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Abstract

Freehand 3D sketches are a great medium to ideate and
create visual content. However, generating 3D models from
such rough sketches remains an unsolved, non-trivial task.
We present an end-to-end interactive framework for rapid,
incremental modelling from sparse, irregular 3D sketches.
At the core of our solution, is sketchTransformer, a two-
staged transformer network architecture, that fits paramet-
ric surface patches to a set of sketch strokes. We devise
a novel pseudo height field representation that enables the
sketchTransformer to handle noise and sparseness in the
input strokes. Our method interactively evolves the sur-
face model while maintaining smooth joins between nearby
patches. We implement two frontends for our framework,
one on the desktop and another as a mobile AR applica-
tion, to illustrate how our method complements a standard
3D modelling pipelines. Our framework robustly handles
a large variety of input 3D strokes that competing methods
cannot parse adequately.

1. Introduction
Sketches are an intuitive form of visual ideation and an in-
valuable design tool for rapid pictorial depiction of 3D ob-
jects. Sketches traditionally have been restricted to 2D,
so translating concept sketches to 3D requires additional
work. With the advancements in Augmented/Virtual Real-
ity (AR/VR) technologies, sketching directly in 3D space is
becoming more accessible [4]. However, sketching in a free
3D space is inherently troublesome because of the absence
of any tactile feedback. This makes it difficult for the artist
to consistently place sketch strokes on intended surfaces.

We present an learning assisted interactive framework to
create 3D surface models from rough freehand 3D sketches
drawn incrementally. At the core of our framework is a
transformer based architecture, sketchTransformer, that fits
parametric (BSpline) surface patches to a sparse collec-
tions of 3D sketch strokes. The performance of this neu-
ral architecture is crucially enhanced by our novel pseudo-

height field representation allowing it to robustly handle
the sparseness and noise in the input. As the user draws
new strokes, our framework tries to either fit a new patch
to the sketched strokes, or edit and re-fit existing surface
patches based upon the inferred sketch semantics. The sur-
face patches are joined smoothly or kept disjoint as per the
intent.

Our method works with a variety of freehand 3D
sketches, while adapting to their inherently unstructured na-
ture. Therefore, it performs significantly better than the
state-of-the-art methods that can perform similar tasks (as
shown in Section 5.1). However, this robustness comes at
the cost of fine control during modelling. While our frame-
work is apt for rapidly creating surface models from 3D
sketches, it is not intended to be used for finely nuanced
modelling. Note that our framework is aimed at creating
surface models incrementally from freehand 3D sketches
directly. We show two prototype implementations of our
framework, one on the desktop as a Blender [7] plugin and
the other in AR on a mobile device. In order to assess
the quality of the models created using our framework, we
present an extensive user study (in Section 5.4) which shows
that our interactive framework is a valuable tool for creative
ideation with 3D sketches.

Our main contributions are:
• An end-to-end interactive neural framework for rapid, in-

cremental modelling from sparse, irregular 3D sketches.
• Frontends on desktop and mobile AR complementing the

standard 3D modelling pipelines.

2. Related Work
A lot of prior work deals with 3D modeling from sketches.
Early works like [27] inspired from [18] enable modifying
a 3D models interactively with control curves while creating
it with 2D sketches only. Works like [9, 21] create 3D mod-
els from 2D sketches input from multiple views. Although,
these methods process the depth information extracted from
the multi-view input but do not enable 3D sketching. Other
works like [2, 14, 35] provide methods to process sparse
freehand 2D sketches to create 3D models. These meth-



Figure 1. 3D sketches of multiple objects made using our framework are assembled into a scene. The images from left to right show the
sketch strokes, the reconstructed surface model made of parametric patches and the rendered meshes created from the sketches.

ods allow incremental modelling from sketches and editing
the output, still do not handle 3D sketches. Complementary
to these works, [13] transforms a vector 2D sketch into a
coherent 3D sketch to output models which can be interac-
tively modified.

Works like [1, 8, 37] devise reference model or canvas
guided 3D sketching method to create 3D models. This ap-
proach restricts the modelling to the reference models or
canvas to be used. Other category of works like [29] di-
rectly utilize the 3D sketch strokes drawn in VR to cre-
ate manifold surface strips stitched together to form the
3D model. These methods require a large number of in-
put strokes. More recent works like [30, 40] process the
input VR sketch strokes in a way that they become suitable
for modelling with existing algorithms.

