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Abstract

The softmax-contaminated mixture of experts (MoE) model is deployed when a
large-scale pre-trained model, which plays the role of a fixed expert, is fine-tuned
for learning downstream tasks by including a new contamination part, or prompt,
functioning as a new, trainable expert. Despite its popularity and relevance, the
theoretical properties of the softmax-contaminated MoE have remained unexplored
in the literature. In the paper, we study the convergence rates of the maximum
likelihood estimator of gating and prompt parameters in order to gain insights
into the statistical properties and potential challenges of fine-tuning with a new
prompt. We find that the estimability of these parameters is compromised when the
prompt acquires overlapping knowledge with the pre-trained model, in the sense
that we make precise by formulating a novel analytic notion of distinguishability.
Under distinguishability of the pre-trained and prompt models, we derive minimax
optimal estimation rates for all the gating and prompt parameters. By contrast,
when the distinguishability condition is violated, these estimation rates become
significantly slower due to their dependence on the prompt convergence rate to
the pre-trained model. Finally, we empirically corroborate our theoretical findings
through several numerical experiments.

1 Introduction

Mixture of experts (MoE) [14, 16] has emerged as a statistical machine learning model that aggregates
the power of multiple sub-models. This model consists of two primary components: expert function
(or, simply, expert) and a gating network. Experts can be, for example, a feed-forward network
(FFN) [33, 4], a classifier [2, 27], or a regression model [7, 17]. The gating network softly divides
the input space into multiple regions where the opinions of some experts are deemed to be more
trustworthy than others. This is done by dynamically allocating higher input-dependent weights
instead of constant weights to the various experts, making MoE more flexible and adaptive than
traditional mixture models [25]. As a consequence, MoE has been leveraged in a wide range of
fields, including natural language processing [5, 15, 10, 8, 21, 33], computer vision [32, 24], speech
recognition [36, 37], multimodal learning [11, 38, 28], continual learning [20, 22], and reinforcement
learning [1, 3].

Unlike these applications where all experts are trainable, parameter-efficient fine-tuning methods
such as prefix tuning [23, 19, 18] can be interpreted as a mixture of a frozen or pre-trained expert and
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a trainable prompt expert responsible for learning downstream or more specialized tasks, which we
refer to as contaminated MoE throughout this paper. Despite the empirical success of this fine-tuning
approach, there is a very limited theoretical understanding of their properties and limitations in the
literature. To the best of our knowledge, contaminated MoE has only been previously studied in
[35] to characterize expert structures achieving the optimal parameter estimation rates. However,
the analysis in that work is conducted under a simplified setting where the gating (mixture weight)
is independent of the input value, which is a very impractical assumption. To close this gap, we
undertake a thorough theoretical analysis of the more commonly used softmax-contaminated MoE
model, specified in equation (1) below, a contaminated MoE model whose gating function takes
the form of a soft-maxed linear network.We analyze the issue of identifiability and the convergence
properties of the maximum likelihood estimator of the prompt parameters to shed light on the
understanding of prompt behavior in prefix tuning methods. A main take-away of our analysis is the
potential for the prompt to be exceedingly similar to – and thus to acquire the same knowledge as
– the pre-trained model, a situation greatly impacting the estimability of the prompt parameter. To
overcome this issue, in Definition 1 we formulate analytical properties of the pre-trained and prompt
models, which we refer to as distinguishability, that are guaranteed to rule out excessive overlap
between the models and ensure good estimation rates. We make the following contributions.

(i) Distinguishability of the prompt model from the pre-trained model. In Section 2, we propose a
novel notion of distinguishability between the pre-trained and prompt models and then illustrate its
properties.

(ii) When the distinguishability condition is satisfied, we show in Section 3.1 that the prompt does not
converge to the pre-trained model – intuitively, these two models have distinct expertise. In fact, we
demonstrate that the convergence rates of the MLE of all the prompt and gating parameters are of
parametric order in the sample size n, that is, Õ(n−1/2). Furthermore, we establish minimax lower
bounds on the estimation errors with matching rates, thus showing that the convergence rate of MLE
is minimax optimal.

(iii) When the distinguishability condition is violated, the prompt will converge to the pre-trained
model, that is, both models employ the same expert structure and thus will gain similar expertise. In
Section 3.2, we show that, under this setting, the estimation rates for prompt and gating parameters
are negatively affected by the prompt convergence to the pre-trained model and, therefore, become
substantially slower than the parametric rate Õ(n−1/2). We confirm that these slower rates are tight
by deriving matching minimax lower bounds. See Table 1 for a summary of our results.

Lastly, in Section 4, we carry out several numerical experiments to empirically justify our theoretical
results, and then conclude the paper in Section 5. Rigorous proofs are provided in the Appendices.

A major technical innovation in our contribution that sets it apart from existing theoretical analyses
of MoE models is the fact that we let the parameters of the prompt model to vary with the sample
size n, thus potentially allowing for a more challenging estimation task as the sample size increases.
This approach is necessary to carry out a minimax analysis.

Notation. For any n ∈ N, we let [n] := {1, 2, . . . , n}. For a vector u we denote with ∥u∥ its
Euclidean norm value. Given any two positive sequences (an)n≥1 and (bn)n≥1, we write an = O(bn)

or an ≲ bn if an ≤ Cbn for all n ∈ N and some C > 0. We further write an = Õ(bn) to denote
an ≲ bnpolylog(bn), where polylog(bn) indicate any term that is polylogarithmic in bn. Lastly, for
any two densities p and q (dominated by the Lebesgue measure), their squared Hellinger distance is
computed as d2H(p, q) := 1

2

∫
[
√
p(x) −

√
q(x)]2dx, while the total variation distance is given by

dV (p, q) :=
1
2

∫
|p(x)− q(x)|dx.

Table 1: Summary of parameter estimation rates in the softmax-contaminated MoE model. Notice
that the rates are in expectation. For the notation, please refer to equations (1) and (2). In addition,
we also denote ∆η∗ := η∗ − η0 and ∆ν∗ := ν∗ − ν0.

Setting | exp(τ̂n)− exp(τ∗)| ∥β̂n − β∗∥ ∥η̂n − η∗∥ |ν̂n − ν∗|
Distinguishable Õ(n− 1

2 ) Õ(n− 1
2 )

Non-distinguishable Õ(n− 1
2 · ∥(∆η∗,∆ν∗)∥−2) Õ(n− 1

2 · ∥(∆η∗,∆ν∗)∥−1)
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2 Preliminaries

In this section, we begin with setting up the problem, followed by a discussion on related works
in Section 2.1. Then, in Section 2.2, we introduce the distinguishability condition and provide an
investigation into the fundamental properties of the softmax-contaminated MoE, including the model
identifiability and the model convergence.

2.1 Problem Setup

Problem setting. Suppose that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ X × Y ⊂ Rd × R are i.i.d.
samples of covariate-response pairs of size n. We assume that the input covariates X1, X2, . . . , Xn

are drown in an i.i.d. manner from some known continuous probability distribution on Rd and that
the responses are generated according to a softmax-contaminated MoE model, which postulates that
the conditional density function of the response given the covariates is given by

pG∗(y|x) :=
1

1 + exp((β∗)⊤x+ τ∗)
· f0(y|h0(x, η0), ν0)

+
exp((β∗)⊤x+ τ∗)

1 + exp((β∗)⊤x+ τ∗)
· f(y|h(x, η∗), ν∗). (1)

Above, the pre-trained model corresponds to as a fixed and known conditional probability density
function f0(·|h0(·, η0), ν0), parametrized by the pre-trained mean expert function x 7→ h0(x, η0) and
variance ν0. Meanwhile, the prompt model, denoted as f(·|h(·, η∗), ν∗) is modeled as an unknown
Gaussian density function with the prompt mean expert x 7→ h(x, η∗) and variance ν∗. We collect
all the unknown parameters of the prompt model into the vector G∗ = (β∗, τ∗, η∗, ν∗), belonging to
some parameter space Ξ ⊆ Rd × R× Rq × R+. Note that we allow the values of these parameters
to vary with the sample size n. However, for notational convenience, we suppress the dependence
of G∗ on n throughout the paper. In addition, it should also be noted that the “probabilistic" MoE
model (1) can be related to “deterministic" MoE models used in deep learning [33] by taking the
expectation of the response given the covariate, that is,

E[Y |X] =
1

1 + exp((β∗)⊤x+ τ∗)
· h0(x, η0) +

exp((β∗)⊤x+ τ∗)

1 + exp((β∗)⊤x+ τ∗)
· h(x, η∗).

Maximum likelihood estimation (MLE). We utilize the maximum likelihood method [34] to
estimate the unknown parameters G∗ = (β∗, τ∗, η∗, ν∗) of the softmax-contaminated MoE model (1)
as follows:

Ĝn := (β̂n, τ̂n, η̂n, ν̂n) ∈ argmax
G∈Ξ

n∑
i=1

log(pG(Yi|Xi)). (2)

For the sake of theory, we assume that the input space X is bounded, whereas the parameter space
Ξ is compact. In addition, we assume that the prompt expert function x 7→ h(x, η) is differentiable
with respect to η ∈ Rq for almost all x ∈ X . Note that these assumptions are mild and have been
used in previous works [13, 30, 35].

Related work. Mendes et al. [26] considered an MoE model where each expert was formulated as
a polynomial regression model. Their objective was to address the trade-off between the number
of experts and the expert size to obtain the optimal parameter estimation rates. Next, Ho et al. [13]
took into account the parameter estimation problem for Gaussian MoE models with input-free gating.
They demonstrated that when expert functions satisfied an algebraic independence condition, the
convergence rates of MLE were optimal of parametric order on the sample size. Conversely, if the
expert functions are not algebraic independent, then the parameter estimation rates became inversely
proportional to the number of fitted experts. These results were then extended to more practical
settings of input-dependent gatings, including softmax gating [31] and sigmoid gating [29], revealing
that the latter was more sample-efficient than former in terms of expert estimation.

It was not until 2024 that Nguyen et al. [30] investigated a contaminated MoE where a frozen pre-
trained model was fine-tuned by a mixture of prompts rather than a single prompt model. However,
they imposed two unrealistic assumptions on their model of interest: they equipped the contaminated
MoE with input-free gating and kept the ground-truth parameters unchanged with the sample size.

3



Then, Yan et al. [35] overcame the second limitation by allowing ground-truth parameters to hinge
on the sample size as in the case of traditional mixture models [6], while the first limitation remained
unsolved. Therefore, in this work, our goal is to completely address both limitations by studying the
softmax-contaminated MoE in equation (1).

Challenges. There are three fundamental challenges of our analysis compared to previous work.

1. Uniform convergence rates. We allow ground-truth parameters G∗ to change with sample size
n, which is challenging yet closer to practice than the settings in previous works on MoE [31, 29],
where G∗ does not change with n. Thus, the convergence rates of parameter estimations in our work
are uniform rather than point-wise as in those works.

2. Minimax lower bounds. We determine minimax lower bounds under both distinguishable and
non-distinguishable settings. Based on these lower bounds, we can claim that our derived convergence
rates are optimal. However, no minimax lower bounds are provided in [31, 29].

3. Input-dependent gating. The latest work on understanding the contaminated MoE model is [35],
but it considers input-free gating in the analysis. On the other hand, in this paper, we take into account
softmax gating, which hinges upon the input value. This input-dependence yields several challenges
on the convergence of density estimation and parameter estimation.

2.2 Fundamental Properties of the Softmax-Contaminated MoE

As mentioned above, when the prompt’s learned skills overlap with those of the pre-trained model,
estimating the prompt parameters becomes challenging due to potential non-identifiability. To capture
that issue accurately, we introduce an analytic condition called distinguishability in Definition 1.
Definition 1 (Distinguishability). We say that f0 is distinguishable from f if the following hold: for
any distinct pairs of parameters (η1, ν1), (η2, ν2) ∈ Θ, if there exist measurable real-valued functions
x ∈ X 7→ b0(x), x ∈ X 7→ b1(x), and x ∈ X 7→ {cα(x)}0≤|α|≤1, where α = (α1, α2) ∈ Nq × N
with |α| = |α1|+ α2 ≤ 1 such that

b0(x) · f0(y|h0(x, η0), ν0) + b1(x) · f(y|h(x, η1), ν1)

+
∑

0≤|α|≤1

cα(x) ·
∂|α|f

∂ηα1∂να2
(y|h(x, η2), ν2) = 0,

for almost every (x, y) ∈ X × Y , then it must be the case that

b0(x) = b1(x) = 0, cα(x) = 0 for all 0 ≤ |α| ≤ 1, for almost every x.

To help understand the notion of distinguishability better, in our next result we characterize the class
of pre-trained models distinguishable from the prompt f . The proof can be found in Appendix B.1.
Proposition 1. If a pre-trained model f0 does not belong to the family of Gaussian densities, then f0
is distinguishable from the prompt model f in the sense of Definition 1.

On the other hand, if f0 belongs to the family of Gaussian distributions and the pre-trained expert
shares the same structure as the prompt expert, that is, h0 = h, then the above condition is violated. It
should be noted that the distinguishability condition ensures that the prompt does not acquire overlap-
ping knowledge with the pre-trained model since the equation f0(y|h(x, η0), ν0) = f(y|h(x, η), ν)
cannot hold for almost all (x, y) ∈ X × Y . Moreover, we illustrate in the following proposition that
the distinguishability condition also implies that the softmax-contaminated MoE is identifiable.
Proposition 2 (Identifiability). Let G,G′ be two components in Ξ. Suppose that f is distinguishable
from f0, then if the identifiability equation pG(y|x) = pG′(y|x) holds for almost all (x, y) ∈ X × Y ,
then we obtain G = G′.

