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ABSTRACT

Accurately assessing student knowledge is central to education. Cognitive Diag-
nosis (CD) models estimate student proficiency, while Knowledge Tracing (KT)
methods excel at predicting performance over time. However, CD models represent
knowledge concepts via quantitative estimates on predefined concepts, limiting ex-
pressivity, while KT methods often prioritize accuracy at the cost of interpretability.
We propose Language Bottleneck Models (LBMs), a general framework for pro-
ducing textual knowledge state summaries that retain predictive power. LBMs use
an encoder LLM to produce minimal textual descriptions of a student’s knowledge
state, which a decoder LLM then uses to reconstruct past responses and predict
future performance. This natural-language bottleneck yields human-interpretable
summaries that go beyond the quantitative outputs of CD models and capture
nuances like misconceptions. Experiments show zero-shot LBMs rival state-of-
the-art CD and KT accuracy on synthetic arithmetic benchmarks and real-world
datasets (Eedi and XES3G5M). We also show the encoder can be finetuned with
reinforcement learning, using prediction accuracy as reward, to improve summary
quality. Beyond matching predictive performance, LBMs reveal qualitative insights
into student understanding that quantitative approaches cannot capture, showing
the value of flexible textual representations for educational assessment.

1 INTRODUCTION

Knowledge State Modeling A fundamental objective in education is accurately assessing what a
student knows, identifying misconceptions, and understanding how their knowledge evolves over
time (Posner et al., 1982; Larkin, 2012; Chen et al., 2020). Teachers intuitively achieve this through
diagnostic reasoning: by observing students’ answers, they infer not merely correctness, but deeper
patterns reflecting conceptual mastery or specific misunderstandings.

Limitations of Cognitive Diagnosis and Knowledge Tracing Cognitive Diagnosis (CD) (Templin
et al., 2010; Wang et al., 2024) models formalize this by producing diagnostic reports but are
often limited by rigid, predefined knowledge concept taxonomies. In parallel, Knowledge Tracing
(KT) (Corbett & Anderson, 1994; Shen et al., 2024) models excel at predicting future performance
based on observed past responses, but often at the cost of interpretability, representing knowledge as
opaque, high-dimensional vectors.

Limitations of Existing LLM-based approaches Recent approaches leveraging large language
models (LLMs) have shown that LLMs can produce sensible predictions of students’ future behavior
when provided with relevant information (Li et al., 2024a; Kim et al., 2024), help mitigate the KT’s
cold-start problem (Lee et al., 2024) and be finetuned to improve accuracy on KT tasks (Wang
et al., 2025). Nonetheless, these LLM-based methods still lack rigorous interpretability, as they
either treat the model as a black-box or rely on free-form explanations that are susceptible to
hallucination (Bender et al., 2021). From the standpoint of Cognitive Diagnosis, such methods fail to
provide grounded, reliable representations of knowledge that can be trusted in educational practice.
This gap motivates a principled approach where interpretability is an intrinsic design constraint.

Knowledge State Modeling as an Inverse Problem Assessing student knowledge can be framed as
an inverse problem (Figure 1A): observable answers are generated by an underlying knowledge state
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Figure 1: Language Bottleneck Models for Knowledge Modeling. (A) Past and future behavior
X and Y are caused by a certain knowledge state S held by the student when answering questions.
(B) CD and KT models represent the knowledge state via quantitative proficiency vectors or opaque
latent embeddings. (C) LBMs approximate the knowledge state using natural language summaries
which are used to predict past and future behavior.

S, and the goal is to infer a faithful approximation S̃. CD models constrain S̃ to fixed quantitative
proficiency estimates over knowledge concepts (Figure 1B), providing interpretability but lacking
flexibility to capture nuanced knowledge states. KT models prioritize predictive performance but
have uninterpretable latent representations (Figure 1B). We adopt the inverse-problem framing but
allow S̃ to be expressed as concise, free-form natural language, so knowledge states remain predictive
while avoiding rigid concept taxonomies.

Language Bottleneck Models We introduce Language Bottleneck Models (LBMs) as a general
framework for compressing a student’s interaction history into a predictive, text-based knowledge
state. As shown in Figure 1C, an encoder LLM maps a student’s interaction history X into a natural
language summary S̃, while a frozen decoder LLM must reconstruct past responses and predict
future ones using only that summary. In an educational settings, they constitute a language-based
approach to Cognitive Diagnosis, not bound to fixed skill vocabularies and can flexibly describe
nuanced insights such as misconceptions.

Contributions.

• We cast knowledge state modeling as an inverse problem—building on ideas from Cognitive
Diagnosis but replacing rigid concept proficiencies with a flexible natural-language knowledge
state.

• To instantiate this, we introduce Language Bottleneck Models (LBMs), which encode observed
student behavior into predictive text-based summaries of knowledge state summaries.

• We extensively evaluate LBMs on synthetic and real-world datasets against 14 KT and CD baselines
across 7 open- and closed-source LLM backbones, present a detailed case study of qualitative
differences with CD knowledge states, and demonstrate that LBMs can be effectively trained and
steered via their textual summaries.
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2 KNOWLEDGE STATE MODELING AS AN INVERSE PROBLEM

2.1 PRELIMINARIES AND NOTATION

We consider data consisting of student interactions with educational questions. At each time step t, a
student is presented with a question qt P Q and optionally knowledge concept information kt P K and
provides a response rt P R, which is evaluated for correctness ct P t0, 1u. We represent an interaction
as xt “ pqt, kt, rt, ctq, and a student’s interaction history up to time t as Ht “ px1, . . . , xtq.

The standard predictive task, often referred to as Knowledge Tracing (KT) (Corbett & Anderson, 1994;
Shen et al., 2024), is to estimate ppct`1 | qt`1, Htq, the probability that the student will answer a
new question qt`1 correctly, conditioned on their interaction history. This task definition captures the
forward-prediction aspect of knowledge state modeling, but does not yet address how the underlying
knowledge that drives these responses should be represented.

2.2 KNOWLEDGE STATE MODELING AS AN INVERSE PROBLEM

An alternative view is to frame knowledge state modeling as an inverse problem: observed responses
are generated by a latent knowledge state S through the student’s cognitive process, and the goal is to
recover an approximation S̃ of this state from the observed responses.

This perspective is central to Cognitive Diagnosis (CD) models (Reckase, 2006; De La Torre, 2009;
Templin et al., 2010; Wang et al., 2022; 2024), which produce diagnostic reports of concept mastery
from observed responses. However, CD typically restricts S̃ to quantitative mastery or proficiency
vectors based on predefined or inferred concepts, limiting expressivity. Meanwhile, deep learning-
based KT methods prioritize predictive accuracy without explicitly recovering S̃, representing
knowledge states as high-dimensional embeddings that lack transparency (Piech et al., 2015; Zhang
et al., 2017; Pandey & Karypis, 2019; Ghosh et al., 2020). Recent KT extensions introduce diagnostic
reports similar in spirit to CD, but these remain bound to rigid concept taxonomies or rely on post-hoc
interpretability (Minn et al., 2022; Chen et al., 2023; Park et al., 2024).

Key assumption: constant knowledge state A practical assumption underlying this formulation is
that a knowledge state can be treated as constant within short diagnostic windows (e.g., unit tests,
placement exams, or tutoring sessions). This aligns with CD models (see §2.1 in Wang et al. (2024)),
and distinguishes them from KT approaches which model the evolution of St across longer periods
where the underlying knowledge state is expected to change.

2.3 NATURAL LANGUAGE AS THE INTERFACE

Our formulation follows CD approaches in adopting the inverse problem framing of inferring a
diagnostic report from observed responses, but instead of restricting S̃ to quantitative mastery scores,
we model it through concise textual summaries. Natural language provides an interpretable and
expressive medium—capable of describing arbitrary reasoning patterns or misconceptions, a key
focus in education research (Smith III et al., 1994; Wang et al., 2020; King et al., 2024)—while
remaining human-understandable. In the next section, we introduce Language Bottleneck Models
(LBMs), which operationalizes this idea by compressing student interaction histories into concise
textual representations that preserve predictive information.

3 LANGUAGE BOTTLENECK MODELS

3.1 FORMAL DEFINITION

We propose Language Bottleneck Models (LBMs) for Knowledge State Modeling via textual sum-
maries: an LLM-based, two-stage architecture designed to infer a predictive text-based knowledge
state from a student’s interaction history.

Let Xenc Ď Ht denote a subset of observed interactions used by the encoder. An encoder LLM fθ
maps this history to a natural-language summary:

S̃ “ fθpXencq.

3
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This summary serves as the sole representation of the student’s knowledge state.

A decoder LLM gϕ then conditions only on S̃ to predict the probability that the student will answer a
question q P Q correctly: gϕpq, S̃q “ ppc | q, S̃q, that is, given a question q and a summary S̃, the
decoder predicts the probability that the student will answer correctly.

In principle, both encoder fθ and decoder gϕ could be trained. However, we show with the following
motivating experiments that decoding is not the hard part: when given high-quality knowledge state
summaries, off-the-shelf LLMs can achieve near-perfect prediction accuracy. For this reason, in
this work we keep gϕ fixed and focus on learning an encoder that produces faithful, predictive, and
interpretable summaries.

3.2 MOTIVATING OBSERVATIONS

We motivate the design of LBMs by two observations.

