
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LANGUAGE BOTTLENECK MODELS: A FRAMEWORK
FOR QUALITATIVE COGNITIVE DIAGNOSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurately assessing student knowledge is central to education. Cognitive Diag-
nosis (CD) models estimate student proficiency, while Knowledge Tracing (KT)
methods excel at predicting performance over time. However, CD models represent
knowledge concepts via quantitative estimates on predefined concepts, limiting ex-
pressivity, while KT methods often prioritize accuracy at the cost of interpretability.
We propose Language Bottleneck Models (LBMs), a general framework for pro-
ducing textual knowledge state summaries that retain predictive power. LBMs use
an encoder LLM to produce minimal textual descriptions of a student’s knowledge
state, which a decoder LLM then uses to reconstruct past responses and predict
future performance. This natural-language bottleneck yields human-interpretable
summaries that go beyond the quantitative outputs of CD models and capture
nuances like misconceptions. Experiments show zero-shot LBMs rival state-of-
the-art CD and KT accuracy on synthetic arithmetic benchmarks and real-world
datasets (Eedi and XES3G5M). We also show the encoder can be finetuned with
reinforcement learning, using prediction accuracy as reward, to improve summary
quality. Beyond matching predictive performance, LBMs reveal qualitative insights
into student understanding that quantitative approaches cannot capture, showing
the value of flexible textual representations for educational assessment.

1 INTRODUCTION

Knowledge State Modeling A fundamental objective in education is accurately assessing what a
student knows, identifying misconceptions, and understanding how their knowledge evolves over
time (Posner et al., 1982; Larkin, 2012; Chen et al., 2020). Teachers intuitively achieve this through
diagnostic reasoning: by observing students’ answers, they infer not merely correctness, but deeper
patterns reflecting conceptual mastery or specific misunderstandings.

Limitations of Cognitive Diagnosis and Knowledge Tracing Cognitive Diagnosis (CD) (Templin
et al., 2010; Wang et al., 2024) models formalize this by producing diagnostic reports but are
often limited by rigid, predefined knowledge concept taxonomies. In parallel, Knowledge Tracing
(KT) (Corbett & Anderson, 1994; Shen et al., 2024) models excel at predicting future performance
based on observed past responses, but often at the cost of interpretability, representing knowledge as
opaque, high-dimensional vectors.

Limitations of Existing LLM-based approaches Recent approaches leveraging large language
models (LLMs) have shown that LLMs can produce sensible predictions of students’ future behavior
when provided with relevant information (Li et al., 2024a; Kim et al., 2024), help mitigate the KT’s
cold-start problem (Lee et al., 2024) and be finetuned to improve accuracy on KT tasks (Wang
et al., 2025). Nonetheless, these LLM-based methods still lack rigorous interpretability, as they
either treat the model as a black-box or rely on free-form explanations that are susceptible to
hallucination (Bender et al., 2021). From the standpoint of Cognitive Diagnosis, such methods fail to
provide grounded, reliable representations of knowledge that can be trusted in educational practice.
This gap motivates a principled approach where interpretability is an intrinsic design constraint.

Knowledge State Modeling as an Inverse Problem Assessing student knowledge can be framed as
an inverse problem (Figure 1A): observable answers are generated by an underlying knowledge state

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Language Bottleneck Models for Knowledge Modeling. (A) Past and future behavior
X and Y are caused by a certain knowledge state S held by the student when answering questions.
(B) CD and KT models represent the knowledge state via quantitative proficiency vectors or opaque
latent embeddings. (C) LBMs approximate the knowledge state using natural language summaries
which are used to predict past and future behavior.

S, and the goal is to infer a faithful approximation S̃. CD models constrain S̃ to fixed quantitative
proficiency estimates over knowledge concepts (Figure 1B), providing interpretability but lacking
flexibility to capture nuanced knowledge states. KT models prioritize predictive performance but
have uninterpretable latent representations (Figure 1B). We adopt the inverse-problem framing but
allow S̃ to be expressed as concise, free-form natural language, so knowledge states remain predictive
while avoiding rigid concept taxonomies.

Language Bottleneck Models We introduce Language Bottleneck Models (LBMs) as a general
framework for compressing a student’s interaction history into a predictive, text-based knowledge
state. As shown in Figure 1C, an encoder LLM maps a student’s interaction history X into a natural
language summary S̃, while a frozen decoder LLM must reconstruct past responses and predict
future ones using only that summary. In an educational settings, they constitute a language-based
approach to Cognitive Diagnosis, not bound to fixed skill vocabularies and can flexibly describe
nuanced insights such as misconceptions.

Contributions.

• We cast knowledge state modeling as an inverse problem—building on ideas from Cognitive
Diagnosis but replacing rigid concept proficiencies with a flexible natural-language knowledge
state.

• To instantiate this, we introduce Language Bottleneck Models (LBMs), which encode observed
student behavior into predictive text-based summaries of knowledge state summaries.

• We extensively evaluate LBMs on synthetic and real-world datasets against 14 KT and CD baselines
across 7 open- and closed-source LLM backbones, present a detailed case study of qualitative
differences with CD knowledge states, and demonstrate that LBMs can be effectively trained and
steered via their textual summaries.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 KNOWLEDGE STATE MODELING AS AN INVERSE PROBLEM

2.1 PRELIMINARIES AND NOTATION

We consider data consisting of student interactions with educational questions. At each time step t, a
student is presented with a question qt P Q and optionally knowledge concept information kt P K and
provides a response rt P R, which is evaluated for correctness ct P t0, 1u. We represent an interaction
as xt “ pqt, kt, rt, ctq, and a student’s interaction history up to time t as Ht “ px1, . . . , xtq.

The standard predictive task, often referred to as Knowledge Tracing (KT) (Corbett & Anderson, 1994;
Shen et al., 2024), is to estimate ppct`1 | qt`1, Htq, the probability that the student will answer a
new question qt`1 correctly, conditioned on their interaction history. This task definition captures the
forward-prediction aspect of knowledge state modeling, but does not yet address how the underlying
knowledge that drives these responses should be represented.

2.2 KNOWLEDGE STATE MODELING AS AN INVERSE PROBLEM

An alternative view is to frame knowledge state modeling as an inverse problem: observed responses
are generated by a latent knowledge state S through the student’s cognitive process, and the goal is to
recover an approximation S̃ of this state from the observed responses.

This perspective is central to Cognitive Diagnosis (CD) models (Reckase, 2006; De La Torre, 2009;
Templin et al., 2010; Wang et al., 2022; 2024), which produce diagnostic reports of concept mastery
from observed responses. However, CD typically restricts S̃ to quantitative mastery or proficiency
vectors based on predefined or inferred concepts, limiting expressivity. Meanwhile, deep learning-
based KT methods prioritize predictive accuracy without explicitly recovering S̃, representing
knowledge states as high-dimensional embeddings that lack transparency (Piech et al., 2015; Zhang
et al., 2017; Pandey & Karypis, 2019; Ghosh et al., 2020). Recent KT extensions introduce diagnostic
reports similar in spirit to CD, but these remain bound to rigid concept taxonomies or rely on post-hoc
interpretability (Minn et al., 2022; Chen et al., 2023; Park et al., 2024).

Key assumption: constant knowledge state A practical assumption underlying this formulation is
that a knowledge state can be treated as constant within short diagnostic windows (e.g., unit tests,
placement exams, or tutoring sessions). This aligns with CD models (see §2.1 in Wang et al. (2024)),
and distinguishes them from KT approaches which model the evolution of St across longer periods
where the underlying knowledge state is expected to change.

2.3 NATURAL LANGUAGE AS THE INTERFACE

Our formulation follows CD approaches in adopting the inverse problem framing of inferring a
diagnostic report from observed responses, but instead of restricting S̃ to quantitative mastery scores,
we model it through concise textual summaries. Natural language provides an interpretable and
expressive medium—capable of describing arbitrary reasoning patterns or misconceptions, a key
focus in education research (Smith III et al., 1994; Wang et al., 2020; King et al., 2024)—while
remaining human-understandable. In the next section, we introduce Language Bottleneck Models
(LBMs), which operationalizes this idea by compressing student interaction histories into concise
textual representations that preserve predictive information.

3 LANGUAGE BOTTLENECK MODELS

3.1 FORMAL DEFINITION

We propose Language Bottleneck Models (LBMs) for Knowledge State Modeling via textual sum-
maries: an LLM-based, two-stage architecture designed to infer a predictive text-based knowledge
state from a student’s interaction history.

Let Xenc Ď Ht denote a subset of observed interactions used by the encoder. An encoder LLM fθ
maps this history to a natural-language summary:

S̃ “ fθpXencq.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This summary serves as the sole representation of the student’s knowledge state.

A decoder LLM gϕ then conditions only on S̃ to predict the probability that the student will answer a
question q P Q correctly: gϕpq, S̃q “ ppc | q, S̃q, that is, given a question q and a summary S̃, the
decoder predicts the probability that the student will answer correctly.

In principle, both encoder fθ and decoder gϕ could be trained. However, we show with the following
motivating experiments that decoding is not the hard part: when given high-quality knowledge state
summaries, off-the-shelf LLMs can achieve near-perfect prediction accuracy. For this reason, in
this work we keep gϕ fixed and focus on learning an encoder that produces faithful, predictive, and
interpretable summaries.

3.2 MOTIVATING OBSERVATIONS

We motivate the design of LBMs by two observations.

Figure 2: Accuracy on synthetic
dataset given ground truth knowl-
edge state summaries.

Observation 1: Given a good knowledge state summary,
strong LLMs can decode with high fidelity. To test this in
an idealized setting, we used a synthetic dataset where each
student’s knowledge state was programmatically generated. Fig-
ure 2 evaluates the performance of different decoder models
when given direct access to this perfect, "ground-truth" sum-
mary of the student’s latent knowledge (an example is shown
in Figure A1 in the Appendix, and full dataset details are in
Section 5). Stronger models like GPT-4o achieve nearly per-
fect accuracy (98%), indicating that the bottleneck representa-
tion is indeed sufficient to drive effective downstream predic-
tion—provided it captures the right information.

Observation 2: Summarizing knowledge states from raw
interactions is non-trivial. Standard LLM summarization
approaches can capture high-level skill mastery but often fail
to identify crucial latent patterns like student misconceptions
(see an example comparison on our synthetic dataset Figure A1
in the Appendix).

Together, these observations suggest that the key challenge lies in learning an encoder that produces
faithful summaries, rather than in the decoding step itself.

3.3 TRAINING OBJECTIVE AND OPTIMIZATION

We propose a reinforcement learning-based approach to train an encoder to produce more faithful
and predictive summaries by using downstream decoder accuracy as reward.

Summary generation and prediction Given an interaction history Ht “ px1, . . . , xtq, the encoder
fθ maps a subset of interactions Xenc Ď Ht to a textual summary S̃ “ fθpXencq. The frozen decoder
g then conditions on S̃ to predict responses for two sets X and Y : interactions used for reconstruction
and prediction, respectively. In practice, X and Y may be chosen flexibly to include held-out past
responses, future responses, or both.