Most recently, [41] provide a framework which cre-
ates 3D model from 3D sketches as a collection of surfaces
smoothly joined together, given an initial surface model for
the input. This approach assures high accuracy but heavily
depends on availability of the initial model. Similarly, [36]
provide method to create 3D models from rough 3D mid-air
sketches with available reference point cloud to assist in the
sketching.

Methods like [17, 38] fit surface models to a sparse
unoriented 3D point sets by computing their normals first
and then extracting the surface via constrained optimiza-
tions. These approaches cannot work at real-time. Other
category of works like [16, 25, 31, 39] learn to reconstruct
3D models from 3D point clouds via a different neural net-
works based upon auto-encoders, neural kernels, etc. Since
these methods are designed for point clouds, they require
a uniformly sampled point set as opposed to unstructured
sketches.

Works like [23, 24, 26, 32, 42] devise various neural
architectures to interpret 3D sketches. These methods tar-
get to model only a particular class of objects. Works like
[5] design neural networks which learn to fit a surface to
stream of incoming 3D sketch strokes. This method is able
to interactively modify surface models but heavily depend

on availability of the boundary information of the surface
patches. Other works like [22] translate clean freehand
drawings into procedural commands which are used to gen-
erate the corresponding CAD model. This method does not
deal with surface modelling of freeform objects.

While these methods work well in their specific contexts,
they struggle to create 3D models with rough freehand 3D
sketches. Also, most of these methods do not support in-
teractivity in the modelling process which we intend to pro-
vide.

3. Method

Our framework for interactively creating surface models
from 3D sketches comprises of three components (see Fig-
ure 2). We describe each of these components in the subse-
quent subsections.

3.1. Pre-processing

The pre-processing component of our framework takes the
raw sketch strokes, clusters and encodes them into a more
regularized representation.

3.1.1 Contextual Segmentation of Sketch Strokes

As the user starts to sketch, our framework contextually seg-
ments the sketch strokes into clusters, such that we can fit a
parametric surface patch to each cluster. The algorithm for
contextual stroke segmentation is given in Algorithm 1.

Every stroke sketched by the user can be one of two
kinds:
Shaping strokes: These are the strokes which define the
shape of the surface to be fit. The blue stroke in the first
image in Figure 3 is an example of a shaping stroke.
Joining strokes: These are the strokes which span more than
one surface patch and determine how the surfaces join with
each other. Note that more than one joining stroke may de-
fine the join between a pair of surfaces. The red stroke in
the first image in Figure 3 is an example of a joining stroke.



Figure 2. Overview of our framework: (1) Pre-processing, (2) Post-processing, and the core sketchTransformer architecture.

Figure 3. First image shows the types of strokes - shaping stroke
in blue, joining stroke in red. Subsequent images show how a new
surface patch gets added and an existing patch is modified when
a joining stroke is input. The fourth image shows the new patch
created from the sketch strokes shown in the third image. The
last image shows the change in the existing patch from the sketch
strokes shown in the third image.

Figure 4. Example pairs of sketch strokes and their pseudo-height
field. The plane in gray shows the corresponding maximal plane.

In Algorithm 1, C(.) is the 3D convex hull. dist(.) com-
putes the distance between the centroids of the two strokes.
We empirically determine the value for the distance thresh-
old, τd. Initially, P and C are empty sets, and the adjacency
matrix A′ is a zero matrix. At the end of Algorithm 1, the
new clusters in C have no surface patches corresponding to
them. These patches are created in subsequent parts of the
framework. The existing surface patches may also need to
be updated if there is some addition to their corresponding
clusters in the algorithm. Since we sample points from the
strokes and then cluster them, the algorithm is independent
of the stroke style. Figure 3 shows how strokes modify a
surface patch and create a new one that smoothly joins with
the existing patch. The output of Algorithm 1 is a set of
updated stroke clusters C and the updated adjacency matrix
A′ for all the pairs of patches in the model.

3.1.2 Maximal Axial Plane Projection

We sample points from every stroke from C, and then en-
code these point samples into a more regularized represen-
tation which suitable for processing by the network that fol-
lows. We require a representation which is not only more
uniform that the raw input but also conveys some informa-
tion about the extent of the target shape.