The proof of Proposition 2 is provided in Appendix B.2. Given the consistency of the softmax-
contaminated MoE, we continue to investigate the convergence behavior of density estimation under
this model in Proposition 3 whose proof can be found in Appendix B.3. We conclude this section with
a consistency guarantee for the contaminate density itself, which under mild tail conditions on f0, can
be estimated at a parametric rate in the Hellinger distance, regardless of the distinguishability between
f0 and f . Below and throughout the paper, EpG∗,n

denotes the expectation operator with respect
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to the joint distribution of the data (X1, Y1), . . . , (Xn, Yn) and assuming the softmax-contaminated
MoE model (1) parametrized by G∗ ∈ Ξ, i.e. Yi|Xi ∼ pG∗ for all i. Instead, EX indicates the
expectation with respect to the input distribution.
Proposition 3 (Model Convergence). Suppose that the pre-trained model f0 is bounded and, for
some p > 0,

EX [− log f0(y|h0(X, η0), ν0)] ≳ yp, for almost every y ∈ Y. (3)

Then, for the MLE Ĝn defined in equation (2), it holds, for almost all x ∈ X ,

sup
G∗∈Ξ

EpG∗,n

[
EX

[
dH

(
pĜn

(·|X), pG∗(·|X)
)] ]

≲
√

log(n)/n. (4)

The above result shows that the density estimator pĜn
converges to the true density pG∗ under the

Hellinger distance at the near-parametric rate of order Õ(n−1/2). To extract from this result a conver-
gence guarantee for the MLE Ĝn itself, we follow a by-now-standard approach in the latest analysis
of MoEs; see, e.g., [31]. The main idea is that, if one can exhibit a loss function among param-
eters, say D(Ĝn, G∗), such that EpG∗,n

[D(Ĝn, G∗)] ≲ EpG∗,n

[
EX

[
dH

(
pĜn

(·|X), pG∗(·|X)
)]

,

then convergence of Ĝn in the expected D(·, ·) loss, as well potentially information on the rate of
convergence, will follow. See Appendix A for further details. Throughout the rest of the paper, we
assume that the tail condition (3) on f0 and the distribution of X used in Proposition 3 is in effect.

3 Convergence Analysis of Parameter Estimation

In this section, we present various convergence rates for the MLE estimator of the model prompt
and gating parameters. In Sections 3.1 and 3.2 we provide separate minimax analyses, depending on
whether the distinguishability condition of Definition 1 holds or not, respectively.

3.1 Distinguishable Setting

To start with, we consider a scenario in which the pre-trained model f0 is distinguishable from the
prompt model f . Recall that given the density estimation rate in Proposition 3, we need to construct
a loss function between the MLE Ĝn and the ground-truth parameters G∗, which should be bounded
by the Hellinger distance between the two corresponding densities, in order to capture the parameter
estimation rates. Tailored to the distinguishable setting, we measure the discrepancy between two
arbitrary parameters G and G∗ in Ξ via the loss

D1(G,G∗) = | exp(τ)− exp(τ∗)|+
(
exp(τ) + exp(τ∗)

)
∥(β, η, ν)− (β∗, η∗, ν∗)∥. (5)

We are ready to determine the convergence behavior of the MLE under distinguishable settings.
Theorem 1. Suppose that the pre-trained model f0 is distinguishable from the prompt model f . For
almost every x ∈ X , and for any η ∈ Rq , we assume that the Jacobian of the prompt expert function
does not vanish, i.e., ∂h

∂η (x, η) ̸= 0. Then, there exists a positive constant C1 that depends on Ξ and
f0 such that the Hellinger lower bound EX [dH(pG (·|X), pG∗(·|X))] ≥ C1D1(G,G∗) holds for all
parameters G ∈ Ξ. As a result, we obtain

sup
G∗∈Ξ

EpG∗,n

[
| exp(τ̂n)− exp(τ∗)|2

]
≲ log(n)/n, (6)

sup
G∗∈Ξ

EpG∗,n

[
exp2(τ∗)∥(β̂n, η̂n, ν̂n)− (β∗, η∗, ν∗)∥2

]
≲ log(n)/n. (7)

The proof of Theorem 1 is deferred to Appendix A.1. The bound in equation (6) reveals that the
gating parameter estimator exp(τ̂n) converges to its ground-truth counterpart exp(τ∗) at a rate of
order Õ(n−1/2). Analogously, looking at the bound in equation (7), since the terms exp(τ∗) cannot
go to zero due to the compactness of the parameter space Ξ, it follows that the convergence rates of
the parameter estimators β̂n, η̂n, and ν̂n to β∗, η∗ and ν∗ are also of order Õ(n−1/2). Meanwhile,
in the contaminated MoE with input-free gating in [35], the estimation rates for prompt parameters
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η∗, ν∗ are slower than Õ(n−1/2) as they depend on the convergence rate of the gating parameter to
zero. Therefore, replacing the input-free gating with the softmax gating in the contaminated MoE
helps reduce the sample complexity of parameter estimation.

Given the near-parametric convergence rates in Theorem 1, it is natural to wonder if they are optimal.
To answer this question in the affermative, below we derive minimax lower bounds.
Theorem 2. If the pre-trained model f0 is distinguishable from the prompt model f , then the following
minimax lower bounds hold for any 0 < r < 1:

inf
Gn∈Ξ

sup
G∈Ξ

EpG,n

(
| exp(τn)− exp(τ)|2

)
≳ n−1/r,

inf
Gn∈Ξ

sup
G∈Ξ

EpG,n

(
exp2(τ)∥(βn, ηn, νn)− (β, η, ν)∥2

)
≳ n−1/r,

where the infimum is over all estimators Gn := (βn, τn, ηn, νn) taking values in Ξ.

The proof of Theorem 2 can be found in Appendix A.2. The above minimax lower bounds imply that,
under distinguishability, the convergence rates of the MLE, of order Õ(n−1/2) is nearly minimax
optimal, save for a logarithmic factor.

3.2 Non-distinguishable Setting

We now turn to the much subtler case in which the distinguishability condition is violated. Since we
assume a Gaussian prompt, it follows from Proposition 2 that the pre-trained model f0 necessarily
belongs to the family of Gaussian densities. Furthermore, if the pre-trained and prompt model use the
same expert function, i.e. h0 = h, then f0 is not distinguishable from the prompt model f . We will
thus focus on this challenging scenario.

Under this setting, the prompt model may converge to the pre-trained model. In particular, if the
pair of prompt parameters (η∗, ν∗) converge to the pair of pre-trained parameters (η0, ν0) as n → ∞,
then it follows that f(·|h(·, η∗), ν∗) converges to f0(·|h(·, η0), ν0), indicating that the prompt learns
the same expertise as the pre-trained model. Therefore, it becomes difficult for the gating network to
assign higher weight to either the pre-trained model or the prompt than the other as they have similar
expertise. As a result, one may expect the estimation rates of the gating parameters to be substantially
slower. To formalize these setttings precisely, we need to pay more attention to the expert structure.

It should be noted that a key step in obtaining the MLE convergence rates in Theorem 1 is to decom-
pose the density discrepancy pĜn

− pG∗ into a combination of linearly independent terms through
an appropriate Taylor series expansion of the function g(y|x;β, η, ν) := exp(β⊤x) · f(y|h(x, η), ν)
with respect to its parameters β, η, ν. This process involves, in particular, higher derivatives of the
expert function h with respect to η, which may not be algebraically independent. To ensure the linear
independence of the terms in the Taylor expansion, we formulate a strong identifiability condition
that is indeed sufficient for these purposes.
Definition 2 (Strong Identifiability). The expert function x 7→ h(x, η) is strongly identifiable if it is
twice differentiable with respect to η ∈ Rq for almost all x ∈ X , and if, for any fixed β ∈ Rd and
η ∈ Rq, each of the following sets of real-valued functions (of x) consists of linearly independent
functions over R. For notational simplicity, we write h(·) in place of h(·, η) below.

1. The first-order gating independence set:{
∂h

∂η(u)
, exp(β⊤x)

∂h

∂η(u)

}
u∈[q]

.

2. The gradient product independence set:{
1, x(w), exp(β⊤x),

∂h

∂η(u)
∂h

∂η(v)
, exp(β⊤x)

∂h

∂η(u)
∂h

∂η(v)

}
u,v∈[q], w∈[d]

.

3. The mixed and second-order independence set:{
∂h

∂η(u)
, exp(β⊤x)

∂h

∂η(u)
, x(w) ∂h

∂η(u)
,

∂2h

∂η(u)∂η(v)
, exp(β⊤x)

∂2h

∂η(u)∂η(v)

}
u,v∈[q], w∈[d]

.
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Here, the First-order gating independence condition guarantees that changes in h with respect
to η remain distinguishable, even after modulation by the gating weights exp(β⊤X). This is a
minimal requirement to ensure that the expert and gating mechanisms interact in a structurally
non-degenerate way. The Gradient product independence condition guarantees that the products of
directional derivatives of h are distinguishable from each other (even under modulation by gating
terms) and cannot be expressed as a linear combination of basic functions. This prevents higher-order
interactions among gradients from collapsing into lower-order structures. Finally, the Mixed and
second-order independence condition is stronger than the first-order one. It rules out first-order
interactions between expert and gating parameters of the form ∂h/∂η(w) = x(w) · ∂h/∂η(v), which
would imply ∂g/∂η(w) = ∂2g/(∂β(w)∂η(v)). It also requires that second-order derivatives remain
linearly independent, even accounting for the effect of the gating function. This guarantees that both
first- and second-order directional changes in h convey distinct, non-redundant information, and that
higher-order structure in h cannot be reduced to or absorbed by lower-order terms. This is essential
when handling second-order Taylor expansions of the model.

Examples. The expert functions h(x, η) = GELU(η⊤x), h(x, η) = sigmoid(η⊤x), and h(x, η) =
tanh(η⊤x) satisfy the strong identifiability condition, as their nonlinearities avoid degeneracies. In
contrast, h(x, η) = ReLU(η⊤x) fails the second-order independence condition, as the second-order
derivatives vanish almost everywhere. Another failure case arises when h(x, η) = σ(a⊤x + b),
where η = (a, b) and σ is any scalar activation function. This leads to ∂h/∂a = x · ∂h/∂b, directly
violating Condition 3.

To determine the convergence rates for the MLE in these settings, we construct the following loss
function between parameters G and G∗, carefully tailored to the non-distinguishable setting:

D2(G,G∗) : = exp(τ)∥(∆η,∆ν)∥2 + exp(τ∗)∥(∆η∗,∆ν∗)∥2

−min{exp(τ), exp(τ∗)}
(
∥(∆η,∆ν)∥2 + ∥(∆η∗,∆ν∗)∥2

)
+
(
exp(τ)∥(∆η,∆ν)∥+ exp(τ∗)∥(∆η∗,∆ν∗)∥

)
× ∥(β, η, ν)− (β∗, η∗, ν∗)∥,

where we denote (∆η,∆ν) = (η − η0, ν − ν0) and (∆η∗,∆ν∗) = (η∗ − η0, ν
∗ − ν0).

Theorem 3. Suppose that f0 belongs to the family of Gaussian densities and h0 = h. Then, there
exists a positive constant C2 that depends on Ξ, η0, ν0 such that EX [dH(pG (·|X), pG∗(·|X))] ≥
C2D2(G,G∗) holds for all parameters G. As a result, we obtain

sup
G∗∈Ξ(ln)

EpG∗,n

[
∥(∆η∗,∆ν∗)∥4 × | exp(τ̂n)− exp(τ∗)|2

]
≲ log(n)/n, (8)

sup
G∗∈Ξ(ln)

EpG∗,n

[
exp2(τ∗)∥(∆η∗,∆ν∗)∥2 × ∥(β̂n, η̂n, ν̂n)− (β∗, η∗, ν∗)∥2

]
≲ log(n)/n, (9)

for any sequence (ln)n≥1 such that ln/ log n → ∞ as n → ∞ where we denote

Ξ(ln) :=

G = (τ, β, η, ν) ∈ Ξ :
ln

min
1≤i≤q,1≤j≤d,

{
|η(i)|2, |ν|2, |β(j)|2

}√
n
≤ exp(τ)

 .

The proof of Theorem 3 is in Appendix A.3. Note that under the setting of Theorem 3, the softmax-
contaminated MoE model is not identifiable, that is, the equation pG(y|x) = pG∗(y|x) for almost
all (x, y) does not imply G = G∗. For that reason, we restrict the parameter space to the set Ξ(ln)
to guarantee the consistency of the MLE. Compared to Theorem 1, the above rates exhibit differ in
several aspects.

(i) From equation (8), we observe that the convergence rate of exp(τ̂n) to exp(τ∗) becomes slower
than the parametric order Õ(n−1/2) as they depend on the vanishing rate of (∆η∗,∆ν∗) to zero. For
example, if the pair of prompt parameters (η∗, ν∗) approach (η0, ν0) at the rate of Õ(n−1/8), then
the bound (8) implies that exp(τ̂n) goes to exp(τ∗) at the rate of Õ(n−1/4). This toy example is
indeed confirmed by our numerical experiments in the next section.

(ii) Likewise, the convergence rates of the estimators (β̂n, η̂n, ν̂n) are also impacted by the con-
vergence rates of the prompt parameters and therefore slower than Õ(n−1/2). For example, if
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(∆η∗,∆ν∗) go to zero at the rate of Õ(n−1/8), then the bound (9) indicates that β̂n, η̂n, ν̂n converges
to β∗, η∗, ν∗ at the rate of Õ(n−3/8), respectively. Again, in our numerical experiments below we
empirically verify this behavior.

In our final result, whose proof can be found in Appendix A.4, we show that the slower converge
rates for the MLE under non-distinguishability are in fact essentially minimax optimal.
Theorem 4. Suppose that f0 belongs to the family of Gaussian densities and h0 = h. Then, the
minimax lower bounds

inf
Gn

sup
G∈Ξ(ln)

EpG,n

[
∥(∆η,∆ν)∥4 × ∥ exp(τn)− exp(τ)∥2

]
≳ n−1/r,

inf
Gn

sup
G∈Ξ(ln)

EpG,n

[
exp2(τ)∥(∆η,∆ν)∥2 × ∥(βn, ηn, νn)− (β, η, ν)∥2

]
≳ n−1/r,

hold for any sequence (ln)n≥1 and any 0 < r < 1, , where the infimum is over all estimators Gn

taking values in Ξ.

3.3 Practical Implications

There are two important practical implications for the design of a contaminated MoE model from our
theoretical results.

1. Softmax gating is more sample-efficient than input-free gating. We observe that softmax gating
yields faster convergence rates of prompt parameter estimation in contaminated MoE than input-free
gating in [35]. In particular, when using input-free gating, Table 2 reveals that the rates for estimating
expert parameters and variance depend on the convergence rate of the gating parameter to zero. By
contrast, when using softmax gating, estimation rates for expert parameters and variance become
significantly faster as the previous rate dependence disappears. Therefore, our theories encourage the
use of softmax gating over input-free gating when tuning contaminated-MoE-based models.