Reward function Given predicted interactions X̃ “ tgpq, S̃q, q P X u and Ỹ “ tgpq, S̃q, q P Yu,
the reward for a summary S̃ is defined as

RpS̃; gq “ ϕ
´

Acc
`

X̃ ,X
˘

,Acc
`

Ỹ,Y
˘

, |S̃|, ΩpS̃q

¯

, (1)

where Accp¨, ¨q measures accuracy, |S̃| penalizes overly long summaries, and ΩpS̃q enforces optional
structural constraints (e.g., inclusion of a Misconceptions section). The function Φ balances
these components using hyperparameters or indicator functions to enforce constraints as needed.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Optimization via GRPO We optimize the encoder fθ with Group Relative Policy Optimization
(GRPO) (Shao et al., 2024). For each input Xenc, the encoder generates G candidate summaries
tS̃1, . . . , S̃Gu, each evaluated by RpS̃i; gq. We then compute group-relative advantage and update
parameters:

ApS̃iq “
RpS̃i; gq ´ µ

σ
, ∇θJpθq “

1

G

G
ÿ

i“1

ApS̃iq∇θ log pθpS̃i | Xencq, (2)

where µ and σ are the mean and standard deviation of rewards within the group.

3.4 STEERABILITY OF THE ESTIMATED KNOWLEDGE STATE

The natural-language summaries generated by LBMs allow for various human-model interactions
(detailed in Appendix C):

• Prompt engineering the encoder. Since the encoder fθ is itself an LLM, its behavior can be
shaped through prompt design, such as system instructions or in-context examples (Brown et al.,
2020).

• Steering via reward signals. Rewards to steer the encoder towards human preferences can be
incorporated through the ΩpSq term in Eq. 1.

• Augmenting with student-specific information. Educators can supplement the model with
additional knowledge not present in observed data—either by augmenting encoder inputs or by
editing the generated summary before decoding. This enables integration of recent classroom
observations or specific misconceptions identified through in-person interactions.

4 RELATED WORK

We review related works from the Cognitive Diagnosis and Knowledge Tracing literature, as well as
concept bottleneck models. See Appendix D for an extended review of related works, and Table D1
for a high-level comparison of LBMs with CD and KT.

Cognitive Diagnosis Cognitive Diagnosis Models (CDMs) infer student knowledge states from
observed responses. Classical approaches include Item Response Theory (IRT) and Multidimensional
IRT which measure continuous proficiency scores (Rasch, 1993; Reckase, 2006), and the DINA
model and its variants which estimate binary mastery of knowledge concepts (De La Torre, 2009).
Recent deep learning variants like NeuralCDM (Wang et al., 2022) and RCD (Gao et al., 2021) use
neural networks and graph architectures to model complex relationships between students, questions,
and knowledge concepts. However, these models typically operate within predefined or inferred
knowledge frameworks and provide only quantitative skill mastery estimates.

Knowledge Tracing Knowledge Tracing methods model student learning to predict future per-
formance. Deep learning approaches like DKT (Piech et al., 2015), DKVMN (Zhang et al., 2017)
and AKT (Ghosh et al., 2020) employ neural architectures. Despite strong predictive performance,
these models represent knowledge as abstract latent vectors, limiting interpretability. Several re-
cent works have proposed more interpretable KT, whether via better question-concept relationship
modeling (Minn et al., 2022; Tong et al., 2022; Chen et al., 2023), explainable subsequences (Li
et al., 2023) or option tracing (Ghosh et al., 2021). However they remain fundamentally constrained
to quantitative concept proficiency estimation or require post-hoc interpretability. Finally, recent
LLM-based approaches have shown promise for knowledge tracing tasks (Li et al., 2024a; Wang
et al., 2025), but they generally remain opaque, either treating LLMs as black boxes or relying on
model-generated explanations susceptible to hallucination.

Concept Bottleneck Models Concept Bottleneck Models (CBMs) (Koh et al., 2020) improve
interpretability by using human-understandable concept activations as intermediates between inputs
and predictions. However, CBMs typically rely on finite predefined concept sets, limiting applicability
to complex tasks like knowledge tracing. Recently, Explanation Bottleneck Models (XBMs) (Ya-
maguchi & Nishida, 2024) use textual rationales as intermediates for vision classification. While

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ge
m.3-

12
b

ge
m.3-

27
b
gp

t-4
o
gp

t-5
dk

vm
n

sim
ple

kt akt
GDIRT

Ka
NCD

NCDM

0.6

0.8

1.0

Ac
cu

ra
cy 0.

79
0.

78 0.
80 0.

87

0.
82 0.

86 0.
87

0.
59

0.
90

0.
89

Synthetic

ge
m.3-

12
b

ge
m.3-

27
b
gp

t-4
o
gp

t-5
dk

vm
n

sim
ple

kt akt
GDIRT

Ka
NCD

NCDM

0.
62 0.

65 0.
66 0.
68

0.
67 0.

70 0.
72

0.
67

0.
65 0.
66

EEDI (Filtered)

ge
m.3-

12
b

ge
m.3-

27
b
gp

t-4
o
gp

t-5

ge
m.3-

12
b

ge
m.3-

27
b
gp

t-4
o
gp

t-5
dk

vm
n

sim
ple

kt akt
GDIRT

Ka
NCD

NCDM

0.
57

0.
68

0.
78

0.
76

Chinese

0.
63 0.

68
0.

80
0.

76

English

0.
85 0.
86 0.
87

0.
83 0.
85

0.
85

XES3G5M (Filtered)

Figure 3: Accuracy of LBM vs the top-3 KT and CD models across datasets. Models are grouped
by LBMs (blue), KT models (orange) and CD models (red). Top 3 KT and CD models are selected
based on average accuracy across all three datasets. Full results for other models are available
Table A1 in the Appendix.

our Language Bottleneck Models (LBMs) adopt this language bottleneck concept, they differ funda-
mentally: unlike XBMs’ instance-specific rationales, LBM summaries capture implicit knowledge
states that generalize to future, unknown questions, requiring holistic, adaptable summaries rather
than task-specific rationales.

5 EXPERIMENTS

Table 1: Overview of datasets. AVG#log and
STD#log>1 are defined following Wang et al.
(2022) as respectively the average number of logs
per student per KC, and the mean standard devia-
tion of score per student and per KC.

Dataset Synthetic Eedi (Filt.) XES3G5M (Filt.)
#Students 2,000 623 996
#Questions 5,000 3,401 3,221
#KCs 4 1,284 803
#Logs 420,000 28,947 57,788
#Logs/stud. 210 ě40 ě34
AVG Acc. 0.55˘0.20 0.68˘0.18 0.85˘0.36
AVG#log 52.5˘0.0 1.65˘0.52 2.02˘0.55
STD#log>1 0.29˘0.12 0.38˘0.08 0.24˘0.14

Datasets We evaluate LBMs and baseline
models on a synthetic arithmetic benchmark
and two real-world datasets (Table 1). Our
Synthetic dataset simulates learners answering
addition, subtraction, multiplication, and divi-
sion questions; each student is assigned mas-
tered skills, unmastered skills, and systematic
misconceptions. We filter the real-world Eedi
dataset (Wang et al., 2020) to approximate quasi-
static knowledge states. We do a similar filtering
for the XES3G5M dataset (Liu et al., 2023b),
and we evaluate on both Chinese and English
versions of the question texts using translations
from Ozyurt et al. (2024). More details about
datasets and preprocessing are provided in the Appendix B.3.

Models We evaluate LBMs across LLM backbones of different sizes and capabilities, both open-
source (Qwen 2.5 3B and 7B (Team, 2024), Gemma 3 12B and 30B (Team, 2025)), and closed-source
(GPT-4o-mini, GPT-4o and GPT-5 (Achiam et al., 2023)). Unless noted otherwise, we run the instruct
variants of each open-source model, use the same backbone LLM for both the encoder and decoder,
and prompt all models to provide their response directly without chain-of-thought. We run GPT-5
with reasoning_effort=minimal configuration. Hyper-parameters and prompt templates are
provided in Appendix B.

Baselines We compare LBMs against 9 Knowledge Tracing methods: DKT (Piech et al., 2015),
DKVMN (Zhang et al., 2017), SAKT (Pandey & Karypis, 2019), AKT (Ghosh et al., 2020), Deep
IRT (Yeung, 2019), SAINT (Choi et al., 2020), SimpleKT (Liu et al., 2023a), QIKT (Chen et al.,
2023), GKT (Nakagawa et al., 2019)) implemented with the PYKT library (Liu et al., 2022) and 5
Cognitive Diagnosis methods (IRT (Rasch, 1993), MIRT (Reckase, 2006), DINA (Junker & Sijtsma,
2001), KaNCD and NeuralCDM (Wang et al., 2022)) implemented with the EduCDM library (bigdata
ustc, 2021). We also run each LLM via direct prompting, where the LLM predicts answers from the
full interaction history without a bottleneck. Training details for all baselines are given in Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

101 102 103 104

Total Questions Seen
0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LBMs
gpt-5
gpt-4o
gemma-3-12b
qwen2.5-7b
KT Models
akt
simplekt
CD Models
KaNCD
NeuralCDM

Stud. (KT/CD)
N=10
N=100
N=1000
Traj. Length
T=5
T=10
T=20
T=50

Figure 4: Accuracy of LBM and the two best KT and CD models on the Synthetic dataset.
The x axis shows the total number of question seen by the model, ie "Traj. Length" x "# Students".
Note that #Students “ 1 for LBMs as they are evaluate zero-shot. CD models are evaluated
on held-out test interactions from the same students used during training, while KT models and
LBMs are evaluated on 200 unseen students. Results are averaged across N=10 runs for KT and
CD models and N=3 for LBMs, with error bars showing the standard error. GPT-5 is ran with
reasoning_effort=minimal and other models with chain-of-thought prompting.

Mastered:
Addition, subtraction, multiplication.

Fails on:
Division.

Misconceptions:
Fails operations involving 6 as operand,

Forgets to carry in addition,
Fails with negative numbers.

True Knowledge State
NeuralCDM

The student excels at addition and
multiplication with integers [...]. Subtraction
is a weakness, often producing incorrect
answers, especially with negative results.
Division [...] is consistently incorrect.
Multiplication by 6 or 7 seems to be a
specific area of difficulty, occasionally
missed despite otherwise demonstrating
mastery of multiplication.

Estimated Knowledge State
LBMStudent #1474

KC Proficiency
Addition 0.59

Subtraction 0.53
Multiplication 0.76

Division 0.23

Figure 5: Case study: comparing CD and LBM knowledge states. Given a student from the
Synthetic dataset, we compare proficiency estimates across knowledge concepts (KCs) obtained from
a trained NeuralCDM model to the text-based knowledge state generated by a trained LBM model.

5.1 LBM VS KNOWLEDGE TRACING METHODS

We present comprehensive results comparing LBMs to baseline methods across all datasets (detailed
results in Table A1 in the Appendix). Here we highlight key findings and insights from these
experiments.