Figure 2: Accuracy on synthetic
dataset given ground truth knowl-
edge state summaries.

Observation 1: Given a good knowledge state summary,
strong LLMs can decode with high fidelity. To test this in
an idealized setting, we used a synthetic dataset where each
student’s knowledge state was programmatically generated. Fig-
ure 2 evaluates the performance of different decoder models
when given direct access to this perfect, "ground-truth" sum-
mary of the student’s latent knowledge (an example is shown
in Figure A1 in the Appendix, and full dataset details are in
Section 5). Stronger models like GPT-4o achieve nearly per-
fect accuracy (98%), indicating that the bottleneck representa-
tion is indeed sufficient to drive effective downstream predic-
tion—provided it captures the right information.

Observation 2: Summarizing knowledge states from raw
interactions is non-trivial. Standard LLM summarization
approaches can capture high-level skill mastery but often fail
to identify crucial latent patterns like student misconceptions
(see an example comparison on our synthetic dataset Figure A1
in the Appendix).

Together, these observations suggest that the key challenge lies in learning an encoder that produces
faithful summaries, rather than in the decoding step itself.

3.3 TRAINING OBJECTIVE AND OPTIMIZATION

We propose a reinforcement learning-based approach to train an encoder to produce more faithful
and predictive summaries by using downstream decoder accuracy as reward.

Summary generation and prediction Given an interaction history Ht “ px1, . . . , xtq, the encoder
fθ maps a subset of interactions Xenc Ď Ht to a textual summary S̃ “ fθpXencq. The frozen decoder
g then conditions on S̃ to predict responses for two sets X and Y : interactions used for reconstruction
and prediction, respectively. In practice, X and Y may be chosen flexibly to include held-out past
responses, future responses, or both.

Reward function Given predicted interactions X̃ “ tgpq, S̃q, q P X u and Ỹ “ tgpq, S̃q, q P Yu,
the reward for a summary S̃ is defined as

RpS̃; gq “ ϕ
´

Acc
`

X̃ ,X
˘

,Acc
`

Ỹ,Y
˘

, |S̃|, ΩpS̃q

¯

, (1)

where Accp¨, ¨q measures accuracy, |S̃| penalizes overly long summaries, and ΩpS̃q enforces optional
structural constraints (e.g., inclusion of a Misconceptions section). The function Φ balances
these components using hyperparameters or indicator functions to enforce constraints as needed.
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Optimization via GRPO We optimize the encoder fθ with Group Relative Policy Optimization
(GRPO) (Shao et al., 2024). For each input Xenc, the encoder generates G candidate summaries
tS̃1, . . . , S̃Gu, each evaluated by RpS̃i; gq. We then compute group-relative advantage and update
parameters:

ApS̃iq “
RpS̃i; gq ´ µ

σ
, ∇θJpθq “

1

G

G
ÿ

i“1

ApS̃iq∇θ log pθpS̃i | Xencq, (2)

where µ and σ are the mean and standard deviation of rewards within the group.

3.4 STEERABILITY OF THE ESTIMATED KNOWLEDGE STATE

The natural-language summaries generated by LBMs allow for various human-model interactions
(detailed in Appendix C):

• Prompt engineering the encoder. Since the encoder fθ is itself an LLM, its behavior can be
shaped through prompt design, such as system instructions or in-context examples (Brown et al.,
2020).

• Steering via reward signals. Rewards to steer the encoder towards human preferences can be
incorporated through the ΩpSq term in Eq. 1.

• Augmenting with student-specific information. Educators can supplement the model with
additional knowledge not present in observed data—either by augmenting encoder inputs or by
editing the generated summary before decoding. This enables integration of recent classroom
observations or specific misconceptions identified through in-person interactions.

4 RELATED WORK

We review related works from the Cognitive Diagnosis and Knowledge Tracing literature, as well as
concept bottleneck models. See Appendix D for an extended review of related works, and Table D1
for a high-level comparison of LBMs with CD and KT.

Cognitive Diagnosis Cognitive Diagnosis Models (CDMs) infer student knowledge states from
observed responses. Classical approaches include Item Response Theory (IRT) and Multidimensional
IRT which measure continuous proficiency scores (Rasch, 1993; Reckase, 2006), and the DINA
model and its variants which estimate binary mastery of knowledge concepts (De La Torre, 2009).
Recent deep learning variants like NeuralCDM (Wang et al., 2022) and RCD (Gao et al., 2021) use
neural networks and graph architectures to model complex relationships between students, questions,
and knowledge concepts. However, these models typically operate within predefined or inferred
knowledge frameworks and provide only quantitative skill mastery estimates.

Knowledge Tracing Knowledge Tracing methods model student learning to predict future per-
formance. Deep learning approaches like DKT (Piech et al., 2015), DKVMN (Zhang et al., 2017)
and AKT (Ghosh et al., 2020) employ neural architectures. Despite strong predictive performance,
these models represent knowledge as abstract latent vectors, limiting interpretability. Several re-
cent works have proposed more interpretable KT, whether via better question-concept relationship
modeling (Minn et al., 2022; Tong et al., 2022; Chen et al., 2023), explainable subsequences (Li
et al., 2023) or option tracing (Ghosh et al., 2021). However they remain fundamentally constrained
to quantitative concept proficiency estimation or require post-hoc interpretability. Finally, recent
LLM-based approaches have shown promise for knowledge tracing tasks (Li et al., 2024a; Wang
et al., 2025), but they generally remain opaque, either treating LLMs as black boxes or relying on
model-generated explanations susceptible to hallucination.

Concept Bottleneck Models Concept Bottleneck Models (CBMs) (Koh et al., 2020) improve
interpretability by using human-understandable concept activations as intermediates between inputs
and predictions. However, CBMs typically rely on finite predefined concept sets, limiting applicability
to complex tasks like knowledge tracing. Recently, Explanation Bottleneck Models (XBMs) (Ya-
maguchi & Nishida, 2024) use textual rationales as intermediates for vision classification. While
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Figure 3: Accuracy of LBM vs the top-3 KT and CD models across datasets. Models are grouped
by LBMs (blue), KT models (orange) and CD models (red). Top 3 KT and CD models are selected
based on average accuracy across all three datasets. Full results for other models are available
Table A1 in the Appendix.

our Language Bottleneck Models (LBMs) adopt this language bottleneck concept, they differ funda-
mentally: unlike XBMs’ instance-specific rationales, LBM summaries capture implicit knowledge
states that generalize to future, unknown questions, requiring holistic, adaptable summaries rather
than task-specific rationales.

5 EXPERIMENTS

Table 1: Overview of datasets. AVG#log and
STD#log>1 are defined following Wang et al.
(2022) as respectively the average number of logs
per student per KC, and the mean standard devia-
tion of score per student and per KC.

Dataset Synthetic Eedi (Filt.) XES3G5M (Filt.)
#Students 2,000 623 996
#Questions 5,000 3,401 3,221
#KCs 4 1,284 803
#Logs 420,000 28,947 57,788
#Logs/stud. 210 ě40 ě34
AVG Acc. 0.55˘0.20 0.68˘0.18 0.85˘0.36
AVG#log 52.5˘0.0 1.65˘0.52 2.02˘0.55
STD#log>1 0.29˘0.12 0.38˘0.08 0.24˘0.14

Datasets We evaluate LBMs and baseline
models on a synthetic arithmetic benchmark
and two real-world datasets (Table 1). Our
Synthetic dataset simulates learners answering
addition, subtraction, multiplication, and divi-
sion questions; each student is assigned mas-
tered skills, unmastered skills, and systematic
misconceptions. We filter the real-world Eedi
dataset (Wang et al., 2020) to approximate quasi-
static knowledge states. We do a similar filtering
for the XES3G5M dataset (Liu et al., 2023b),
and we evaluate on both Chinese and English
versions of the question texts using translations
from Ozyurt et al. (2024). More details about
datasets and preprocessing are provided in the Appendix B.3.

Models We evaluate LBMs across LLM backbones of different sizes and capabilities, both open-
source (Qwen 2.5 3B and 7B (Team, 2024), Gemma 3 12B and 30B (Team, 2025)), and closed-source
(GPT-4o-mini, GPT-4o and GPT-5 (Achiam et al., 2023)). Unless noted otherwise, we run the instruct
variants of each open-source model, use the same backbone LLM for both the encoder and decoder,
and prompt all models to provide their response directly without chain-of-thought. We run GPT-5
with reasoning_effort=minimal configuration. Hyper-parameters and prompt templates are
provided in Appendix B.

Baselines We compare LBMs against 9 Knowledge Tracing methods: DKT (Piech et al., 2015),
DKVMN (Zhang et al., 2017), SAKT (Pandey & Karypis, 2019), AKT (Ghosh et al., 2020), Deep
IRT (Yeung, 2019), SAINT (Choi et al., 2020), SimpleKT (Liu et al., 2023a), QIKT (Chen et al.,
2023), GKT (Nakagawa et al., 2019)) implemented with the PYKT library (Liu et al., 2022) and 5
Cognitive Diagnosis methods (IRT (Rasch, 1993), MIRT (Reckase, 2006), DINA (Junker & Sijtsma,
2001), KaNCD and NeuralCDM (Wang et al., 2022)) implemented with the EduCDM library (bigdata
ustc, 2021). We also run each LLM via direct prompting, where the LLM predicts answers from the
full interaction history without a bottleneck. Training details for all baselines are given in Appendix B.
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Figure 4: Accuracy of LBM and the two best KT and CD models on the Synthetic dataset.
The x axis shows the total number of question seen by the model, ie "Traj. Length" x "# Students".
Note that #Students “ 1 for LBMs as they are evaluate zero-shot. CD models are evaluated
on held-out test interactions from the same students used during training, while KT models and
LBMs are evaluated on 200 unseen students. Results are averaged across N=10 runs for KT and
CD models and N=3 for LBMs, with error bars showing the standard error. GPT-5 is ran with
reasoning_effort=minimal and other models with chain-of-thought prompting.