2. Prompt models should have different expertise from pre-trained models. It can be seen from
Table 2 that when the prompt model acquires overlapping knowledge with the pre-trained model
(non-distinguishable setting), the convergence rates of parameter estimation are slower than when
these models have distinct knowledge (distinguishable setting). Thus, our theories advocate using
prompt models with different expertise from the pre-trained model.

Table 2: Comparison of parameter estimation rates in input-free-contaminated MoE [35] and softmax-
contaminated MoE (Ours). Below, we consider gating parameters exp(β∗

0), expert parameters η∗,
and variance ν∗. In addition, λ∗ denotes the constant weight in input-free-contaminated MoE.

Distinguishable Setting
Gating parameters Expert parameters and Variance

Input-free gating [35] Õ(n−1/2) Õ(n−1/2(λ∗)−1)

Softmax gating (Ours) Õ(n−1/2) Õ(n−1/2)

Non-distinguishable Setting
Gating parameters Expert parameters and Variance

Input-free gating [35] Õ(n− 1
2 · ∥(∆η∗,∆ν∗)∥−2) Õ(n− 1

2 · ∥(∆η∗,∆ν∗)∥−1(λ∗)−1)

Softmax gating (Ours) Õ(n− 1
2 · ∥(∆η∗,∆ν∗)∥−2) Õ(n− 1

2 · ∥(∆η∗,∆ν∗)∥−1)

4 Numerical Experiments

In this section, we present several numerical experiments to verify our theoretical findings.

Experimental setup. Recall that, in the distinguishable setting, the pre-trained model f0 does not
belong to the Gaussian density family. Thus, we let f0 be the density of a Laplace distribution, with
mean function h0(x, η0) = tanh(η⊤0 x) and variance ν0. Here, η0 is a d-dimensional vector defined
as e1 := (1, 0, . . . , 0), and ν0 = 0.001. Meanwhile, the prompt f is formulated as a Gaussian density,
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with the same tanh mean function but a different parameter η∗—i.e., h(x, η∗) = tanh((η∗)⊤x)—and
variance ν∗.

On the other hand, in the non-distinguishable setting , both f and f0 belong to the Gaussian density
family, and h and h0 are expert functions of the same form (albeit parameterized by different values of
η0 and η∗). As in the previous case, we let the expert function be the tanh function: in the pre-trained
model, the expert is h(x, η0) = tanh(η⊤0 x), and in the prompt model, it is h(x, η∗) = tanh((η∗)⊤x).

Synthetic data generation. We create synthetic datasets following the model outlined in equation (1).
Specifically, we generate data pairs {(Xi, Yi)}ni=1 ∈ X ×Y ⊂ Rd×R by first drawing each covariate
Xi independently from a standard Gaussian distribution, for i = 1, . . . , n, and consistently set d = 8
across all trials. The responses Yi are drawn from the density pG∗(y|x), where G∗ = (β∗, τ∗, η∗, ν∗):

(a) In the distinguishable setting, we let β∗ = 1/
√
d · 1d, τ

∗ = 1, η∗ = −e1 = −η0 and ν∗ = ν0 =
0.001.

(b) In the non-distinguishable setting, we examine two cases to study the MLE convergence behavior
as either η∗ or ν∗ varies with n: in the first, η∗ is an O(n−1/8) perturbation of η0 with ν∗ fixed at ν0;
in the second, η∗ = −η0 while ν∗ is perturbed around ν0 at the same rate. In detail, we set:

(i) In the first case, β∗ = 1/
√
d · 1d, τ∗ = 1, η∗ = e1(1 + n−1/8) = η0(1 + n−1/8), and

ν∗ = ν0 = 0.001.
(ii) In the second case, β∗ = 1/

√
d · 1d, τ∗ = 1, η∗ = −e1 = −η0, and ν∗ = 0.001(1 +

n−1/8) = ν0(1 + n−1/8).

Training procedure. We conduct 40 experiments and, for each of them, consider 20 different sample
sizes n, ranging from 103 to 105. In computing the MLEs, the initialization is set relatively close to
the true parameter values to mitigate potential optimization instabilities. We use an EM algorithm [16]
to compute the MLE, employing an off-the-shelf BFGS optimizer for the M-step due to the absence
of a universal closed-form solution. All the numerical experiments are performed on a MacBook Air
with an Apple M4 chip.

Results. The experimental results are presented in Figure 1 and Figure 2, where the x-axis displays
varying sample sizes n, and the y-axis shows the parameter estimation error. We now present a
detailed analysis of the results shown in each figure:

(a) Figure 1 displays the results for Theorem 1. We observe that the convergence rates of
(β̂n, τ̂n, η̂n, ν̂n) are O(n−0.45),O(n−0.52),O(n−0.50),O(n−0.54), respectively, aligning with the
theoretical rates of order O(n−1/2) in Theorem 1.

(b) On the other hand, Figure 2 illustrates the parameter estimation errors for the simulations
conducted in the non-distinguishable setting as Theorem 3.

(i) In the first case, η∗ converges to η0 at the rate of O(n−1/8), while ν∗ remains fixed,
Figure 2a shows that the convergence rate of exp(τ̂n) to exp(τ∗) is O(n−0.23), which is
consistent with the expected rate of O(n−1/4). The convergence rates for β̂n, η̂n, and ν̂n
are O(n−0.37), O(n−0.39), and O(n−0.35), respectively, all of which are approximately
O(n−0.375), as they hinge on the vanishing rate O(n−3/8). These empirical rates are
consistent with the theoretical rates in Theorem 3.

(ii) In the alternative setting, η∗ is held fixed, while ν∗ converges to ν0 at the rate of O(n−1/8).
Figure 2b reveals that the convergence rate of exp(τ̂n) to exp(τ∗) is of order O(n−0.22),
again close to O(n−1/4). Meanwhile, the MLEs β̂n, η̂n, and ν̂n still empirically converge to
β∗, η∗, and ν∗ at rates of O(n−0.39), O(n−0.37), and O(n−0.39), respectively, which align
well with the theoretical rates Õ(n−3/8). This observation is consistent with the theoretical
convergence rates in Theorem 3.

5 Conclusion

In this paper, we characterize the convergence behavior of maximum likelihood estimators for
parameters in the softmax-contaminated MoE model formulated as a mixture of a frozen pre-trained
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Figure 1: (Distinguishable Setting: f0 is the density of a Laplace distribution.) Log-log graphs
depicting the empirical convergence rates of the MLE (β̂n, τ̂n, η̂n, ν̂n) to the ground-truth values
(β∗, τ∗, η∗, ν∗). The blue lines display the parameter estimation errors, while the orange dashed
dotted lines are the fitted lines, highlighting the empirical MLE convergence rates.
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(b) Case (ii): β∗ = 1/
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Figure 2: (Non-distinguishable Setting: f0 is a Gaussian density.) Log-log graphs depicting the
empirical convergence rates of the MLE (β̂n, τ̂n, η̂n, ν̂n) to the ground-truth values (β∗, τ∗, η∗, ν∗).
The blue lines display the parameter estimation errors, while the orange dashed dotted lines are the
fitted lines, highlighting the empirical MLE convergence rates. Figure 2a and Figure 2b illustrates
results for Case (i) and Case (ii), respectively.

model and a trainable prompt model. To capture the challenge in which the prompt model admits the
same expertise as the pre-trained model, we propose a novel analytic distinguishability condition and
divide our analysis based on that condition. When the distinguishability condition is satisfied, we
obtain minimax optimal parameter estimation rates of parametric order in the sample size, which
are faster than those under the contaminated MoE with input-free gating. Conversely, when the
distinguishability condition is violated, these rates become substantially slower than the parametric
rates as they hinge on the convergence rates of prompt parameters to pre-trained parameters.

Based on our theoretical analysis, we make the following observations. First, the softmax gating helps
to improve the sample efficiency for estimating the parameters in the contaminated MoE compared
to the input-free gating. Second, the convergence rates for parameter estimation will be negatively
affected if the prompt model acquires overlapping knowledge with the pre-trained model, thereby
increasing the sample complexity of parameter estimation.

In future work, we plan to consider a more challenging setting of the contaminated MoE where the
pre-trained model is fine-tuned by multiple prompt models rather than a single prompt as in the current
setting. Furthermore, we can also generalize the analysis to the scenario where the prompt models
belong to various families of distributions, rather than being restricted to Gaussian distributions.
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Supplementary Material for “On Minimax Estimation of
Parameters in Softmax-Contaminated Mixture of Experts”

In this supplementary material, we provide the theoretical proofs omitted from the main text. Ap-
pendix A presents the proofs of our main results, including the theorems on convergence rates for
parameter estimation and the minimax lower bounds stated in Section 3. Proofs of auxiliary results
concerning the fundamental properties of the softmax-contaminated MoE model, introduced in
Section 2, are deferred to Appendix B.

A Proof of Main Results

In this section, we present the proofs of the MLE rate theorem and the minimax lower bound theorem
from Section 3, covering both distinguishable and non-distinguishable settings.

A.1 Proof of Theorem 1

We begin by proving Theorem 1 under the distinguishable setting.

Proof of Theorem 1. Let G = (β̄, τ̄ , η̄, ν̄) , we need to demonstrate that

lim
ε→0

inf
G,G∗

{
EX [dV (pG(·|X), pG∗(·|X))]

D1(G,G∗)
: D1(G,G) ∨D1(G∗, G) ≤ ε

}
> 0.

Using the argument with Fatou’s lemma as in Theorem 3.1, [12] , it is sufficient to show that

lim
ε→0

inf
G,G∗

{
∥pG − pG∗∥∞
D1(G,G∗)

: D1(G,G) ∨D1(G∗, G) ≤ ε

}
> 0.

Assume by contrary that the above claim is not true. Then, there exist two sequences Gn =
(βn, τn, ηn, νn) and G∗,n = (β∗

n, τ
∗
n, η

∗
n, ν

∗
n), such that when n tends to infinity, we get

D1(Gn, G) → 0,

D1(G∗,n, G) → 0,

∥pGn
− pG∗,n∥∞/D1(Gn, G∗,n) → 0.

In this proof, we will take into account only the most challenging setting of (βn, ηn, νn) and
(β∗

n, η
∗
n, ν

∗
n) when they converge to the same limit point (β′, η′, ν′), where (β′, η′, ν′) is not necessar-

ily equal to (β̄, η̄, ν̄) .

Step 1: Density Decomposition. Subsequently, we consider Qn(Y |X) = [1+exp((βn)
⊤X+ τn)] ·

[pGn
(Y |X)− pG∗,n(Y |X)], which can decomposed as

Qn(Y |X) = exp(τn)
[
exp((βn)

⊤X)f(Y |h(X, ηn), νn)− exp((β∗
n)

⊤X)f(Y |h(X, η∗n)), ν
∗
n)
]
:= In

− exp(τn)
[
exp((βn)

⊤X)− exp((β∗
n)

⊤X)
]
pG∗,n(Y |X) := IIn

+ [exp(τn)− exp(τ∗n)] exp((β
∗
n)

⊤X)
[
f(Y |h(X, η∗n), ν

∗
n)− pG∗,n(Y |X)

]
Based on the first order Taylor expansion, In and IIn could be denoted as

In = exp(τn)
∑
|α|=1

1

2α3α!
(βn − β∗

n)
α1(ηn − η∗n)

α2(νn − ν∗n)
α3

·Xα1 exp((β∗
n)

⊤X) · ∂
|α2|+2α3f

∂h|α2|+2α3
(Y |h(X, η∗n), ν

∗
n)

∂α2h

∂α2η
(X, η∗n) +R1(Y |X)

= exp(τn)

2∑
2|ℓ1|+ℓ2=1

∑
α∈Iℓ1,ℓ2

1

2α4α!
(βn − β∗

n)
α1(ηn − η∗n)

α2(νn − ν∗n)
α3

·Xℓ1 exp((β∗
n)

⊤X) · ∂
ℓ2f

∂hℓ2
(Y |h(X, η∗n), ν

∗
n)

∂α2h

∂α2η
(X, η∗n) +R1(Y |X) (10)
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where ℓ1 = α1, ℓ2 = |α2|+ 2α3, and

Iℓ1,ℓ2 :=
{
α = (αi)

3
i=1 ∈ Nd × Nq × N : α1 = ℓ1, 2α3 = ℓ2 − |α2|

}
, (11)

for all (ℓ1, ℓ2) ∈ Nd × N such that 1 ≤ 2|ℓ1|+ ℓ2 ≤ 2.

Similarly, IIn can be expressed as:

IIn = − exp(τn)
∑
|γ|=1

1

γ!
(βn − β∗

n)
γXγ exp((β∗

n)
⊤X)pG∗,n(Y |X) +R2(Y |X). (12)

Here Rp(Y |X)/D1(Gn, G∗,n) → 0 as n → ∞, where Rp(X,Y ), p ∈ [2] are Taylor remainders .
Consequently, Qn can be expressed as:

Qn =

2∑
2|ℓ1|+ℓ2=0

Tn
ℓ1,ℓ2 ·X

ℓ1 exp((β∗
n)

⊤X)
∂α2h

∂α2η
(X, η∗n)

∂ℓ2f

∂hℓ2
(Y |h(X, η∗n), ν

∗
n)

+

1∑
|γ|=0

Sn
γ ·Xγ exp((β∗

n)
⊤X)pG∗,n(Y |X), (13)

with coefficients Tn
ℓ1,ℓ2

and Sn
γ are defined for any 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2 , and 0 ≤ |γ| ≤ 1 as:

Tn
ℓ1,ℓ2 =


exp(τn)

∑
α∈Iℓ1,ℓ2

1

2α3α!
(βn − β∗

n)
α1(ηn − η∗n)

α2(νn − ν∗n)
α3 , (ℓ1, ℓ2) ̸= (0d, 0),

exp(τn)− exp(τ∗n), (ℓ1, ℓ2) = (0d, 0);

and

Sn
γ =

− exp(τn)
1

γ!
(βn − β∗

n)
γ , |γ| ≠ 0,

− exp(τn) + exp(τ∗n), |γ| = 0.

where Qn can be viewed as linear combinations of elements of the set H1 defined as

H1 =
{
Xℓ1 exp((β∗

n)
⊤X)

∂α2h

∂ηα2
(X, η∗n)

∂ℓ2f

∂hℓ2
(Y |h(X, η∗n), ν

∗
n) , X

γ exp((β∗
n)

⊤X)pG∗,n(Y |X)
}
.