Performance Figure 3 compares the performance of LBMs against the top three KT and CD
models on the Synthetic, EEDI, and XES3G5M datasets. The LBMs are evaluated in a zero-shot
setting, whereas the KT/CD models are trained on data from hundreds of students. As expected, LBM
performance is strongly tied to the strength of the underlying LLM: with powerful backbones such as
GPT-4o and GPT-5, LBMs approach the accuracy of the best KT and CD models across all three
datasets. The largest performance gap arises on XES3G5M. However, this dataset has an average
accuracy of 85%, implying that even a constant predictor would achieve 85% accuracy. Unlike KT
and CD models, LBMs operate zero-shot and thus cannot exploit such dataset-level statistics, which
likely explains their lower accuracy but competitive AUC (see Table A1). Finally, thanks to the
multilingual capabilities of modern LLMs, LBMs achieve comparable results on both the English
and Chinese versions of XES3G5M.

Sample efficiency Figure 4 compares the performance of LBM models to traditional Knowledge
Tracing methods on the Synthetic dataset. LBMs with a GPT-5 backbone achieves comparable
accuracy to KT methods with significantly less training data. Since CD/KT methods rely on statistical

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Training the encoder with the decoding accuracy on the synthetic dataset. Evolution
of the test accuracy as a Gemma3-12B encoder is trained as described in Section 3.3, with a fixed
Gemma3-27B decoder. Trained on 800 training students and tested on 200 students, with |X | “ 50
questions per input trajectory and |Y| “ 20 questions to predict per student. The bottom row show
the evolution of the generated summary over the course of training for an example student. Text is
colored green (exact), orange (approximate), or red (false) based on ground-truth.

patterns, they require substantially more observations before reaching strong predictive power, while
LBMs demonstrate strong zero-shot performance.

Case-study: comparing CD and LBM knowledge state representations We illustrate the inter-
pretability advantages of LBMs over state-of-the-art CD methods in Figure 5. A NeuralCDM model
trained on our synthetic dataset achieves strong predictive performance (AUC: 0.96, Acc: 0.90 on
the test set). From this model, we extract proficiency estimates across knowledge concepts using the
learned student embedding vector. We compare these to the summary generated for the same student
by a trained LBM (Gemma-12B encoder; frozen Gemma-27B decoder, cf. Section 5.2).

While NeuralCDM reliably captures overall KC proficiency, its representations are influenced by
misconceptions without explicitly identifying them. In contrast, LBMs capture overall proficiency
and uncover specific misconceptions (e.g., errors with negative numbers or with operand-6). This
ability to provide nuanced, qualitative insights into student knowledge states sets LBMs apart from
CD methods.

5.2 TRAINING LBM ENCODERS

As outlined in Section 3.3, downstream accuracy can serve as a reward signal to train encoders to
produce increasingly accurate summaries. We demonstrate this by training a Gemma3-12B encoder
with GRPO alongside a frozen Gemma3-27B decoder on 800 students. We set the reward as the
decoder accuracy across |Y| “ 20 unseen questions RpS̃; gq “ Acc

`

Ỹ,Y
˘

, train with a LoRA
adapter (Hu et al., 2022) and evaluate on 200 unseen test students.

Figure 6 shows the encoder progressively improving summary quality and quickly outperforming
GPT-4o. The figure illustrates this through an example student who mastered all constructs except
subtraction and fails any multiplication involving 9. The initial summary contains inaccuracies and
misses this systematic misconception, while the final summary successfully captures the student’s
complete knowledge state. Stratifying by knowledge state complexity, we observe larger gains for
more complex cases (Appendix A.3).

5.3 STEERING LBM BEHAVIOR

We demonstrate multiple steering strategies described in Section 3.4. Providing explicit miscon-
ception information during encoder training produces substantially stronger learning effects than
adding the same information at the decoder stage (Appendix A.4.1), suggesting that the encoder
uses this additional context to better interpret patterns in student responses. We also show the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

encoder can be steered during training to explicitly mention misconceptions through reward signals
(Appendix A.4.2), and illustrate how supplementing the summary with information not present in the
input can significantly improve decoder accuracy (Appendix A.4.3).

5.4 ABLATION EXPERIMENTS

How much information is lost by the bottleneck? Table 2 compares the accuracy of LBM
models to directly predicting new questions from the observed student data. Despite the information
bottleneck, LBM accuracy typically remains within 2% of direct prediction—and often surpasses it.
Figure 7 shows that this gap decreases for longer bottleneck token limits, highlighting a trade-off
between conciseness and predictive accuracy.

Table 2: Accuracy results for Direct and LBM methods. Bold indi-
cates LBM accuracy is no more than 2% below the Direct baseline.

Synthetic EEDI (Filtered)

Direct LBM ∆ Direct LBM ∆

Qwen2.5-3B .56 ± .00 .61 ± .01 +.06 .35 ± .00 .38 ± .00 +.03
Qwen2.5-7B .64 ± .00 .65 ± .01 +.01 .65 ± .00 .58 ± .01 -.07
gemma-3-12b .63 ± .00 .79 ± .00 +.17 .58 ± .00 .62 ± .01 +.04
gemma-3-27b .62 ± .00 .78 ± .01 +.16 .67 ± .00 .65 ± .01 -.02
gpt-4o-mini .81 ± .01 .78 ± .01 -.03 .67 ± .01 .61 ± .02 -.05
gpt-4o .85 ± .01 .80 ± .01 -.05 .66 ± .00 .66 ± .02 +.00
gpt-5 .87 ± .00 .87 ± .01 +.00 .71 ± .02 .68 ± .01 -.03

Figure 7: Evolution of LBM
accuracy with bottleneck
length (GPT-4o backbone).

Which of the encoder or decoder is most critical for LBMs? We evaluate LBMs with different
encoder–decoder pairings (Appendix A.5.1). Using a strong model (GPT-4o) as encoder with weaker
models as decoders yields accuracies 5 ´ 10% higher than when the stronger model is used as
the decoder. This confirms our hypothesis that extracting relevant information for the summary
(encoding) is more challenging than predicting future answers given a summary (decoding).

Do LBMs require knowledge concept information? Table A6 compares LBMs with and without
KC information in the input prompt on the Synthetic and EEDI (Filtered) datasets. Performance does
not significantly change, demonstrating that LBMs do not fundamentally require KC information.

6 DISCUSSION

Why can’t we just prompt GPT-4o directly? The split encoder-decoder architecture of LBMs
offers three key advantages over direct LLM prompting: it creates a global student model with a
single latent summary shared across all predictions rather than isolated per-question reasoning; it
ensures faithful summaries through a closed-loop decoding objective that penalizes non-predictive
summaries; and it provides an explicit interface layer that teachers can read, steer and intervene on.

Wider applicability LBMs extend beyond education to any task requiring compact, human-
readable summaries with predictive power. The minimal ingredients needed are: (1) a sequence
of observations about an entity, (2) a need to predict future behaviors of that entity, and (3) value
in having interpretable representations. For example, clinical decision support could distill patient
data into textual state descriptions that forecast outcomes while remaining auditable; preventive
maintenance could compress sensor logs into explanations predicting machine failure; customer
success teams could summarize interaction histories to forecast churn.

Limitations and Future Work LBMs face several constraints including context length limitations,
requirements for textual question content, and substantial computational costs. Future extensions
could address these through iterative encoding for longer inputs, active sensing for optimal question
selection, adaptation for evolving knowledge states, expansion beyond question-answer data, and
integration with pedagogical techniques like LearnLM (Team et al., 2024). These limitations and
extensions are discussed in detail in Appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All models, datasets, and experi-
mental settings are described in detail in the paper and the appendix.

• Datasets: We use one synthetic and two real-world datasets. The generation process for
the synthetic data, along with preprocessing steps for the Eedi and XES3G5M datasets, are
detailed in Appendix B.3. The source code for the synthetic data will be made available in
an online repository upon publication of this work.

• Implementation Details: Our LBM framework is presented Section 3. The specific LLM
backbones, baseline models, training hyperparameters, and software libraries used in the
experiments are described in Appendix B. All prompt templates used for the LBM encoder
and decoder are provided in Appendix B.5.

• Code: The source code for generating the synthetic data, training the models, and running
all experiments will be made publicly available in an online repository upon publication of
this work.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610–623, 2021.

bigdata ustc. Educdm. https://github.com/bigdata-ustc/EduCDM, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chen Chen, Gerhard Sonnert, Philip M Sadler, Dimitar Sasselov, and Colin Fredericks. The impact of
student misconceptions on student persistence in a mooc. Journal of Research in Science Teaching,
57(6):879–910, 2020.

Jiahao Chen, Zitao Liu, Shuyan Huang, Qiongqiong Liu, and Weiqi Luo. Improving interpretability
of deep sequential knowledge tracing models with question-centric cognitive representations. In
Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 14196–14204, 2023.

Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha,
Dongmin Shin, Chan Bae, and Jaewe Heo. Towards an appropriate query, key, and value computa-
tion for knowledge tracing. In Proceedings of the seventh ACM conference on learning@ scale, pp.
341–344, 2020.

Albert T. Corbett and John R. Anderson. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction, 4(4):253–278, December 1994. ISSN
1573-1391. doi: 10.1007/BF01099821. URL https://doi.org/10.1007/BF01099821.

Jimmy De La Torre. Dina model and parameter estimation: A didactic. Journal of educational and
behavioral statistics, 34(1):115–130, 2009.

Weibo Gao, Qi Liu, Zhenya Huang, Yu Yin, Haoyang Bi, Mu-Chun Wang, Jianhui Ma, Shijin Wang,
and Yu Su. Rcd: Relation map driven cognitive diagnosis for intelligent education systems. In
Proceedings of the 44th international ACM SIGIR conference on research and development in
information retrieval, pp. 501–510, 2021.

Aritra Ghosh, Neil Heffernan, and Andrew S Lan. Context-aware attentive knowledge tracing. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 2330–2339, 2020.

10

https://github.com/bigdata-ustc/EduCDM
https://doi.org/10.1007/BF01099821

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aritra Ghosh, Jay Raspat, and Andrew Lan. Option tracing: Beyond correctness analysis in knowledge
tracing. In International Conference on Artificial Intelligence in Education, pp. 137–149. Springer,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Brian W Junker and Klaas Sijtsma. Cognitive assessment models with few assumptions, and
connections with nonparametric item response theory. Applied Psychological Measurement, 25(3):
258–272, 2001.

JongWoo Kim, SeongYeub Chu, Bryan Wong, and Mun Yi. Beyond right and wrong: Mitigating
cold start in knowledge tracing using large language model and option weight. arXiv preprint
arXiv:2410.12872, 2024.

Jules King, L Burleigh, Simon Woodhead, Panagiota Kon, Perpetual Baffour, Scott Crossley, Walter
Reade, and Maggie Demkin. Eedi - mining misconceptions in mathematics. https://kaggle.
com/competitions/eedi-mining-misconceptions-in-mathematics, 2024.
Kaggle.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In ICML, 2020.

