓ+1

1 + a1z−1 + · · ·+ anz−n + 0z−n−1 + · · ·+ 0z−ℓ+1

State-Free Parallel Inference (b)
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rFFT

b

a
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Recurrent Form (c)
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Figure 2: (a) The rational transfer function (RTF) representation comprises numerator and denominator polynomial coefficients b and a,
and the feedforward term h0. (b) illustrates the proposed state-free parallel inference algorithm. The key to efficient state-free inference
lies in casting b and a onto the sequence length for computing the convolutional filter (hi)i∈[ℓ]. (c) illustrates the recurrent form of RTF
which can be used for fast single-step inference. Here we denote the i-th state at time t as xi

t.

Cundy, 2018; Blelloch, 1990) which incurs considerable
memory costs at large state sizes1, due to the materializa-
tion of states over the sequence length, as made evident in
Figure 1.

The expensive space requirement is alleviated with S4
(Gu et al., 2022b), S4D (Gu et al., 2022a), and Space-
Time (Zhang et al., 2023) by an algorithm that admits
what we denote as state-additive space complexities, in
which the parallel inference algorithm collapses the state
dimension n onto the sequence length dimension ℓ, en-
abling space complexities of O(ℓ + n) in place of the
much greater state-multiplicative O(ℓn) complexity of
scan-based algorithms. To realize the aforementioned
state-additive space complexity, S4 and S4D leverage
fast Cauchy and Vandermonde matrix-vector product al-
gorithms (Pan, 2001). These algorithms used in com-
puting the convolutional kernel for S4 and S4D scale as
O((ℓ+n) log2(ℓ+n)), bottlenecking the fasterO(ℓ log ℓ)
required to execute the downstream convolution.

We approach solving these issues through a thorough
frequency analysis of state-space models and unveil a
parallel inference algorithm that admits state-free space
and time complexities of O(ℓ) and O(ℓ log ℓ) respec-
tively. Additionally, the proposed algorithm operates over
a complete representation, the Rational Transfer Func-
tion (RTF) representation, which unlike diagonal SSMs
(Gu et al., 2022a; Gupta et al., 2022; Smith et al., 2023),
fully encapsulates the functional space of any linear time-
invariant state-space model, including ones parameterized

1Even when the states are only materialized in SRAM (Gu &
Dao, 2023), as SRAMs are limited in size.

with dense matrices. Parallel inference with RTF solely
relies on the Fast Fourier Transform (FFT) algorithm – a
widely used and optimized algorithm, alleviating the need
for additional custom low-level optimizations to obtain ef-
ficient subquadratic complexities. Figure 2 illustrates an
overview of the parametrization, parallel inference, and se-
quential inference algorithms of our proposed SSM.

In order to validate the proposed parametrization, we
conducted experiments across a range of tasks, models,
and importantly state sizes, including Long Range Arena
(LRA), language modeling, and synthetic tasks. Notably,
in LRA our proposed model obtained state-of-the-art ac-
curacy (Table 1) among other attention-free models, and
faster training speeds in comparison to S4 and S4D across
state sizes (Figure 3). We approached language model-
ing by embedding RTF into a Hyena model (Poli et al.,
2023a), effectively replacing the original convolutional fil-
ter parameterized with MLPs with transfer functions, and
observed improved perplexity over the Hyena Filter base-
line when trained on WikiText103 (Table 4).

2. Preliminaries and Related Work
We discuss sequence modeling, convolution-based se-
quence processing units and their state-space realization.

2.1. Sequence Modeling with Convolutions

Let Sdℓ denote the space of length-ℓ vector-valued se-
quences, Sℓ := {(ut)t∈[ℓ] : ut ∈ Rd} ≡ Rℓ×d. We denote
the time index with a subscript roman letter and additional
dimensions with greek superscripts, e.g. xα

t for t ∈ [ℓ] and
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α ∈ [d]. Any map from Sdℓ into itself is herein referred to
as a sequence processor. Complex deep learning architec-
tures tailored for sequence modeling typically involve the
composition of simpler, parametric sequence processors in
a multi-layer fashion. In this work, we focus on causal se-
quence processors u 7→ y, where the output yt at any given
time t ∈ [ℓ] is a function of solely the preceding inputs, i.e.
∂yt/∂uj = 0 for all t < j and u ∈ Sdℓ . This constraint is
crucial, for instance, in auto-regressive training of decoder-
only language models (Radford et al., 2018) or analogous
modeling tasks of temporal dynamics (see e.g. Chen et al.,
2021).

The ideal sequence processing layer is expected to fulfill
several design criteria, balancing factors such as expressiv-
ity, computational and memory efficiency, favorable train-
ing dynamics, and parametric efficiency. Of particular in-
terest in this work are those sequence processors that utilize
single-input single-output (SISO) discrete convolutions as
their fundamental components, a.k.a. linear time invari-
ant (LTI) systems, with convolutional filters being implic-
itly parameterized.

A single-input single-output causal convolution
between an input u ∈ S1ℓ and a filter h ∈ S1ℓ (often
called the impulse response function) is defined as

(h ∗ u)t =
t∑

j=0

ht−juj for all t ∈ [ℓ]. (1)

The class of implicit convolutions represent the fil-
ter as a parametric function fθ : t 7→ ht := fθ(t).

SISO convolution operators can be represented by struc-
tured (Toeplitz) matrices that admit a fast multiplication al-
gorithm with efficient sub-quadratic complexityO(ℓ log ℓ).
They serve as the fundamental building blocks on various
classical signal processing pipelines such as audio systems
(Oppenheim et al., 1999) and visual systems (Gonzalez &
Woods, 2008).

A notable modern example of sequence processors that
make use of implicit convolutions as their core operation
on the temporal dimension is the Hyena architecture (Poli
et al., 2023a). Given three sequences q, k, v ∈ Sdℓ ob-
tained from the input u ∈ Sdℓ through three dense linear
projections Rd → Rd followed by three short convolu-
tions, Hyena realizes a map u 7→ Hu : Sdℓ → Sdℓ , defined
element-wise for all t ∈ [ℓ] and α ∈ [d] as

(Hu)αt = uα
t +

d−1∑
β=0

t∑
j=0

Tαβqβt h
β
t−jk

β
j v

β
j (2)

where {hα
t : t ∈ [ℓ], α ∈ [d]} ∈ Sdℓ is a collection of

implicit long convolution filters and T ∈ Rd×d is an output

projection that mixes channels across the sequence length.
Hyena applies d SISO convolutions, independently on each
channel. This multi SISO approach has been successful
in other convolution-based sequence processors such as S4
(Gu et al., 2022b;a) or H3 (Fu et al., 2023) (as well as linear
input-varying models (Gu & Dao, 2023)).

2.2. State-Space Realization of Convolutions

This work delves deep into the design of the individual
SISO filters ht, tailored for sequence processing architec-
tures leveraging classical frequency-domain analysis tech-
niques from signal processing and control theory.

More specifically, we specialize on those filters that admit a
finite-dimensional state-space (lumped) realization, i.e. the
input-output relation of their induced convolution operator
can be expressed as:

xt+1 = Axt + But

yt = Cxt + h0ut

, t 7→ ht =

{
h0 t = 0

CAt−1B t > 0
(3)

with a finite-dimensional state xt ∈ Rn (n ≪ ℓ), input
ut ∈ R, and output yt ∈ R. Our trainable degrees of free-
dom are the matrices A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n,
and h0 ∈ R. The initial condition x0 ∈ Rn is usually set
to zero such that u 7→ y is a pure convolution. A major
advantage of having a state-space realization is the possi-
bility to switch between its convolution mode, for training,
and recurrent mode, for efficient auto-regressive generation
(see Massaroli et al., 2023 and Section A for further details
and denominations).