(14)

Step 2: Non-vanishing coefficients. In this step, we will use a contradiction argument to demonstrate
that not all the coefficients in the set

S1 =

{
Tn
ℓ1,ℓ2

D1n
,
Sn
γ

D1n
: 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2, 0 ≤ |γ| ≤ 1

}
(15)

vanish as n → ∞ where D1n := D1(Gn, G∗,n). Specifically, suppose that all these coefficients
converge to zero, when n → ∞, then we get,

|exp(τn)− exp(τ∗n)|
D1n

=
|Tn

0d,0
(j)|

D1n
→ 0, (16)

Similarly, by analyzing the limits of Tn
ℓ1,ℓ2

/D1n s.t. 1 ≤ 2|ℓ1|+ ℓ2 ≤ 2, we conclude that:

exp(τn)(βn − β∗
n)

(u)

D1n
→ 0,

exp(τn)(ηn − η∗n)
(v)

D1n
→ 0,

exp(τn)(νn − ν∗n)

D1n
→ 0,

as n → ∞ for all u ∈ [d], v ∈ [q]. Given that our parameter lies in a compact set, there exists a
positive constant C such that | exp(τ∗n)/ exp(τn)| ≤ C. Thus, we have

exp(τ∗n)(βn − β∗
n)

(u)

D1n
→ 0,

exp(τ∗n)(ηn − η∗n)
(v)

D1n
→ 0,

exp(τ∗n)(νn − ν∗n)

D1n
→ 0,
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The limits imply that

(exp(τn) + exp(τ∗n))∥(βn, ηn, νn)− (β∗
n, η

∗
n, ν

∗
n)∥/D1n → 0. (17)

Combining the results in equations (16) and (17) with the formulation of D1n, we deduce that

1 = [| exp(τn)− exp(τ∗n)|+ (exp(τn) + exp(τ∗n))∥(βn, ηn, νn)− (β∗
n, η

∗
n, ν

∗
n)∥] /D1n → 0,

which is a contradiction. Thus, not all the coefficients in the set S1 tend to 0 as n → ∞.

Step 3 - Application of Fatou’s lemma. Let us denote by mn the maximum of the absolute values
of those coefficients. It follows from the previous result that 1/mn ̸→ ∞. Then |Tn

ℓ1,ℓ2
|/(mnD1n)

and |Sn
γ |/(mnD1n) remain bounded, we can consider subsequences of these terms, ensuring that:

|Tn
ℓ1,ℓ2

|/mnD1n → ηℓ1,ℓ2 , |Sn
γ |/mnD1n → ωγ , as n → ∞ for all 0 ≤ 2|ℓ1|+ ℓ2 ≤ 2, 0 ≤ |γ| ≤ 1.

Here, at least one among ηℓ1,ℓ2(j) and ωγ(j) is different from zero. By applying the Fatou’s lemma,
we get

lim
n→∞

EX [dV (pGn
(·|X), pG∗(·|X))]

mnD1n
≥
∫

lim inf
n→∞

|pGn
(Y |X)− pG∗(Y |X)|

2mnD1n
d(X,Y ) (18)

Under the given assumption, the left-hand side of the equation (18) is zero. Consequently, the
integrand on the right-hand side of the equation (18) must also be zero almost surely with respect to
(X,Y ). This results in:

2∑
2|ℓ1|+ℓ2=0

ηℓ1,ℓ2 ·Xℓ1 exp((β∗)⊤X)
∂α2h

∂ηα2
(X, η∗)

∂ℓ2f

∂hℓ2
(Y |h(X, η∗), ν∗)

+

1∑
|γ|=0

ωγ ·Xγ exp((β∗)⊤X)pG∗(Y |X) = 0,

for almost surely (X,Y ). Furthermore, by Lemma 1, the collection

W1 :=

{
Xℓ1 exp((β∗)⊤X)

∂α2h

∂ηα2
(X, η∗)

∂ℓ2f

∂hℓ2
(Y |h(X, η∗), ν∗) : 0 ≤ ℓ2 ≤ 2

}
∪
{
Xγ exp((β∗)⊤X)pG∗(Y |X)

}
(19)

is linearly independent with respect to (X,Y ). Consequently, it follows that ηℓ1,ℓ2 = ωγ = 0, for all
0 ≤ 2|ℓ1| + ℓ2 ≤ 2, 0 ≤ |γ| ≤ 1. But this contradicts that from the definition, at least one among
ηℓ1,ℓ2 , ωγ is nonzero. Hence, we reach the desired conclusion.

Lemma 1. Suppose that f0 is distinguishable with f , then the set W1 defined in equation (19) is
linearly independent w.r.t. (X,Y ).

Proof of Lemma 1. Recall the set

W1 :=

{
Xℓ1 exp((β∗)⊤X)

∂α2h

∂ηα2
(X, η∗)

∂ℓ2f

∂hℓ2
(Y |h(X, η∗), ν∗) : 0 ≤ ℓ2 ≤ 2

}
∪
{
Xγ exp((β∗)⊤X)pλ∗,G∗(Y |X)

}
and the density

pG∗(Y |X) :=
1

1 + exp((β∗)⊤X + τ∗)
· f0(Y |h(X, η0), ν0)

+
exp((β∗)⊤X + τ∗)

1 + exp((β∗)⊤X + τ∗)
· f(Y |h((X, η∗), ν∗).

In words, pG∗ is a convex combination (depending on X) of

f0(Y |h(X, η0), ν0) and f(Y |h(X, η∗), ν∗).
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Noting that the term in set W1 can be divided as the density function or its first and second derivatives

pG∗(Y |X), f(Y |h(X, η∗),
∂f

∂h
(Y |h(X, η∗)) ,

∂2f

∂h2
(Y |h(X, η∗)) ,

along with the factor involving only X .

Step 1: Distinguishable property with respect to Y .

First, fix X . Suppose for contradiction that there exist real numbers c0, c1, c2, d (may depend on X),
not all zero, such that

c0
∂0f

∂h0
+ c1

∂1f

∂h
+ c2

∂2f

∂h2
+ dpG∗(Y |X) = 0, for almost every Y.

Note that ∂0f
∂h0 = f . Hence we have

c0f(Y |h(X, η∗), ν∗) + c1
∂f

∂h
(Y |h(X, η∗), ν∗) + c2

∂2f

∂h2
(Y |h(X, η∗), ν∗) + dpG∗(Y |X) = 0.

Since

pG∗(Y |X) = ϕ(X)f0(·) +
(
1− ϕ(X)

)
f(·), ϕ(X) :=

1

1 + exp
(
(β∗)⊤X + τ∗

) ,
the above can be rewritten as[

c0 + d
(
1− ϕ(X)

)]
f(·) + c1

∂f

∂h
(·) + c2

∂2f

∂h2
(·) + dϕ(X)f0(·) = 0.

Using the hypothesis about the distinguishable property of f0 with respect to f as well as the Gaussian
property of f , which implies ∂2f/∂h2 = 1/2 · ∂f/∂ν, we have

dϕ(X) = 0 for almost all X, and c0 + d
(
1− ϕ(X)

)
= 0 for almost all X,

and simultaneously c1 = c2 = 0. But ϕ(X) ̸= 0 on a set of X-values of positive measure , so
d = 0. Plugging d = 0 into c0 + d(1 − ϕ(X)) = 0 yields c0 = 0. Hence c0 = c1 = c2 = d = 0.
Since no nontrivial linear combination of

{
f, ∂f

∂σ ,
∂2f
∂σ2 , pG∗

}
can vanish almost everywhere, these

four functions are linearly independent when X is fixed. This completes the proof of step 1.

Step 2: Distinguishable property with respect to X .

Let us consider coefficients appear in each density factor.

• Term related to pG∗(Y |X): The factor appearing along with pG∗(Y |X) are exp((β∗)⊤X), and
X(i) exp((β∗)⊤X), where 1 ≤ i ≤ d. Suppose there exists constants c, a1, . . . , ad such that

c exp((β∗)⊤X) +

d∑
i=1

aiX
(i) exp((β∗)⊤X) = 0, a.s.

This equation means that c+
∑d

i=1 aiX
(i) = 0, a.s. Given that X has non-vanish almost everywhere

density function, this relation implies that c = 0, ai = 0, 1 ≤ i ≤ d.

• Terms related to f(Y |h(X, η∗), ν∗): The factors appearing along with f(Y |h(X, η∗), ν∗) are
exp((β∗)⊤X), and X(i) exp((β∗)⊤X), where 1 ≤ i ≤ d. The identical argument as in the case for
pG∗(Y |X) also gives us the independency.

• Terms related to ∂f
∂h (Y |h(X, η∗), ν∗): The factors appearing along with pG∗(Y |X) are

∂h

∂η(i)
(X, η∗) exp((β∗)⊤X), 1 ≤ i ≤ d.
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Suppose there exists constants a1, . . . , ad not all equal to zero such that

d∑
i=1

ai
∂h

∂η(i)
(X, η∗) exp((β∗)⊤X) = 0, a.s.

This equation means that

d∑
i=1

ai
∂h

∂η(i)
(X, η∗) = 0, a.s., or ∇ah(X, η∗) = 0, a.s.,

where a = (a1, . . . , ad). This is a contradiction.

• Terms related to ∂2f
∂h2 (Y |h(X, η∗)): There is only one such term is

exp((β∗)⊤X)
∂2f

∂h2
(Y |h(X, η∗)) .

Its coefficient obviously vanishes from the independent property with respect to Y .

This completes the proof of Lemma 1.

A.2 Proof of Theorem 2

As a first step in proving the minimax lower bounds for the distinguishable setting (Theorem 2), we
define two distances:

d1(G1, G2) = exp(τ1)∥(β1, η1, ν1)− (β2, η2, ν2)∥,
d2(G1, G2) = | exp(τ1)− exp(τ2)|2,

for any G1 = (β1, τ1, η1, ν1) ∈ Ξ and G2 = (β2, τ2, η2, ν2) ∈ Ξ. Obviously d2(G1, G2) is a proper
distance. The structure for d1(G1, G2) tells us that it is not symmetric. Only when τ1 = τ2 = τ ,
d1(G1, G2) is symmetric. Also d1(G1, G2) still satisfies a weak triangle inequality:

d1(G1, G2) + d1(G2, G3) ≥ min{d1(G1, G2), d1(G2, G3)}.
Therefore, we will apply the modified Le Cam method for nonsymmetric loss, as outlined in Lemma
C.1 of [9], to handle this distance. For f satisfies all assumptions in Theorem 2, based on the Taylor
expansion, we have the following results:
Lemma 2. Given f in Theorem 2, we denote

S1 = (τ, β1, η1, ν1), S2 = (τ, β2, η2, ν2), and S′
1 = (τ1, β, η, ν), S

′
2 = (τ2, β, η, ν),

we achieve for any r < 1 that

(i) lim
ϵ→0

inf
S1,S2

{
EX [dH (pS1

(·|X), pS2
(·|X))]

dr1 (S1, S2)
: d1 (S1, S2) ≤ ϵ

}
= 0,

(ii) lim
ϵ→0

inf
S′
1,S

′
2

{
EX [dH

(
pS′

1
(·|X), pS′

2
(·|X)

)
]

dr2 (S
′
1, S

′
2)

: d2 (S
′
1, S

′
2) ≤ ϵ

}
= 0.

We will prove this lemma later.

Proof of Theorem 2. Denote G∗ = (β∗, τ∗, η∗, ν∗) and assume r < 1. Given Lemma 2 part (i)
, for any sufficiently small ϵ > 0, there exists G′

∗ = (β∗
1 , τ

∗, η∗1 , ν
∗
1 ) such that d1(G∗, G

′
∗) =

d1(G
′
∗, G∗) = ϵ , there exists a constant C0, s.t.

EX [dH(pG∗(·|X), pG′
∗
](·|X)) ≤ C0ϵ

r. (20)

Now we will denote pnG∗
as the density of the n-i.i.d. sample (X1, Y1), · · · , (Xn, Yn). Lemma C.1

in [9] tells us that

inf
Gn∈Ξ

sup
G∈Ξ

EpG

(
exp2(τ)∥(βn, ηn, νn)− (β, η, ν)∥2

)
≥ ϵ2

2

(
1− EX [dV (p

n
G∗

(·|X), pnG′
∗
(·|X))]

)
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≥ ϵ2

2

√
1− (1− C2

0ϵ
2r)

n
.

Last inequality is from the definition of the Total Variation distance and Hellinger distance and

equation (20). Let ϵ2r =
1

C2
0n

, then for any r < 1 we have

inf
Gn∈Ξ

sup
G∈Ξ

EpG

(
exp2(τ)∥(βn, ηn, νn)− (a, b, ν)∥2

)
≥ c1n

−1/r,

where c1 is some positive constant. Following a similar reasoning and using Lemma 2 part (ii) , we
will obtain

inf
Gn∈Ξ

sup
G∈Ξ

EpG

(
| exp(τn)− exp(τ)|2

)
≥ c2n

−1/r,

for some positive constant c2. Consequently, we establish all of the results for Theorem 2.

Proof of Lemma 2 (i) . Consider two sequences

S1,n = (τn, β1,n, η1,n, ν1,n),

S2,n = (τn, β2,n, η2,n, ν2,n),

with the same τn. By the contaminated MoE model definition, we have

pSj,n(Y |X) =
1

1 + exp(β⊤
j,nX + τn)

f0(Y |h0(X, η0), ν0)

+
exp(β⊤

j,nX + τn)

1 + exp(β⊤
j,nX + τn)

f(Y |h(X, ηj,n), νj,n),

for j = 1, 2. Since (τn, βj,n) lie in a compact set, and both f0 and f are non-negative. Hence, the
squared Hellinger distance satisfies

EX [d2H(pS1,n
(·|X), pS2,n

(·|X))] ≤ C

∫ (
pS1,n

(Y |X)− pS2,n
(Y |X)

pS2,n(Y |X)

)2

d(X,Y )

≤ C ′
∫ [

exp(β⊤
1,nX)f(Y |h(X, η1,n), ν1,n)− exp(β⊤

2,nX)f(Y |h(X, η2,n), ν2,n)

exp(β⊤
2,nX)f(Y |h(X, η2,n), ν2,n)

]2
d(X,Y ),

for some constants C,C ′ depending on the compactness bounds.