Douglas Larkin. Misconceptions about “misconceptions”: Preservice secondary science teachers’
views on the value and role of student ideas. Science Education, 96(5):927–959, 2012.

Unggi Lee, Jiyeong Bae, Dohee Kim, Sookbun Lee, Jaekwon Park, Taekyung Ahn, Gunho Lee, Damji
Stratton, and Hyeoncheol Kim. Language model can do knowledge tracing: Simple but effective
method to integrate language model and knowledge tracing task. arXiv preprint arXiv:2406.02893,
2024.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

Haoxuan Li, Jifan Yu, Yuanxin Ouyang, Zhuang Liu, Wenge Rong, Juanzi Li, and Zhang Xiong.
Explainable few-shot knowledge tracing. arXiv preprint arXiv:2405.14391, 2024a.

Jiatong Li, Qi Liu, Fei Wang, Jiayu Liu, Zhenya Huang, Fangzhou Yao, Linbo Zhu, and Yu Su.
Towards the identifiability and explainability for personalized learner modeling: an inductive
paradigm. In Proceedings of the ACM Web Conference 2024, pp. 3420–3431, 2024b.

Qing Li, Xin Yuan, Sannyuya Liu, Lu Gao, Tianyu Wei, Xiaoxuan Shen, and Jianwen Sun. A genetic
causal explainer for deep knowledge tracing. IEEE Transactions on Evolutionary Computation, 28
(4):861–875, 2023.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Jiliang Tang, and Weiqi Luo. pykt: A python
library to benchmark deep learning based knowledge tracing models. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, and Weiqi Luo. simplekt: a simple but
tough-to-beat baseline for knowledge tracing. arXiv preprint arXiv:2302.06881, 2023a.

Zitao Liu, Qiongqiong Liu, Teng Guo, Jiahao Chen, Shuyan Huang, Xiangyu Zhao, Jiliang Tang,
Weiqi Luo, and Jian Weng. Xes3g5m: A knowledge tracing benchmark dataset with auxiliary
information. NeurIPS, 2023b.

Max Ruiz Luyten and Mihaela van der Schaar. A theoretical design of concept sets: improving the
predictability of concept bottleneck models. In NeurIPS, 2024.

Haiping Ma, Manwei Li, Le Wu, Haifeng Zhang, Yunbo Cao, Xingyi Zhang, and Xuemin Zhao.
Knowledge-sensed cognitive diagnosis for intelligent education platforms. In Proceedings of the
31st ACM international conference on information & knowledge management, pp. 1451–1460,
2022.

11

https://kaggle.com/competitions/eedi-mining-misconceptions-in-mathematics
https://kaggle.com/competitions/eedi-mining-misconceptions-in-mathematics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sein Minn, Jill-Jênn Vie, Koh Takeuchi, Hisashi Kashima, and Feida Zhu. Interpretable knowledge
tracing: Simple and efficient student modeling with causal relations. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pp. 12810–12818, 2022.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: modeling
student proficiency using graph neural network. In IEEE/WIC/aCM international conference on
web intelligence, pp. 156–163, 2019.

Tuomas Oikarinen, Subhro Das, Lam Nguyen, and Lily Weng. Label-free concept bottleneck models.
In ICLR, 2023.

Yilmazcan Ozyurt, Stefan Feuerriegel, and Mrinmaya Sachan. Automated knowledge concept annota-
tion and question representation learning for knowledge tracing. arXiv preprint arXiv:2410.01727,
2024.

Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. In 12th In-
ternational Conference on Educational Data Mining, EDM 2019, pp. 384–389. International
Educational Data Mining Society, 2019.

Soonwook Park, Donghoon Lee, and Hogun Park. Enhancing knowledge tracing with concept map
and response disentanglement. Knowledge-Based Systems, 302:112346, 2024.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J
Guibas, and Jascha Sohl-Dickstein. Deep Knowledge Tracing. In NeurIPS, vol-
ume 28, 2015. URL https://papers.nips.cc/paper_files/paper/2015/hash/
bac9162b47c56fc8a4d2a519803d51b3-Abstract.html.

George J Posner, Kenneth A Strike, Peter W Hewson, and William A Gertzog. Accommodation of a
scientific conception: Toward a theory of conceptual change. Science education, 66(2):211–227,
1982.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Georg Rasch. Probabilistic models for some intelligence and attainment tests. ERIC, 1993.

Mark D Reckase. 18 multidimensional item response theory. Handbook of statistics, 26:607–642,
2006.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Shuanghong Shen, Qi Liu, Zhenya Huang, Yonghe Zheng, Minghao Yin, Minjuan Wang, and Enhong
Chen. A survey of knowledge tracing: Models, variants, and applications. IEEE Transactions on
Learning Technologies, 2024.

Sungbin Shin, Yohan Jo, Sungsoo Ahn, and Namhoon Lee. A closer look at the intervention procedure
of concept bottleneck models. In ICML, 2023.

John P Smith III, Andrea A DiSessa, and Jeremy Roschelle. Misconceptions reconceived: A
constructivist analysis of knowledge in transition. The journal of the learning sciences, 3(2):
115–163, 1994.

Gemma Team. Gemma 3. 2025. URL https://goo.gle/Gemma3Report.

LearnLM Team, Abhinit Modi, Aditya Srikanth Veerubhotla, Aliya Rysbek, Andrea Huber, Brett Wilt-
shire, Brian Veprek, Daniel Gillick, Daniel Kasenberg, Derek Ahmed, et al. Learnlm: Improving
gemini for learning. arXiv preprint arXiv:2412.16429, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

12

https://papers.nips.cc/paper_files/paper/2015/hash/bac9162b47c56fc8a4d2a519803d51b3-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/bac9162b47c56fc8a4d2a519803d51b3-Abstract.html
https://goo.gle/Gemma3Report
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jonathan Templin, Robert A Henson, et al. Diagnostic measurement: Theory, methods, and applica-
tions. Guilford press, 2010.

Jonathan L Templin and Robert A Henson. Measurement of psychological disorders using cognitive
diagnosis models. Psychological methods, 11(3):287, 2006.

Hanshuang Tong, Zhen Wang, Yun Zhou, Shiwei Tong, Wenyuan Han, and Qi Liu. Introducing
problem schema with hierarchical exercise graph for knowledge tracing. In Proceedings of the
45th international ACM SIGIR conference on research and development in information retrieval,
pp. 405–415, 2022.

Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yu Yin, Shijin Wang, and Yu Su. Neuralcd: a general
framework for cognitive diagnosis. IEEE Transactions on Knowledge and Data Engineering, 35
(8):8312–8327, 2022.

Fei Wang, Weibo Gao, Qi Liu, Jiatong Li, Guanhao Zhao, Zheng Zhang, Zhenya Huang, Mengxiao
Zhu, Shijin Wang, Wei Tong, et al. A survey of models for cognitive diagnosis: New developments
and future directions. arXiv preprint arXiv:2407.05458, 2024.

Zichao Wang, Angus Lamb, Evgeny Saveliev, Pashmina Cameron, Yordan Zaykov, José Miguel
Hernández-Lobato, Richard E Turner, Richard G Baraniuk, Craig Barton, Simon Peyton Jones,
Simon Woodhead, and Cheng Zhang. Diagnostic questions: The neurips 2020 education challenge.
arXiv preprint arXiv:2007.12061, 2020.

Ziwei Wang, Jie Zhou, Qin Chen, Min Zhang, Bo Jiang, Aimin Zhou, Qinchun Bai, and Liang He.
Llm-kt: Aligning large language models with knowledge tracing using a plug-and-play instruction.
arXiv preprint arXiv:2502.02945, 2025.

Shin’ya Yamaguchi and Kosuke Nishida. Toward explanation bottleneck models. In
MINT@NeurIPS2024: Foundation Model Interventions, 2024.

Chun-Kit Yeung. Deep-irt: Make deep learning based knowledge tracing explainable using item
response theory. arXiv preprint arXiv:1904.11738, 2019.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory networks
for knowledge tracing. In Proceedings of the 26th international conference on World Wide Web,
pp. 765–774, 2017.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In ICML, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A EXTENDED RESULTS

A.1 MOTIVATING OBSERVATION 2

Figure A1 compares summaries produced by different LLMs when prompted to describe a student’s
knowledge state from 50 question-answer pairs from a synthetic dataset (see Section 5 for details).
While all models capture high-level skill mastery, only one correctly identifies a misconception
(errors with negative numbers) out of the four existing ones, illustrating that standard summarization
approaches often miss crucial latent patterns.

Figure A1: Zero-shot knowledge state encoding compared to ground truth. LLM models with
different capabilities are prompted to write a summary of the knowledge state (top left panel) of a
student, given 50 observed questions and answers provided in text. The ground truth knowledge
state (top right panel) describing the student behavior has three main components: constructs
mastered, constructs not mastered, and misconceptions. All three models capture the construct
mastery correctly, but are not able to capture any misconception, beside o1 which notices the negative
numbers misconception (bottom row). Bottom right notations correspond to components in Figure 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 FULL RESULTS

Table A1: Results across all datasets and methods. We report the mean and standard deviation across
N=10 runs for KT and CD models and N=3 runs for LLM-based models (Direct, LBM). XES3G5M-E
and XES3G5M-C denote the English and Chinese versions of the XES3G5M dataset, respectively;
note that since the KT and CD models do not use the question content, their results are shared across
both versions of the dataset). The KT and CD models are trained on a train set and evaluated on a
test set, while LLM Direct and LBM methods are run zero-shot on a test set. AUC unavailable for
closed-source LLM models as they require access to the model’s output logits. Results for QIKT on
Synthetic and MIRT on EEDI are omitted due to implementation issues.

Synthetic EEDI (Filt.) XES3G5M-E (Filt.) XES3G5M-C (Filt.)