Mastered:
Addition, subtraction, multiplication.

Fails on:
Division.

Misconceptions: 
Fails operations involving 6 as operand,

Forgets to carry in addition,
Fails with negative numbers.

True Knowledge State
NeuralCDM  

The student excels at addition and
multiplication with integers [...]. Subtraction
is a weakness, often producing incorrect
answers, especially with negative results.
Division [...] is consistently incorrect.
Multiplication by 6 or 7 seems to be a
specific area of difficulty, occasionally
missed despite otherwise demonstrating
mastery of multiplication.

Estimated Knowledge State
LBMStudent #1474

KC Proficiency 
Addition 0.59

Subtraction 0.53
Multiplication 0.76

Division 0.23

Figure 5: Case study: comparing CD and LBM knowledge states. Given a student from the
Synthetic dataset, we compare proficiency estimates across knowledge concepts (KCs) obtained from
a trained NeuralCDM model to the text-based knowledge state generated by a trained LBM model.

5.1 LBM VS KNOWLEDGE TRACING METHODS

We present comprehensive results comparing LBMs to baseline methods across all datasets (detailed
results in Table A1 in the Appendix). Here we highlight key findings and insights from these
experiments.

Performance Figure 3 compares the performance of LBMs against the top three KT and CD
models on the Synthetic, EEDI, and XES3G5M datasets. The LBMs are evaluated in a zero-shot
setting, whereas the KT/CD models are trained on data from hundreds of students. As expected, LBM
performance is strongly tied to the strength of the underlying LLM: with powerful backbones such as
GPT-4o and GPT-5, LBMs approach the accuracy of the best KT and CD models across all three
datasets. The largest performance gap arises on XES3G5M. However, this dataset has an average
accuracy of 85%, implying that even a constant predictor would achieve 85% accuracy. Unlike KT
and CD models, LBMs operate zero-shot and thus cannot exploit such dataset-level statistics, which
likely explains their lower accuracy but competitive AUC (see Table A1). Finally, thanks to the
multilingual capabilities of modern LLMs, LBMs achieve comparable results on both the English
and Chinese versions of XES3G5M.

Sample efficiency Figure 4 compares the performance of LBM models to traditional Knowledge
Tracing methods on the Synthetic dataset. LBMs with a GPT-5 backbone achieves comparable
accuracy to KT methods with significantly less training data. Since CD/KT methods rely on statistical

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Training the encoder with the decoding accuracy on the synthetic dataset. Evolution
of the test accuracy as a Gemma3-12B encoder is trained as described in Section 3.3, with a fixed
Gemma3-27B decoder. Trained on 800 training students and tested on 200 students, with |X | “ 50
questions per input trajectory and |Y| “ 20 questions to predict per student. The bottom row show
the evolution of the generated summary over the course of training for an example student. Text is
colored green (exact), orange (approximate), or red (false) based on ground-truth.

patterns, they require substantially more observations before reaching strong predictive power, while
LBMs demonstrate strong zero-shot performance.

Case-study: comparing CD and LBM knowledge state representations We illustrate the inter-
pretability advantages of LBMs over state-of-the-art CD methods in Figure 5. A NeuralCDM model
trained on our synthetic dataset achieves strong predictive performance (AUC: 0.96, Acc: 0.90 on
the test set). From this model, we extract proficiency estimates across knowledge concepts using the
learned student embedding vector. We compare these to the summary generated for the same student
by a trained LBM (Gemma-12B encoder; frozen Gemma-27B decoder, cf. Section 5.2).

While NeuralCDM reliably captures overall KC proficiency, its representations are influenced by
misconceptions without explicitly identifying them. In contrast, LBMs capture overall proficiency
and uncover specific misconceptions (e.g., errors with negative numbers or with operand-6). This
ability to provide nuanced, qualitative insights into student knowledge states sets LBMs apart from
CD methods.

5.2 TRAINING LBM ENCODERS

As outlined in Section 3.3, downstream accuracy can serve as a reward signal to train encoders to
produce increasingly accurate summaries. We demonstrate this by training a Gemma3-12B encoder
with GRPO alongside a frozen Gemma3-27B decoder on 800 students. We set the reward as the
decoder accuracy across |Y| “ 20 unseen questions RpS̃; gq “ Acc

`

Ỹ,Y
˘

, train with a LoRA
adapter (Hu et al., 2022) and evaluate on 200 unseen test students.

Figure 6 shows the encoder progressively improving summary quality and quickly outperforming
GPT-4o. The figure illustrates this through an example student who mastered all constructs except
subtraction and fails any multiplication involving 9. The initial summary contains inaccuracies and
misses this systematic misconception, while the final summary successfully captures the student’s
complete knowledge state. Stratifying by knowledge state complexity, we observe larger gains for
more complex cases (Appendix A.3).

5.3 STEERING LBM BEHAVIOR

We demonstrate multiple steering strategies described in Section 3.4. Providing explicit miscon-
ception information during encoder training produces substantially stronger learning effects than
adding the same information at the decoder stage (Appendix A.4.1), suggesting that the encoder
uses this additional context to better interpret patterns in student responses. We also show the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

encoder can be steered during training to explicitly mention misconceptions through reward signals
(Appendix A.4.2), and illustrate how supplementing the summary with information not present in the
input can significantly improve decoder accuracy (Appendix A.4.3).

5.4 ABLATION EXPERIMENTS

How much information is lost by the bottleneck? Table 2 compares the accuracy of LBM
models to directly predicting new questions from the observed student data. Despite the information
bottleneck, LBM accuracy typically remains within 2% of direct prediction—and often surpasses it.
Figure 7 shows that this gap decreases for longer bottleneck token limits, highlighting a trade-off
between conciseness and predictive accuracy.

Table 2: Accuracy results for Direct and LBM methods. Bold indi-
cates LBM accuracy is no more than 2% below the Direct baseline.

Synthetic EEDI (Filtered)

Direct LBM ∆ Direct LBM ∆

Qwen2.5-3B .56 ± .00 .61 ± .01 +.06 .35 ± .00 .38 ± .00 +.03
Qwen2.5-7B .64 ± .00 .65 ± .01 +.01 .65 ± .00 .58 ± .01 -.07
gemma-3-12b .63 ± .00 .79 ± .00 +.17 .58 ± .00 .62 ± .01 +.04
gemma-3-27b .62 ± .00 .78 ± .01 +.16 .67 ± .00 .65 ± .01 -.02
gpt-4o-mini .81 ± .01 .78 ± .01 -.03 .67 ± .01 .61 ± .02 -.05
gpt-4o .85 ± .01 .80 ± .01 -.05 .66 ± .00 .66 ± .02 +.00
gpt-5 .87 ± .00 .87 ± .01 +.00 .71 ± .02 .68 ± .01 -.03

Figure 7: Evolution of LBM
accuracy with bottleneck
length (GPT-4o backbone).

Which of the encoder or decoder is most critical for LBMs? We evaluate LBMs with different
encoder–decoder pairings (Appendix A.5.1). Using a strong model (GPT-4o) as encoder with weaker
models as decoders yields accuracies 5 ´ 10% higher than when the stronger model is used as
the decoder. This confirms our hypothesis that extracting relevant information for the summary
(encoding) is more challenging than predicting future answers given a summary (decoding).

Do LBMs require knowledge concept information? Table A6 compares LBMs with and without
KC information in the input prompt on the Synthetic and EEDI (Filtered) datasets. Performance does
not significantly change, demonstrating that LBMs do not fundamentally require KC information.

6 DISCUSSION

Why can’t we just prompt GPT-4o directly? The split encoder-decoder architecture of LBMs
offers three key advantages over direct LLM prompting: it creates a global student model with a
single latent summary shared across all predictions rather than isolated per-question reasoning; it
ensures faithful summaries through a closed-loop decoding objective that penalizes non-predictive
summaries; and it provides an explicit interface layer that teachers can read, steer and intervene on.

Wider applicability LBMs extend beyond education to any task requiring compact, human-
readable summaries with predictive power. The minimal ingredients needed are: (1) a sequence
of observations about an entity, (2) a need to predict future behaviors of that entity, and (3) value
in having interpretable representations. For example, clinical decision support could distill patient
data into textual state descriptions that forecast outcomes while remaining auditable; preventive
maintenance could compress sensor logs into explanations predicting machine failure; customer
success teams could summarize interaction histories to forecast churn.

Limitations and Future Work LBMs face several constraints including context length limitations,
requirements for textual question content, and substantial computational costs. Future extensions
could address these through iterative encoding for longer inputs, active sensing for optimal question
selection, adaptation for evolving knowledge states, expansion beyond question-answer data, and
integration with pedagogical techniques like LearnLM (Team et al., 2024). These limitations and
extensions are discussed in detail in Appendix E.