Consider the Taylor expansion of the map

(β, η, ν) 7→ exp(β⊤X)f (Y |h(X, η), ν)

at the point (β2,n, η2,n, ν2,n), expanded up to first order with integral remainder. Let α = (α1, α2, α3)
denote a multi-index where α1 ∈ Nd, α2 ∈ Nq, and α3 ∈ N index components of β, η, and ν,
respectively. Then we have:

exp(β⊤
1,nX)f (Y |h(X, η1,n), ν1,n)− exp(β⊤

2,nX)f (Y |h(X, η2,n), ν2,n)

=
∑
|α|=1

(β1,n − β2,n)
α1(η1,n − η2,n)

α2(ν1,n − ν2,n)
α3

α1!α2!α3!

·Xα1 exp(β⊤
2,nX)

∂|α2|+α3f

∂ηα2∂να3
(Y |h(X, η2,n), ν2,n)

+
∑
|α|=1

(β1,n − β2,n)
α1(η1,n − η2,n)

α2(ν1,n − ν2,n)
α3

α1!α2!α3!

∫ 1

0

Xα1 exp
(
(β2,n + t(β1,n − β2,n))

⊤X
)

· ∂
|α2|+α3f

∂ηα2∂να3
(Y |h(X, η2,n + t(η1,n − η2,n)), ν2,n + t(ν1,n − ν2,n)) dt.
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So it follows that

EX [d2H(pS1,n
(·|X), pS2,n

(·|X))]

d2r1 (S1,n, S2,n)
→ 0.

since τn lies in a compact set. This establishes part (i) of the lemma.

Proof of Lemma 2 (ii). We consider two sequences

S′
1,n = (τ1,n, βn, ηn, νn),

S′
2,n = (τ2,n, βn, ηn, νn),

with different τ1,n ̸= τ2,n but the same (βn, ηn, νn).

Using the contaminated MoE definition, the difference in conditional densities is:

pS′
1,n

(Y |X)− pS′
2,n

(Y |X) =
eβ

⊤
n X (eτ2,n − eτ1,n)(

1 + eβ
⊤
n X+τ1,n

) (
1 + eβ

⊤
n X+τ2,n

)
· [f(Y |h(X, ηn), νn)− f0(Y |h0(X, η0), ν0)] .

By the standard bound for squared Hellinger distance,

EX [d2H(pS′
1,n

(·|X), pS′
2,n

(·|X))] ≤ C

∫ (pS′
1,n

(Y |X)− pS′
2,n

(Y |X)

pS′
2,n

(Y |X)

)2

d(X,Y ).

Since (βn, ηn, νn) lie in a compact set, and both f and f0 are bounded away from zero, we have
pS′

2,n
(Y |X) ≥ c > 0. So the denominator is lower bounded.

Then there exists a constant C ′ such that:

EX [d2H(pS′
1,n

(·|X), pS′
2,n

(·|X))] ≤ C ′ (eτ1,n − eτ2,n)
2
.

Now recall the definition of the distance:

d2((τ1,n, βn, ηn, νn), (τ2,n, βn, ηn, νn)) := |eτ1,n − eτ2,n |2.

So we conclude:

EX [d2H(pS′
1,n

(·|X), pS′
2,n

(·|X))]

d2((S′
1,n, S

′
2,n))

r
≤ C ′ |eτ1,n − eτ2,n |2

|eτ1,n − eτ2,n |2r
= C ′ |eτ1,n − eτ2,n |2(1−r) → 0

as long as eτ1,n − eτ2,n → 0, and r < 1.

Hence,

EX [d2H(pS′
1,n

(·|X), pS′
2,n

(·|X))]

dr2(S
′
1,n, S

′
2,n)

→ 0,

which proves part (ii).

A.3 Proof of Theorem 3

We proceed to prove Theorem 3 for the non-distinguishable setting.

Proof. Let G = (β̄, τ̄ , η̄, ν̄) and (η̄, ν̄) can be identical to (η0, ν0). Then, we will show that

(i) When (η0, ν0) ̸= (η̄, ν̄),

lim
ε→0

inf
G,G∗

{
∥pG − pG∗∥∞
D1(G,G∗)

: D1(G,G) ∨D1(G∗, G) ≤ ε

}
> 0.
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(ii) When (η0, ν0) = (η̄, ν̄),

lim
ε→0

inf
G,G∗

{
∥pG − pG∗∥∞
D2(G,G∗)

: D2(G,G) ∨D2(G∗, G) ≤ ε

}
> 0. (21)

Part (i) can be proved by using the same arguments as in the proof A.1. Thus, we will consider
only part (ii) in this section, specifically the most challenging setting that (η0, ν0) = (η̄, ν̄). Under
this assumption, we know that h0 and h are the same expert function, s.t. f0(Y |h0(X, η0), ν0) =
f(Y |h(X, η0), ν0) for almost surely (X,Y ) ∈ X ×Y . Assume that the above claim in equation (21)
does not hold, then there exist two sequences Gn = (βn, τn, ηn, νn) and G∗,n = (β∗

n, τ
∗
n, η

∗
n, ν

∗
n),

such that 
D2(Gn, G) → 0,

D2(G∗,n, G) → 0,

∥pGn − pG∗,n∥∞/D2(Gn, G∗,n) → 0.

We now analyze the limiting behavior of the sequences (λn, Gn) and (λ∗
n, G

∗
n) as they approach

(λ̄, Ḡ). In particular, we distinguish between three asymptotic regimes based on how the expert
parameters ςn = (ηn, νn) and ς∗n = (η∗n, ν

∗
n) converge.

First, it may occur that both ςn and ς∗n converge to the same limit ς0 = (η0, ν0). Alternatively, both
sequences may converge to a common limit ς ′ ̸= ς0, which is distinct from the true expert. Finally,
it is also possible that one sequence converges to ς0 while the other converges to a different point
ς ′ ̸= ς0.

In the following, we analyze each of these cases and demonstrate that in all scenarios, the assumption
that the normalized difference vanishes leads to a contradiction when f0 = f .

Case 1:

At first we consider that (ηn, νn) and (η∗n, ν
∗
n) share the same limit of (η0, ν0). Without loss of gener-

ality, we can suppose that τ∗n ≥ τn. Subsequently, we consider Wn := [pGn
(Y |X)− pG∗,n(Y |X)] ·

[1 + exp((β∗
n)

⊤X + τ∗n)] · [1 + exp((βn)
⊤X + τn)], which can decomposed as

Wn = exp(τn) · [g(Y |X;βn, ηn, νn)− g(Y |X;β∗
n, η

∗
n, ν

∗
n)]

− exp(τn) · [g(Y |X;βn, η0, ν0)− g(Y |X;β∗
n, η

∗
n, ν

∗
n)]

+ exp(τ∗n) · [g(Y |X;β∗
n, η0, ν0)− g(Y |X;β∗

n, η
∗
n, ν

∗
n)]

+ exp
(
(β∗

n + βn)
⊤X + τ∗n + τn

)
· [f(Y |h(X, ηn), νn)− f(Y |h(X, η∗n), ν

∗
n)]

:= In − IIn + IIIn + IVn

where we denote g(Y |X;β, η, ν) = e(X;β)f(Y |X; η, ν) = exp
(
β⊤X

)
f (Y |h(X, η), ν) .

We expand around the reference parameters β∗
n, η

∗
n, ν

∗
n, where the parameter differences are given by

∆ηn = ηn − η0,∆νn = νn − ν0, and ∆η∗n = η∗n − η0,∆ν∗n = ν∗n − ν0. Applying a second-order
Taylor expansion, then we obtain:

In = exp(τn)
[ 2∑
|α|=1

1

α!

d∏
u=1

[(βn − β∗
n)

(u)]α1u

q∏
v=1

[(∆ηn −∆η∗n)
(v)]α2v (∆νn −∆ν∗n)

α3

· ∂|α|g

∂βα1∂ηα2∂να3
(Y |X;β∗

n, η
∗
n, ν

∗
n) +R1(X,Y )

]
= exp(τn)

[ 2∑
|α|=1

1

α!2α3

d∏
u=1

[(βn − β∗
n)

(u)]α1u

q∏
v=1

[(∆ηn −∆η∗n)
(v)]α2v (∆νn −∆ν∗n)

α3

· exp((β∗
n)

⊤X) ·Xα1
∂|α2|h

∂η|α2|
(X, η∗n)

∂|α2|+2α3f

∂h|α2|+2α3
(Y |h (X, η∗n) , ν

∗
n) +R1(X,Y )

]
,

(22)
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where R1(X,Y ) is the remainder term containing higher-order terms, and the second equality is due
to ∂f

∂ν = 1
2
∂2f
∂h2 . Similarly, we will have that

IIn = exp(τn)
[ 2∑
|α|=1

1

α!

d∏
u=1

[(βn − β∗
n)

(u)]α1u

q∏
v=1

[(∆η∗n)
(v)]α2v (∆ν∗n)

α3

· ∂|α|g

∂βα1∂ηα2∂να3
(Y |X;β∗

n, η
∗
n, ν

∗
n) +R2(X,Y )

]
,

IIIn = exp(τ∗n)
[ 2∑
|α|=1

1

α!

q∏
v=1

[(∆η∗n)
(v)]α2v (∆ν∗n)

α3
∂|α|g

∂ηα2∂να3
(Y |X;β∗

n, η
∗
n, ν

∗
n) +R3(X,Y )

]
,

IVn = exp(τ∗n + τn) exp
(
(β∗

n + βn)
⊤X
) [ 2∑

|α|=1

1

α!

q∏
v=1

[(∆ηn −∆η∗n)
(v)]α2v (∆νn −∆ν∗n)

α3

· ∂|α|f

∂ηα2∂να3
(Y |X; η∗n, ν

∗
n) +R4(X,Y )

]
.

Then, grouping the terms according to the order of derivative γ := |α2| + 2α3 and the monomial
degree ζ := |α1|, we can rewrite the expansion in the compact form:

In =

2∑
ζ=0

[
4∑

γ=0

In,γ,ζ(X)
∂γf

∂hγ
(Y |h(X, η∗n), ν

∗
n) exp((β

∗
n)

⊤X)

]
Xζ +R1(X,Y )

where each coefficient In,γ,ζ(X) depends on the parameter differences and derivatives of h with
respect to η. More specifically we have that

In,0,1(X) = exp(τn)
∑

1≤w≤d

(βn − β∗
n)

(w)

In,0,2(X) = exp(τn)
∑

1≤w,r≤d

(βn − β∗
n)

(w)(βn − β∗
n)

(r)

1 + 1w=r

In,1,0(X) = exp(τn)
[ q∑
u=1

{(∆ηn −∆η∗n)
(u)} ∂h

∂η(u)
(X, η∗n)

+
∑

1≤u,v≤q

(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)

1 + 1u=v

∂2h

∂η(u)∂η(v)
(X, η∗n)

]
,

In,1,1(X) = exp(τn)
[ ∑
1≤w≤d,1≤u≤q

[(βn − β∗
n)

(w)][(∆ηn −∆η∗n)
(u)]

∂h

∂η(u)
(X, η∗n)

]
,

In,2,0(X) = exp(τn)
[1
2
(∆νn −∆ν∗n)+∑
1≤u,v≤q

(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)

1 + 1u=v

∂h

∂η(u)
(X, η∗n)

∂h

∂η(v)
(X, η∗n)

]
,

In,2,1(X) =
exp(τn)

2

[ ∑
1≤w≤d,1≤u≤q

(βn − β∗
n)

(w)(∆νn −∆ν∗n)
(u)
]
,

In,3,0(X) =
exp(τn)

2

[ q∑
u=1

(∆ηn −∆η∗n)
(u)(∆νn −∆ν∗n)

∂h

∂η(u)
(X, η∗n)

]
,

In,4,0(X) =
exp(τn)

8
(∆νn −∆ν∗n)

2.

Similarly, we can rewrite IIn in the same fashion as follows:

IIn =

2∑
ζ=0

[
4∑

γ=0

IIn,γ,ζ(X)
∂γf

∂hγ
(Y |h(X, η∗n), ν

∗
n) exp((β

∗
n)

⊤X)

]
Xζ +R2(X,Y )
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where

IIn,0,1(X) = exp(τn)
∑

1≤w≤d

(βn − β∗
n)

(w)

IIn,0,2(X) = exp(τn)
∑

1≤w,r≤d

(βn − β∗
n)

(w)(βn − β∗
n)

(r)

1 + 1w=r

IIn,1,0(X) = exp(τn)
[ q∑
u=1

{(−∆η∗n)
(u)} ∂h

∂η(u)
(X, η∗n)

+
∑

1≤u,v≤q

(−∆η∗n)
(u)(−∆η∗n)

(v)

1 + 1u=v

∂2h

∂η(u)∂η(v)
(X, η∗n)

]
,

IIn,1,1(X) = exp(τn)
[ ∑
1≤w≤d,1≤u≤q

[(βn − β∗
n)

(w)][(−∆η∗n)
(u)]

∂h

∂η(u)
(X, η∗n)

]
,

IIn,2,0(X) = exp(τn)
[1
2
(−∆ν∗n) +

∑
1≤u,v≤q

(−∆η∗n)
(u)(−∆η∗n)

(v)

1 + 1u=v

∂h

∂η(u)
(X, η∗n)

∂h

∂η(v)
(X, η∗n)

]
,

IIn,2,1(X) =
exp(τn)

2

[ ∑
1≤w≤d,1≤u≤q

(βn − β∗
n)

(w)(−∆ν∗n)
(u)
]
,

IIn,3,0(X) =
exp(τn)

2

[ q∑
u=1

(−∆η∗n)
(u)(−∆ν∗n)

∂h

∂η(u)
(X, η∗n)

]
,

IIn,4,0(X) =
exp(τn)

8
(−∆ν∗n)

2.