State-space representations Parametrization of lumped
convolutional filters with temporal dynamics, i.e., state-
space parametrization present several challenges. Firstly,
recurrence with dense transition matrices A are compu-
tationally expensive, amounting to a computational com-
plexity of O(ℓn2). To make such systems feasible var-
ious recent works proposing efficient state-space models
have resorted to diagonalization (Gu et al., 2022a; Smith
et al., 2023; Orvieto et al., 2023) and low-rank add-ons
(Gu et al., 2022b) of A. As will be further uncovered when
analyzing the dual representation, transfer functions, these
restrictions impose a constraint on the expressivity of its
convolutional filter h, given a fixed state-size n. Moreover,
despite various works on optimizing parallel inference ef-
ficiency, associative scans utilized in (Martin & Cundy,
2018; Smith et al., 2023; Orvieto et al., 2023; Gu & Dao,
2023) still incur considerable memory costs due to its state-
multiplicative complexity of O(ℓn), whereas fast Cauchy
and Vandermonde matrix-vector products (Pan, 2001) uti-
lized in (Gu et al., 2022b;a) present an improved state-
additive space complexity of O(ℓ + n), but heavily rely
on custom platform specific low-level optimizations.
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3. Training SSMs in the frequency domain
Linear time-invariant dynamical systems (1) are com-
pletely characterized by their impulse response h, and in
the case they admit a state-space realization (3), their sys-
tem matrices (A,B,C, h0).

3.1. Transfer Function Representation

An alternative complete representation of (3) is its trans-
fer function H : C→ C, defined as the Z-transform of the
impulse response H(z) :=

∑
t∈N htz

−t for all z∈C where
the sum converges. The transfer function of a state-space
model (A,B,C, h0) is a proper2 rational function of z,

H(z) = h0 + C(zI− A)−1B

= h0 +
b1z

−1 + · · · + bnz
−n

1 + a1z−1 + · · · + anz−n
.

(4)

Refer to A.2 for complete derivations. As discrete con-
volutions are the dual operation to element-wise multipli-
cation under Z-transform, the input-output relation of any
LTI system can be equivalently characterized by H(z),

yt = (h ∗ u)t ⇔ Y (z) = H(z)U(z)

where H is defined outside the circle in the complex plane
whose radius is the amplitude of the largest eigenvalue of
the state transition matrix A. The Z-transform is a projec-
tion of the sequence onto a power basis z−t = r−te−iωt

for r, ω ∈ R. This basis is not orthogonal unless r = 1.
That is the basis of the discrete-time Fourier transform F .
Hence, the discrete-time Fourier transform of the signal h
is defined as F [h](eiω) = H(eiω) :=

∑
t∈N hte

−iωt, i.e. it
is the transfer function H(z) evaluated at z = eiω . We say
that sequences live in the time domain and their Z (or F)
transforms in the frequency domain.

We argue that parametrizing state-space models via their
transfer function (i.e. making (a, b) the learnable parame-
ters), encompasses previous representations of SSMs such
as using structured matrices (Fu et al., 2023; Gu et al.,
2022b) or modal canonical forms (Gu et al., 2022a; Orvieto
et al., 2023; Smith et al., 2023; Fu et al., 2023).

Coordinate invariance of the transfer function No-
tably, the transfer function is an invariant of the system:
if an invertible change of variables is applied to the state-
space representation, the transfer function parameters (a, b)
remain unchanged. Without loss of generality let h0 = 0.

Lemma 3.1. Coefficients a, b are invariant under
any invertible change of variables.

Proof. The proof is classic and can be found in (Chen,
1998) and follows from the definition of equivalence trans-

2i.e. such that the denominator’s order is not less than the
numerator’s one.

formation. Consider the state-space matrices under a
change of variables x̂ = Kx, for some invertible K ∈ Rn×n

Â = KAK−1, B̂ = KB, Ĉ = CK−1.

The transformed transfer function Ĥ(z) is given by

Ĥ(z) = CK−1[K(zI− A)K−1]−1KB = H(z)

This emergent coordinate invariance should be of warning
to most attempts at modeling filters by directly learning ei-
ther dense or structured state-space matrices (A,B,C) as
such: there are infinitely many equivalent state-space re-
alizations that map to the same system. This also demon-
strates that dense SSM parametrizations are inefficient in
their use of parameters with respect to its expressivity.

Expressivity of the transfer function Any impulse re-
sponse h that can be represented using dense matrices—of
n2+2n+1 parameters with stable dynamics—can also be
described using rational transfer functions with just 2n+1
parameters.

This is demonstrated in the derivations presented in Sec-
tion A.3. It illustrates that one can calculate the param-
eters of the transfer functions (a, b, h0), given any state-
space parameterization (A,B,C, h0), through the following
method:

a = poly(eig(A)),

b = poly(eig(A− BC)) + poly(eig(A))(h0 − 1),
(5)

in which poly(r) computes the coefficients of a polynomial
given its roots r0, . . . , rn.

Parallel to change of variable techniques such as diagonal-
ization of A employed in time-domain state-space realiza-
tions, partial fraction decomposition of transfer functions
can not only provide alternative representations of state-
space models, but also intuitive insights on the expressivity
of these models.

As an example, by simply taking the first order partial frac-
tion decomposition of a rational transfer function H(z),
i.e.,

H(z) =

n∑
i=1

ri
z − λi

+ h0 (6)

in which ri, λi ∈ C, we obtain the diagonal time-domain
parameterization. Its equivalence can be shown by simply
breaking down the geometric series ri/(z−λi) = ri(1/z+
λi/z

2+λ2
i /z

3+. . . ), and applying the inverseZ-transform
(z−j is an impulse at time-step j), resulting in the diagonal
SSM convolutional kernel ht =

∑
i∈[n] riλ

t−1
i for t > 0.

Looking further, we observe that, like (4), it contains 2n+1
trainable parameters, but does not permit repeated roots,
i.e. r1/(z− λ1) + r2/(z− λ1)

2, thereby demonstrating its
limited expressivity.
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Algorithm 1 RTF Kernel Generation

Input: RTF params (a, b, h0), truncation length ℓ
b̄, ā← pad(b, a, (1, ℓ− n− 1)) # Padding a and b to ℓ

ā0 ← 1 # Set denominator monic poly. term.
B, A← FFTℓ(b̄, ā) # Polynomial eval.
H ← B/A+ h0 # Construct rational function

3.2. State-Free Parallel Inference

For attaining sub-quadratic parallel inference speeds, the
approach taken by S4, S4D, and SpaceTime predominantly
hinges on the efficient computation of its length-ℓ truncated
impulse response ht:

ht =

h0 t = 0
CAt−1B 0 < t ≤ ℓ
0 t > ℓ

, (7)

or its corresponding spectrum FFTℓ(h) for downstream
integration with the sub-quadratic convolution algorithm,
FFTConv(u, h), described in (Burrus & Parks, 1985; Se-
lesnick & Burrus, 2017; Fu et al., 2024).

Adopting a parallel approach for rational transfer function,
we reveal that ht can be computed in a state-free man-
ner, incurring space and time complexities of O(ℓ) and
O(ℓ log ℓ), respectively. This is achieved through the eval-
uation of the truncated transfer function Hℓ(z) across the
roots of unity, as delineated below.

Firstly, we demonstrate that an impulse response of
length-ℓ, when expressed in the Z-domain as Hℓ(z) =∑ℓ−1

t=0 htz
−t, can be efficiently transformed into its time-

domain representation in the following manner.

Lemma 3.2. Let Tm denote the set of the m roots of
unity, i.e. Tm := {zk : z = e2πi/m}k∈[m]. Then, for
all t ∈ [ℓ] and m ≥ ℓ it holds

ht = iFFTm

(
(Hℓ(z))z∈Tm

)
t

(8)

Proof.

iFFTm

(
(Hℓ(z))z∈Tm

)
t
=

1

m

∑
z∈Tm

Hℓ(z)z
t

=
1

m

∑
z∈Tm

ℓ−1∑
j=0

hjz
t−j

=
1

m

ℓ−1∑
j=0

hj

{
m t− j = 0

0 otherwise

= ht.
(9)

Additionally, observe that the inverse application of
Lemma 3.2 results in the following insight.

Evaluating a truncated transfer function Hℓ(z)
at the roots of unity, outputs the spectrum of the
impulse response, that is:

(Hℓ(z))z∈Tm
= FFTm(h). (10)

In order to truncate the rational transfer function, we de-
vise a “tail” H̃ℓ(z), such that Hℓ(z) = H(z) − H̃ℓ(z), as
follows.

Lemma 3.3. Let the “tail”, H̃ℓ(z) be a Z-domain
representation a lumped LTI system (A,B,C, h0) for
t > ℓ, i.e. H̃ℓ(z) =

∑∞
t=ℓ+1 CA

t−1Bz−t, then

H̃ℓ(z) = CAℓz−ℓ(zI− A)−1B. (11)

Proof.