To create this representation, we project the strokes on
each axial plane (XY, YZ, ZX) in turn, and retain the plane
(and corresponding projections) which has the maximum
coverage of the points in the projection. This ensures that
majority of points from the sketch are retained in the pro-
jection. We call this as maximal axial plane projection. We
sample a dense regular grid of points on the retained ax-
ial plane. We empirically choose a 64 × 64 grid size on
this planes for this purpose. For every projected point, we
choose the grid point that is closest to the projected point
and associate the distance of the original stroke sample from
its projection to that grid point sample. Keeping all other
points with the value 0 helps to give an idea of the actual
extent of the intended shape to the network. This creates
a pseudo-height field of the stroke sample point set bound
by the chosen plane. Examples of this can be seen in Fig-
ure 4. The pseudo-height field makes our network robust to
the number of input strokes and induces a structure to the
input.

The input to this entire pre-processing component is a
set of strokes S = {sk}Nk=1. Every stroke sk is a set of
points {ql}Qk

l=1, where ql ∈ R3. From this, a set of stroke
clusters C = {cj}Mj=1 is output by Algorithm 1. Here, cj
is a set of strokes {skj

}Mj

kj=1. Each cj is converted to the
pseudo-height field, hj , as given in section 3.1.2.



Algorithm 1 Contextual Segmentation of Strokes

1: Let the set of current surface patches be P
2: Let the set of corresponding stroke clusters be C
3: Let A′ be the current adjacency matrix.
4: Fetch currently sketched stroke si
5: AdjPatch← −1
6: for Patches pj ∈ P do
7: CurrentPatch← j
8: if si is completely in C(pj) then
9: si is a shaping stroke for existing patch

10: Add si to stroke cluster cj , corresponding to pj
11: if Adjpatch ̸= −1 then
12: Update A′[AdjPatch, CurrPatch] = 1
13: AdjPatch← −1
14: end if
15: else if si is partially in C(pj) then
16: si is a joining stroke
17: Split si into sai ∈ C(pj) and sbi /∈ C(pj)
18: Add sai to stroke cluster cj , corresponding to pj
19: Set si ← sbi
20: AdjPatch← j
21: else
22: if (∃s′i : s′i /∈ ck∀k) AND (dist(si, s′i) ¡ τd) then
23: Add si and s′i into new cluster c′j
24: Add c′j to C
25: end if
26: end if
27: end for
28: return C, A′

3.2. The sketchTransformer Network

We design our core neural network to fit a BSpline surface
patch to each pseudo-height field, hj . In order to do this,
it is important to capture the influence of each point from
hj on the target shape. This is done by adding the atten-
tion mechanism [34] via a transformer [10] based network.
We use a Point Cloud Transformer (PCT) [15] inspired en-
coder. We found transformers are better equipped to handle
the unstructured and irregular set of points as compared to
the CNNs. We cascade two encoder-decoder stages to ob-
tain the required parametric surface patch for given pseudo-
height field (see bottom image in Figure 2). We design a
two-staged network as opposed to a single one as we found
the latter to fail to get accurate results. It becomes too dif-
ficult for the network to learn to infer the intended shape
from an input which is heavily sparse and irregular. The
point set obtained after the Stage 1 network is significantly
denser and regular, hence the control grids obtained from it
are of higher quality.

3.2.1 Stage 1 - Dense Point Set Construction

Each pseudo-height field, hj , (4096×3) is input to this net-
work. The encoder outputs the positional, maximal and av-
erage feature sets for given set of points (1024 × 3). We
concatenate these feature sets into a flattened vector and
then pass it on to our decoder. The decoder outputs a dense
set of points on the intended surface patch represented by
the input strokes set. This transformed output point set rk
has 1024 points. Note that we get a denser set of points in
regions where there is enough information obtainable from
the input strokes, while other regions are relatively sparser.
Thus, the spatial distribution of the points on the surface
patch remains irregular and noisy. The point set, rj , is input
to the next encoder-decoder stage where a BSpline surface
patch is fit to it.

3.2.2 Stage 2 - Parametric Surface Patch Fitting

The architecture of Stage 2 of sketchTransformer is identi-
cal to Stage 1, with two key differences. We only use the
average feature set from the output of the encoder to com-
bat the effects of noise by summarizing the neighborhood of
each point while computing the attention on it. This feature
set is passed to our decoder. In contrast to Stage 1 decoder,
this decoder downsamples the input, to output a control grid
of size 16 × 16. We compute a BSpline surface of degree
6 (in both u and v directions) from this control grid with
clamped uniform knot vectors. We call this surface con-
struction.