Model Type Model Name ACC AUC ACC AUC ACC AUC ACC AUC

KT Models akt .87±.01 .87±.01 .72±.02 .64±.02 .87±.01 .68±.03 .87±.01 .68±.03
(Trained) deepIRT .82±.02 .82±.01 .67±.01 .59±.01 .85±.01 .64±.03 .85±.01 .64±.03

dkt .82±.02 .81±.02 .66±.01 .57±.02 .85±.01 .64±.03 .85±.01 .64±.03
dkvmn .82±.01 .82±.01 .67±.01 .59±.02 .85±.01 .67±.03 .85±.01 .67±.03
gkt .71±.07 .67±.08 .61±.03 .57±.02 .86±.01 .60±.06 .86±.01 .60±.06
qikt – – .66±.00 .58±.00 .82±.00 .53±.00 .82±.00 .53±.00
saint .66±.02 .65±.02 .67±.03 .59±.07 .87±.01 .66±.03 .87±.01 .66±.03
sakt .82±.02 .81±.02 .66±.03 .56±.02 .85±.01 .60±.02 .85±.01 .60±.02
simplekt .86±.01 .85±.01 .70±.01 .62±.01 .86±.01 .68±.02 .86±.01 .68±.02

CD Models DINA .57±.01 .61±.01 .51±.00 .55±.01 .50±.01 .55±.01 .50±.01 .55±.01
(Trained) IRT .59±.00 .62±.01 .67±.00 .62±.01 .83±.00 .68±.01 .83±.00 .68±.01

KaNCD .90±.00 .95±.00 .65±.01 .64±.01 .85±.00 .81±.00 .85±.00 .81±.00
MIRT .61±.00 .65±.01 – – .71±.01 .66±.01 .71±.01 .66±.01
NCDM .89±.00 .95±.00 .66±.01 .67±.00 .85±.00 .80±.00 .85±.00 .80±.00

LLM Direct Qwen2.5-3B .56±.00 .79±.00 .35±.00 .54±.00 .19±.00 .56±.00 .19±.00 .55±.00
(Zero-shot) Qwen2.5-7B .64±.00 .73±.00 .65±.00 .62±.00 .76±.00 .63±.00 .75±.00 .63±.00

gemma-3-12b .63±.00 .96±.00 .58±.00 .71±.00 .30±.00 .71±.00 .29±.00 .70±.00
gemma-3-27b .62±.00 .94±.00 .67±.00 .76±.00 .33±.00 .78±.00 .32±.00 .79±.00
gpt-4o .85±.01 – .66±.00 – .82±.00 – .79±.01 –
gpt-4o-mini .81±.01 – .67±.01 – .74±.08 – .75±.07 –
gpt-5 .87±.00 – .71±.02 – .81±.01 – .79±.01 –

LBM Qwen2.5-3B .61±.01 .65±.01 .38±.00 .55±.01 .27±.01 .58±.01 .30±.01 .63±.02
(Zero-shot) Qwen2.5-7B .65±.01 .69±.01 .58±.01 .55±.01 .75±.01 .63±.00 .74±.01 .62±.02

gemma-3-12b .79±.00 .85±.00 .62±.01 .64±.02 .63±.01 .67±.01 .57±.02 .65±.01
gemma-3-27b .78±.01 .85±.01 .65±.01 .67±.01 .68±.02 .70±.01 .68±.01 .70±.02
gpt-4o .80±.01 – .66±.02 – .80±.01 – .78±.02 –
gpt-4o-mini .78±.01 – .61±.02 – .70±.08 – .70±.07 –
gpt-5 .87±.01 – .68±.01 – .76±.01 – .76±.01 –

A.3 TRAINING LBM ENCODERS: DIFFICULTY STRATIFICATION

To investigate whether the accuracy gains seen during LBM training (Figure 6) vary across students in
the dataset, we stratify students according to how many misconception they hold: 0, 1, 2 or 3+. Since
each misconception represent additional "irregularities" in the student’s response pattern beyond
simple mastery of constructs, this effectively stratifies different complexity levels across student
knowledge states. Table A2 shows the change in accuracy relative to the GPT-4o baseline across
difficulty levels.

Table A2: Relative difference in accuracy between trained Gemma3-12B and the GPT-4o baseline,
with students grouped by number of misconceptions.

Accuracy (mean ± std) Relative Diff. (%)

of Misconceptions Baseline Pre-training Post-training Pre Post ∆

0 (N “ 22) 0.98 ± 0.05 0.92 ± 0.12 0.99 ± 0.05 -5.80 0.90 6.70
1 (N “ 17) 0.89 ± 0.09 0.87 ± 0.15 0.91 ± 0.09 -2.00 3.00 5.00
2 (N “ 23) 0.81 ± 0.16 0.80 ± 0.12 0.89 ± 0.08 -0.80 10.20 11.00
3 (N “ 135) 0.77 ± 0.12 0.74 ± 0.14 0.82 ± 0.11 -4.80 5.70 10.50

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure A2: Presence of the word "misconception" in the LBM’s summaries during training of
the encoder model steered towards mentioning student misconceptions via the reward signal.

The model shows 10 ´ 11% increased accuracy relative to GPT-4o for students with 2 or 3+ miscon-
ceptions, compared to just 5 ´ 7% for students with 0-1 misconceptions. This suggests the encoder
becomes particularly better at handling complex knowledge states.

A.4 STEERING LBM BEHAVIOR

A.4.1 AUGMENTING WITH STUDENT-SPECIFIC INFORMATION TO ASSIST LBM TRAINING

Finally, we demonstrate how providing additional information to the LBM can assist with the training
process. We train two identical LBMs while providing 2 misconceptions either to the encoder as part
of the input data, or to the decoder as part of the bottleneck. The models are trained for one epoch on
800 students. We then evaluate the resulting models without any additional information provided.
Table A3 shows the accuracy before/after training for both models. The model where additional
information was provided to the encoder reaches 84% accuracy after one training compared to 80%
when it is provided to the decoder. This suggest that the additional information facilitates training of
the encoder.

Table A3: Relative difference in accuracy between trained Gemma3-12B and the gpt-4o baseline,
with students grouped by number of misconceptions.

Before training After 1 epoch training

Information in X 0.802 ± 0.001 0.840 ± 0.004
Information in S 0.794 ± 0.002 0.799 ± 0.006

A.4.2 STEERING VIA REWARD SIGNALS

To demonstrate the possibility to steer LBMs’ behavior via the reward signal, we consider an example
use-case where a teacher would like the model to pay particular attention to potential misconceptions
held by the student. Following the reward-shaping framework of Section 3.3, we augment the training
objective with an additional term that explicitly encourages the model to surface misconceptions.
Concretely, we set ΩpSq “ 1

“

“misconception” P S̃
‰

, where S̃ is the textual bottleneck emitted by
the LBM for student state S. This binary reward is added to the accuracy term and optimized with
GRPO. Figure A2 confirms that the policy quickly internalizes this incentive: after only a handful of
training steps, the proportion of summaries that explicitly mention a misconception goes from less
than 80% to >95%, demonstrating that the reward function provides an effective lever for shaping
higher-level pedagogical behavior.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4.3 AUGMENTING LBMS WITH STUDENT-SPECIFIC INFORMATION TO COMPLEMENT INPUT
DATA

To demonstrate how an LBM can be actively steered with additional information we run the following
ablation on the Synthetic dataset: 1. Each student trajectory originally probes four constructs. For a
given trajectory, we remove every question linked to one construct leaving the input data intentionally
incomplete. 2. We then run the input data through the encoder and inject a single teacher-supplied
sentence describing the student’s mastery of the missing construct directly into the model’s bottleneck
representation (e.g., "The student has mastered addition except in the event of misconceptions.).

We repeat this procedure four times—once for each construct—running the LBM both with and
without the additional sentence, and report the results Table A4. Naturally, the models complemented
with the additional information of the student’s mastery of the construct missing in the input data
outperform models provided only with the incomplete data. This small experiment illustrates a key
advantage of LBMs: because the LBM compresses evidence into a text-based summary, it can be
complemented with additional information absent from the input data.

Table A4: Accuracy of a gpt-4o-based LBM on the Synthetic dataset while removing one construct
from the input data, with and without providing information about the missing construct in the
bottleneck. Each run is repeated across all four constructs; mean and standard deviation are reported.

Without additional bottleneck information With additional bottleneck information

0.749 ± 0.007 0.791 ± 0.013

A.5 ABLATION EXPERIMENTS

A.5.1 ENCODER/DECODER VARIANTS

Table A5 shows the accuracy of different combinations of encoder-decoder models on the Synthetic
dataset. The top row shows the result of using the strongest model evaluated (gpt-4o) as both encoder
and decoder. Then, we vary either the encoder or decoder part of the LBM across other LLMs, and
report the resulting accuracy. A clear pattern which emerges is that the resulting LBMs are stronger
when gpt-4o is used as the encoder instead of the decoder. This implies that the task of accurately
capturing knowledge state information in the bottleneck is harder than predicting answers to future
questions when provided with a knowledge state summary.

Table A5: Performance of different LBM encoder-decoder combinations on the Synthetic dataset.

Encoder Decoder Accuracy

Strongest model gpt-4o gpt-4o 0.809

Strongest gpt-4o gpt-4o-mini 0.821
model gpt-4o google/gemma-3-12b-it 0.795

as gpt-4o Qwen/Qwen2.5-7B-Instruct 0.765
encoder gpt-4o Qwen/Qwen2.5-3B-Instruct 0.715

Strongest gpt-4o-mini gpt-4o 0.765
model google/gemma-3-12b-it gpt-4o 0.775

as Qwen/Qwen2.5-7B-Instruct gpt-4o 0.666
decoder Qwen/Qwen2.5-3B-Instruct gpt-4o 0.649

A.5.2 IMPORTANCE OF KNOWLEDGE CONCEPTS IN THE INPUT

Table A6 compares the accuracy of different LBMs with vs without knowledge conception information
in the input prompt. The performance generally remains similar to the KC version, and it even
increases for most models on the EEDI dataset. This demonstrates that LBMs do not fundamentally
require KC information.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table A6: Comparison of LBM performance with vs without knowledge concept (KC) information
in the input. Bold indicates a difference in accuracy no more than 3% below the full input.

Synthetic EEDI (Filtered)

w/ KC w/o KC ∆ w/ KC w/o KC ∆

Qwen2.5-3B .61 ± .01 .62 ± .05 +.00 .38 ± .00 .38 ± .02 +.01
Qwen2.5-7B .65 ± .01 .66 ± .02 +.01 .58 ± .01 .58 ± .01 +.00
gemma-3-12b .79 ± .00 .73 ± .00 -.06 .62 ± .01 .60 ± .02 -.02
gemma-3-27b .78 ± .01 .75 ± .01 -.03 .65 ± .01 .69 ± .03 +.03
gpt-4o-mini .78 ± .01 .76 ± .00 -.01 .61 ± .02 .65 ± .03 +.04
gpt-4o .80 ± .01 .76 ± .01 -.04 .66 ± .02 .68 ± .01 +.02

Predictions on
4 test questionsStudent #44759 | Predicted Knowledge States

The student demonstrates accurate skills in writing numbers in standard form, solving timetable problems, identifying equivalent
fractions, interpreting bar charts, converting percentages to fractions, algebraic substitution, and various basic arithmetic
operations. However, they struggle with more complex fractions, decimal operations, angle calculations, rounding, function
machines, and mental addition strategies. Overall, the student has a solid foundation in key areas but needs improvement in
dealing with fractions of different denominators, negative integers, and decimal calculations.

128 tokens

['Yes', 'Yes', 'Yes', 'No']
x x✓✓

The student has demonstrated robust skills in working with basic fractions, decimals, and standard form for numbers between 0
and 1. They correctly answered questions involving simple fraction operations, frequency trees, interpreting timetables, substituting
values into expressions, function machine outputs, estimation, rounding numbers greater than 1, and calculating non-unit fractions
of an amount. However, they struggled with more complex fraction additions, algebraic fractions, and working with decimals
involving operations such as multiplication by an integer or other decimals. They also had difficulty with algebraic manipulations,
calculating the square of decimals, and understanding angles related to parallel lines and polygons. Despite these difficulties, they
correctly handled finding exterior angles of regular polygons and working with integers and negative numbers in simpler
multiplication and subtraction problems. The student's proficiency lies in straightforward calculations and procedural tasks but
falters slightly with combined algebraic and decimal operations, more complex fraction manipulations, and multi-step angle
calculations.