∞∑
t=ℓ+1

CAt−1Bz−t = CA−1

[ ∞∑
t=ℓ+1

Atz−t

]
B

= CA−1
[
Aℓ+1z−ℓ−1(I− Az−1)−1

]
B

= CAℓz−ℓ−1(I− Az−1)−1B

= CAℓz−ℓ(zI− A)−1B.
(12)

Since z−ℓ = 1∀z ∈ Tℓ, we can derive the length-ℓ trun-
cated transfer function in the following manner,

Hℓ(z) = H(z)− H̃ℓ(z) = C̃(zI− A)−1B,

C̃ = C(I− Aℓ) := b̃,
(13)

Nonetheless, in practice, we circumvent the computation of
Aℓ, by directly optimizing b̃ during the training phase, and
only apply the inverse correction C = b̃(I − Aℓ)−1, upon
deployment, i.e. autoregressive inference. This is equiv-
alent to the approach taken by (Gu et al., 2022b;a; Zhang
et al., 2023), on the “truncated SSM generating function”.

To evaluate the truncated rational function, we recognize
that:

1. Rational functions are composed of polynomials.

2. Evaluating polynomials on the roots of unity, is equiv-
alent to applying a fast Fourier transform over its co-
efficients.
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Lemma 3.4. Let αk be the k-th order coefficient of
a polynomial. Then for all k, t ∈ [m], z = e2πi/m, it
holds

m−1∑
k=0

αkz
−tk = FFTm(α)t, (14)

Proof. By definition of the Fourier Transform.

In light of Lemma 3.4, it becomes evident that for any n-
th order truncated rational transfer function parameterized
by (a, b̃, h0), by setting a0 = 1, b̃0 = 0 and ak, b̃k = 0
for k > n (zero padding of polynomial coefficients), the
spectrum of the impulse response can be computed with:

Hℓ(z
t) =

∑ℓ−1
k=0 b̃kz

−tk∑ℓ−1
k=0 akz

−tk
+ h0 =

FFTℓ(b̃)t
FFTℓ(a)t

+ h0,

(15)

as demonstrated in Algorithm 1. Finally to obtain ht, we
simply apply Equation 8.

Importantly, the proposed parallel inference algorithm re-
lies solely on the FFT algorithms, which have space and
time complexities ofO(ℓ) andO(ℓ log ℓ), respectively. The
ubiquitous FFT algorithm is widely used and already have
low-level optimizations applied across several platforms,
subsequently optimizing RTF across those platforms.

3.3. Fast Companion Recurrence

Rational transfer functions could directly be translated into
a structured state-space model of the following form:

xt+1 =


−a1 −a2 · · · −an
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0

xt +


1
0
0
...
0

ut

yt =
[
b1 b2 · · · bn

]
xt + h0ut.

(16)

The structure (companion form) permits fast companion re-
currence via the combination of shift operations, dot prod-
ucts resulting in single time-step space and time complexi-
ties of O(n). Refer to Section B.1 for the full derivation.

Moreover, as discussed in (Massaroli et al., 2023), the com-
panion realization of a state-space model can be leveraged
to perform fast prefilling, in which the state xt can be
obtained from u0, . . . , ut with computation complexity of
O(ℓ log2 ℓ). Fast prefilling is applicable in extensive lan-
guage modeling applications, where the model, upon re-
ceiving a length-ℓ prompt from the user, autoregressively
generates subsequent prompts using a constant-time recur-
rent algorithm as described above. For state-space realiza-
tions that are not in companion form, they must first be

transformed into the companion form using Equation (5) to
perform fast prefilling.

Unlike SpaceTime (Zhang et al., 2023) that shares the same
A matrix but trains both B and C, we adhere to the true
companion form during training, in which the B matrix is
a constant as shown in Equation (16), while b (C matrix) is
trained.

3.4. Stable Parametrization

To prevent numerical instabilities, it is important to config-
ure SSMs to exhibit stable dynamics. The choice of pa-
rameters for the state-transition matrix A significantly in-
fluences their stability. For rational transfer functions, the
roots of the denominator polynomial (the pole) must lie
within the complex unit circle, i.e. |r| ≤ 1 to prevent un-
stable dynamics (Chen, 1998).

Unlike diagonal SSMs, with first order roots (Equation
(6)), ensuring that the coefficients of a high order poly-
nomial

∑n
i=0 an−iz

i are such that its roots remain within
the complex unit circle presents a complex challenge, as
highlighted in (Alomari & Chesneau, 2022). SpaceTime
(Zhang et al., 2023) adopts Montel’s method (Horn & John-
son, 1985; Alomari & Chesneau, 2022), a technique that,
for a Monic polynomial (where a0 = 1), constrains the re-
maining coefficients in a manner described by:

n−1∑
i=1

|ai| ≤ 1. (17)

However, as depicted in Figure 4, the application of Mon-
tel’s method not only ensures that the roots are confined
within the unit circle but also limits them to a specific sub-
set of the stable region. This limitation could potentially di-
minish performance, a phenomenon supported by the find-
ings in Table 5.

To mitigate this, we propose an alternative initialization
strategy for the SSM coefficients, aiming to position them
as far as possible from violating Montel’s constraint:

argmina(

n−1∑
i=1

|ai|) = 0, (18)

where a, b̃ = 0. We denote this initialization scheme as the
zero initialization. Our ablation tests (Table 5) and com-
parisons against SpaceTime on the Long Range Arena (Tay
et al., 2021) benchmark (Table 1) show enhanced training
stability and consequently, improved performance when
adopting the zero initialization scheme.3

3Unless explicitly stated otherwise, all results presented in this
paper adopts the zero initialization scheme with h0 = 1.

6



State-Free Inference of State-Space Models

2 3 4 5 6 7 8 9

0

5

L
a
te

n
cy

(m
s)

6.65

ListOps

RTF (Ours) S4D S4

2 3 4 5 6 7 8 9

0

5

10
9.02

Text

2 3 4 5 6 7 8 9 10

0

10

20
21.23

Retrieval

2 3 4 5 6 7 8 9

0

5

L
a
te

n
cy

(m
s)

6.96

Image

2 3 4 5 6 7 8 9

State Size (log2 n)

0

2

4 4.05

PathFinder

2 3 4 5 6 7 8 9 1011

0

50

100
107.485

Path-X

Figure 3: Latency profiles for a single RTF, S4D, and S4
layer at various state sizes. It is evident that RTF consis-
tently exhibits superior parallel inference speeds, with its
lower latency across a range of tasks and state sizes.

4. Experimental Results
In this section, we conduct an empirical evaluation of RTF
in comparison to other state-space models and sequence
models. Section 4.1 is dedicated to assessing memory us-
age and processing speed. Sections 4.2 and 4.3 examine the
ability for SSMs to memorize and model long-range depen-
dencies. Finally, their ability to model language is assessed
in sections 4.4 and 4.5.

4.1. Efficiency Profiling

We profiled GPU memory usage between a parallel scan-
based S5 model and RTF across different sequence lengths
and state sizes at channel dimensions of d = 1024. The re-
sults depicted in Figure 1 reveal a consistent trend, wherein
the memory consumption for the scan operation rises in
conjunction with state size and sequence length, while it
solely escalates with sequence length for RTF. This phe-
nomenon can be attributed to the aforementioned state-free
characteristic of RTF’s inference algorithm, which casts its
parameters with size of the state dimension onto the se-
quence length for parallel inference. We also observed a
similar trend for the inference latency which is further de-
tailed in Appendix C.1.

Next, we profiled inference latency across different SSMs
of varying state-sizes over a suite of six LRA tasks, facili-
tating speed comparisons across a wide range of model ar-
chitectures. Figure 3 reports the median inference latency
per SSM layer across 75 training iterations.

The results show a recurring trend, wherein RTF’s infer-
ence latency remained consistent regardless of state size

and conversely, S4D and S4 experienced slower speeds
particularly at higher orders, due to the utilization of
the slower Vandermonde or Cauchy matrix-vector product
algorithms respectively, which have computational com-
plexity of O((ℓ + n) log2(ℓ + n)) as opposed to RTF’s
O(ℓ log ℓ).

4.2. Modeling Long Range Dependencies

The Long Range Arena (LRA) benchmark has become a
common ground for testing various sequence models in-
cluding SSMs (Gu et al., 2022b;a; Smith et al., 2023;
Hasani et al., 2023) and Transformers (Vaswani et al.,
2017; Choromanski et al., 2021). It is composed of six clas-
sification tasks with long range input sequences of lengths
ranging from 1024 to 16384. We conducted these experi-
ments on RTF along with S4, S4D, and SpaceTime (Zhang
et al., 2023) as presented in Table 1.