9
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All models, datasets, and experi-
mental settings are described in detail in the paper and the appendix.

• Datasets: We use one synthetic and two real-world datasets. The generation process for
the synthetic data, along with preprocessing steps for the Eedi and XES3G5M datasets, are
detailed in Appendix B.3. The source code for the synthetic data will be made available in
an online repository upon publication of this work.

• Implementation Details: Our LBM framework is presented Section 3. The specific LLM
backbones, baseline models, training hyperparameters, and software libraries used in the
experiments are described in Appendix B. All prompt templates used for the LBM encoder
and decoder are provided in Appendix B.5.

• Code: The source code for generating the synthetic data, training the models, and running
all experiments will be made publicly available in an online repository upon publication of
this work.
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APPENDIX

A EXTENDED RESULTS

A.1 MOTIVATING OBSERVATION 2

Figure A1 compares summaries produced by different LLMs when prompted to describe a student’s
knowledge state from 50 question-answer pairs from a synthetic dataset (see Section 5 for details).
While all models capture high-level skill mastery, only one correctly identifies a misconception
(errors with negative numbers) out of the four existing ones, illustrating that standard summarization
approaches often miss crucial latent patterns.

Figure A1: Zero-shot knowledge state encoding compared to ground truth. LLM models with
different capabilities are prompted to write a summary of the knowledge state (top left panel) of a
student, given 50 observed questions and answers provided in text. The ground truth knowledge
state (top right panel) describing the student behavior has three main components: constructs
mastered, constructs not mastered, and misconceptions. All three models capture the construct
mastery correctly, but are not able to capture any misconception, beside o1 which notices the negative
numbers misconception (bottom row). Bottom right notations correspond to components in Figure 1.
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A.2 FULL RESULTS

Table A1: Results across all datasets and methods. We report the mean and standard deviation across
N=10 runs for KT and CD models and N=3 runs for LLM-based models (Direct, LBM). XES3G5M-E
and XES3G5M-C denote the English and Chinese versions of the XES3G5M dataset, respectively;
note that since the KT and CD models do not use the question content, their results are shared across
both versions of the dataset). The KT and CD models are trained on a train set and evaluated on a
test set, while LLM Direct and LBM methods are run zero-shot on a test set. AUC unavailable for
closed-source LLM models as they require access to the model’s output logits. Results for QIKT on
Synthetic and MIRT on EEDI are omitted due to implementation issues.

Synthetic EEDI (Filt.) XES3G5M-E (Filt.) XES3G5M-C (Filt.)

Model Type Model Name ACC AUC ACC AUC ACC AUC ACC AUC

KT Models akt .87±.01 .87±.01 .72±.02 .64±.02 .87±.01 .68±.03 .87±.01 .68±.03
(Trained) deepIRT .82±.02 .82±.01 .67±.01 .59±.01 .85±.01 .64±.03 .85±.01 .64±.03

dkt .82±.02 .81±.02 .66±.01 .57±.02 .85±.01 .64±.03 .85±.01 .64±.03
dkvmn .82±.01 .82±.01 .67±.01 .59±.02 .85±.01 .67±.03 .85±.01 .67±.03
gkt .71±.07 .67±.08 .61±.03 .57±.02 .86±.01 .60±.06 .86±.01 .60±.06
qikt – – .66±.00 .58±.00 .82±.00 .53±.00 .82±.00 .53±.00
saint .66±.02 .65±.02 .67±.03 .59±.07 .87±.01 .66±.03 .87±.01 .66±.03
sakt .82±.02 .81±.02 .66±.03 .56±.02 .85±.01 .60±.02 .85±.01 .60±.02
simplekt .86±.01 .85±.01 .70±.01 .62±.01 .86±.01 .68±.02 .86±.01 .68±.02

CD Models DINA .57±.01 .61±.01 .51±.00 .55±.01 .50±.01 .55±.01 .50±.01 .55±.01
(Trained) IRT .59±.00 .62±.01 .67±.00 .62±.01 .83±.00 .68±.01 .83±.00 .68±.01

KaNCD .90±.00 .95±.00 .65±.01 .64±.01 .85±.00 .81±.00 .85±.00 .81±.00
MIRT .61±.00 .65±.01 – – .71±.01 .66±.01 .71±.01 .66±.01
NCDM .89±.00 .95±.00 .66±.01 .67±.00 .85±.00 .80±.00 .85±.00 .80±.00

LLM Direct Qwen2.5-3B .56±.00 .79±.00 .35±.00 .54±.00 .19±.00 .56±.00 .19±.00 .55±.00
(Zero-shot) Qwen2.5-7B .64±.00 .73±.00 .65±.00 .62±.00 .76±.00 .63±.00 .75±.00 .63±.00

gemma-3-12b .63±.00 .96±.00 .58±.00 .71±.00 .30±.00 .71±.00 .29±.00 .70±.00
gemma-3-27b .62±.00 .94±.00 .67±.00 .76±.00 .33±.00 .78±.00 .32±.00 .79±.00
gpt-4o .85±.01 – .66±.00 – .82±.00 – .79±.01 –
gpt-4o-mini .81±.01 – .67±.01 – .74±.08 – .75±.07 –
gpt-5 .87±.00 – .71±.02 – .81±.01 – .79±.01 –

LBM Qwen2.5-3B .61±.01 .65±.01 .38±.00 .55±.01 .27±.01 .58±.01 .30±.01 .63±.02
(Zero-shot) Qwen2.5-7B .65±.01 .69±.01 .58±.01 .55±.01 .75±.01 .63±.00 .74±.01 .62±.02

gemma-3-12b .79±.00 .85±.00 .62±.01 .64±.02 .63±.01 .67±.01 .57±.02 .65±.01
gemma-3-27b .78±.01 .85±.01 .65±.01 .67±.01 .68±.02 .70±.01 .68±.01 .70±.02
gpt-4o .80±.01 – .66±.02 – .80±.01 – .78±.02 –
gpt-4o-mini .78±.01 – .61±.02 – .70±.08 – .70±.07 –
gpt-5 .87±.01 – .68±.01 – .76±.01 – .76±.01 –

A.3 TRAINING LBM ENCODERS: DIFFICULTY STRATIFICATION

To investigate whether the accuracy gains seen during LBM training (Figure 6) vary across students in
the dataset, we stratify students according to how many misconception they hold: 0, 1, 2 or 3+. Since
each misconception represent additional "irregularities" in the student’s response pattern beyond
simple mastery of constructs, this effectively stratifies different complexity levels across student
knowledge states. Table A2 shows the change in accuracy relative to the GPT-4o baseline across
difficulty levels.

Table A2: Relative difference in accuracy between trained Gemma3-12B and the GPT-4o baseline,
with students grouped by number of misconceptions.

Accuracy (mean ± std) Relative Diff. (%)

# of Misconceptions Baseline Pre-training Post-training Pre Post ∆

0 (N “ 22) 0.98 ± 0.05 0.92 ± 0.12 0.99 ± 0.05 -5.80 0.90 6.70
1 (N “ 17) 0.89 ± 0.09 0.87 ± 0.15 0.91 ± 0.09 -2.00 3.00 5.00
2 (N “ 23) 0.81 ± 0.16 0.80 ± 0.12 0.89 ± 0.08 -0.80 10.20 11.00
3 (N “ 135) 0.77 ± 0.12 0.74 ± 0.14 0.82 ± 0.11 -4.80 5.70 10.50

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure A2: Presence of the word "misconception" in the LBM’s summaries during training of
the encoder model steered towards mentioning student misconceptions via the reward signal.

The model shows 10 ´ 11% increased accuracy relative to GPT-4o for students with 2 or 3+ miscon-
ceptions, compared to just 5 ´ 7% for students with 0-1 misconceptions. This suggests the encoder
becomes particularly better at handling complex knowledge states.

A.4 STEERING LBM BEHAVIOR

A.4.1 AUGMENTING WITH STUDENT-SPECIFIC INFORMATION TO ASSIST LBM TRAINING

Finally, we demonstrate how providing additional information to the LBM can assist with the training
process. We train two identical LBMs while providing 2 misconceptions either to the encoder as part
of the input data, or to the decoder as part of the bottleneck. The models are trained for one epoch on
800 students. We then evaluate the resulting models without any additional information provided.
Table A3 shows the accuracy before/after training for both models. The model where additional
information was provided to the encoder reaches 84% accuracy after one training compared to 80%
when it is provided to the decoder. This suggest that the additional information facilitates training of
the encoder.

Table A3: Relative difference in accuracy between trained Gemma3-12B and the gpt-4o baseline,
with students grouped by number of misconceptions.