256 tokens

['Yes', 'No', 'Yes', 'Yes']
✓ ✓✓✓

The student demonstrates proficiency in various mathematical
areas, with some notable gaps. They excel in reading
timetables, identifying equivalent fractions, writing numbers
between 0 and 1 in standard form, performing calculator
calculations with negative numbers, rounding numbers greater
than 1 to one significant figure, identifying non-unit fractions in
shapes, subtracting proper fractions with the same denominator,
calculating non-unit fractions of an amount, and working out the
size of each exterior angle in regular polygons.

However, the student struggles with several topics:
1. Adding algebraic fractions where one denominator is a
multiple of the other.
2. Finding incorrect steps in solving for angles on parallel lines
using angle facts.
3. Carrying out multiplication and division involving negative
integers.
4. Dividing integers by decimals and understanding efficient
strategies for mental addition.
5. Writing numbers greater than 1 in standard form.

6. Multiplying two decimals together.
7. Subtracting proper fractions which share a common factor.
8. Performing estimation and rounding numbers to one
significant figure.
9. Calculating the square of a number.
10. Multiplying a decimal by an integer.

The student correctly answers questions involving basic algebra
(substituting positive integers into expressions), function
machines, basic fraction operations (adding fractions with the
same denominator), and basic arithmetic operations
(subtracting negative integers). They also correctly convert
percentages to fractions and add and subtract proper fractions.

These results suggest a strong understanding of fundamental
mathematical concepts, though their skills in more complex and
nuanced problems could use improvement. The student would
benefit from focused practice on algebraic manipulations, angle
calculations, application of decimal operations, and standard
form conversion.

512 tokens

['Yes', 'No', 'Yes', 'Yes']
✓ ✓✓✓

Figure A3: Example bottlenecks produced by an LBM with gpt-4o as both encoder and decoder
for a student in the Eedi dataset, with varying bottleneck lengths. The input data provided to
the encoder is composed of 30 questions across various constructs, and the decoder predicts 4 test
questions using the bottleneck.

A.6 EXAMPLE BOTTLENECKS ON THE EEDI DATASET

Figure A3 shows example bottlenecks produced by a gpt-4o-based LBM for a student in the Eedi
dataset. The input data is composed of 30 questions from various constructs, and the decoder predicts
4 test questions. As shown Figure 4 in the main paper, a shorter bottleneck of 128 tokens constrains
the expressive power of the model, and in this example the resulting predictions fail on two of the
test questions. A longer bottleneck of 256 or 512 tokens allows for more nuance and details in the
bottleneck, leading to the decoder correctly predicting all four test questions for this student.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL DETAILS

B.1 LBMS DETAILS

LLM backbones We evaluate the following closed- and open-source models:

• GPT-5, GPT-4o and GPT-4o-mini (Achiam et al., 2023);

• Qwen2.5-3B and Qwen2.5-7B (Team, 2024);

• Gemma3-12B and Gemma3-27B (Team, 2025).

For open-source models we extract the activation logits of the “Yes” and “No” tokens and return
the higher value. The logits for the “Yes” and “No” tokens are used to compute the AUC. For
closed-source models we prompt for a “Yes” or “No” answer and parse the text output. We run
GPT models via the OpenAI API, with the following snapshots: GPT-5: 2025-08-07; GPT-4o:
2024-08-06; GPT-4o-mini: 2024-07-18.

Reward function For training the encoder in Section 6, we set the reward function to the decoder
accuracy across |Y| “ 20 questions:

RpS̃; gq “ Acc
`

Ỹ,Y
˘

The RL steering experiment section A.4.2 only rewards the presence of the word "misconception" in
the bottleneck:

RpS̃; gq “ ΩpS̃q “ 1r’misconception’ P S̃s

B.2 KT/CD MODELS

Cognitive Diagnosis models We evaluate the following 5 Cognitive Diagnosis models:

• IRT (Rasch, 1993)

• MIRT (Reckase, 2006)

• DINA (Junker & Sijtsma, 2001)

• KaNCD (Wang et al., 2022)

• NeuralCDM (Wang et al., 2022)

We use the implementation from the EduCDM library (bigdata ustc, 2021). To make sure there is
enough data per student to train on, we filter out students students with ă 10 interactions in each
dataset.

Knowledge Tracing models We evaluate the following 9 Knowledge Tracing models:

• DKT Piech et al. (2015)

• DKVMN Zhang et al. (2017)

• SAKT Pandey & Karypis (2019)

• GKT Nakagawa et al. (2019)

• Deep IRT Yeung (2019)

• AKT Ghosh et al. (2020)

• SAINT Choi et al. (2020)

• SimpleKT Liu et al. (2023a)

• QIKT Chen et al. (2023)

We use the PYKT implementation Liu et al. (2022) for all of these models with default hyperparame-
ters. We only modify the pyKT implementation to additionally compute the accuracy and AUC on
N “ |Y| questions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure B1: Distribution of the number of misconceptions per student in the Synthetic dataset.

B.3 DATASETS

B.3.1 SYNTHETIC

Our synthetic dataset simulates students answering basic arithmetic problems. Each student is
characterised by (i) mastered skills, (ii) unmastered skills, and (iii) systematic misconceptions.
Questions are arithmetic operations—addition, subtraction, multiplication, or division (rounded to
the nearest integer)—between two operands drawn from r0, 15s for addition/subtraction or r1, 10s for
multiplication/division.

Misconception pool. For every student we sample misconceptions uniformly at random from:

• forgets to carry in addition;

• fails multiplications involving the number x with x „ Up6, 9q;

• fails any operation involving the number x with x „ Up6, 9q;

• fails whenever an operand ą 10;

• always rounds division results down;

• fails with negative numbers.

Generation parameters.

• Number of students: 2000;

• Number of questions: 5000;

• Questions answered per student: 210.

Figure B1 shows the histogram of the number of misconceptions per student across the 2000 students
of the dataset.

B.3.2 EEDI

The Eedi dataset is analogous to the one publicly shared via the NeurIPS 2020 Education Chal-
lenge (Wang et al., 2020) organised by Eedi, but additionally includes the text of each question. While
the exact version of the dataset used in this work is not available publicly, a very similar version
including question texts is available via the "Eedi - Mining Misconceptions in Mathematics" Kaggle
Competition (King et al., 2024).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Preprocessing Although many trajectories in the Eedi dataset span several days or months, we
retain only single-session sequences to satisfy the constant knowledge state assumption - a common
assumption in Cognitive Diagnosis (Wang et al., 2024). We compute sessions of interactions by
grouping answers that are within the follow criterias:

• minimum response time: 5 s, to avoid random answers;
• maximum gap between answers: 3min;
• minimum trajectory length: 40 questions.

This filtering yields a total of 623 individual trajectories with 40+ questions.

B.3.3 XES3G5M

The XES3G5M dataset contains student interaction data from a large-scale online mathematics
learning platform (Liu et al., 2023b). The original dataset has question and construct text in Chinese.
We use English translation from Ozyurt et al. (2024) to also run on an English version of the dataset.

Preprocessing The XES3G5M preprocessing follows a similar approach to Eedi, with adjusted
parameters to accommodate the characteristics of this dataset. We compute sessions of interactions
by grouping answers that meet the following criteria:

• minimum response time: 5s, to avoid random answers;
• maximum gap between answers: 10min;
• minimum trajectory length: 34 questions.

The increased maximum gap between answers (10 minutes vs. 3 minutes for Eedi) is to ensure that
a sufficient number of sessions are available for training. More stringent filtering make it easier
to satisfy the constant knowledge state assumption, but might not produce enough data points for
effective training of KT and CD models. This filtering yields a total of 1, 245 student-sessions
trajectories with 34+ questions, across 996 individual students.

B.4 EXPERIMENT PARAMETERS

B.4.1 TABLE A1, FIGURE 3, TABLE 2, FIGURE 7

Table B1 summarize experimental settings used for Table A1, Figure 3 and Figure 7. Runs are
aggregated across N=3 for LBMs/Direct LLMs and N=10 for KT/CD models. For Table 2 only the
bottleneck size varies along the plot’s x axes.

Synthetic Eedi (Filtered) XES3G5M (Filtered)

|X | 50 30 30
|Y| 4 4 4
Test students 200 100 200
Bottleneck size 128 tokens 512 tokens 512 tokens
CoT prompting No No No

Table B1: Experimental settings for the different datasets.

B.4.2 FIGURE 4

Latent Bottleneck Models (LBMs)

• |X | “ N , N P t5, 10, 20, 50u, |Y| “ 4

• Test students: 200
• Bottleneck size: 256 tokens

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Chain-of-thought prompting: Yes; reasoning_effort=minimal for GPT-5
• Encoder & decoder: same backbone LLM (varies by row in the table)

CD baselines The CD models were run using the EduCDM implementation (bigdata ustc, 2021).
As these models require training on a per-student basis, we evaluated them on a held-out set of test
interactions from the same students seen during training. We used an 80/20 train/test split of each
student’s interaction history. While this evaluation setup differs from the unseen-student protocol used
for KT and LBMs, it allows for a fair comparison of sample efficiency. To ensure stable and reliable
accuracy estimates, especially with limited interactions, all results are aggregated and averaged over
N=10 independent runs.

KT baselines KT models were evaluated using the PYKT implementation Liu et al. (2022), modified
to compute accuracy on |Y| “ 4 questions, in order to be comparable with our LBM models. For
each method we keep the pyKT default hyperparameters. Test accuracy is computed across 200
unseen test students.

B.4.3 FIGURE 6

• Dataset: Synthetic
• |X | “ 50, |Y| “ 20

• Train / test students: 800{200

• Bottleneck size: 128 tokens
• Chain-of-thought prompting: No
• Encoder (trained): Gemma3-12B
• Decoder (frozen): Gemma3-27B

Training hyper-parameters.

• Batch size : 5

• G “ 5

• Learning rate “ 1 ˆ 10´4

• β “ 0.04

• Optimiser: Adam (adamw_torch, default settings)
• LoRA configuration

– r “ 16, α “ 16

– target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"]

– Dropout: 0.05

B.4.4 ENCODER–DECODER VARIANTS

Identical to the Table A1 set-up, except for the choice of encoder and decoder LLMs.

B.4.5 STEERING EXPERIMENTS

Same dataset and model parameters as for Figure 6.

Training hyper-parameters.

• Batch size : 4

• G “ 4

• Learning rate “ 1 ˆ 10´4

• β “ 0.04

• Optimiser: Adam (adamw_torch, default settings)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• LoRA configuration
– r “ 16, α “ 16

– target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"]

– Dropout: 0.05

B.5 PROMPTS

Below are the different prompts used to query LLMs in our experiments.