RTF obtained strong results in several LRA tasks, includ-
ing attaining state-of-the-art performance on Retrieval,
and among attention-free approaches, the average score.
However for Path-X, RTF was unable to learn a policy
beyond random guessing when the state-size was fixed to
64, prompting an increase to 2048. Nevertheless, due to
RTF’s state-free parallel inference algorithm, this increase
in state-size did not impact GPU memory consumption nor
training speed as evidenced in Figure 3.

4.3. Synthetic Memorization Tasks

Recurrences have traditionally struggled with vanishing
and exploding gradients, making memorization tasks chal-
lenging (Bengio et al., 1994; Pascanu et al., 2013). To
evaluate the memorization capabilities of our state-space
model, we benchmark them against two synthetic memo-
rization tasks: Copying and Delay.

The Copying task, akin to (Arjovsky et al., 2016), presents
SSMs with 1024 length sequences of 64 discrete states
sampled uniformly, which the model is then tasked to re-
call all 1024 tokens in order. Each model was given 10k
training samples for 50 epochs, and was tested with 1000
unseen samples.

The Delay task, which was also used to ablate HiPPO SSM
initialization schemes (Gu et al., 2023), simply tests the
model’s ability to delay a continuous white noise by 1000
time steps. As reported by Gu et al., LSTMs and Trans-
formers struggle on this seemingly simple task, and are un-
able to improve beyond a random guessing policy. The pri-
mary distinction between Copying and Delay is whether the
input data is discrete or continuous. More detailed experi-
mental setup could be found in C.3.

From the results reported in Table 2, we observed that at
higher state-sizes, RTF could more accurately copy and
delay data. S4 on the other hand struggled on Copying,
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Table 1: Long range arena benchmark results. We included results reported in (Gu et al., 2022b; Smith et al., 2023; Ren
et al., 2023) and additionally ran SpaceTime (Zhang et al., 2023) based on the official implementation with hyperparameters
identical to RTF. We also included results of self-pretrained (SPT) Transformers (Amos et al., 2024) denoted with + Causal
SPT. † indicate the use of an increased state-size and ✗ indicates that the model was unable to train beyond a random
guessing policy.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.

Transformer 36.37 64.27 57.46 42.44 71.4 ✗ 53.66
Luna-256 37.25 64.57 79.29 47.38 72.72 ✗ 58.54
Transformers + Causal SPT 59.15 88.81 90.38 76.0 88.49 88.05 81.81
Mega O(ℓ2) 63.14 90.43 91.25 90.44 96.01 97.98 88.21
H3 57.5 88.2 91.0 87.3 93 91.8 84.8
CCNN 43.6 84.08 ✗ 88.9 91.51 ✗ 68.02
Liquid-S4 62.75 89.02 91.2 89.5 94.8 96.66 87.32

S5 62.15 89.31 91.4 88.0 95.33 98.58 87.46
S4 61.29 88.25 90.90 89.2 94.2 96.35 86.69
S4D 60.74 87.03 90.68 89.18 95.42 97.32 86.72
SpaceTime 56.4 87.8 91.45 86.27 ✗ ✗ 70.32
RTF (Ours) 61.59 89.72 92.04 90.51 96.11 96.32† 87.71

Table 2: Results on synthetic memorization tasks. The
state-size of the model is denoted with the number trailing
the model name, i.e. S4-64 is an S4 model with n = 64.

Model Copying Delay
acc. ↑ RMSE ↓

S4-64 29.3 0.41
RTF-64 22.1 0.45

S4-128 34.2 0.39
RTF-128 93.3 0.45

S4-256 35.0 0.33
RTF-256 100 0.44

S4-512 33.1 0.22
RTF-512 100 0.38

S4-1024 33.2 0.029
RTF-1024 100 0.006

showing no improvements beyond the state-size of 256. It
is also worth noting that on both synthetic tasks, unlike
the discrete-time RTF SSM, S4, being continuous-time re-
quired careful consideration of the initialization and inter-
play between the time-constant ∆ and the transition matrix
A for reasonable performance.

4.4. Laughing Hyena Distillation

Hyena (Poli et al., 2023a) and MultiHyena (Massaroli et al.,
2023) operators utilize a diverse array of filters, encom-
passing short convolutional filters - filters implicitly pa-
rameterized by multi-layer perceptrons (MLP) (Poli et al.,
2023a; Sitzmann et al., 2020; Romero et al., 2022), and di-
agonal SSMs (Massaroli et al., 2023). Notably, Hyena op-
erators with MLP-parameterized filters have demonstrated
superior performance compared to other convolutional and

recurrent methods, as highlighted in (Akyürek et al., 2024;
Bhattamishra et al., 2024). Despite their effectiveness,
these filters lack constant-time autoregressive inference
speeds desired in applications such as language model-
ing. This limitation has led to the investigation of distilling
MLP-based filters into SSMs, a process detailed in Laugh-
ing Hyena (Massaroli et al., 2023).

Here, we look into distillation of MLP-based filters, using
a 160M parameter multi-head StripedHyena (Poli et al.,
2023b) language model, trained on The Pile (Gao et al.,
2021), and compare distillation performances between RTF
and a diagonal SSM employed in Laughing Hyena (LH),
both of which boast highly efficient O(n) autoregressive
algorithms. Table 3 reports distillation errors and down-
stream LM-Evaluation-Harness scores (Gao et al., 2023).

Interestingly, despite the theoretically superior expressive-
ness of RTF models, we observed that the modal represen-
tation employed in LH exhibits more favorable training dy-
namics for distillation at state-sizes 16 and 64, as evidenced
by the distillation MSE. However with n = 4, RTF out-
performs LH while maintaining comparable downstream
evaluation performances to the baseline model, making it
a good candidate for unlocking efficient constant-speed au-
toregressive inference on Hyena language models.

4.5. WikiText103 Language Modeling

In addition to evaluating the language modeling capabili-
ties of state space models through distillation techniques,
their performance when directly trained on autoregressive
cross-entropy loss (Radford et al., 2018) was investigated
on the well-established WikiText-103 dataset. We used a
Hyena operator and replaced its filters with RTF, which we
refer to as Hyena-RTF.
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Table 3: This table illustrates downstream evaluation scores from LM-Evaluation-Harness (Gao et al., 2023). The number
trailing the model names indicate its state-size.

Model Winogrande PIQA HellaSwag OpenbookQA Distillation
acc. ↑ acc. ↑ acc. norm. ↑ acc. norm. ↑ MSE ↓

Baseline (160M) 52.09 61.64 29.68 29.4 -

LH-4 51.7 62.02 29.76 29.6 0.032
RTF-4 51.7 61.04 29.82 29.6 0.018

LH-16 52.25 61.75 29.73 28.6 0.009
RTF-16 52.96 61.64 29.85 29.8 0.013

LH-64 49.57 61.59 29.8 29.6 0.007
RTF-64 53.43 61.81 29.85 29.2 0.011

Table 4: WikiText103 language modeling perplexity
scores. The results are taken from (Poli et al., 2023a). Each
model listed below contains ∼125M parameters.

Model Perplexity ↓
Transformer 18.6
Hybrid H3 18.5
Linear Attention 25.6
Hyena 18.5
Hyena-S5 (Smith et al., 2023) 18.3
Hyena-RTF (Ours) 18.0

As shown in Table 4, Hyena-RTF outperforms both the
Transformer and Hyena baselines on WikiText103. Ad-
ditionally, RTF without the Hyena operator structure was
compared against S4 and S4D on a pilot experiment further
described in Appendix C.5.1, which similarly indicated rel-
atively strong language modeling capability among other
LTI SSMs. These results signal a promising potential for
further scaling RTF on larger models and datasets.

5. Conclusion
In this study, we explore state-space model (SSM)
parametrization via their dual representation, transfer func-
tions. We systematically unveiled the realization of SSMs
through rational transfer functions (RTF), demonstrating
state-of-the-art efficiency through a state-free parallel infer-
ence algorithm, while maintaining the expressiveness of a
dense SSM. Our experiments revealed that RTFs are effec-
tive for modeling long-range dependencies and processing
language, and also exhibits improvements in comparison
to the S4 model across synthetic memorization tasks with
higher state-sizes. The results of our investigation suggest
that RTFs hold significant potential for modeling signals
across a variety of other domains.
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A. Linear System Theory
This section delves into linear system theory, including denomination of various characteristics such as lumpedness, time-
invariance, etc., and also includes the analysis and derivation of Z-domain transfer functions.