Before training After 1 epoch training

Information in X 0.802 ± 0.001 0.840 ± 0.004
Information in S 0.794 ± 0.002 0.799 ± 0.006

A.4.2 STEERING VIA REWARD SIGNALS

To demonstrate the possibility to steer LBMs’ behavior via the reward signal, we consider an example
use-case where a teacher would like the model to pay particular attention to potential misconceptions
held by the student. Following the reward-shaping framework of Section 3.3, we augment the training
objective with an additional term that explicitly encourages the model to surface misconceptions.
Concretely, we set ΩpSq “ 1

“

“misconception” P S̃
‰

, where S̃ is the textual bottleneck emitted by
the LBM for student state S. This binary reward is added to the accuracy term and optimized with
GRPO. Figure A2 confirms that the policy quickly internalizes this incentive: after only a handful of
training steps, the proportion of summaries that explicitly mention a misconception goes from less
than 80% to >95%, demonstrating that the reward function provides an effective lever for shaping
higher-level pedagogical behavior.
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A.4.3 AUGMENTING LBMS WITH STUDENT-SPECIFIC INFORMATION TO COMPLEMENT INPUT
DATA

To demonstrate how an LBM can be actively steered with additional information we run the following
ablation on the Synthetic dataset: 1. Each student trajectory originally probes four constructs. For a
given trajectory, we remove every question linked to one construct leaving the input data intentionally
incomplete. 2. We then run the input data through the encoder and inject a single teacher-supplied
sentence describing the student’s mastery of the missing construct directly into the model’s bottleneck
representation (e.g., "The student has mastered addition except in the event of misconceptions.).

We repeat this procedure four times—once for each construct—running the LBM both with and
without the additional sentence, and report the results Table A4. Naturally, the models complemented
with the additional information of the student’s mastery of the construct missing in the input data
outperform models provided only with the incomplete data. This small experiment illustrates a key
advantage of LBMs: because the LBM compresses evidence into a text-based summary, it can be
complemented with additional information absent from the input data.

Table A4: Accuracy of a gpt-4o-based LBM on the Synthetic dataset while removing one construct
from the input data, with and without providing information about the missing construct in the
bottleneck. Each run is repeated across all four constructs; mean and standard deviation are reported.

Without additional bottleneck information With additional bottleneck information

0.749 ± 0.007 0.791 ± 0.013

A.5 ABLATION EXPERIMENTS

A.5.1 ENCODER/DECODER VARIANTS

Table A5 shows the accuracy of different combinations of encoder-decoder models on the Synthetic
dataset. The top row shows the result of using the strongest model evaluated (gpt-4o) as both encoder
and decoder. Then, we vary either the encoder or decoder part of the LBM across other LLMs, and
report the resulting accuracy. A clear pattern which emerges is that the resulting LBMs are stronger
when gpt-4o is used as the encoder instead of the decoder. This implies that the task of accurately
capturing knowledge state information in the bottleneck is harder than predicting answers to future
questions when provided with a knowledge state summary.

Table A5: Performance of different LBM encoder-decoder combinations on the Synthetic dataset.

Encoder Decoder Accuracy

Strongest model gpt-4o gpt-4o 0.809

Strongest gpt-4o gpt-4o-mini 0.821
model gpt-4o google/gemma-3-12b-it 0.795

as gpt-4o Qwen/Qwen2.5-7B-Instruct 0.765
encoder gpt-4o Qwen/Qwen2.5-3B-Instruct 0.715

Strongest gpt-4o-mini gpt-4o 0.765
model google/gemma-3-12b-it gpt-4o 0.775

as Qwen/Qwen2.5-7B-Instruct gpt-4o 0.666
decoder Qwen/Qwen2.5-3B-Instruct gpt-4o 0.649

A.5.2 IMPORTANCE OF KNOWLEDGE CONCEPTS IN THE INPUT

Table A6 compares the accuracy of different LBMs with vs without knowledge conception information
in the input prompt. The performance generally remains similar to the KC version, and it even
increases for most models on the EEDI dataset. This demonstrates that LBMs do not fundamentally
require KC information.
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Table A6: Comparison of LBM performance with vs without knowledge concept (KC) information
in the input. Bold indicates a difference in accuracy no more than 3% below the full input.

Synthetic EEDI (Filtered)

w/ KC w/o KC ∆ w/ KC w/o KC ∆

Qwen2.5-3B .61 ± .01 .62 ± .05 +.00 .38 ± .00 .38 ± .02 +.01
Qwen2.5-7B .65 ± .01 .66 ± .02 +.01 .58 ± .01 .58 ± .01 +.00
gemma-3-12b .79 ± .00 .73 ± .00 -.06 .62 ± .01 .60 ± .02 -.02
gemma-3-27b .78 ± .01 .75 ± .01 -.03 .65 ± .01 .69 ± .03 +.03
gpt-4o-mini .78 ± .01 .76 ± .00 -.01 .61 ± .02 .65 ± .03 +.04
gpt-4o .80 ± .01 .76 ± .01 -.04 .66 ± .02 .68 ± .01 +.02

Predictions on 
4 test questionsStudent #44759 | Predicted Knowledge States

The student demonstrates accurate skills in writing numbers in standard form, solving timetable problems, identifying equivalent
fractions, interpreting bar charts, converting percentages to fractions, algebraic substitution, and various basic arithmetic
operations. However, they struggle with more complex fractions, decimal operations, angle calculations, rounding, function 
machines, and mental addition strategies. Overall, the student has a solid foundation in key areas but needs improvement in 
dealing with fractions of different denominators, negative integers, and decimal calculations.

128 tokens

['Yes', 'Yes', 'Yes', 'No']
x x✓✓

The student has demonstrated robust skills in working with basic fractions, decimals, and standard form for numbers between 0
and 1. They correctly answered questions involving simple fraction operations, frequency trees, interpreting timetables, substituting 
values into expressions, function machine outputs, estimation, rounding numbers greater than 1, and calculating non-unit fractions 
of an amount. However, they struggled with more complex fraction additions, algebraic fractions, and working with decimals 
involving operations such as multiplication by an integer or other decimals. They also had difficulty with algebraic manipulations, 
calculating the square of decimals, and understanding angles related to parallel lines and polygons. Despite these difficulties, they 
correctly handled finding exterior angles of regular polygons and working with integers and negative numbers in simpler 
multiplication and subtraction problems. The student's proficiency lies in straightforward calculations and procedural tasks but
falters slightly with combined algebraic and decimal operations, more complex fraction manipulations, and multi-step angle 
calculations.

256 tokens

['Yes', 'No', 'Yes', 'Yes']
✓ ✓✓✓

The student demonstrates proficiency in various mathematical 
areas, with some notable gaps. They excel in reading 
timetables, identifying equivalent fractions, writing numbers 
between 0 and 1 in standard form, performing calculator 
calculations with negative numbers, rounding numbers greater 
than 1 to one significant figure, identifying non-unit fractions in 
shapes, subtracting proper fractions with the same denominator, 
calculating non-unit fractions of an amount, and working out the 
size of each exterior angle in regular polygons.

However, the student struggles with several topics:
1. Adding algebraic fractions where one denominator is a 
multiple of the other.
2. Finding incorrect steps in solving for angles on parallel lines 
using angle facts.
3. Carrying out multiplication and division involving negative 
integers.
4. Dividing integers by decimals and understanding efficient 
strategies for mental addition.
5. Writing numbers greater than 1 in standard form.

6. Multiplying two decimals together.
7. Subtracting proper fractions which share a common factor.
8. Performing estimation and rounding numbers to one 
significant figure.
9. Calculating the square of a number.
10. Multiplying a decimal by an integer.

The student correctly answers questions involving basic algebra 
(substituting positive integers into expressions), function 
machines, basic fraction operations (adding fractions with the 
same denominator), and basic arithmetic operations 
(subtracting negative integers). They also correctly convert 
percentages to fractions and add and subtract proper fractions.

These results suggest a strong understanding of fundamental 
mathematical concepts, though their skills in more complex and 
nuanced problems could use improvement. The student would 
benefit from focused practice on algebraic manipulations, angle 
calculations, application of decimal operations, and standard 
form conversion.

512 tokens

['Yes', 'No', 'Yes', 'Yes']
✓ ✓✓✓

Figure A3: Example bottlenecks produced by an LBM with gpt-4o as both encoder and decoder
for a student in the Eedi dataset, with varying bottleneck lengths. The input data provided to
the encoder is composed of 30 questions across various constructs, and the decoder predicts 4 test
questions using the bottleneck.

A.6 EXAMPLE BOTTLENECKS ON THE EEDI DATASET

Figure A3 shows example bottlenecks produced by a gpt-4o-based LBM for a student in the Eedi
dataset. The input data is composed of 30 questions from various constructs, and the decoder predicts
4 test questions. As shown Figure 4 in the main paper, a shorter bottleneck of 128 tokens constrains
the expressive power of the model, and in this example the resulting predictions fail on two of the
test questions. A longer bottleneck of 256 or 512 tokens allows for more nuance and details in the
bottleneck, leading to the decoder correctly predicting all four test questions for this student.
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B EXPERIMENTAL DETAILS

B.1 LBMS DETAILS

LLM backbones We evaluate the following closed- and open-source models:

• GPT-5, GPT-4o and GPT-4o-mini (Achiam et al., 2023);

• Qwen2.5-3B and Qwen2.5-7B (Team, 2024);

• Gemma3-12B and Gemma3-27B (Team, 2025).

For open-source models we extract the activation logits of the “Yes” and “No” tokens and return
the higher value. The logits for the “Yes” and “No” tokens are used to compute the AUC. For
closed-source models we prompt for a “Yes” or “No” answer and parse the text output. We run
GPT models via the OpenAI API, with the following snapshots: GPT-5: 2025-08-07; GPT-4o:
2024-08-06; GPT-4o-mini: 2024-07-18.