1 template: |
2 Please produce a concise summary of the following input with up to

{max_words} words.
3 This summary should contain the information required to predict

the student’s answer to any new question.
4 {cot_instruction}
5

6 Input:
7 {input_text}
8

9 Once again, please provide a **concise** summary of the student’s
knowledge state.

10 {cot_instruction}
11 Keep your summary under {max_words} words.
12

13 # with CoT
14 cot_instruction: |
15 Think step by step and lay out your reasoning before you write the

final summary. Then, enclose the final summary in <info>...</
info>.

16 # without CoT
17 cot_instruction: |
18 Enclose your entire summary in <info>...</info> and do not include

anything else.
19

20 input_text: |
21 The student answered the following questions:
22 {question_1_text}
23 ...
24 {question_n_text}
25

26 # with construct information
27 question_i_text: |
28 Question {question_txt, question_ID}, with construct{construct_txt

, construct_ID}: answered {correctness}.
29

30 # without construct information
31 question_i_text: |
32 Question {question_txt, question_ID}: answered {correctness}.

Listing 1: Base Prompt for the Encoder.

1 template: |
2 Here is some information about a student:
3 {bottleneck}
4

5 Predict whether the student will answer {new_question} correctly
or not.

6 Answer with "Yes" or "No" and nothing else.

Listing 2: Base Prompt for the Decoder.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1 template: |
2 Please produce a concise summary of the following input with up to

{max_words} words.
3 This summary should contain the information required to predict

the student’s answer to any new question.
4

5 Make sure to mention any misconception held by the student.
6 {cot_instruction}
7

8 Input:
9 {input_text}

10

11 Once again, please provide a **concise** summary of the student’s
knowledge state.

12 {cot_instruction}
13 Keep your summary under {max_words} words.

Listing 3: Base Prompt for the Encoder when steering for mentioning "misconceptions"
(Section A.4.2).

B.6 CODE AND HARDWARE

Experiments were ran on four NVIDIA A100 GPUs with 80GB VRAM each, and 880GB of total
RAM.

C STEERABILITY OF THE ESTIMATED KNOWLEDGE STATE

A key advantage of LBMs is the ability for humans to interact with the model to steer the estimated
student knowledge states and complement the model with additional information. Here, we further
discuss the three mechanisms for human-model interaction in the LBM framework mentioned in
Section 3.4.

Prompt engineering the encoder. The most straightforward approach is directly shaping how the
encoder generates summaries through prompt engineering, for example via system instructions or
in-context examples (Brown et al., 2020). By modifying the instruction prompt given to the encoder,
educators can influence the format, emphasis, and level of detail in the generated knowledge state
summaries. For instance, instructing the encoder to highlight specific types of misconceptions or
to focus on particular subject areas can yield more targeted summaries. Examples of good and bad
knowledge states can also be provided to the encoder to steer its behavior via in-context learning.

Steering via reward signals during training. When training the encoder, human preferences can
be incorporated through the reward function by using the ΩpSq term from Eq. 1. This allows for
systematic enforcement of desirable summary properties across the model’s outputs. For example, if
educators find that explicit enumeration of misconceptions is particularly valuable for intervention
planning, the reward function can be designed to favor summaries that consistently identify and
articulate student misconceptions – as demonstrated Figure A.4.2.

Augmenting with student-specific information. Perhaps the most powerful form of interaction
involves supplementing the model with additional student-specific information not present in the
observed interaction data X . This can occur in two ways:

• Augmenting encoder input: Educators can provide supplementary information alongside the
observed interactions X , such as notes about recent classroom activities not yet reflected
in assessment data, or observations about a student’s learning process not captured in their
answers.

• Modifying the generated summary: After the encoder produces a knowledge state summary
S, educators can directly edit this summary based on their domain expertise and student-
specific knowledge before passing it to the decoder. For example, a teacher who noticed

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

a student struggling with negative numbers during an in-class exercise could add this
observation to the generated summary, even if the available assessment data contains few
questions involving negative numbers.

D EXTENDED RELATED WORK

This section provides an extended review of the literature related to our proposed approach, span-
ning traditional knowledge tracing, recent advances in LLM-based student modeling, and concept
bottleneck models (CBMs), and text summarization models.

D.1 COGNITIVE DIAGNOSIS

Cognitive Diagnosis Models (CDMs) aim to infer a student’s latent knowledge state from their
observed responses to test questions Wang et al. (2024).

D.1.1 PSYCHOMETRICS-BASED CD MODELS

Classical models for Cognitive Diagnosis originate from psychometrics, including Item Response
Theory (IRT) and its multidimensional variant (MIRT), which model continuous scores of knowledge
proficiency using logistic functions Rasch (1993); Reckase (2006). The DINA model estimates binary
mastery variables of knowledge concepts, assuming that students must master all required skills to
answer correctly, while accounting for slips and guesses Junker & Sijtsma (2001). Other variants
have been proposed with different assumptions, such as DINO (Templin & Henson, 2006) which
considers that students will correctly answer the item if at least one required knowledge concept
is mastered. A critical input for these methods is the Q-matrix, which describe which knowledge
concept is required for each question.

D.1.2 DEEP LEARNING-BASED CD MODELS

More recent deep learning approaches offer greater flexibility in modeling complex relationships.
The Neural Cognitive Diagnosis Model (NCDM) uses neural networks to learn interaction functions
between student proficiency vectors and item characteristics Wang et al. (2022). Extensions include
Kernel-based Neural Cognitive Diagnosis (KaNCD), which models latent associations between
knowledge concepts Wang et al. (2022), and Knowledge-Sensitive Cognitive Diagnosis (KSCD),
which learns intrinsic relations between knowledge concepts from student responses Ma et al.
(2022). Graph neural networks have also been incorporated, with frameworks like RCD capturing
relationships between students, questions, and knowledge concepts Gao et al. (2021). Recent encoder-
decoder architectures, such as ID-CDF, enable inductive diagnosis by directly encoding student
responses into ability vectors Li et al. (2024b). While these deep learning models provide enhanced
predictive power and can handle diverse data types, they still typically operate within predefined
knowledge concept frameworks and are limited to quantitative estimates of skill mastery.

D.2 KNOWLEDGE TRACING

Compare to Cognitive Diagnosis which assumes a constant knowledge state, Knowledge Tracing
method aim at estimating evolving knowledge states as students answer questions. We similarly
review

D.2.1 TRADITIONAL KNOWLEDGE TRACING

Traditional knowledge tracing (KT) methods have long been used to model student learning and
predict future performance Shen et al. (2024). Early works such as Bayesian Knowledge Tracing
(BKT) Corbett & Anderson (1994) model student mastery as a probabilistic process, while more
recent methods like Deep Knowledge Tracing (DKT) Piech et al. (2015), Dynamic Key-Value
Memory Networks (DKVMN) (Zhang et al., 2017) and Attentive Knowledge Tracing (AKT) Ghosh
et al. (2020) uses neural networks or attention-based architecture to learn contextual representation of
questions and student knowledge states. Despite their strong predictive performance, these models

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

represent a student’s knowledge state as an abstract, high-dimensional latent vector, which poses
significant challenges in interpretability and actionable feedback for educators.

D.2.2 INTERPRETABLE KNOWLEDGE TRACING

Several recent works have proposed more interpretable Knowledge Tracing methods.

Enhanced Concept Proficiency Modeling Interpretable Knowledge Tracing (IKT) (Minn et al.,
2022) introduces a causal probabilistic student model based on skill mastery, ability profiles, and
problem difficulty. While this approach provides clearer connections between model components
and predictions, interpretability remains tied to quantitative skill mastery estimates. Similarly,
QIKT (Chen et al., 2023) employs IRT functions as the final prediction layer, combining question-
centric knowledge acquisition, knowledge mastery scores, and knowledge application scores through
encoder modules. Despite enhanced modeling of question-concept relationships, the diagnostic
output remains in the form of proficiency reports across predefined knowledge concepts.

Learned Questions Relationships HGKT (Tong et al., 2022) addresses limitations of concept-
based proficiency by modeling hierarchical relationships between questions and introducing problem
schemas as additional links between questions. Problem schemas are discovered through hierarchical
clustering of question embeddings via BERT encodings, providing a means of grouping questions
orthogonal to knowledge concepts and therefore enabling more detailed diagnostic reports than at the
concept proficiency level. However, the interpretability of these learned schemas requires post-hoc
interpretation using TextRank to infer schema descriptions from clusters of questions. While this
approach moves beyond simple concept proficiency, it still relies on learned embeddings that cannot
directly articulate student reasoning patterns without post-hoc manipulations.

Explainable subsequences Explainable subsequences provide an alternative to interpretability
via concept proficiency by identifying which past questions are most relevant for predicting future
responses. For example, Li et al. (2023) proposes a genetic algorithm to identify explainable
subsequences in student interaction histories better than with standard Deep Learning explanation
methods such as Shapley values or gradient-based saliency maps. While this allows for a different kind
of interpretability from concept mastery, the explanations remain at the level of question relevance
rather than underlying reasoning processes. This approach can indicate which questions matter but
cannot explain why they matter or what misconceptions they reveal.

Option Tracing Option Tracing (Ghosh et al., 2021) moves beyond binary correctness by modeling
which specific option a student selects in multiple-choice questions, enabling finer-grained analysis
of misconceptions through patterns in distractor choices. Similarly, Park et al. (2024) leverages MCQ
responses and concept maps to disentangle student understanding at the concept level. While their
approach is motivated by misconception detection, their IRT-based predictions remain grounded in
concept-level proficiency prediction and do not explicitly validate misconception identification.

D.2.3 LLM-BASED KNOWLEDGE TRACING

Recent studies have begun integrating Large Language Models (LLMs) into the KT framework. For
example, Li et al. (2024a) demonstrated that LLMs are able to make sensible predictions about student
responses when prompted with adequate information. Other works Lee et al. (2024); Kim et al.
(2024) have studied how LLMs can help mitigate the cold-start problem compared to traditional KT
approaches, while Wang et al. (2025) demonstrated state-of-the-art performances in KT by combining
LLMs with sequence interaction models. However, these methods generally remain opaque: they
either treat the LLM as a black-box, or rely on model-generated explanations that are susceptible
to hallucination (Bender et al., 2021). KCQRL (Ozyurt et al., 2024) leverages language models to
improve the embedding of any deep learning KT method by encoding semantic information about
question content. While this leads to improved predictive accuracy, its interpretability remains limited
to knowledge concept proficiency.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.3 COMPARISON OF LBMS TO KT AND CD

Table D1 gives a high-level comparison of LBMs and KT/CD models. We acknowledge that this
summary table is a simplification of the KT and CD fields, as each contains many works that have
been proposed to tackle these individual limitations (for example, using textual question contents
to improve embeddings (Ozyurt et al., 2024), or using specialized Multiple Choice Questions to
reveal misconceptions via KT-type methods(King et al., 2024)). Nevertheless, it clarifies our paper’s
similarities with these two fields, while contrasting key differences that enable LBMs to address
educational scenarios where neither traditional KT nor CD methods are well-suited —particularly for
misconception identification or when working with limited data.

Table D1: Comparison of Cognitive Diagnosis, Knowledge Tracing and our proposed Language
Bottleneck Models.