A.1. Overview and Basics

Linear Systems: Linear systems consist of a series of linear equations generally expressed as:

y = Gu, (A.1.1)

in which u ∈ Rℓ, y ∈ Rℓ, and G ∈ RT×T are the input, output, and the transformation matrix, respectively. These systems
adhere to the principles of linearity, including additivity and homogeneity. For the purpose of processing sequences, they
can also written as:

yt =

t∑
j=t0

Gt,t−juj , (A.1.2)

in which, Gt,t−j scales the input signal uj for the output, based on the absolute time t and the relative time t− j.

Time-Invariance A linear time-invariant (LTI) system simply discards the absolute time dependence in (A.1.2) as fol-
lows:

yt =

t∑
j=t0

ht−juj . (A.1.3)

These systems are equivalent to convolutions characterized by h, with a shorthand notation yt = (h ∗ u)t. h is also known
as the system’s impulse response. As y = h ∗ δ = h, in which δ is the Kronecker delta (impulse) function.

Lumped Systems: Lumped LTI systems (Chen, 1998) are LTI systems that can be characterized with a finite and discrete
(lumped) set of states. They can be formulated as a state-space model:

xt+1 = Axt + But

yt = Cxt + h0ut,
(A.1.4)

where A ∈ CN×N , B ∈ CN×1, C ∈ C1×N , and h0 ∈ R. Unrolling the recurrence, its connection to the convolutional
operation could be made clear:

y0 = Cx0 + h0u0

y1 = C(Ax0 + Bu0) + h0u1

y2 = C(A(Ax0 + Bu0) + Bu1) + h0u2

...

yt = h0ut +

t∑
j=1

CAj−1But−j + CAtx0

yt = (h ∗ u)t + CAtx0, where ht =

{
h0 t = 0

CAt−1B t > 0
.

(A.1.5)

Note that all lumped LTI systems have complex exponential convolutional kernels. Non-lumped systems are not restricted
to exponential convolutional kernels but cannot be directly expressed using a fixed and finite state-space, i.e. they have
a non-constant time autoregressive inference complexity. Convolutional filters implicitly parameterized by MLPs such as
CKConv (Romero et al., 2022) and (Poli et al., 2023a) are examples of non-lumped linear time-invariant systems.

15



State-Free Inference of State-Space Models

A.2. Transfer Function Realization of Lumped LTI Systems

Control Theorists Derivation: By applying the shift forward operator (z) in Z-domain to the state-space equations, we
can obtain its transfer function as follows.

xk+1 = Axk + Buk state dynamics
X(z)z = AX(z) + BU(z) Z-transform

(zI− A)X(z) = BU(z) (zI− A) is also known as the resolvent matrix

X(z) = (Iz − A)−1BU(z)

H(z) =
Y (z)

U(z)
= C(zI− A)−1B+ h0 substituted X(z) into Y (z) = CX(z) + h0U(z)

(A.2.1)

Alternative Derivation: (Massaroli et al., 2023) The transfer function can also be derived by direct Z-transform of the
impulse response ht of the system. This derivation is useful to highlight the region of convergence of the transfer function.

H(z) = h0 +

∞∑
t=1

z−tCAt−1B h0 is pulled out via h0z
0 = h0

= h0 + C

[ ∞∑
t=1

z−tAt−1

]
B multiplication distributes over sum.

= h0 + z−1C

[ ∞∑
t=1

z−(t−1)At−1

]
B multiply by z/z

= h0 + z−1C

[ ∞∑
t=0

(z−1A)t

]
B change of index and collect like terms

(A.2.2)

We look at the convergence of the series
∑∞

t=0 ∥z−1A∥t2. We have

∥z−1A∥2 ≤ ∥z−1∥2∥A∥2
= ∥r−1e−iω∥2∥A∥2 using z := reiω ∈ C, r, ω ∈ R
≤ r−1∥A∥2 = r−1ρ(A)

The series converges to 1/(1 − r−1ρ(A)) if and only if r−1ρ(A) < 1 i.e. for r > ρ(A). Thus, in the exterior of the disk
with radius ρ(A), Dρ(A) := {z ∈ C : |z| > ρ(A)},

∑∞
t=0(z

−1A)t converges to (I− z−1A)−1 and

z ∈ Dρ(A) ⇒ H(z) = h0 + z−1C(I− z−1A)−1B = h0 + C(zI− A)−1B

The transfer function H(z) = h0 + C(zI − A)−1B of a stable lumped discrete-time system is defined outside the disc in
the complex plane that encloses all the eigenvalues of A.

Further dissecting H(z) = h0 + C(zI − A)−1B, note that to compute the inverse, det(zI− A) is a nth order Monic
polynomial, and C[Adj(zI − A)]B is a n − 1 order polynomial (for the SISO case), hence the general form of a transfer
function can be written in the form of the following rational function (this is discussed in greater detail in A.3):

H(z) =
b1z

−1 + b2z
−2 + · · ·+ bnz

−n

1 + a1z−1 + a2z−2 + · · ·+ anz−n
+ h0 → Rational function form. (A.2.3)

The SISO rational coefficient form has 2n + 1 parameters. With partial fraction decomposition, the rational function can
be broken down into its first order partial decomposition, resulting in a modal representation:

H(z) =

n∑
i=1

ri
z − λi

+ h0 → Modal form, (A.2.4)

in which r, λ ∈ C. This form parameterizes the poles (λ) and its associated magnitude (r). The modal form has 2n + 1
trainable parameters. It is worth noting that the first order partial fraction decomposition does not permit any form of
repeated roots, for this reason, it is not a complete representation of a lumped LTI systems.
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Another way in which rational functions can be structured is called the zero-pole-gain (ZPK) representation:

H(z) = k

∏n−1
i=1 (z − zi)∏n
i=1(z − λi)

+ h0 → Zero-Pole-Gain form, (A.2.5)

in which, k, z, and λ are the gain, zeros, and poles respectively. The ZPK form has 2n+ 1 trainable parameters.

A.3. From State-Space to Transfer Function (Massaroli et al., 2023)

We detail an implementation oriented method to compute the coefficients (ai)
n
i=1, (bi)

n
i=1 of a SSM’s transfer function.

Expanding the inverse of the resolvent matrix, recall that

H(z) = C[zI− A]−1B+ h0 =
CAdj(zI− A)B+ det(zI− A)h0

det(zI− A)
(A.3.1)

This shows that the denominator coefficients (ai)ni=1 are simply the coefficients of the characteristic polynomial of matrix
A. They can be easily obtained by 1. computing the eigenvalues of A and 2. calculating the coefficients of the polyno-
mial whose roots are such eigenvalues. On the other hand, the numerator apparently involves more complex symbolic
manipulation. This can be simplified recalling a classic matrix-determinant identity:

Lemma A.1 ((Sandberg, 1963)). Let M, B, and C respectively denote matrices of orders n × n, n × 1, and 1 × n.
Then,

det(M+ BC) = det(M) + CAdj(M)B.

Applying Lemma A.1 to (A.3.1) we obtain

H(z) =
det(zI− A+ BC) + det(zI− A)(h0 − 1)

det(zI− A)
.

Let poly(r) denote the coefficients of the polynomials with roots r = (r1, . . . , rn). Then a = poly(eig(A)). Since A and
A− BC are of equal dimension, their characteristic polynomials have equal order and therefore

b = poly(eig(A− BC)) + poly(eig(A))(h0 − 1)

1 def get_tf_from_ss(A,B,C,h0):
2 a = poly(eig(A))
3 b = poly(eig(A - outer(B,C))) + (h0-1)*a
4 return a, b

Listing 1: State-space→ transfer function conversion code

A.4. From Transfer Function to State-Space (Massaroli et al., 2023)

Chen’s derivation The derivation is based on the steps reported for the continuous-time multi-input multi-output case in
(Chen, 1998) adapted to single-input single-output Transfer Functions.