Reward function For training the encoder in Section 6, we set the reward function to the decoder
accuracy across |Y| “ 20 questions:

RpS̃; gq “ Acc
`

Ỹ,Y
˘

The RL steering experiment section A.4.2 only rewards the presence of the word "misconception" in
the bottleneck:

RpS̃; gq “ ΩpS̃q “ 1r’misconception’ P S̃s

B.2 KT/CD MODELS

Cognitive Diagnosis models We evaluate the following 5 Cognitive Diagnosis models:

• IRT (Rasch, 1993)

• MIRT (Reckase, 2006)

• DINA (Junker & Sijtsma, 2001)

• KaNCD (Wang et al., 2022)

• NeuralCDM (Wang et al., 2022)

We use the implementation from the EduCDM library (bigdata ustc, 2021). To make sure there is
enough data per student to train on, we filter out students students with ă 10 interactions in each
dataset.

Knowledge Tracing models We evaluate the following 9 Knowledge Tracing models:

• DKT Piech et al. (2015)

• DKVMN Zhang et al. (2017)

• SAKT Pandey & Karypis (2019)

• GKT Nakagawa et al. (2019)

• Deep IRT Yeung (2019)

• AKT Ghosh et al. (2020)

• SAINT Choi et al. (2020)

• SimpleKT Liu et al. (2023a)

• QIKT Chen et al. (2023)

We use the PYKT implementation Liu et al. (2022) for all of these models with default hyperparame-
ters. We only modify the pyKT implementation to additionally compute the accuracy and AUC on
N “ |Y| questions.
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Figure B1: Distribution of the number of misconceptions per student in the Synthetic dataset.

B.3 DATASETS

B.3.1 SYNTHETIC

Our synthetic dataset simulates students answering basic arithmetic problems. Each student is
characterised by (i) mastered skills, (ii) unmastered skills, and (iii) systematic misconceptions.
Questions are arithmetic operations—addition, subtraction, multiplication, or division (rounded to
the nearest integer)—between two operands drawn from r0, 15s for addition/subtraction or r1, 10s for
multiplication/division.

Misconception pool. For every student we sample misconceptions uniformly at random from:

• forgets to carry in addition;

• fails multiplications involving the number x with x „ Up6, 9q;

• fails any operation involving the number x with x „ Up6, 9q;

• fails whenever an operand ą 10;

• always rounds division results down;

• fails with negative numbers.

Generation parameters.

• Number of students: 2000;

• Number of questions: 5000;

• Questions answered per student: 210.

Figure B1 shows the histogram of the number of misconceptions per student across the 2000 students
of the dataset.

B.3.2 EEDI

The Eedi dataset is analogous to the one publicly shared via the NeurIPS 2020 Education Chal-
lenge (Wang et al., 2020) organised by Eedi, but additionally includes the text of each question. While
the exact version of the dataset used in this work is not available publicly, a very similar version
including question texts is available via the "Eedi - Mining Misconceptions in Mathematics" Kaggle
Competition (King et al., 2024).
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Preprocessing Although many trajectories in the Eedi dataset span several days or months, we
retain only single-session sequences to satisfy the constant knowledge state assumption - a common
assumption in Cognitive Diagnosis (Wang et al., 2024). We compute sessions of interactions by
grouping answers that are within the follow criterias:

• minimum response time: 5 s, to avoid random answers;
• maximum gap between answers: 3min;
• minimum trajectory length: 40 questions.

This filtering yields a total of 623 individual trajectories with 40+ questions.

B.3.3 XES3G5M

The XES3G5M dataset contains student interaction data from a large-scale online mathematics
learning platform (Liu et al., 2023b). The original dataset has question and construct text in Chinese.
We use English translation from Ozyurt et al. (2024) to also run on an English version of the dataset.

Preprocessing The XES3G5M preprocessing follows a similar approach to Eedi, with adjusted
parameters to accommodate the characteristics of this dataset. We compute sessions of interactions
by grouping answers that meet the following criteria:

• minimum response time: 5s, to avoid random answers;
• maximum gap between answers: 10min;
• minimum trajectory length: 34 questions.

The increased maximum gap between answers (10 minutes vs. 3 minutes for Eedi) is to ensure that
a sufficient number of sessions are available for training. More stringent filtering make it easier
to satisfy the constant knowledge state assumption, but might not produce enough data points for
effective training of KT and CD models. This filtering yields a total of 1, 245 student-sessions
trajectories with 34+ questions, across 996 individual students.

B.4 EXPERIMENT PARAMETERS

B.4.1 TABLE A1, FIGURE 3, TABLE 2, FIGURE 7

Table B1 summarize experimental settings used for Table A1, Figure 3 and Figure 7. Runs are
aggregated across N=3 for LBMs/Direct LLMs and N=10 for KT/CD models. For Table 2 only the
bottleneck size varies along the plot’s x axes.

Synthetic Eedi (Filtered) XES3G5M (Filtered)

|X | 50 30 30
|Y| 4 4 4
Test students 200 100 200
Bottleneck size 128 tokens 512 tokens 512 tokens
CoT prompting No No No

Table B1: Experimental settings for the different datasets.

B.4.2 FIGURE 4

Latent Bottleneck Models (LBMs)

• |X | “ N , N P t5, 10, 20, 50u, |Y| “ 4

• Test students: 200
• Bottleneck size: 256 tokens
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• Chain-of-thought prompting: Yes; reasoning_effort=minimal for GPT-5
• Encoder & decoder: same backbone LLM (varies by row in the table)

CD baselines The CD models were run using the EduCDM implementation (bigdata ustc, 2021).
As these models require training on a per-student basis, we evaluated them on a held-out set of test
interactions from the same students seen during training. We used an 80/20 train/test split of each
student’s interaction history. While this evaluation setup differs from the unseen-student protocol used
for KT and LBMs, it allows for a fair comparison of sample efficiency. To ensure stable and reliable
accuracy estimates, especially with limited interactions, all results are aggregated and averaged over
N=10 independent runs.

KT baselines KT models were evaluated using the PYKT implementation Liu et al. (2022), modified
to compute accuracy on |Y| “ 4 questions, in order to be comparable with our LBM models. For
each method we keep the pyKT default hyperparameters. Test accuracy is computed across 200
unseen test students.

B.4.3 FIGURE 6

• Dataset: Synthetic
• |X | “ 50, |Y| “ 20

• Train / test students: 800{200

• Bottleneck size: 128 tokens
• Chain-of-thought prompting: No
• Encoder (trained): Gemma3-12B
• Decoder (frozen): Gemma3-27B

Training hyper-parameters.

• Batch size : 5

• G “ 5

• Learning rate “ 1 ˆ 10´4

• β “ 0.04

• Optimiser: Adam (adamw_torch, default settings)
• LoRA configuration

– r “ 16, α “ 16

– target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"]

– Dropout: 0.05

B.4.4 ENCODER–DECODER VARIANTS

Identical to the Table A1 set-up, except for the choice of encoder and decoder LLMs.

B.4.5 STEERING EXPERIMENTS

Same dataset and model parameters as for Figure 6.

Training hyper-parameters.

• Batch size : 4

• G “ 4

• Learning rate “ 1 ˆ 10´4

• β “ 0.04

• Optimiser: Adam (adamw_torch, default settings)
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• LoRA configuration
– r “ 16, α “ 16

– target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"]

– Dropout: 0.05

B.5 PROMPTS

Below are the different prompts used to query LLMs in our experiments.

1 template: |
2 Please produce a concise summary of the following input with up to

{max_words} words.
3 This summary should contain the information required to predict

the student’s answer to any new question.
4 {cot_instruction}
5

6 Input:
7 {input_text}
8

9 Once again, please provide a **concise** summary of the student’s
knowledge state.

10 {cot_instruction}
11 Keep your summary under {max_words} words.
12

13 # with CoT
14 cot_instruction: |
15 Think step by step and lay out your reasoning before you write the

final summary. Then, enclose the final summary in <info>...</
info>.

16 # without CoT
17 cot_instruction: |
18 Enclose your entire summary in <info>...</info> and do not include

anything else.
19

20 input_text: |
21 The student answered the following questions:
22 {question_1_text}
23 ...
24 {question_n_text}
25

26 # with construct information
27 question_i_text: |
28 Question {question_txt, question_ID}, with construct{construct_txt

, construct_ID}: answered {correctness}.
29

30 # without construct information
31 question_i_text: |
32 Question {question_txt, question_ID}: answered {correctness}.

Listing 1: Base Prompt for the Encoder.

1 template: |
2 Here is some information about a student:
3 {bottleneck}
4

5 Predict whether the student will answer {new_question} correctly
or not.

6 Answer with "Yes" or "No" and nothing else.

Listing 2: Base Prompt for the Decoder.
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1 template: |
2 Please produce a concise summary of the following input with up to

{max_words} words.
3 This summary should contain the information required to predict

the student’s answer to any new question.
4

5 Make sure to mention any misconception held by the student.
6 {cot_instruction}
7

8 Input:
9 {input_text}

10

11 Once again, please provide a **concise** summary of the student’s
knowledge state.

12 {cot_instruction}
13 Keep your summary under {max_words} words.

Listing 3: Base Prompt for the Encoder when steering for mentioning "misconceptions"
(Section A.4.2).

B.6 CODE AND HARDWARE

Experiments were ran on four NVIDIA A100 GPUs with 80GB VRAM each, and 880GB of total
RAM.