In the same way, we can rewrite IIIn in the same fashion as follows, here the difference for β∗
n is zero,

so all the coefficients with ζ ̸= 0 is zero, but in order for the alignment of the expression, we will still
express IIIn as follows

IIIn =

4∑
γ=1

IIIn,γ,0(X)
∂γf

∂hγ
(Y |h(X, η∗n), ν

∗
n) exp((β

∗
n)

⊤X) +R2(X,Y )

where

IIIn,1,0(X) = exp(τ∗n)
[ q∑
u=1

{(−∆η∗n)
(u)} ∂h

∂η(u)
(X, η∗n)

+
∑

1≤u,v≤q

(−∆η∗n)
(u)(−∆η∗n)

(v)

1 + 1u=v

∂2h

∂η(u)∂η(v)
(X, η∗n)

]
,

IIIn,2,0(X) = exp(τ∗n)
[1
2
(−∆ν∗n) +

∑
1≤u,v≤q

(−∆η∗n)
(u)(−∆η∗n)

(v)

1 + 1u=v

∂h

∂η(u)
(X, η∗n)

∂h

∂η(v)
(X, η∗n)

]
,

IIIn,3,0(X) =
exp(τ∗n)

2

[ q∑
u=1

(−∆η∗n)
(u)(−∆ν∗n)

∂h

∂η(u)
(X, η∗n)

]
,

IIIn,4,0(X) =
exp(τ∗n)

8
(−∆ν∗n)

2.

Now we consider IVn = exp
(
(β∗

n + βn)
⊤X + τ∗n + τn

)
·[f(Y |σ(X, ηn), νn)−f(Y |σ(X, η∗n), ν

∗
n)],

which is equivalent to

IVn =

4∑
γ=1

IVn,γ,0(X)
∂γf

∂hγ
(Y |h(X, η∗n), ν

∗
n) exp((β

∗
n)

⊤X) exp((βn)
⊤X) +R4(X,Y )
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where

IVn,1,0(X) = exp(τ∗n + τn)
[ q∑
u=1

{(∆ηn −∆η∗n)
(u)} ∂h

∂η(u)
(X, η∗n)

+
∑

1≤u,v≤q

(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)

1 + 1u=v

∂2h

∂η(u)∂η(v)
(X, η∗n)

]
,

IVn,2,0(X) = exp(τ∗n + τn)
[1
2
(∆νn −∆ν∗n)

+
∑

1≤u,v≤q

(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)

1 + 1u=v

∂h

∂η(u)
(X, η∗n)

∂h

∂η(v)
(X, η∗n)

]
,

IVn,3,0(X) =
exp(τ∗n + τn)

2

[ q∑
u=1

(∆ηn −∆η∗n)
(u)(∆νn −∆ν∗n)

∂h

∂η(u)
(X, η∗n)

]
,

IVn,4,0(X) =
exp(τn)

8
(∆νn −∆ν∗n)

2.

Then we could conclude that

Wn =

4∑
γ=0

[
(In,γ,0(X) + IIn,γ,0(X) + IIIn,γ,0(X))

+

2∑
ζ=1

(In,γ,ζ(X) + IIn,γ,ζ(X))Xζ + IVn,γ,0(X) exp((βn)
⊤X)

]

· ∂
γf

∂hγ
(Y |h(X, η∗n), ν

∗
n) · exp((β∗

n)
⊤X).

Therefore, we can view the quantity Wn/D2(Gn, G∗,n)) as a linear combination of elements of the
set L ∪ K, and L = ∪4

γ=0 ∪2
ζ=0 Lγ,ζ , K = ∪4

γ=1Kγ , where

L0,1 =
{
Xf(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)
}

L0,2 =
{
XX⊤f(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)
}

L1,1 =

{
∂h

∂η(u)
(X, η∗n)X

∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u ∈ [q]

}
L2,1 =

{
X

∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)

}
L1,0 =

{
∂h

∂η(u)
(X, η∗n)

∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u ∈ [d]

}
∪
{

∂2h

∂η(u)∂η(v)
(X, η∗n)

∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u, v ∈ [d]

}
,

L2,0 =

{
∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)

}
∪
{

∂h

∂η(u)
(X, η∗n)

∂h

∂η(v)
(X, η∗n)

∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u, v ∈ [q]

}
L3,0 =

{
∂h

∂η(u)
(X, η∗n)

∂3f

∂h3
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u ∈ [d]

}
L4,0 =

{
∂4f

∂h4
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)

}
,

and

K1 =

{
∂h

∂η(u)
(X, η∗n) exp((βn)

⊤X)
∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u ∈ [d]

}
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∪
{

∂2h

∂η(u)∂η(v)
(X, η∗n) exp((βn)

⊤X)
∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u, v ∈ [d]

}
,

K2 =

{
exp((βn)

⊤X)
∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)

}
∪
{

∂h

∂η(u)
(X, η∗n)

∂h

∂η(v)
(X, η∗n) exp((βn)

⊤X)
∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u, v ∈ [q]

}
,

K3 =

{
∂h

∂η(u)
(X, η∗n) exp((βn)

⊤X)
∂3f

∂h3
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) : u ∈ [d]

}
,

K4 =

{
exp((βn)

⊤X)
∂4f

∂h4
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)

}
.

Assume by contrary that all the coefficients of these elements vanish when n → ∞. Looking at the
coefficients of ∂h

∂η(u) (X, η∗n)X
∂f
∂h (Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X), we get for all w ∈ [d], u ∈ [q]

exp(τn)[(βn − β∗
n)

(w)][(∆ηn)
(u)]/D2(Gn, G∗,n) → 0, (23)

Looking at the coefficients of X ∂2f
∂h2 (Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X), we get for all w ∈ [d]

exp(τn)[(βn − β∗
n)

(w)](∆νn)/D2(Gn, G∗,n) → 0, (24)

Looking at the coefficients of
∂2h

∂η(u)∂η(v)
(X, η∗n)

∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) , we get for

all u, v ∈ [q],

[exp(τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v) + [exp(τ∗n)− exp(τn)](−∆η∗n)
(u)(−∆η∗n)

(v)]

/D2(Gn, G∗,n) → 0, (25)

Looking at the coefficients of
∂h

∂η(u)
(X, η∗n)

∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) , we get for all

u ∈ [q],

[exp(τn)(∆ηn −∆η∗n)
(u) + [exp(τ∗n)− exp(τn)](−∆η∗n)

(u)]

/D2(Gn, G∗,n) → 0, (26)

Looking at the coefficients of
∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) , we get

[exp(τn)(∆νn −∆ν∗n) + [exp(τ∗n)− exp(τn)](−∆ν∗n)]/D2(Gn, G∗,n) → 0, (27)

Looking at the coefficients of
∂h

∂η(u)
(X, η∗n)

∂h

∂η(v)
(X, η∗n)

∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) ,

we get for all u, v ∈ [q],

[exp(τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v) + [exp(τ∗n)− exp(τn)](−∆η∗n)
(u)(−∆η∗n)

(v)]

/D2(Gn, G∗,n) → 0, (28)

Looking at the coefficients of
∂h

∂η(u)
(X, η∗n)

∂3f

∂h3
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) , we get for all

u ∈ [q],

[exp(τn)(∆ηn −∆η∗n)
(u)(∆νn −∆ν∗n) + [exp(τ∗n)− exp(τn)](−∆η∗n)

(u)(−∆ν∗n)]

/D2(Gn, G∗,n) → 0, (29)

Looking at the coefficients of
∂4f

∂h4
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) , we get

[exp(τn)(∆νn −∆ν∗n)
2 + [exp(τ∗n)− exp(τn)](−∆ν∗n)

2]/D2(Gn, G∗,n) → 0, (30)
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Looking at the coefficients of
∂h

∂η(u)
(X, η∗n) exp((βn)

⊤X)
∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) , we

get for all u ∈ [q],

[exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)]/D2(Gn, G∗,n) → 0, (31)

Looking at the coefficients of
∂2h

∂η(u)∂η(v)
(X, η∗n) exp((βn)

⊤X)
∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)

, we get for all u, v ∈ [q],

[exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)]/D2(Gn, G∗,n) → 0, (32)

Looking at the coefficients of exp((βn)
⊤X)

∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X) , we get

[exp(τ∗n + τn)(∆νn −∆ν∗n)]/D2(Gn, G∗,n) → 0, (33)

Looking at the coefficients of ∂h
∂η(u) (X, η∗n)

∂h
∂η(v) (X, η∗n) exp((βn)

⊤X)
∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X)

, we get for all u, v ∈ [q],

[exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)]/D2(Gn, G∗,n) → 0, (34)

Looking at the coefficients of ∂h
∂η(u) (X, η∗n) exp((βn)

⊤X)
∂3f

∂h3
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X), we

get for all u ∈ [q],

exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)(∆νn −∆ν∗n)/D2(Gn, G∗,n) → 0, (35)

Looking at the coefficients of exp((βn)
⊤X)

∂4f

∂h4
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X), we get for all

u ∈ [q],

[exp(τ∗n + τn)(∆νn −∆ν∗n)
2]/D2(Gn, G∗,n) → 0, (36)

Now, combining (23) and (24), recall that all the gating parameters are in compact sets, and applying
the Cauchy–Schwarz inequality followed by summation over coordinates, we got that

exp(τn)∥βn − β∗
n∥∥(∆ηn,∆νn)∥/D2(Gn, G∗,n) → 0. (37)

While it is intuitive that the similar result holds for ∥(∆η∗n,∆ν∗n)∥, a slightly tricky handle should be
employed here. Suppose that

exp(τ∗n)∥βn − β∗
n∥∥∆η∗n∥/D2(Gn, G∗,n) ̸→ 0.

By combining this assumption with equation (23), we have there are at least one coordinate u such that
|(∆η∗n)

(u)/(∆ηn)
(u)| → ∞, which implies that (∆η∗n)/(∆η∗n−∆ηn)

(u) → 1. Thus, by multiplying
equation (31) with (∆η∗n)/(∆η∗n −∆ηn)

(u) → 1, we have

exp(τ∗n)(∆η∗n)
(u)/D2(Gn, G∗,n) → 0.

Also noting that ∥βn − β∗
n∥ is bounded as the parameters belongs to a compact set, we have

exp(τ∗n)∥βn − β∗
n∥(∆η∗n)

(u)/D2(Gn, G∗,n) → 0,

which is a contradiction here. Thus, we have

exp(τ∗n)∥βn − β∗
n∥∥∆η∗n∥/D2(Gn, G∗,n) → 0. (38)

Similarly, also by combining equation (24) and (33), we have

exp(τ∗n)∥βn − β∗
n∥∥∆ν∗n∥/D2(Gn, G∗,n) → 0. (39)

As a result, we have

exp(τ∗n)∥βn − β∗
n∥∥(∆η∗n,∆ν∗n)∥/D2(Gn, G∗,n) → 0. (40)
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In a similar manner, by considering equations (31) through (36), we obtain that

exp(τn + τ∗n) · ∥(∆ηn,∆νn)− (∆η∗n,∆ν∗n)∥2/D2(Gn, G∗,n) → 0. (41)

Let u = v in the first equation in equation (25), we achieve that for all u ∈ [d],

[exp(τn)[(∆ηn −∆η∗n)
(u)]2 + [exp(τ∗n)− exp(τn)][(∆η∗n)

(u)]2]/D2(Gn, G∗,n) → 0, (42)

which implies that

[exp(τn)∥(∆ηn −∆η∗n)∥2 + (exp(τ∗n)− exp(τn))∥∆η∗n∥2]/D2(Gn, G∗,n) → 0. (43)

We also have each term inside equation (43) is non-negative, thus

(exp(τ∗n)− exp(τn))∥∆η∗n∥2/D2(Gn, G∗,n) → 0,

exp(τn)∥∆ηn −∆η∗n∥2/D2(Gn, G∗,n) → 0. (44)

Applying the AM-GM inequality, we have for all u, v ∈ [d],

(exp(τ∗n)− exp(τn))(∆η∗n)
(u)(∆η∗n)

(v)

D2(Gn, G∗,n)
→ 0,

exp(τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)

D2(Gn, G∗,n)
→ 0,

(45)

Next, by considering the coefficients of
∂h

∂η(u)
(X, η∗n)

∂f

∂h
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X), and

∂2f

∂h2
(Y |h(X, η∗n), ν

∗
n)) exp((β

∗
n)

⊤X), we have

[exp(τn)(∆ηn)
(u) − exp(τ∗n)(∆η∗n)

(u)]/D2(Gn, G∗,n) → 0, u ∈ [d], (46)
[exp(τn)(∆νn) − exp(τ∗n)(∆ν∗n)]/D2(Gn, G∗,n) → 0. (47)

Noting that for u, v ∈ [d],

exp(τ∗n)(∆η∗n)
(u)(∆ηn −∆η∗n)

(v)

= (exp(τn)(∆ηn)
(v) − exp(τ∗n)(∆η∗n)

(v))(∆η∗n)
(u) + (exp(τ∗n)− exp(τn))(∆ηn)

(v)(∆η∗n)
(u),

exp(τn)(∆ηn)
(u)(∆ηn −∆η∗n)

(v)

= exp(τ∗n)(∆η∗n)
(u)(∆ηn −∆η∗n)

(v) − (exp(τn)(∆ηn)
(u) − exp(τ∗n)(∆η∗n)

(u))(∆ηn −∆η∗n)
(v).

Thus, from equation (45) and equation (46), we achieve that for u, v ∈ [d],

exp(τ∗n)(∆η∗n)
(u)(∆ηn −∆η∗n)

(v)/D2(Gn, G∗,n) → 0,

exp(τn)(∆ηn)
(u)(∆ηn −∆η∗n)

(v)/D2(Gn, G∗,n) → 0.