Let H(z) = q(z)
p(z) + h0, we define a pseudo-state v such that

p(z)V (z) = U(z) ⇔ V (z) =
1

p(z)
U(z). (A.4.1)

Then, we define the state xt := (x1
t , . . . , x

n
t ) ∈ Rn as

xt = (vt−1, vt−2, · · · , vt−n) ⇔ Z{x}(z) = X(z) =

z
−1

...
z−n

V (z). (A.4.2)

From (A.4.1) we have

V (z) + a1z
−1V (z) + · · ·+ anz

−nV (z) = U(z) ⇔
V (z) = −a1z−1V (z)− · · · − anz

−nV (z) + U(z) ⇔
vt = −a1vt−1 − · · · − anvt−n + ut ⇔ time-delay prop. of Z-transform

x1
t+1 = −a1x1

t − · · · − anx
n
t + ut ⇔ by def. of state (A.4.2).
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Thus, we have the overall recurrence
x1
t+1 = −a1x1

t − · · · − anx
n
t + ut

x2
t+1 = x1

t

...

xn
t+1 = xn−1

t

which can be written in matrix form as

xt+1 =


−a1 −a2 · · · −an
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0

xt +


1
0
0
...
0

ut

The output spectrum is then given by

Y (z) = H(z)U(z) =
q(z)

p(z)
U(z) + h0U(z)

= q(z)V (z) + h0U(z) by def. of V (z).

Therefore,

Y (z) = q(z)V (z) + h0U(z) =
[
b1 b2 · · · bN

]

z−1

z−2

...
z−n

V (z) + h0U(z)

=
[
b1 b2 · · · bn

]
X(z) + h0U(z)

and the output equation in time-domain is given by

yt =
[
b1 b2 · · · bn

]
xt + h0ut.

yielding state-space matrices (A.4.3).

[
A B
C h0

]
=



−a1 −a2 · · · −an−1 −an
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

1
0
0
...
0

b1 b2 · · · bn−1 bn h0


. (A.4.3)
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B. RTF: Further Details
B.1. Fast Companion Recurrence

The recurrent step of a generic SSM (3) with dense system matrices usually requires O(n2) operations due to the matrix-
vector product Axt. We show how the recurrence of SSMs in companion canonical form, i.e. with system’s matrices
(A.4.3), requires only O(n) operations.

Lemma B.1. The recurrent step of a state-space model in companion canonical form (A.4.3) can be evaluated in
O(n) time and memory.

Proof. The companion state matrix A can be broken down into a lower shift matrix Ln and a low-rank term. Particularly,
with e1 the first element of the canonical basis of Rn and a = (a1, . . . , an), we have

A = Ln − e1 ⊗ a.

It follows that the recurrent update can be simplified to

xt+1 = (Ln − e1 ⊗ a)xt + But

yt = Cxt + h0ut

The peculiarity of this formulation is that we never need to construct the full transition matrix to perform the recurrence.
In particular we have:

x1
t+1 = ut − a⊤xt

x2:n
t+1 = shift(xt)

yt = b⊤xt + h0ut

Thus, each step only requires two inner products (n multiplications and n sums each) and one shift operation, totaling
O(n) operations.

B.2. Initialization and Stability

Initialization schemes can significantly impact the performance of SSMs, as explored in (Gu et al., 2022b), (Gu et al.,
2023), (Orvieto et al., 2023), and (Zhang et al., 2023).

Intriguingly, rational transfer functions allow for initialization schemes that can be directly translated from explicitly pa-
rameterized convolutional kernels, as demonstrated below:

KFIR(z) = k0 + k1z
−1 + k2z

−2 + · · ·+ km−1z
−(m−1) (B.2.1)

where KFIR represents the z-domain representation of an m-length finite impulse response (a convolutional kernel of size
m). It could easily be seen that by simply setting h0 = k0, ai = 0 and bi = ki for i ∈ [m], the rational transfer function
would represent the convolutional kernel. This implies that initialization approaches developed for explicitly parameterized
convolutional models, such as (He et al., 2015) and (Glorot & Bengio, 2010), can be directly applied to the rational transfer
function representation.

Besides initialization, it is generally desirable for SSMs to be stable, meaning that the roots of the rational transfer function
denominator (poles) should reside within a complex unit circle in the z-domain (Chen, 1998). When employing a polar
representation of the kernel eigenvalues (poles), in which the roots are parameterized by λ = reiθ, the roots r can easily
be restricted to |r| ≤ 1 in various ways such as r = exp(−exp(ν)), where ν ∈ Rn as described in (Orvieto et al., 2023).
However, for rational transfer functions, where the denominator is represented as a polynomial, ensuring the stability of
the SSM is more challenging. Alomari & Chesneau presents several methods for constraining polynomial coefficients, for
their roots to lay within the complex unit circle. One such method, Montel’s method (Horn & Johnson, 1985), constrains
the polynomial roots as follows:

n−1∑
i=0

|αi| ≤ 1, (B.2.2)

This can be implemented straightforwardly using a softmax or an l1 norm over n + 1 parameters, and then selecting n
parameters from this set, as shown in the following code snippet:
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1 def get_constrained_coefs(coefs_plus_scalar):
2 """
3 coefs_plus_scalar: torch.Tensor of shape [n+1]
4 """
5 return (coefs/sum(coefs.abs()))[:n] # returns n coefficients that are constrained

according to Montel’s method.

Spacetime (Zhang et al., 2023) also utilizes this approach to bound the gradients of their SSMs during training. However,
we have found that Montel’s method could excessively constrain the SSMs, potentially leading to diminished performance,
as shown in Table 5.

Table 5: An ablation of different initialization and parameter constraining approaches.

Model Wikitext-103 (25 epochs) LRA Image
ppl. ↓ acc. ↑

RTF + Xavier Init. + Montel Constraint 26.512 89.2
RTF + Xavier. Init. - 90.0
RTF + Impulse Init. 26.093 90.1

Next, we use a 2nd order polynomial case, as a visual illustration of the over-constraining occurring with Montel’s method
over the parameter space. Given a polynomial z2 + α1z + α0, its roots can be analytically computed with:

r =
−α1 ±

√
α2
1 − 4α0

2
. (B.2.3)

In the case that α2
1−4α0 < 0, the quadratic equation becomes a summation of a real term and an imaginary term, therefore

we can constrain the root to be within the unit circle by computing its norm as follows:√√√√(α1

2

)2
−

(√
α2
1 − 4α0

2

)2

≤ 1 (B.2.4)

α2
1 − α2

1 + 4α0

4
≤ 1 (B.2.5)

α0 ≤ 1. (B.2.6)

This shows that the two equations that govern the possible stable regions (for pairs of conjugate roots) are, α0 ≤ 1
and α0 > 1

4α
2
1. Figure 4 illustrate the space of stable coefficients with a green-blue colormap along with the space of

coefficients that obey Montel’s constraints in pink. Notice that a sizable portion of the coefficient space that represents a
stable SSM with low decay rates is not accessible with the constraint, which hurts SpaceTime’s expressivity and enforces
a short term bias to the model.

We observed empirically (i.e., Table 5) that setting both numerator and denominator parameters to zeros, and setting
h0 = 1, as formulated below,

Hδ(z) = 1 +
0

zn
, (B.2.7)

generally resulted in RTF having faster training convergence, while simultaneously avoiding instability issues that may be
caused via other initialization schemes. The improved stability of this initialization scheme is likely due to it being optimal
with respect to satisfying the Montel constraint as follows:

argminα(

n−1∑
i=0

|αi|) = 0. (B.2.8)

We denote this as the zero initialization scheme, and use it throughout all our experiments unless stated otherwise.
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Figure 4: The space of stable roots of a 2nd order polynomial with conjugate roots is illustrated with a green-blue colormap.
The figure on the right overlays the space of coefficients that obey Montel’s constraints in pink.

B.3. Alternative Inference Algorithms

B.3.1. RTF KERNEL GENERATION VIA LONG POLYNOMIAL DIVISION

Given a rational transfer function (TF) representing an infinite length convolutional kernel:

H(z) = h0 +
N(z)

D(z)
= h0 +

∑n−1
0 biz

i∑n
0 aiz

i
= h0 + h1z

−1 + h2z
−2 + . . . , (B.3.1)

we would like to directly obtain the truncated (finite length) representation of such a kernel, in order to 1. train RTF
numerators that directly correspond to the recurrent form without the need to correct for truncation (which could offer
significant speedups in online learning tasks such as reinforcement learning), 2. directly evaluate the truncated transfer
function H(z) at 2ℓ points, avoiding the need to convert the frequency domain kernel into time domain for causal padding.