Aspect Knowledge Tracing
(KT)

Cognitive Diagnosis
(CD)

Language Bottleneck
Models (LBMs)

Interpretability Capabilities

Interpretable
Output

Quantitative proficiency
across knowledge
concepts

Quantitative proficiency
across knowledge
concepts

Qualitative text
summaries

Misconception
Detection

No No Yes

Requires Predefined
or Inferred Concepts
for Interpretability

Yes Yes No

Data Requirements

Primary Input
Modality

Question and/or Construct
IDs

Question and Construct
IDs (Q-matrix)

Any textual information

Training Data
Requirements

High High Low/Zero-shot

Modeling Characteristics

Knowledge State
Assumption

Dynamic Static Static

Human-in-the-Loop Limited Limited High (steerable &
editable)

Fundamental Distinctions

Core Question
Addressed

“Can we predict a
student’s responses over
time?”

“Can we quantitatively
estimate a student’s
proficiency across
concepts?”

“Can we qualitatively
estimate a student’s
knowledge state,
including knowledge
concepts and
misconceptions?”

Case Study
(Figure 5)

Similar to CD Proficiency vector: KC1
(Add): 0.59, KC2 (Sub):
0.53, KC3 (Mul): 0.76,
KC4 (Div): 0.23

“...excels at addition and
multiplication...
Subtraction is a
weakness...
Multiplication by 6 or 7
seems to be a specific area
of difficulty...”

D.4 CONCEPT BOTTLENECK MODELS

Concept Bottleneck Models (CBMs) Koh et al. (2020) improve interpretability through human-
understandable concept activations as intermediates, with extensions exploring unsupervised concept

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

learning Oikarinen et al. (2023), test-time interventions Shin et al. (2023), and theoretical analyses
of concept set design Luyten & van der Schaar (2024). However, CBMs typically rely on finite
predefined concept sets, limiting their applicability to complex tasks like knowledge tracing. Recently,
Yamaguchi & Nishida (2024) introduced Explanation Bottleneck Models (XBMs), which use textual
rationales as intermediates for vision classification, justifying a single known label per input. While
our Language Bottleneck Models (LBMs) adopt this language bottleneck concept, they differ funda-
mentally. Unlike XBMs’ instance-specific, task-specific rationales, LBM summaries aim to capture
an implicit knowledge states—as emphasized by our inverse problem formulation—and generalize to
future, unknown questions. These requirements necessitate holistic, adaptable summaries rather than
XBMs’ task-specific rationales, leading us to introduce Language Bottleneck Models (LBMs) as a
distinct framework with broader applicability.

D.5 TEXT SUMMARIZATION MODELS

Recent text summarization models such as BART Lewis et al. (2019), T5 Raffel et al. (2020), and
PEGASUS Zhang et al. (2020) effectively produce concise summaries based on explicitly available
textual content. However, these approaches differ fundamentally from knowledge tracing, where
summaries must infer implicit student knowledge states not directly observable in the input. Standard
summarization metrics (e.g., ROUGE, BLEU) rely on explicit reference summaries, making them
unsuitable for evaluating latent knowledge inference tasks. In contrast, our Language Bottleneck
Models generate textual summaries of the student’s implicit knowledge state, optimized for predictive
accuracy on downstream questions rather than syntactic overlap with the observed input.

E EXTENDED DISCUSSION

E.1 EXTENDED DISCUSSION

Parallel with Kolmogorov Complexity The inverse problem formulation of Knowledge State
Modeling draws a natural parallel with algorithmic information theory. The Kolmogorov complexity
Kpxq of a string x is defined as the length of the shortest program that outputs x when run on a
universal Turing machine. Traditional KT methods focus on learning statistical regularities between
questions and responses, without looking for parsimonious explanations for observed behavior. In
contrast, LBMs explicitly search for minimal natural language descriptions that can both reconstruct
past interactions and predict future responses. The knowledge state summary S is akin to the minimal
program, and the decoder LLM functions is akin to the universal interpreter that unpacks S to generate
the observed question-answer patterns. This connection suggests that effective knowledge state
summaries should capture the algorithmic essence of student behavior—the underlying "program"
of knowledge and misconceptions that generates observable responses—rather than merely fitting
surface-level patterns. While true Kolmogorov complexity is uncomputable, LBMs approximate
this ideal through the natural language bottleneck constraint, encouraging summaries that balance
compression with predictive power.

Computational Architecture and Design Choices The encoder-decoder architecture reflects
a deliberate separation of concerns: extraction versus interpretation of knowledge states. Our
experiments demonstrate that these two tasks have different intrinsic complexity, with encoding
(summary generation) being more challenging than decoding (prediction from summaries). This
finding has practical implications for model selection and computational resource allocation. The use
of GRPO for encoder training represents a novel application of reinforcement learning to interpretable
AI, where the reward signal directly measures the downstream utility of explanations rather than their
surface-level quality.

E.2 EXTENDED LIMITATIONS

Context Length Constraints A practical limitation of LBMs is the context length restrictions of
current LLMs. Eventhough modern models can handle thousands of tokens, comprehensive student
histories in real educational settings can easily exceed these limits. As student trajectories grow more
complex and include more information, the context required for the encoder might go beyond what

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

current LLMs are capable of. A natural solution could be an iterative encoding process, where the
encoder iterates over the text bottleneck while going over the input data by windows.

Computational Cost and Resource Requirements Since LBMs involve two LLMs as the encoder
and decoder, they are typically more computationally intensive to run than traditional KT methods.
Each inference call with LBMs requires two LLM calls (encoding and decoding) with extensive
context windows. Training LBMs with GRPO is particularly costly, as it requires iteratively generating
and evaluating multiple candidate summaries per training example. This cost structure may limit the
practical deployment of LBMs to high-stakes educational contexts where the interpretability benefits
justify the computational expense.

Dependence on Textual Question Content Many existing CD/KT datasets provide only question
identifiers rather than full question text. This limits the direct applicability of LBMs, as they require
the questions content in order to generate meaningful summaries about student knowledge. While
question content is increasingly available in modern educational platforms, this dependency creates a
barrier to applying LBMs to historical datasets or systems that rely primarily on item response theory
frameworks.

Constant Knowledge State Assumption The constant knowledge state assumption underlying the
inverse problem formulation, while reasonable for short diagnostic sessions, does not cover longer
time horizons. Real learning involves continuous knowledge acquisition, forgetting, and misconcep-
tion evolution that our current framework cannot capture. This limitation restricts current LBMs to
diagnostic rather than contexts of assessment throughout the learning process. The assumption also
fails to account for contextual factors (fatigue, motivation, external stressors) that can significantly
impact student performance within even short sessions.

E.3 EXTENDED FUTURE WORK

Iterative Encoding Strategies A natural extension to address context length limitations involves
iteratively applying the encoder while chunking input data. At each step, the encoder would process
a portion of the interaction history X along with one or more previously generated bottleneck
summaries, creating an updated summary that incorporates new information from the latest chunk.
This approach could maintain both detailed recent context and compressed historical patterns, enabling
LBMs to handle arbitrarily long student trajectories through sequential refinement of knowledge state
representations.

Active Learning and Question Selection Building on iterative encoding, active learning strategies
could provide encoders with the most informative input questions. Rather than processing all available
interactions, the system could strategically select questions that maximize information gain about
uncertain aspects of student knowledge. This could leverage uncertainty quantification methods or
use the encoder LLM itself to recommend the most diagnostically valuable questions. Such active
sensing would improve both efficiency and diagnostic power by focusing computational resources on
the most insightful student responses.

Dynamic Knowledge State Modeling Extending LBMs to handle evolving knowledge states
represents a significant next step necessary to account for progressive learning and forgetting effects.
A natural relaxation of the constant knowledge state assumption involves "piecewise-constant" knowl-
edge states that can evolve between question sessions but remain static within sessions. This extension
poses exciting challenges in developing training objectives that balance within-session consistency
with between-session learning dynamics, potentially requiring new approaches to temporal modeling
in natural language representations.

Multimodal Input Integration Question-answer pairs represent a relatively narrow information
source for inferring student knowledge states. Richer data sources such as student-tutor interactions,
self-reported explanations for answers, timing patterns, or hint usage could provide deeper insights
into student understanding. While LBMs naturally extend to text-based inputs, future work should
investigate optimal strategies for combining these varied data sources and evaluate their relative
contributions to knowledge state inference accuracy and interpretability.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Pedagogical Alignment Recent work like LearnLM Team et al. (2024) demonstrates the potential
for making LLMs more pedagogically aligned. Incorporating similar pedagogical principles into
LBM components could help encoders better interpret educational interactions and generate sum-
maries that align with expert teaching practices. This might involve training on educator-annotated
examples, incorporating educational taxonomies into summary structure, or using reward functions
that emphasize pedagogically relevant aspects of student knowledge states. Such alignment could
bridge the gap between computational convenience and educational validity.

STATEMENT: USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used as an assistive tool in the preparation of this manuscript
and the development of the accompanying code.

• LLMs were used to improve the clarity, grammar, and flow of the text. This included
rephrasing sentences, correcting typographical errors, and ensuring a consistent tone.

• LLMs were used to generate boilerplate code for data processing scripts, assist in debugging,
and suggest implementations for standard machine learning components.

The authors take full responsibility for the final content of this paper.

30

	Introduction
	Knowledge State Modeling as an Inverse Problem
	Preliminaries and Notation
	Knowledge State Modeling as an Inverse Problem
	Natural Language as the Interface

	Language Bottleneck Models
	Formal Definition
	Motivating Observations
	Training Objective and Optimization
	Steerability of the Estimated Knowledge State

	Related Work
	Experiments
	LBM vs Knowledge Tracing Methods
	Training LBM Encoders
	Steering LBM behavior
	Ablation Experiments

	Discussion
	Extended Results
	Motivating Observation 2
	Full results
	Training LBM Encoders: Difficulty stratification
	Steering LBM behavior
	Augmenting with student-specific information to assist LBM training
	Steering via reward signals
	Augmenting LBMs with student-specific information to complement input data

	Ablation Experiments
	Encoder/Decoder Variants
	Importance of Knowledge Concepts in the input

	Example bottlenecks on the Eedi dataset

	Experimental Details
	LBMs details
	KT/CD Models
	Datasets
	Synthetic
	Eedi
	XES3G5M

	Experiment Parameters
	Table A1, Figure 3, Table 2, Figure 7
	Figure 4
	Figure 6
	Encoder–Decoder Variants
	Steering Experiments

	Prompts
	Code and hardware

	Steerability of the Estimated Knowledge State
	Extended Related Work
	Cognitive Diagnosis
	Psychometrics-based CD models
	Deep Learning-based CD models

	Knowledge Tracing
	Traditional Knowledge Tracing
	Interpretable Knowledge Tracing
	LLM-Based Knowledge Tracing

	Comparison of LBMs to KT and CD
	Concept Bottleneck Models
	Text Summarization Models

	Extended Discussion
	Extended Discussion
	Extended Limitations
	Extended Future Work