C STEERABILITY OF THE ESTIMATED KNOWLEDGE STATE

A key advantage of LBMs is the ability for humans to interact with the model to steer the estimated
student knowledge states and complement the model with additional information. Here, we further
discuss the three mechanisms for human-model interaction in the LBM framework mentioned in
Section 3.4.

Prompt engineering the encoder. The most straightforward approach is directly shaping how the
encoder generates summaries through prompt engineering, for example via system instructions or
in-context examples (Brown et al., 2020). By modifying the instruction prompt given to the encoder,
educators can influence the format, emphasis, and level of detail in the generated knowledge state
summaries. For instance, instructing the encoder to highlight specific types of misconceptions or
to focus on particular subject areas can yield more targeted summaries. Examples of good and bad
knowledge states can also be provided to the encoder to steer its behavior via in-context learning.

Steering via reward signals during training. When training the encoder, human preferences can
be incorporated through the reward function by using the ΩpSq term from Eq. 1. This allows for
systematic enforcement of desirable summary properties across the model’s outputs. For example, if
educators find that explicit enumeration of misconceptions is particularly valuable for intervention
planning, the reward function can be designed to favor summaries that consistently identify and
articulate student misconceptions – as demonstrated Figure A.4.2.

Augmenting with student-specific information. Perhaps the most powerful form of interaction
involves supplementing the model with additional student-specific information not present in the
observed interaction data X . This can occur in two ways:

• Augmenting encoder input: Educators can provide supplementary information alongside the
observed interactions X , such as notes about recent classroom activities not yet reflected
in assessment data, or observations about a student’s learning process not captured in their
answers.

• Modifying the generated summary: After the encoder produces a knowledge state summary
S, educators can directly edit this summary based on their domain expertise and student-
specific knowledge before passing it to the decoder. For example, a teacher who noticed
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a student struggling with negative numbers during an in-class exercise could add this
observation to the generated summary, even if the available assessment data contains few
questions involving negative numbers.

D EXTENDED RELATED WORK

This section provides an extended review of the literature related to our proposed approach, span-
ning traditional knowledge tracing, recent advances in LLM-based student modeling, and concept
bottleneck models (CBMs), and text summarization models.

D.1 COGNITIVE DIAGNOSIS

Cognitive Diagnosis Models (CDMs) aim to infer a student’s latent knowledge state from their
observed responses to test questions Wang et al. (2024).

D.1.1 PSYCHOMETRICS-BASED CD MODELS

Classical models for Cognitive Diagnosis originate from psychometrics, including Item Response
Theory (IRT) and its multidimensional variant (MIRT), which model continuous scores of knowledge
proficiency using logistic functions Rasch (1993); Reckase (2006). The DINA model estimates binary
mastery variables of knowledge concepts, assuming that students must master all required skills to
answer correctly, while accounting for slips and guesses Junker & Sijtsma (2001). Other variants
have been proposed with different assumptions, such as DINO (Templin & Henson, 2006) which
considers that students will correctly answer the item if at least one required knowledge concept
is mastered. A critical input for these methods is the Q-matrix, which describe which knowledge
concept is required for each question.

D.1.2 DEEP LEARNING-BASED CD MODELS

More recent deep learning approaches offer greater flexibility in modeling complex relationships.
The Neural Cognitive Diagnosis Model (NCDM) uses neural networks to learn interaction functions
between student proficiency vectors and item characteristics Wang et al. (2022). Extensions include
Kernel-based Neural Cognitive Diagnosis (KaNCD), which models latent associations between
knowledge concepts Wang et al. (2022), and Knowledge-Sensitive Cognitive Diagnosis (KSCD),
which learns intrinsic relations between knowledge concepts from student responses Ma et al.
(2022). Graph neural networks have also been incorporated, with frameworks like RCD capturing
relationships between students, questions, and knowledge concepts Gao et al. (2021). Recent encoder-
decoder architectures, such as ID-CDF, enable inductive diagnosis by directly encoding student
responses into ability vectors Li et al. (2024b). While these deep learning models provide enhanced
predictive power and can handle diverse data types, they still typically operate within predefined
knowledge concept frameworks and are limited to quantitative estimates of skill mastery.

D.2 KNOWLEDGE TRACING

Compare to Cognitive Diagnosis which assumes a constant knowledge state, Knowledge Tracing
method aim at estimating evolving knowledge states as students answer questions. We similarly
review

D.2.1 TRADITIONAL KNOWLEDGE TRACING

Traditional knowledge tracing (KT) methods have long been used to model student learning and
predict future performance Shen et al. (2024). Early works such as Bayesian Knowledge Tracing
(BKT) Corbett & Anderson (1994) model student mastery as a probabilistic process, while more
recent methods like Deep Knowledge Tracing (DKT) Piech et al. (2015), Dynamic Key-Value
Memory Networks (DKVMN) (Zhang et al., 2017) and Attentive Knowledge Tracing (AKT) Ghosh
et al. (2020) uses neural networks or attention-based architecture to learn contextual representation of
questions and student knowledge states. Despite their strong predictive performance, these models
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represent a student’s knowledge state as an abstract, high-dimensional latent vector, which poses
significant challenges in interpretability and actionable feedback for educators.

D.2.2 INTERPRETABLE KNOWLEDGE TRACING

Several recent works have proposed more interpretable Knowledge Tracing methods.

Enhanced Concept Proficiency Modeling Interpretable Knowledge Tracing (IKT) (Minn et al.,
2022) introduces a causal probabilistic student model based on skill mastery, ability profiles, and
problem difficulty. While this approach provides clearer connections between model components
and predictions, interpretability remains tied to quantitative skill mastery estimates. Similarly,
QIKT (Chen et al., 2023) employs IRT functions as the final prediction layer, combining question-
centric knowledge acquisition, knowledge mastery scores, and knowledge application scores through
encoder modules. Despite enhanced modeling of question-concept relationships, the diagnostic
output remains in the form of proficiency reports across predefined knowledge concepts.

Learned Questions Relationships HGKT (Tong et al., 2022) addresses limitations of concept-
based proficiency by modeling hierarchical relationships between questions and introducing problem
schemas as additional links between questions. Problem schemas are discovered through hierarchical
clustering of question embeddings via BERT encodings, providing a means of grouping questions
orthogonal to knowledge concepts and therefore enabling more detailed diagnostic reports than at the
concept proficiency level. However, the interpretability of these learned schemas requires post-hoc
interpretation using TextRank to infer schema descriptions from clusters of questions. While this
approach moves beyond simple concept proficiency, it still relies on learned embeddings that cannot
directly articulate student reasoning patterns without post-hoc manipulations.

Explainable subsequences Explainable subsequences provide an alternative to interpretability
via concept proficiency by identifying which past questions are most relevant for predicting future
responses. For example, Li et al. (2023) proposes a genetic algorithm to identify explainable
subsequences in student interaction histories better than with standard Deep Learning explanation
methods such as Shapley values or gradient-based saliency maps. While this allows for a different kind
of interpretability from concept mastery, the explanations remain at the level of question relevance
rather than underlying reasoning processes. This approach can indicate which questions matter but
cannot explain why they matter or what misconceptions they reveal.

Option Tracing Option Tracing (Ghosh et al., 2021) moves beyond binary correctness by modeling
which specific option a student selects in multiple-choice questions, enabling finer-grained analysis
of misconceptions through patterns in distractor choices. Similarly, Park et al. (2024) leverages MCQ
responses and concept maps to disentangle student understanding at the concept level. While their
approach is motivated by misconception detection, their IRT-based predictions remain grounded in
concept-level proficiency prediction and do not explicitly validate misconception identification.

D.2.3 LLM-BASED KNOWLEDGE TRACING

Recent studies have begun integrating Large Language Models (LLMs) into the KT framework. For
example, Li et al. (2024a) demonstrated that LLMs are able to make sensible predictions about student
responses when prompted with adequate information. Other works Lee et al. (2024); Kim et al.
(2024) have studied how LLMs can help mitigate the cold-start problem compared to traditional KT
approaches, while Wang et al. (2025) demonstrated state-of-the-art performances in KT by combining
LLMs with sequence interaction models. However, these methods generally remain opaque: they
either treat the LLM as a black-box, or rely on model-generated explanations that are susceptible
to hallucination (Bender et al., 2021). KCQRL (Ozyurt et al., 2024) leverages language models to
improve the embedding of any deep learning KT method by encoding semantic information about
question content. While this leads to improved predictive accuracy, its interpretability remains limited
to knowledge concept proficiency.
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D.3 COMPARISON OF LBMS TO KT AND CD

Table D1 gives a high-level comparison of LBMs and KT/CD models. We acknowledge that this
summary table is a simplification of the KT and CD fields, as each contains many works that have
been proposed to tackle these individual limitations (for example, using textual question contents
to improve embeddings (Ozyurt et al., 2024), or using specialized Multiple Choice Questions to
reveal misconceptions via KT-type methods(King et al., 2024)). Nevertheless, it clarifies our paper’s
similarities with these two fields, while contrasting key differences that enable LBMs to address
educational scenarios where neither traditional KT nor CD methods are well-suited —particularly for
misconception identification or when working with limited data.

Table D1: Comparison of Cognitive Diagnosis, Knowledge Tracing and our proposed Language
Bottleneck Models.