This stage outputs a control grid gj corresponding to a
BSpline surface patch pj for each input hj . The final output
is a set of control grids, G = {gj}Mj=1.

3.3. Post-processing

A complete surface model is assembled with this post-
processing component. The set of control grids G and the
adjacency matrix A′(computed in Section 3.1.1) is input to
this component. Since at the end of Algorithm 1 there are
no surface patches for the new stroke clusters, we update
their adjacency to get the final adjacency matrix A. We
join the adjacent surface patches such that local continuity
is preserved among them. For this, we identify their corre-
sponding adjacent boundaries by finding the boundaries in-
tersected by the joining stroke. The boundary control points
of both surfaces are adjusted and stitched together. Figure 3
shows examples of how our framework modifies a previ-
ously fit surface while connecting it with the newly created
surface.

4. Training sketchTransformer
We train the core sketchTransformer network with a dataset
containing pairs of 3D sketch strokes and surface patches.



We extract BSpline surface patches from the ABC dataset
[19]. We sample random curves of varied lengths by choos-
ing consecutive points on the surface patches in either u- or
v-directions. We extract points from these curves. We call
this dataset as the ABCSurface dataset.

For both stages of the network, we use the Chamfer
loss [3] (Eq. 1) between point set sampled from the pre-
dicted surface patch P and point set sampled from the cor-
responding ground truth surface patch S.

Lsurf = max

(
1

|S|
∑
x∈S

min
x̂∈P
||x− x̂||2,

1

|P |
∑
x̂∈P

min
x∈S
||x̂− x||2

)
(1)

For the Stage 2 network, we use two additional loss
terms. We use the L2 loss (Eq. 2) between the ground
truth control grid Scp and the control grid computed by our
method Pcp.

LCP =
1

|Scp|
∑

x∈Scp

||xcp − x̂cp||2 (2)

Taking inspiration from [31], we compute the L2 loss
(Eq. 3) between the Laplacian of the output grid Pcp and
the best oriented output grid Pcp∗ .

Llap =
1

|Pcp|
∑

x̂∈Pcp

||lap(x̂cp∗)− lap(x̂cp)||2 (3)

5. Results
5.1. Comparison with Baselines

We use the Chamfer (Eq. 1) and directed Hausdorff (Eq.
4) distances as the error metrics for all the comparisons. P
is the predicted surface patch and S is the corresponding
ground truth surface patch.

dh(P, S) = max
x∈S

min
x̂∈P
||x− x̂||2 (4)

5.1.1 Single Surface Patch Fitting Evaluation

We perform all these evaluations on the ABCSurface dataset
and train the neural baselines with same set-up as ours.
We compare the performance of our method sketchTrans-
former (SK) with both parametric and implicit surface fit-
ting baselines. Both these types of surface patches are ca-
pable of representing surface geometry. For the paramet-
ric fitting baselines, we compare with the least squared [6]
(LSQ) based approximation of control grid from a given set
of points, neural based method ParseNet [31] (PN) which
predicts control grid from a set of points, and neural based
method StPNet [5] (SN) which predicts control grid from
a set of 3D strokes. For the implicit fitting baselines, we
compare with a non-neural method VIPSS [17] which fits

Input LSQ PN SN

VIPSS NKSR SK GT

Figure 5. Comparing with baselines for creating single surface
patches from input strokes, on ABCSurface dataset. LSQ: [28],
PN: [31], SN: [5], VIPSS: [17], NKSR: [16], SK: Our method.

LSQ PN SN VIPSS NKSR SK
Cfr 0.441 0.066 0.379 0.136 0.031 0.024
Hdf 0.377 0.572 1.101 0.299 0.299 0.298

Table 1. Comparing with baselines for creating single surfaces
from input strokes on ABCSurface dataset. Cfr: Chamfer Error,
Hdf: Hausdorff Error, LSQ: [28], PN: [31], SN: [5], VIPSS:
[17], NKSR: [16], SK: Our method.

surface to a given set of sparse points, and a neural method
NKSR [16] which fits surface to sparse and noisy set of
points. Table 1 and Figure 5 shows that our sketchTrans-
former network outperforms all the baselines for the single
patch fitting task.