By using the same arguments we will derive

exp(τn)∥∆ηn∥.∥∆ηn −∆η∗n∥/D2(Gn, G∗,n) → 0, (48)
exp(τ∗n)∥∆η∗n∥.∥∆ηn −∆η∗n∥/D2(Gn, G∗,n) → 0, (49)

By using the same arguments to derive equation (42), equation (44) and equation (45), we can point
out that

[(exp(τ∗n)− exp(τn))∥∆ν∗n∥2 + exp(τn)∥∆νn −∆ν∗n∥2]/D2(Gn, G∗,n) → 0,

exp(τn)∥∆νn∥.∥∆νn −∆ν∗n∥/D2(Gn, G∗,n) → 0,

exp(τ∗n)∥∆ν∗n∥.∥∆νn −∆ν∗n∥/D2(Gn, G∗,n) → 0,

exp(τn)∥∆ηn∥.∥∆νn −∆ν∗n∥/D2(Gn, G∗,n) → 0,

exp(τ∗n)∥∆η∗n∥.∥∆νn −∆ν∗n∥/D2(Gn, G∗,n) → 0. (50)

Collecting results in equation (37), (40) and (41), and equations (44) to (50), we obtain that

1 = D2(Gn, G∗,n)/D2(Gn, G∗,n) → 0,
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which is a contradiction.

Therefore, not all the coefficients in the representation of Wn/D2(Gn, G∗,n) tend to 0 as n → ∞.
Let us denote by mn the maximum of the absolute values of those coefficients. Based on the previous
result, 1/mn ̸→ ∞. Additionally, we define

exp(τn)[(βn − β∗
n)

(w)][(∆ηn)
(u)]/mn → α11,wu0,

exp(τn)[(βn − β∗
n)

(w)](∆νn)/mn → α21,w00,

[exp(τn)(∆ηn −∆η∗n)
(u) + [exp(τ∗n)− exp(τn)](−∆η∗n)

(u)]/mn → α10,0u0,

[exp(τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v) + [exp(τ∗n)− exp(τn)](−∆η∗n)
(u)(−∆η∗n)

(v)]/mn

→ β10,0uv,

[exp(τn)(∆νn −∆ν∗n) + [exp(τ∗n)− exp(τn)](−∆ν∗n)]/mn → α20,000,

[exp(τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v) + [exp(τ∗n)− exp(τn)](−∆η∗n)
(u)(−∆η∗n)

(v)]/mn

→ β20,0uv,

[exp(τn)(∆ηn −∆η∗n)
(u)(∆νn −∆ν∗n) + [exp(τ∗n)− exp(τn)](−∆η∗n)

(u)(−∆ν∗n)]/mn

→ β30,0u0,

[exp(τn)(∆νn −∆ν∗n)
2 + [exp(τ∗n)− exp(τn)](−∆ν∗n)

2]/mn → β40,000,

exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)/mn → ρ1,u0,

exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)/mn → π1,uv,

exp(τ∗n + τn)(∆νn −∆ν∗n)/mn → ρ2,00,

exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)(∆ηn −∆η∗n)

(v)/mn → π2,uv,

exp(τ∗n + τn)(∆ηn −∆η∗n)
(u)(∆νn −∆ν∗n)/mn → π3,u0,

exp(τ∗n + τn)(∆νn −∆ν∗n)
2/mn → π4,00,

(51)

when n → ∞ for all w ∈ [d], u, v ∈ [q]. Note that at least one among αγζ,wuv, βγζ,wuv and
ργ,uv, πγ,uv where γ ∈ [4], ζ ∈ {0, 1} must be different from zero. By applying the Fatou’s lemma,
we get

0 = lim
n→∞

1

mn

2EX [dV (pGn
(·|X), pG∗(·|X))]

D2(Gn, G∗,n)
≥
∫

lim inf
n→∞

1

mn

|pGn
(Y |X)− pG∗,n(Y |X)|
D2(Gn, G∗,n)

d(X,Y ).

On the other hand,
1

mn

pGn
(Y |X)− pG∗,n(Y |X)

D2(Gn, G∗,n)

→
4∑

γ=0

[
1∑

ζ=0

Eγζ(X)Xζ +Kγ(X) exp(β⊤X)

]
∂γf

∂hγ
(Y |h(X, η0), ν0) · exp(β⊤X),

where

E11(X) =
∑

1≤w≤d,1≤u≤q

α11,wu0
∂h

∂η(u)
(X, η∗n)

E21(X) =
1

2

∑
1≤w≤d

α21,w00

E10(X) =

q∑
u=1

α10,0u0
∂h

∂η(u)
(X, η0) +

∑
1≤u,v≤q

β10,0uv

1 + 1u=v

∂2h

∂η(u)∂η(v)
(X, η0),

E20(X) =
1

2
α20,000 +

∑
1≤u,v≤q

β20,0uv

1 + 1u=v

∂h

∂η(u)
(X, η0)

∂h

∂η(v)
(X, η0),

E30(X) =
1

2

q∑
u=1

β30,0u0
∂h

∂η(u)
(X, η0),
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E40(X) =
1

8
β40,000.

and

K1(X) =

q∑
u=1

ρ1,u0
∂h

∂η(u)
(X, η0) +

∑
1≤u,v≤q

π1,uv

1 + 1u=v

∂2h

∂η(u)∂η(v)
(X, η0),

K2(X) =
1

2
ρ2,00 +

∑
1≤u,v≤q

π2,uv

1 + 1u=v

∂h

∂η(u)
(X, η0)

∂h

∂η(v)
(X, η0),

K3(X) =
1

2

q∑
u=1

π3,u0
∂h

∂η(u)
(X, η0),

K4(X) =
1

8
π4,00.

It is worth noting that for almost surely (X,Y ), the set L ∪ K is linearly independent under non-
distinguishable setting , which leads to the fact that Eτζ(X) = Kτ (X) = 0 for almost surely X for
any τ ∈ [4], ζ ∈ {0, 1}.

Similar to the proof of Theorem 1, and recalling that the experts are strongly identifiable, we conclude
that all the coefficients in Equation (51) must be zero for all w, u, v.

This contradicts the fact that not all coefficients vanish. Thus, we obtain the conclusion for this case.

Case 2:

In this case, we consider that (ηn, νn) and (η∗n, ν
∗
n) share the same limit, but different from (η0, ν0).

From the formulation of the metric D1 in the proof A.1, it is clear that D2 ≲ D1. Therefore, we
get Wn(X,Y )/D1(Gn, G∗,n) → 0 as n → ∞. Noting that (ηn, νn) and (η∗n, ν

∗
n) share the limit

(η∗, ν∗) ̸= (η0, ν0), we have f0 = f(Y |h(X, η0), ν0) and f(Y |h(X, η∗), ν∗) satisfying f0 and f
independent up to second order as in Lemma 1. Thus, we can process in a similar way as in Theorem
1 to draw a contradiction.

Case 3:

Lastly, we consider that one of Gn or G∗
n converges to G0, while the other converges to G′ ̸= G0.

Without loss of generality, suppose that Gn → G′ and G∗
n → G0. By passing through the limit for

EX [hV (pGn
(·|X), pG∗,n(·|X))]/D2(Gn, G

∗
n) → 0,

noting that

D2(Gn, G
∗
n) → D2(G,G∗) ̸= 0,EX [hV (pGn

(·|X), pG∗,n(·|X))] → EX [hV (pG(·|X), pG∗(·|X))],

we have
EX [hV (pG(·|X), pG∗(·|X))] = 0, or pG = pG∗ , a.s.

This equation implies that

f(Y |h(X, η0), ν0) =
1

1 + exp(β⊤X + τ∗)
f(Y |h(X, η0), ν0) +

exp(β⊤X + τ∗)

1 + exp(β⊤X + τ∗)
f(Y |h(X, η), ν)

which further implies that

exp(β⊤X + τ∗)

1 + exp(β⊤X + τ∗)
f(Y |h(X, η0), ν0) =

exp(β⊤X + τ∗)

1 + exp(β⊤X + τ∗)
f(Y |h(X, η), ν)

and hence

f(Y |h(X, η0), ν0) = f(Y |h(X, η), ν) (as exp(β⊤X + τ∗) ̸= 0).

This equation means that G′ = G0, which is a contradiction.
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A.4 Proof of Theorem 4

In what follows, we present the proof of Theorem 4 for the non-distinguishable setting.

Proof of Theorem 4. The proof follows similar steps to the arguments in the previous two sections.
Concretely, define for S1 = (τ1, β1, η1, ν1), S2 = (τ2, β2, η2, ν2) :{

d′(S1, S2) = ∥∆η1,∆ν1∥2| exp(τ1)− exp(τ2)|,
d′′(S1, S2) = exp(τ1)∥∆η1,∆ν1∥∥(β1, η1, ν1)− (β2, η2, ν2)∥.

It is straightforward that d′ and d′′ satisfy the weak triangle inequality. Following the same schema
as in Lemma 2, we can demonstrate two subsequent results for any r > 1:

(i) Two sequences can be found{
S1,n = (τ1,n, βn, ηn, νn) ∈ Ξ(ln),

S2,n = (τ1,n, βn, ηn, νn) ∈ Ξ(ln),

such that d′(S1,n, S2,n) → 0 and EX [hH(pS1,n
(·|X), pS2,n

(·|X))]/dr′ (S1,n, S2,n) → 0 as
n → ∞.

(ii) Two sequences can be found{
S1,n = (τn, β1,n, η1,n, ν1,n) ∈ Ξ(ln),

S2,n = (τn, β2,n, η2,n, ν2,n) ∈ Ξ(ln),

such that d′′(S1,n, S2,n) → 0 and EX [hH(pS1,n
(·|X), pS2,n

(·|X))]/dr′′(S1,n, S2,n) → 0 as
n → ∞.

We can omit the justification for the above results as it can follow a similar approach as in Lemma 2.
This leads to the conclusion of the theorem.

B Proof of Auxiliary Results

B.1 Proof of Proposition 1

Proof. Fix an arbitrary x ∈ X and abbreviate

g1(y) := f
(
y|h(x, η1), ν1

)
, g2(y) := f

(
y|h(x, η2), ν2

)
, g0(y) := f0

(
y|h0(x, η0), ν0

)
.

Because f is Gaussian in its argument, there exist µ1, µ2 ∈ R and σ2
1 , σ

2
2 > 0 such that gj(y) =

1√
2πσ2

j

exp
(
−(y − µj)

2/(2σ2
j )
)

for j = 1, 2.

Set

H1(y) :=
∂g2
∂h

(y) =
y − µ2

σ2
2

g2(y), H2(y) :=
∂2g2
∂h2

(y) =
(y − µ2)

2 − σ2
2

σ4
2

g2(y).

With these notations the assumed identity becomes

b0(x)g0(y) + b1(x)g1(y) + c0(x)g2(y) + c1(x)H1(y) +
1
2c2(x)H2(y) = 0 for a.e. y ∈ R. (52)

1. b0(x) = 0. Because g0 is not Gaussian by assumption, while g1, g2, H1, H2 all belong to the
finite–dimensional linear span G := span{y 7→ g1(y), y 7→ (y − µ2)

kg2(y) : k = 0, 1, 2}, we have
g0 /∈ G. Hence the only way (52) can hold on a set of positive measure is with b0(x) = 0.
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2. Linear independence inside G. Divide (52) (now with b0(x) = 0) by g2(y); we obtain the
polynomial identity

b1(x)
g1(y)

g2(y)
+ c0(x) + c1(x)

y − µ2

σ2
2

+ 1
2c2(x)

(y − µ2)
2 − σ2

2

σ4
2

= 0 for a.e. y.

The ratio g1/g2 is the analytic (non-polynomial) function

g1(y)

g2(y)
= K exp

(
1
2

[
(y − µ2)

2/σ2
2 − (y − µ1)

2/σ2
1

])
,

with K ̸= 0. Since µ1 ̸= µ2 or σ2
1 ̸= σ2

2 , this exponential term cannot be expressed as a quadratic
polynomial in y. Consequently the set of functions

{
g1/g2, 1, y − µ2, (y − µ2)

2
}

is linearly inde-
pendent on any interval. Hence every coefficient in the polynomial identity must vanish:

b1(x) = c0(x) = c1(x) = c2(x) = 0.

3. Conclusion. We have shown that b0(x) = b1(x) = c0(x) = c1(x) = c2(x) = 0 for the fixed
x. Because the same argument works for almost every x ∈ X , all coefficients vanish almost surely.
Thus the unified distinguishability condition of Definition 1 is satisfied, completing the proof.

B.2 Proof of Proposition 2

Proof. Write the two (single–expert) conditional densities

pG(y|x) =
[
1− λ(x)

]
f0
(
y|h0(x, η0), ν0

)
+ λ(x)f

(
y|h(x, η), ν

)
,

pG′(y|x) =
[
1− λ′(x)

]
f0
(
y|h0(x, η0), ν0

)
+ λ′(x)f

(
y|h(x, η′), ν′

)
,

where λ(x) :=
exp
(
β⊤x+τ

)
1+exp

(
β⊤x+τ

) and λ′(x) :=
exp
(
β′⊤x+τ ′

)
1+exp

(
β′⊤x+τ ′

) .

Assume the identifiability equality pG(y|x) = pG′(y|x) holds for almost every (x, y) ∈ X × Y .
Subtracting the two representations gives[

λ(x)− λ′(x)
]
f0
(
y|h0(x, η0), ν0

)
+ λ′(x)f

(
y|h(x, η′), ν′

)
− λ(x)f

(
y|h(x, η), ν

)
= 0. (53)

Step 1. If λ(x) ̸= λ′(x). Suppose on a set of positive x-measure, λ(x) ̸= λ′(x). Divide (53) by
λ(x)− λ′(x); then for those x

f0
(
y|h0, ν0

)
+ b(x)f

(
y|h(x, η′), ν′

)
+ c(x)f

(
y|h(x, η), ν

)
= 0,

where

b(x) :=
λ′(x)

λ′(x)− λ(x)
, c(x) :=

−λ(x)

λ′(x)− λ(x)
.

Since f is distinguishable from f0, the only possibility is b(x) = c(x) = 0, hence λ(x) = λ′(x)
a.e.—contradiction. Therefore

λ(x) = λ′(x) for a.e. x.

Because the soft-max map (β, τ) 7→ λ(·) is injective, we conclude

β = β′, τ = τ ′.

Step 2. Equality of expert parameters. With λ(x) = λ′(x), equation (53) reduces to

f
(
y|h(x, η), ν

)
= f

(
y|h(x, η′), ν′

)
for a.e. (x, y).

Definition 1 forces the situation (η, ν) ̸= (η′, ν′) impossible. Hence the only consistent solution is

(η, ν) = (η′, ν′).