Aspect Knowledge Tracing
(KT)

Cognitive Diagnosis
(CD)

Language Bottleneck
Models (LBMs)

Interpretability Capabilities

Interpretable
Output

Quantitative proficiency
across knowledge
concepts

Quantitative proficiency
across knowledge
concepts

Qualitative text
summaries

Misconception
Detection

No No Yes

Requires Predefined
or Inferred Concepts
for Interpretability

Yes Yes No

Data Requirements

Primary Input
Modality

Question and/or Construct
IDs

Question and Construct
IDs (Q-matrix)

Any textual information

Training Data
Requirements

High High Low/Zero-shot

Modeling Characteristics

Knowledge State
Assumption

Dynamic Static Static

Human-in-the-Loop Limited Limited High (steerable &
editable)

Fundamental Distinctions

Core Question
Addressed

“Can we predict a
student’s responses over
time?”

“Can we quantitatively
estimate a student’s
proficiency across
concepts?”

“Can we qualitatively
estimate a student’s
knowledge state,
including knowledge
concepts and
misconceptions?”

Case Study
(Figure 5)

Similar to CD Proficiency vector: KC1
(Add): 0.59, KC2 (Sub):
0.53, KC3 (Mul): 0.76,
KC4 (Div): 0.23

“...excels at addition and
multiplication...
Subtraction is a
weakness...
Multiplication by 6 or 7
seems to be a specific area
of difficulty...”

D.4 CONCEPT BOTTLENECK MODELS

Concept Bottleneck Models (CBMs) Koh et al. (2020) improve interpretability through human-
understandable concept activations as intermediates, with extensions exploring unsupervised concept
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learning Oikarinen et al. (2023), test-time interventions Shin et al. (2023), and theoretical analyses
of concept set design Luyten & van der Schaar (2024). However, CBMs typically rely on finite
predefined concept sets, limiting their applicability to complex tasks like knowledge tracing. Recently,
Yamaguchi & Nishida (2024) introduced Explanation Bottleneck Models (XBMs), which use textual
rationales as intermediates for vision classification, justifying a single known label per input. While
our Language Bottleneck Models (LBMs) adopt this language bottleneck concept, they differ funda-
mentally. Unlike XBMs’ instance-specific, task-specific rationales, LBM summaries aim to capture
an implicit knowledge states—as emphasized by our inverse problem formulation—and generalize to
future, unknown questions. These requirements necessitate holistic, adaptable summaries rather than
XBMs’ task-specific rationales, leading us to introduce Language Bottleneck Models (LBMs) as a
distinct framework with broader applicability.

D.5 TEXT SUMMARIZATION MODELS

Recent text summarization models such as BART Lewis et al. (2019), T5 Raffel et al. (2020), and
PEGASUS Zhang et al. (2020) effectively produce concise summaries based on explicitly available
textual content. However, these approaches differ fundamentally from knowledge tracing, where
summaries must infer implicit student knowledge states not directly observable in the input. Standard
summarization metrics (e.g., ROUGE, BLEU) rely on explicit reference summaries, making them
unsuitable for evaluating latent knowledge inference tasks. In contrast, our Language Bottleneck
Models generate textual summaries of the student’s implicit knowledge state, optimized for predictive
accuracy on downstream questions rather than syntactic overlap with the observed input.

E EXTENDED DISCUSSION

E.1 EXTENDED DISCUSSION

Parallel with Kolmogorov Complexity The inverse problem formulation of Knowledge State
Modeling draws a natural parallel with algorithmic information theory. The Kolmogorov complexity
Kpxq of a string x is defined as the length of the shortest program that outputs x when run on a
universal Turing machine. Traditional KT methods focus on learning statistical regularities between
questions and responses, without looking for parsimonious explanations for observed behavior. In
contrast, LBMs explicitly search for minimal natural language descriptions that can both reconstruct
past interactions and predict future responses. The knowledge state summary S is akin to the minimal
program, and the decoder LLM functions is akin to the universal interpreter that unpacks S to generate
the observed question-answer patterns. This connection suggests that effective knowledge state
summaries should capture the algorithmic essence of student behavior—the underlying "program"
of knowledge and misconceptions that generates observable responses—rather than merely fitting
surface-level patterns. While true Kolmogorov complexity is uncomputable, LBMs approximate
this ideal through the natural language bottleneck constraint, encouraging summaries that balance
compression with predictive power.

Computational Architecture and Design Choices The encoder-decoder architecture reflects
a deliberate separation of concerns: extraction versus interpretation of knowledge states. Our
experiments demonstrate that these two tasks have different intrinsic complexity, with encoding
(summary generation) being more challenging than decoding (prediction from summaries). This
finding has practical implications for model selection and computational resource allocation. The use
of GRPO for encoder training represents a novel application of reinforcement learning to interpretable
AI, where the reward signal directly measures the downstream utility of explanations rather than their
surface-level quality.

E.2 EXTENDED LIMITATIONS

Context Length Constraints A practical limitation of LBMs is the context length restrictions of
current LLMs. Eventhough modern models can handle thousands of tokens, comprehensive student
histories in real educational settings can easily exceed these limits. As student trajectories grow more
complex and include more information, the context required for the encoder might go beyond what
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current LLMs are capable of. A natural solution could be an iterative encoding process, where the
encoder iterates over the text bottleneck while going over the input data by windows.

Computational Cost and Resource Requirements Since LBMs involve two LLMs as the encoder
and decoder, they are typically more computationally intensive to run than traditional KT methods.
Each inference call with LBMs requires two LLM calls (encoding and decoding) with extensive
context windows. Training LBMs with GRPO is particularly costly, as it requires iteratively generating
and evaluating multiple candidate summaries per training example. This cost structure may limit the
practical deployment of LBMs to high-stakes educational contexts where the interpretability benefits
justify the computational expense.

Dependence on Textual Question Content Many existing CD/KT datasets provide only question
identifiers rather than full question text. This limits the direct applicability of LBMs, as they require
the questions content in order to generate meaningful summaries about student knowledge. While
question content is increasingly available in modern educational platforms, this dependency creates a
barrier to applying LBMs to historical datasets or systems that rely primarily on item response theory
frameworks.

Constant Knowledge State Assumption The constant knowledge state assumption underlying the
inverse problem formulation, while reasonable for short diagnostic sessions, does not cover longer
time horizons. Real learning involves continuous knowledge acquisition, forgetting, and misconcep-
tion evolution that our current framework cannot capture. This limitation restricts current LBMs to
diagnostic rather than contexts of assessment throughout the learning process. The assumption also
fails to account for contextual factors (fatigue, motivation, external stressors) that can significantly
impact student performance within even short sessions.

E.3 EXTENDED FUTURE WORK

Iterative Encoding Strategies A natural extension to address context length limitations involves
iteratively applying the encoder while chunking input data. At each step, the encoder would process
a portion of the interaction history X along with one or more previously generated bottleneck
summaries, creating an updated summary that incorporates new information from the latest chunk.
This approach could maintain both detailed recent context and compressed historical patterns, enabling
LBMs to handle arbitrarily long student trajectories through sequential refinement of knowledge state
representations.

Active Learning and Question Selection Building on iterative encoding, active learning strategies
could provide encoders with the most informative input questions. Rather than processing all available
interactions, the system could strategically select questions that maximize information gain about
uncertain aspects of student knowledge. This could leverage uncertainty quantification methods or
use the encoder LLM itself to recommend the most diagnostically valuable questions. Such active
sensing would improve both efficiency and diagnostic power by focusing computational resources on
the most insightful student responses.

Dynamic Knowledge State Modeling Extending LBMs to handle evolving knowledge states
represents a significant next step necessary to account for progressive learning and forgetting effects.
A natural relaxation of the constant knowledge state assumption involves "piecewise-constant" knowl-
edge states that can evolve between question sessions but remain static within sessions. This extension
poses exciting challenges in developing training objectives that balance within-session consistency
with between-session learning dynamics, potentially requiring new approaches to temporal modeling
in natural language representations.

Multimodal Input Integration Question-answer pairs represent a relatively narrow information
source for inferring student knowledge states. Richer data sources such as student-tutor interactions,
self-reported explanations for answers, timing patterns, or hint usage could provide deeper insights
into student understanding. While LBMs naturally extend to text-based inputs, future work should
investigate optimal strategies for combining these varied data sources and evaluate their relative
contributions to knowledge state inference accuracy and interpretability.
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Pedagogical Alignment Recent work like LearnLM Team et al. (2024) demonstrates the potential
for making LLMs more pedagogically aligned. Incorporating similar pedagogical principles into
LBM components could help encoders better interpret educational interactions and generate sum-
maries that align with expert teaching practices. This might involve training on educator-annotated
examples, incorporating educational taxonomies into summary structure, or using reward functions
that emphasize pedagogically relevant aspects of student knowledge states. Such alignment could
bridge the gap between computational convenience and educational validity.

STATEMENT: USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used as an assistive tool in the preparation of this manuscript
and the development of the accompanying code.

• LLMs were used to improve the clarity, grammar, and flow of the text. This included
rephrasing sentences, correcting typographical errors, and ensuring a consistent tone.

• LLMs were used to generate boilerplate code for data processing scripts, assist in debugging,
and suggest implementations for standard machine learning components.

The authors take full responsibility for the final content of this paper.
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