5.1.2 Multiple Surface Patch Fitting Evaluation

We evaluate our framework for multiple surface fitting on
the standard patch based models from the classic Utah tea
set dataset [33] comprising of teapot, teacup and teaspoon
models. We extract the bicubic Bezier patches from the ex-
tended set of Utah teapot models and sample strokes on
these patches. Since LSQ [6] and Parsenet [31] are not
equipped to create complete 3D models with only surfaces,
we compare with the VIPSS [17] and NKSR [16] baselines
which are capable of creating surface models. Additionally,
we compare with a non-neural method [41] (SF) which fits
piece-wise smooth surfaces given a set of 3D strokes and
an initial surface model. Note that all the three baselines
output an implicit surface model whereas our method out-
puts a surface model comprising of a collection of BSpline
surface patches. So, we sample points from each of these
surface models to compute their error with respect to the
ground truth models. Table 2 shows the average error be-
tween points sampled from predicted patches and ground
truth patches for the Utah teapot models. First two columns
of Figure 6 shows qualitative results for the same. Since
our method supports modelling from sketch strokes incre-
mentally added, we also compare the performance of our
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Figure 6. Qualitative comparison with baselines for surface mod-
elling from complete and partial sketch strokes sampled from two
models of the Utah tea set dataset [33]. VIPSS: [17], NKSR:
[16], SF: [41], SK: Our method

Teapot Teacup Teaspoon

Chamfer

VIPSS 0.3362 0.9473 0.6791
NKSR 0.1163 0.1811 0.0617

SF 0.2145 0.933 0.051
SK 0.0399 0.0982 0.0329

Hausdorff

VIPSS 0.0482 0.3058 0.5286
NKSR 0.0029 0.0049 0.0019

SF 0.7456 0.3536 0.0442
SK 0.0002 0.0002 0.00007

Table 2. Comparison with baselines for surface modelling on the
Utah tea set dataset [33] (Teapot, Teacup and Teaspoon models).
VIPSS: [17], NKSR: [16], SF: [41], SK: Our method.

method with the baselines for partial sketches of the Utah
tea set models. Last two columns of Figure 6 shows these
results.

5.2. Ablation results

To evaluate the effectiveness of our maximal plane projec-
tion, we reconstruct single surface patches using sketch-

Figure 7. Surface models created with our method from sketches
selected from dataset [11]. We show input sketch strokes and the
predicted surface models overlaid with the sketch strokes.

SK-Raw SK-Rnd SK-Best SK
Chamfer 0.0621 0.5538 0.0374 0.0119

Hausdorff 0.3856 1.1479 0.3762 0.2278

Table 3. Effect of the maximal axial plane projection on sketch-
Transformer performance.

Transformer with different preprocessing of input. We take
a projection on any random plane (SK-Rnd) and on the best
aligning plane (SK-Best), and use them as input to sketch-
Transformer. We also supply the raw samples from the
sketch strokes as input (SK-Raw). The average error across
all patches predicted with these three input are shown in
Table 3 It can be seen that our framework with the max-
imal axial plane projection (i.e., SK) performs better than
the other choices, for both metrics.

5.3. Modelling From Real 3D Sketches

5.3.1 Results on Existing Dataset

We show results of our method on 3D sketches from [11]
in Figure 7. These sketches are drawn by artists using vari-
ous tools designed for 3D sketching. The results show that
our method is able to generalize to such sketches and create
plausible surface models.

5.3.2 Results of The Blender Frontend

We implement a Blender plugin frontend to our frame-
work as a desktop based modelling application. We use the
Grease Pencil [20] tool in Blender to create 3D sketches in
real time and our framework to generate the surface models
from these sketches. It should be noted that even though a
Grease Pencil stroke is planar (on some arbitrary plane), but
a collection of these strokes form a non-planar 3D collection
of strokes. We show examples for objects created from such
sketches in Figure 8. The first column shows the complete
3D sketch, the second shows the parametric surface model
and the last shows the recovered meshes.

Figure 1 shows an entire scene that is sketched and cre-
ated using our Blender frontend. The meshes recovered
from the surface models is rendered with applied materials.
Figure 9 shows a progression of sketches from the same
frontend as the user interactively creates a car model. We



Figure 8. Different 3D models created from real-time 3D sketches
with our Blender frontend.

Figure 9. Progressive modelling of an object from 3D sketches
with our frontend on desktop in real-time.

Figure 10. Models created by different users using our frontend
implementation on the desktop.

also ask multiple users to try our this frontend and some
of the models they created is shown in Figure 10. Top two
rows of Figure 13 shows the comparison of our methods and
the baselines with these user drawn sketches.