We could take the approach of constructing an infinite length tail function, which upon being subtracted from the original
TF, results in truncation as follows:

Hℓ(z) = H(z)− H̃ℓ(z) = h0 + h1z
−1 + h2z

−2 + · · ·+ hℓ−1z
−ℓ+1. (B.3.2)

To satisfy such an equation, we observe that H̃ℓ(z) = hℓz
−ℓ + hℓ+1z

−(ℓ+1) + . . . , which could be obtained from the
original rational transfer function via long division of N(z)zL against D(z) as shown below:

N(z)zℓ−1

D(z)
= h0z

ℓ−1 + h1z
ℓ−2 + h2z

ℓ−3 + · · ·+ hℓ−1︸ ︷︷ ︸
C(z)

+hℓz
−1 + hℓ+1z

−2 + . . .︸ ︷︷ ︸
H̃ℓ(z)z−ℓ+1

(B.3.3)

= C(z) + H̃ℓ(z)z
−ℓ+1 = C(z) +

R(z)

D(z)
, (B.3.4)

H̃ℓ(z) =
R(z)

D(z)zℓ−1
. (B.3.5)

The naive long division algorithm takes 2np operations, in which p = ℓ−n+1, however with fast Toeplitz matrix inversion
algorithms described in (Pan, 2001), such an algorithm could operate with complexity of O(ℓ log ℓ), assuming n≪ ℓ.

Next, by simply constructing the truncated transfer function Hℓ(z) via Equation (B.3.2), the padded convolutional kernel
in frequency domain can be obtained via transfer function evaluation at 2ℓ points of unity.

B.3.2. MULTI-INPUT MULTI-OUTPUT RTF

A multi-input multi-output (MIMO) LTI SSM could be represented using a d × d matrix of numerator polynomials, that
shares a denominator polynomial, forming a rational function for each input to output pair. Chen shows that such a system
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could be converted back into an SSM realizing the companion form (16) as follows:

xk+1 =


−a0Id −a1Id . . . −an−2Id −an−1Id
Id 0 . . . 0 0
0 Id . . . 0 0
...

...
...

...
0 0 . . . Id 0

xk +


Id
0
0
...
0

u

y = Cxk + Du,

(B.3.6)

in which Id is a rank d identity matrix, C ∈ Rd×nd corresponds to the matrix of numerator coefficients and D ∈ Rd×d. ai
is the denominator polynomial coefficient at order i. We can observe that such a system’s C matrix becomes excessively
large, making it not competitive in terms of both parallel inference and autoregressive inference speeds against other MIMO
systems. For this reason, we focus on the multi SISO (2) companion realization, in which the SSMs are independent across
the channel dimension, channel mixing is only done afterwards with a linear projection.
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C. Experiments
C.1. Memory and Latency Profiling Experiments

• Experiments were conducted using JAX (Bradbury et al., 2018) on a single A100 80GB GPU for the memory profiling
experiments, and on a single H100 80GB GPU for the latency profiling experiments.

• S5 implementation was taken directly from (Smith et al., 2023).

• The memory profiling was done on a single SSM layer with channel size d = 1024, whereas the latency profiling was
done using d = 128.

• Due to S5 being a Multi-Input Multi-Output (MIMO) SSM and RTF being a Single-Input Single-Output SSM, there
are few additional points to note on interpreting the results:

– For fairness we considered a RTF layer with channel mixing, which includes an additional output linear projec-
tion layer that mixes the channel dimensions.

– The RTF layer with channel mixing is equivalent to a block diagonal MIMO SSM with a combined state size of
nM = dn. Mamba (Gu & Dao, 2023) makes use of the term state expansion factor (e), which describes the state
size per channel. For a multi-SISO SSM such as RTF, e = n, whereas for a MIMO SSM such as S5, e = n/d.

– Figure 1 and Table 6 compare each SSM layer’s memory usage across multiple state sizes (n), whereas Figure 5
and Table 7 compare SSM layer’s parallel inference latency across multiple the expansion factors (e).

• For each sequence length ℓ, we collected profiling speeds for RTF and S5 with state-sizes ranging from 256 up to ℓ/2.

• Table 6 lists the exact peak memory usage in MB. Runs which ran out of the 80GB GPU memory is denoted as OOM
(Out Of Memory).

• Figure 5 and Table 7 illustrates the median parallel inference latencies (across 100 iterations) in milliseconds.
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Figure 5: This figure illustrates the scaling of parallel inference latency on S5 and RTF across various sequence lengths
and state sizes. When comparing equal expansion factors, it becomes evident that RTF provides lower latencies across
different sequence lengths.

C.2. Long Range Arena Benchmark

C.2.1. MODEL ARCHITECTURE DETAILS

For fair comparisons with S4 (Gu et al., 2022b) and S4D (Gu et al., 2022a), we employed the same model backbone,
block design, and architectural hyperparameters as employed by S4. Each model contains a linear encoder and decoder
that projects the inputs and outputs to an appropriate channel dimension. Simply put, each layer is a combination of a
SSM layer, an activation function (GELU (Hendrycks & Gimpel, 2023)), followed by an output linear projection layer,
and another activation function (GLU (Dauphin et al., 2017)), with skip connections (He et al., 2016) and normalization
applied before each every SSM and linear layer. Each channel in a SSM layer comprises of a SISO SSM with the ability
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Table 6: Comparison of peak memory usage of S5 and RTF across different state-sizes and sequence lengths in MB.

n
ℓ

Model 212 213 214 215 216 217

28
S5 178.0 266.0 459.0 794.01 1510.0 3010.0
RTF 230.0 454.04 902.0 1760.0 3510.0 7010.0

29
S5 192.0 288.01 480.0 864.01 1590.0 3090.0
RTF 232.04 456.04 904.0 1760.0 3510.0 7010.0

210
S5 220.0 332.0 592.0 1140.0 2140.0 4270.0
RTF 236.0 460.04 908.0 1760.0 3510.0 7010.0

211
S5 308.0 544.02 1030.0 1780.0 3530.0 7030.0
RTF 244.0 468.04 916.0 1770.0 3520.0 7020.0

212
S5 - 960.04 1690.0 3310.0 6560.0 13060.0
RTF - 484.04 932.0 1790.0 3540.0 7040.0

213
S5 - - 3130.0 6130.0 12130.0 24130.0
RTF - - 964.0 1820.0 3570.0 7070.0

214
S5 - - - 11750.0 23250.0 46250.0
RTF - - - 1880.0 3630.0 7130.0

215
S5 - - - - 49500.0 OOM
RTF - - - - 3750.0 7250.0

216
S5 - - - - - OOM
RTF - - - - - 7500.0

to share the the transition matrix A across channels through the number of SSMs hyperparameter (Num. SSM). This sets
the number of unique A matrices (or rational function denominator) which are then equally dispersed across the channel
dimensions. Additional hyperparameter details are outlined in Tables 8 and 9.

Experiments using S4 and S4D models used the PyKeops implementation, available in the official S4 github repository
(Gu et al., 2022b). Fused FFTConv (Fu et al., 2024) algorithms were not used for the RTF implementation.

C.2.2. LONG RANGE ARENA BENCHMARK DETAILS

The long range arena (LRA) benchmark (Tay et al., 2021) features 6 unique tasks within lengths of 1K-16K steps. These
tasks involve diverse modalities and objectives, pushing models to reason about similarity, structure, and visuospatial
relationships.

We offer additional context and specifics for each dataset from the LRA (Tay et al., 2021) that we examine, following the
identical data pre-processing procedures as those used by (Gu et al., 2022b).

• ListOps An extended dataset introduced by (Nangia & Bowman, 2018). This task involves calculating the integer
outcome of mathematical expressions encoded in prefix notation with brackets. Nested operations (min, max, etc.)
and operands (0-9) are represented as one-hot vectors (17 unique values, brackets and operators combined). Sequence
lengths vary, with max length of 2048. The dataset contains 10 distinct classes, each representing a possible integer
outcome, with 96,000 training, 2,000 validation, and 2,000 test sequences.

• IMDB Sentiment dataset from (Maas et al., 2011). This task involves classifying movie reviews into positive or
negative sentiment categories based on sequences of integer tokens (encoded as one-hot vectors, 129 unique values).
Sequence length varies, with a maximum length of 4,096. The dataset consists of 25,000 training and 25,000 test
examples.

• Retrieval This is derived from the ACL Anthology network corpus introduced by (Radev et al., 2009). The
datasets requires determining if two provided textual citations, encoded as a sequence of integer tokens, are the same.
Characters are converted into a one-hot vector with 97 unique values. The two paired sequences can have different
lengths, with a maximum sequence length of 4,000. There are two categories, signifying whether the citations are
equivalent or not. The dataset comprises 147,086 training pairs, 18,090 validation pairs, and 17,437 test pairs.