Step 3. Conclusion. We have shown β = β′, τ = τ ′, η = η′, and ν = ν′; hence G = G′.
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B.3 Proof of Proposition 3

We begin by introducing several standard notations used throughout this proof. Let (P, d) be a metric
space, where d is a metric on P . An ϵ-net of (P, d) is a collection of balls of radius ϵ whose union
covers P . The covering number N(ϵ,P, d) denotes the minimal cardinality of such a covering, and
the entropy number is defined as H(ϵ,P, d) := logN(ϵ,P, d).

The bracketing number NB(ϵ,P, d) is the minimal number of pairs {(f
i
, f i)}ni=1 such that f

i
< f i,

d(f
i
, f i) < ϵ, and P is covered by the union of the brackets. The corresponding bracketing entropy

is denoted by HB(ϵ,P, d) := logNB(ϵ,P, d).

When P is a family of densities, we take d to be the L2(m) distance, where m denotes the Lebesgue
measure.

In particular, let P(Ξ) := {pλ : λ ∈ Ξ}, and define the symmetrized density p̄λ := 1
2 (p

∗ + pλ),

where p∗ denotes the true density. We then define the following sets: P(Ξ) := {p̄λ : λ ∈ Ξ} and

P1/2
(Ξ) := {p̄1/2λ : p̄λ ∈ P(Ξ)}. To study convergence rates, we consider the localized version of

the symmetrized class: P1/2
(Ξ, ϵ) := {p̄1/2λ ∈ P1/2

(Ξ) : dH(p̄λ, p
∗) ≤ ϵ}, where dH(·, ·) denotes

the Hellinger distance. Then we assess the complexity of this class via the bracketing entropy

integral defined in [34]: JB(ϵ,P
1/2

(Ξ, ϵ),m) :=
∫ ϵ

ϵ2/213

√
HB(u,P

1/2
(Ξ, ϵ),m)du ∨ ϵ, where

a ∨ b := max{a, b}. For brevity, we may omit the dependence on m when it is clear from context.

For the proof at first we consider a general lemma that provides the desired convergence rate, provided
that a bracketing entropy condition is satisfied.
Lemma 3. Assume the following assumption hold: Given a universal constant J > 0, there exists
N > 0, possibly depending on Ξ, such that for all n ≥ N and all ϵ > (log(n)/n)1/2, we have

JB(ϵ, P
1/2

(Ξ, ϵ)) ≤ J
√
nϵ2. (54)

Then, there exists a constant C > 0 depending only on Ξ such that for all n ≥ 1,

sup
G∗∈Ξ

EpG∗,n
EX [dH(pĜn

(·|X), pG∗(·|X))] ≤ C
√

log n/n.

This lemma indicates that it suffices to verify the entropy condition in Equation (54) in order to obtain
the convergence rate. However, this condition is often technically difficult to establish directly. As a
workaround, we may instead prove the following sufficient condition:
Lemma 4. If the distribution satisfies

HB(ϵ,P(Ξ), dH) ≲ log(1/ϵ), (55)
it will meet the assumption in Equation (54).

Although we have simplified the condition in Equation (54) to Equation (55), verifying Equation (55)
is still nontrivial. Fortunately, for the contaminated model defined in Equation (1),

pG(Y |X) :=
1

1 + exp(β⊤X + τ)
· f0(Y |h0(X, η0), ν0) +

exp(β⊤X + τ)

1 + exp(β⊤X + τ)
· f(Y |h(X, η), ν),

we assume that f0 is bounded with light tails and that f is a univariate Gaussian density. Under these
assumptions, we can verify Equation (55) via the following lemma:
Lemma 5. Let Γ be a compact subsets of Rd × R and Θ be a bounded subsets of Rq × R+, f is a
univariate Gaussian density and f0 is bounded with tail EX (− log f0(Y |h(X, η0), ν0)) ≳ Y q for
almost surely Y ∈ Y for some q > 0. Then, for any 0 < ε < 1

2 , the following results hold:

(i) logN(ϵ,P(Ξ), ∥ · ∥∞) ≲ log(1/ϵ),

(ii) HB(ϵ,P(Ξ), dH) ≲ log(1/ϵ).

Combining the above results, we obtain the desired conclusion for Theorem 3.

Now we will prove Lemma 3, Lemma 4 and Lemma 5 in order. At first we need to introduce another
Lemma 6 before we prove Lemma 3. Lemma 6 is Theorem 5.11 in [34] and its proof can also be
found in [34].
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Lemma 6. Let R > 0, k ≥ 1 and G is a subset in Ξ where G∗ ∈ G ⊂ Ξ . Given C1 < ∞, for all C
sufficiently large, and for n ∈ N and t > 0 is in the following range

t ≤ (8
√
nR) ∧ (C1

√
nR2/K), (56)

t ≥ C2(C1 + 1)

(
R ∨

∫ R

t/(26
√
n)

H
1/2
B

( u√
2
,P1/2

(Ξ, R),m
)
du

)
, (57)

then we will have

PG∗,n

(
sup

G∈G,EX [h(p̄G(·|X),pG∗ (·|X))]≤R

|µn(G)| ≥ t
)
≤ C exp

(
− t2

C2(C1 + 1)R2

)
. (58)

Proof of Lemma 3. Firstly, by Lemma 4.1 and 4.2 in [34], we have

1

16
EX [d2H(pĜn

(·|X), pG∗(·|X))] ≤ EX [d2H(p̄Ĝn
(·|X), pG∗(·|X))] ≤ 1√

n
µn(Ĝn),

here µn(Ĝn) is an empirical process defined as

µn(Ĝn) :=
√
n

∫
pG∗>0

1

2
log

(
p̄Ĝn

pG∗

)
(p̄Ĝn

− pG∗)d(X,Y ).

Thus, for any δ > δn :=
√

log n/n, we have

PG∗,n(EX [dH(pĜn
(·|X), pG∗(·|X))] ≥ δ)

≤ PG∗,n

(
µn(Ĝn)−

√
nEX [d2H(pĜn

(·|X), pG∗(·|X))] ≥ 0,EX [dH(pĜn
(·|X), pG∗(·|X))] ≥ δ

4

)
≤ PG∗,n

(
sup

G:EX [dH(p̄G(·|X),pG∗ (·|X))]≥δ/4

[
µn(G)−

√
nEX [d2H(p̄G(·|X), pG∗(·|X))]

]
≥ 0

)

≤
S∑

s=0

PG∗,n

(
sup

G:2sδ/4≤EX [dH(p̄G(·|X),pG∗ (·|X))]≤2s+1δ/4

|µn(G)| ≥
√
n22s(

δ

4
)2

)

≤
S∑

s=0

PG∗,n

(
sup

G:EX [dH(p̄G(·|X),pG∗ (·|X))]≤2s+1δ/4

|µn(G)| ≥
√
n22s(

δ

4
)2

)
where S is a smallest number such that 2Sδ/4 > 1 .

Now we will use Lemma 6: choose R = 2s+1δ, C1 = 15 and t =
√
n22s(δ/4)2. We can confirm

that condition (i) in Lemma 3 is met since 2s−1δ/4 ≤ 1 for all s ≤ S. For the condition (ii), it is still
satisfied since ∫ R

t/26
√
n

H
1/2
B

(
u√
2
,P1/2(Ξ, R), µ

)
du ∨ 2s+1δ

=
√
2

∫ R/
√
2

R2/213
H

1/2
B

(
u,P1/2(Ξ, R), µ

)
du ∨ 2s+1δ

≤ 2JB

(
R,P1/2(Ξ, R), µ

)
≤ 2J

√
n22s+1δ2

= 26Jt.

Now since the two conditions in Lemma 6 are all satisfied, we could conclude that

PG∗,n

(
EX [dH(pĜn

(·|X), pG∗(·|X))] > δ
)
≤ C

∞∑
s=0

exp

(
−22snδ2

214C2

)
≤ c exp

(
−nδ2

c

)
, (59)
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here constant c is a large constant that does not depend on G∗. Now we could derive the bound on
supremum of expectation:

EpG∗,n
EX [dH(pĜn

(·|X), pG∗(·|X))] =

∫ ∞

0

P
(
EX [dH(pĜn

(·|X), pG∗(·|X))] > δ
)
dδ

≤ δn + c

∫ ∞

δn

exp

(
−nδ2

c2

)
dδ

≤ c̃δn,

here c̃ is independent from G∗ and δn :=
√

log n/n. So we can conclude that

sup
G∗∈Ξ

EpG∗,n
EX [dH(pĜn

(·|X), pG∗(·|X))] ≤ C
√
log n/n.

Proof of Lemma 4. Because P1/2
(Ξ, δ) ⊂ P1/2

(Ξ) and from the definition of Hellinger distance,
we have

HB(δ,P
1/2

(Ξ, δ), µ) ≤ HB(δ,P
1/2

(Ξ), µ) = HB

(
δ√
2
,P(Ξ), h

)
.

Now, using the fact that for densities f∗, f1, f2, we have h2
(

f1+f∗

2 , f2+f∗

2

)
≤ h2(f1,f2)

2 , it is easy

to verify that HB(δ/
√
2,P(Ξ), dH) ≤ HB(δ,P(Ξ), dH). Hence, if equation (55) holds true, then

HB(δ,P
1/2

(Ξ, δ), µ) ≤ HB(δ,P(Ξ), dH) ≲ log

(
1

δ

)
.

This implies that

JB

(
ϵ,P1/2

(Ξ, δ), µ
)
≲ ϵ

(
log(

213

ϵ2
)

) 1
2

< nϵ2, for all dϵ >

√
log n

n
.

Proof of Lemma 5. Proof for (i): Let Eϵ(S) denote an ϵ-net of a set S under the ∥ · ∥∞ norm. Then

log |Eϵ(S)| = logN(ϵ, S, ∥ · ∥∞).

Let P(Θ) := {pΥ : Υ ∈ Θ}, where pΥ(Y |X) := f(Y |h(X, η), ν). By Lemma 6 in [13], we have

logN(ϵ,P(Θ), ∥ · ∥∞) ≲ log(1/ϵ).

We now consider the contaminated model pΥ as a composition of smooth components indexed by
(β, τ, η, ν) ∈ Ξ := Γ×Θ, where Γ ⊂ Rd+1 and Θ ⊂ Rq × R+ are compact.

Since σ(β⊤X+τ) := exp(β⊤X+τ)/(1+exp(β⊤X+τ)) is infinitely differentiable and Lipschitz
over compact Γ, it follows that for any λ = (β, τ) ∈ Γ, there exists λ̃ = (β̃, τ̃) ∈ Eϵ(Γ) such that

∥σλ − σλ̃∥∞ := sup
X∈X

∣∣∣∣∣ exp(β⊤X + τ)

1 + exp(β⊤X + τ)
− exp(β̃⊤X + τ̃)

1 + exp(β̃⊤X + τ̃)

∣∣∣∣∣ ≤ ϵ.

Likewise, for any Υ = (η, ν) ∈ Θ, there exists Υ̃ ∈ Eϵ(Θ) such that

∥pΥ − pΥ̃∥∞ ≤ ϵ.

Now, consider the difference

pG(Y |X)− pG̃(Y |X)

=
(
σλ(X)− σλ̃(X)

)
[f(Y |h(X, η), ν)− f0(Y |h0(X, η0), ν0)]

+ σλ̃(X) [f(Y |h(X, η), ν)− f(Y |h(X, η̃), ν̃)] ,
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so that by the triangle inequality and boundedness of f0 and f ,

∥pG − pG̃∥∞ ≤ ∥σλ − σλ̃∥∞ · (∥f0∥∞ + ∥f∥∞) + ∥σλ̃∥∞ · ∥pΥ − pΥ̃∥∞
≲ ϵ.

Hence, the covering number of P(Ξ) satisfies

logN(ϵ,P(Ξ), ∥ · ∥∞) ≤ logN(ϵ,Γ, ∥ · ∥∞) + logN(ϵ,P(Θ), ∥ · ∥∞) ≲ log(1/ϵ).

Proof for (ii): First, let η ≤ ε be a positive number, which will be chosen later. We consider f is
the density function of an univariate Gaussian distribution, so f is light tail: for any |Y | ≥ 2a and
X ∈ X ,

f(Y |h(X, η), ν) ≤ 1√
2πℓ

exp

(
− Y 2

8u2

)
.

Also f0 is bounded with tail log f0(Y |h(X, η0), ν0) ≲ −Y q and f0(Y |h(X, η0)), ν0) ≤ M for
almost surely Y ∈ Y for some M, q > 0. Now let q = min{p, 2} and C2 = max

{
M, 1/

√
2πℓ
}

,
we will have

H(X,Y ) =

{
C1 exp(−Y q), |Y | ≥ 2a

C2, |Y | < 2a
(60)

here C1 is a positive constant depending on ℓ and f0. Moreover H(X,Y ) is an envelope of
P(Ξ). Next, let g1, . . . , gN represent an η-net over Pk(Ξ). Then, we construct the brackets
[pLi (X,Y ), pUi (X,Y )] as follows:{

pLi (X,Y ) := max{gi(X,Y )− η, 0}
pUi (X,Y ) := min{gi(X,Y ) + η,H(X,Y )}

for i = 1, · · · , N . As a result, Pk(Ξ) ⊂
⋃N

i=1[p
L
i (X,Y ), pUi (X,Y )] and pUi (X,Y )− pLi (X,Y ) ≤

min{2η,H(X,Y )}. Consequently,∫ (
pUi (X,Y )− pLi (X,Y )

)
d(X,Y )

≤
∫
|Y |<2a

(
pUi (X,Y )− pLi (X,Y )

)
d(X,Y ) +

∫
|Y |≥2a

(
pUi (X,Y )− pLi (X,Y )

)
d(X,Y )

≤
∫
|Y |<2a

2ηd(X,Y ) +

∫
|Y |≥2a

H(X,Y )d(X,Y ) ≲ η.

This shows that
HB(cη,P(Ξ), ∥ · ∥1) ≤ N ≲ log(1/η).

Setting η = ϵ/c, we find
HB(ϵ,P(Ξ), ∥ · ∥1) ≲ log(1/ϵ).

Since h2 ≤ ∥ · ∥1 holds between the Hellinger distance and the total variation distance, we conclude
the bracketing entropy bound.
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