5.3.3 Results of The Mobile AR Frontend

We also implement a Mobile AR frontend of our framework
to interactively create models from mid-air sketches in AR.

Figure 11. The first column shows 3D sketches created using the
mobile AR frontend. The middle column shows parametric sur-
face models for them created with our framework. Final column
shows rendered meshes of the same objects.

Figure 12. Models created by different users using our frontend
implementation on mobile AR.

We utilize ARCore [12] for tracking the real world and cre-
ating the augmentations. This frontend allows the users to
draw in a free, unconstrained 3D space. The user draws the
mid-air sketch strokes directly with the phone. They do not
have to choose any sketching plane/surface to project onto.
The strokes can also be snapped to existing patches to aid
in drawing joining strokes. Figure 11 shows various mod-
els created interactively with our application from freehand
mid-air sketch strokes in AR. The corresponding meshes
recovered from the surface models is rendered with applied
materials. We also ask multiple users to try this frontend
and some of the models they created is shown in Figure 12.
Bottom two rows of Figure 13 shows the comparison of our
methods and the baselines with these user drawn sketches.

5.4. User Study

We evaluate the 3D models created with our both interac-
tive frontends by showing pairs of 3D sketch and the surface
models to 30 participants. Note that we only show the sur-
face models as opposed to the rendered textured meshes to
the participants to assess how the raw output is perceived by
the users. For each sketch and model pair, the participants



Input VIPSS NKSR SF SK

Figure 13. Comparison of modelling with our method and base-
lines from 3D sketches created by users with both our frontends.
VIPSS: [17], NKSR: [16], SF: [41], SK: Our method.

Figure 14. Examples of sketch-model pairs shown during the user
study.

are provided with the object’s name and a short phrase de-
scribing the object. We present 12 such pairs in random or-
der to every participant. Participants are allowed to inspect
the sketch and the corresponding parametric surface model
in full 3D with Blender or in our mobile AR application.
Figure 14 shows two such pairs used in the study. The par-
ticipants assigned scores for the following questions, in the
range 1(worst)-10(best), for each pair shown. The partici-
pants were agnostic to the method used to create the models.

- Q1: How well constructed/structured is the 3D model?
- Q2: How well does the 3D sketch represent the described

object?
- Q3: How well does the 3D model represent/fit to the 3D

sketch?

Figure 15 shows the spread of the scores per question,
across all models and participants. It is clear from the study
that both the frontends are equally effective as tools for in-
teractive ideation via 3D sketches, and the quality of the
models is perceived positively by the participants. Also,
many sketches are perceived to be rough or imprecise by
the participants, still their models are perceived well.

Figure 15. Scores summary from the user study for questions
(Q1,Q2,Q3) given section 5.4.

6. Conclusion

We present an interactive framework for incremental cre-
ation of models with rough freehand 3D sketches interac-
tively. The core sketchTransformer network can robustly fit
a parametric surface patch to a sparse and irregular set of
3D sketch strokes. We show a thorough comparative eval-
uation of our method with various baselines to evaluate its
efficacy. We present two frontend implementations for our
framework on the desktop and in AR to demonstrate its use
for a freeform modelling with 3D sketches. Our method
generalizes to real sketch strokes even though it is entirely
trained on synthetically sampled sketch strokes. Our under-
lying patch wise fitting of the given 3D sketches plays a vi-
tal role in this. Our core sketchTransformer learns a strokes
to surface patch mapping which enables it to generalize to
distributions different from the training set. Although, we
observe from various experiments and the user trials that the
network attempts to orient a surface patch with the average
orientation of the input 3D sketch strokes.

We deliberately choose not to beautify the strokes
sketched by the users. The parametric surface models are
also not processed apart from enforcing smooth joins be-
tween adjacent surface patches. Hence, the parametric sur-
face models are not watertight and may have holes, depend-
ing on the sketches that were used to create them. The user
study shows that our framework is a viable choice for rapid
ideation and creation of object models via 3D sketches. A
limitation of our framework is its unsuitability for detailed
or nuanced modelling. In a virtual space, freehand 3D
sketches are difficult to control by the user due to lack of
any tactile feedback and thus it is difficult for them to give
very precise input. Hence, it is not possible to discern finer
details from such input directly. As future work, we want
to extend our framework for authoring deformable models
and animations as well using 3D sketches.
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