• Image The task utilizes the CIFAR-10 dataset introduced by (Krizhevsky, 2009). It involves classifying a 32 × 32
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Table 7: Comparison of parallel inference latency of a single SSM layer in milliseconds across different sequence lengths
and expansion factors (e) of RTF and S5. We report the median value across 100 runs.

e
ℓ

Model 211 212 213 214 215 216 217

0.25 S5 0.126 0.214 0.401 0.798 1.508 2.980 5.805
RTF - - - - - - -

0.5 S5 0.200 0.336 0.730 1.396 2.737 5.364 10.384
RTF - - - - - - -

1 S5 0.328 0.672 1.248 2.582 4.906 9.232 18.184
RTF 0.102 0.373 0.770 1.558 3.443 8.345 17.824

2 S5 0.623 1.194 2.317 4.566 8.573 17.137 34.219
RTF 0.104 0.385 0.793 1.610 3.543 8.547 18.220

4 S5 1.156 2.312 4.403 8.334 16.830 33.545 67.033
RTF 0.104 0.372 0.777 1.564 3.451 8.372 17.895

8 S5 2.214 4.363 8.328 16.438 33.714 67.336 137.632
RTF 0.102 0.372 0.777 1.577 3.473 8.402 17.963

Table 8: Table with the hyperparameters used for classification datasets. BN and LN refer to Batch Normalization and
Layer Normalization.

Layers Channels SSM State Size Num. SSM Norm. Batch Size Epochs

ListOps 6 256 4 1 BN 32 50
Text 6 256 4 1 BN 16 32
Retrieval 6 256 4 1 BN 64 20
Image 6 512 64 1 BN 50 200
Pathfinder 6 256 64 256 BN 64 200
Path-X 6 256 64 256 BN 16 50

grayscale CIFAR-10 image, presented as a one-dimensional raster scan, into one of ten categories. All sequences have
the same length (1,024). The dataset comprises 45,000 training examples, 5,000 validation examples, and 10,000 test
examples.

• Pathfinder This is derived from the Pathfinder challenge, as presented by (Linsley et al., 2018). It involves a 32
× 32 grayscale image that displays a start and an end point, each represented by a small circle. The image contains
several dashed lines. The objective is to determine whether a dashed line (or path) connects the start and end points.
There are two classes, signifying whether a valid path exists or not. All sequences have the same length (1,024). The
dataset includes 160,000 training examples, 20,000 validation examples, and 20,000 test examples.

• Path-X This is a variant of the Pathfinder challenge. With a longer sequence and more complex, in this version, the
images are 128 × 128 pixels, leading to sequences that are sixteen times longer.

C.3. Synthetic Memorization Tasks

Both implementations of Copying (Arjovsky et al., 2016) and Delay (Gu et al., 2023) were taken directly from the official
S4 repository (Gu et al., 2022b), and was modified to enable drop in replacements of our RTF SSMs under identical
conditions.

C.3.1. Copying TASK

Each model is first fed a ℓmem length sequence of integer tokens randomly sampled from 0, ..., d− 2, and then fed a ℓmem

length sequence of token number d− 1 to recall the initial sequence. Table 10 lists the task hyperameters.

The overall model architecture is identical to that described in Section C.2.1. Each model was trained with 4 layers,
1024 channel dimensions, and the number of SSM was set to 1 (for weight sharing). Additionally, we initialized the RTF
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Table 9: Table with the layer hyperparameters used for classification datasets.

Model Dropout LR WD SSM LR SSM WD

ListOps
S4 0.0 0.01 0.05 0.001 0.0

S4D 0.0 0.01 0.05 0.001 0.0
RTF 0.0 0.002 0.07 - -

Text
S4 0.0 0.01 0.05 0.001 0.0

S4D 0.0 0.01 0.05 0.001 0.0
RTF 0.1 0.005 0.05 0.0001 0.025

Retrieval
S4 0.0 0.01 0.05 0.001 0.0

S4D 0.0 0.01 0.05 0.001 0.0
RTF 0.0 0.002 0.0 1e-6 0.0

Image
S4 0.1 0.01 0.05 0.001 0.0

S4D 0.1 0.01 0.05 0.001 0.0
RTF 0.1 0.006 0.05 0.005 0.05

Pathfinder
S4 0.0 0.004 0.05 0.001 0.0

S4D 0.0 0.004 0.05 0.001 0.0
RTF 0.1 0.002 0.05 - -

Path-X
S4 0.0 0.002 0.05 0.001 0.0

S4D 0.0 0.002 0.05 0.001 0.0
RTF 0.1 0.001 0.05 0.001 0.0

Table 10: Copying Task Hyperparameters.

Configuration Value

ℓmem 1024
Vocab. size d 64
Train-set Size 10000
Test-set Size 1000
Batch Size 8
Epochs 50
LR 0.001
WD 0.0

parameters by uniformly sampling from a range of 0 to 1, and applying the Montel constraint to limit the poles to a stable
location.

C.3.2. Delay TASK

The models are given a signal of length ℓseq and are tasked to output the original signal shifted by ℓdelay timesteps. The
input is a white noise signal bandlimited to 1000 Hz. A single layer SSM with channel dimensions of 4 without a non-linear
activation function was used for this experiment. Table 11 lists the task hyperameters.

C.4. Laughing Hyena Distillation Task

• The baseline 160M parameter MultiHyena-Attention hybrid model consists of 6 Attention layers and 6 MultiHyena
layers.

• The distillation task aims to replace the Hyena filters in the 6 MultiHyena layers with an RTF or a modal SSM.

• Each MultiHyena layer consist of 256 independent SISO convolutional filters, which are projected to 768 dimensions
as described in (Massaroli et al., 2023).
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Table 11: Delay Task Hyperparameters.

Configuration Value

ℓseq 4000
ℓdelay 1000
Batch Size 64
Epochs 20
LR 0.001
WD 0.0

Table 12: WikiText103 language modeling perplexity
scores (25 epochs).

Model Perplexity ↓
S4-4 26.86
S4D-4 26.98
RTF-4 26.36

S4-64 26.82
S4D-64 26.67
RTF-64 26.01

S4-256 -
S4D-256 26.70
RTF-256 26.32

Table 13: Wikitext103 Hyperparameters.

Configuration Value

Sequence length 1024
Batch Size 16 (128 global)
Epochs 100
LR 0.001
WD 0.25
Dropout 0.25

SSM State Size 64
Channels 768
Layers 12
Low-Rank Dims. 384

• Both LH and RTF were trained for 1e6 iterations, on the AdamW (Loshchilov & Hutter, 2019) optimizer with learning
rates set to 1e−4.

C.5. WikiText103 Language Modeling

C.5.1. PILOT EXPERIMENTS

We additionally compared S4, S4D, and RTF on WikiText103 under the modified Transformer backbone (Baevski & Auli,
2019), from the official S4 repository (Gu et al., 2022b), via drop-in replacements of S4 with S4D and RTF, while keeping
the original hyperparameters. Table 12 shows perplexity scores for the models across multiple state-sizes, trained for 25
epochs on two 40GB A100 GPUs. The results show a consistent trend of RTF outperforming S4 and S4D across multiple
state-sizes.

C.5.2. MODEL ARCHITECTURE DETAILS

For our main WikiText103 experiment, we constructed Hyena-RTF by simply replacing the Hyena Filters in the Hyena
Hierarchy model (Poli et al., 2023a) implemented in the HazyResearch/safari Github repository, with our RTF
SSM. We also made slight modifications to the Hyena operator’s output linear projection, by inserting an additional low-
rank linear layer and a GELU (Hendrycks & Gimpel, 2023) activation, before the final output linear projection. This
is to functionally mimic the low-rank MIMO SSM + non-linear activation function that Hyena-S5 (Smith et al., 2023)
employs. It is worth noting that the additional low-rank layer does not increase parameter count since the original output
linear projection also loses rank for compatibility of dimensions. We observed that the zero-initialization alone was not
enough for the model to stay within the stable region across training – an important property for extrapolative tasks such
as language generation. Therefore, we instead adopt the Xavier initialization (Glorot & Bengio, 2010) over the rational
function coefficients and apply the Montel constraint via an ℓ1 penalization as shown in Section B.2. Table 13 lists the
hyperparameters used to train our Hyena-RTF model.
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