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Abstract

We study Policy-extended Value Function Approximator (PeVFA) in Reinforce-1

ment Learning (RL), which extends conventional value function approximator2

(VFA) to take as input not only the state (and action) but also an explicit policy3

representation. Such an extension enables PeVFA to preserve values of multi-4

ple policies at the same time and brings an appealing characteristic, i.e., value5

generalization among policies. We formally analyze the value generalization un-6

der Generalized Policy Iteration (GPI). From theoretical and empirical lens, we7

show that generalized value estimates offered by PeVFA may have lower initial8

approximation error to true values of successive policies, which is expected to9

improve consecutive value approximation during GPI. Based on above clues, we10

introduce a new form of GPI with PeVFA which leverages the value generalization11

along policy improvement path. Moreover, we propose a representation learning12

framework for RL policy, providing several approaches to learn effective policy em-13

beddings from policy network parameters or state-action pairs. In our experiments,14

we evaluate the efficacy of value generalization offered by PeVFA and policy15

representation learning in several OpenAI Gym continuous control tasks. For a16

representative instance of algorithm implementation, Proximal Policy Optimization17

(PPO) re-implemented under the paradigm of GPI with PeVFA achieves about 40%18

performance improvement on its vanilla counterpart in most environments.19

1 Introduction20

Reinforcement Learning (RL) has been widely considered as a promising way to learn optimal21

policies in many decision-making problems [35, 31, 53, 65, 47, 62, 16]. One fundamental element of22

RL is value function which defines the long-term evaluation of a policy. With function approximation23

(e.g., deep neural networks), a value function approximator (VFA) is able to approximate the values24

of a policy under large and continuous state spaces. As commonly recognized, most RL algorithms25

can be described as Generalized Policy Iteration (GPI) [55]. As illustrated on the left of Figure 1,26

at each iteration the VFA is trained to approximate the true values of current policy (i.e., policy27

evaluation), regarding which the policy is further improved (i.e., policy improvement). The value28

function approximation error hinders the effectiveness of policy improvement and then the overall29

optimality of GPI [5, 46]. Unfortunately, such errors are inevitable under function approximation. A30

large number of samples are usually required to ensure high-quality value estimates, resulting in the31

sample-inefficiency of deep RL algorithms. Therefore, this raises an urgent need for more efficient32

value approximation methods [61, 4, 12, 25].33

An intuitive idea to improve the efficiency value approximation is to leverage the knowledge on34

the values of previous encountered policies. However, a conventional VFA usually approximates35

the values of one policy and values learned from old policies are over-written gradually during36
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Figure 1: Generalized Policy Iteration (GPI) with function approximation. Left: GPI with con-
ventional value function approximator Vφ. Right: GPI with PeVFA Vθ(χπ) (Sec. 3) where extra
generalization steps exist. The subscripts of policy π and value function parameters φ, θ denote the
iteration number. The squiggle lines represent non-perfect approximation of true values.

the learning process. This means that the previously learned knowledge cannot be preserved and37

utilized with one conventional VFA. Thus, such limitations prevent the potentials to leverage the38

previous knowledge for future learning. In this paper, we study Policy-extended Value Function39

Approximator (PeVFA), which additionally takes an explicit policy representation as input in contrast40

to conventional VFA. Thanks to the policy representation input, PeVFA is able to approximate values41

for multiple policies and induces value generalization among policies. We formally analyze the42

generalization of approximate values among policies in a general form. From both theoretical and43

empirical lens, we show that the generalized value estimates can be closer to the true values of44

the successive policy, which can be beneficial to consecutive value approximation along the policy45

improvement path, called local generalization. Based on above clues, we introduce a new form46

of GPI with PeVFA (the right of Figure 1) that leverages the local generalization to improve the47

efficiency of consecutive value approximation along the policy improvement path.48

One key point of GPI with PeVFA is the representation of policy since it determines how PeVFA gen-49

eralizes the values. For this, we propose a framework to learn effective low-dimensional embedding50

of RL policy. We use network parameters or state-action pairs as policy data and encode them into51

low-dimensional embeddings; then the embeddings are trained to capture the effective information52

through contrastive learning and policy recovery. Finally, we evaluate the efficacy of GPI with PeVFA53

and our policy representations. In principle, GPI with PeVFA is general and can be implemented54

in different ways. As a practical instance, we re-implement Proximal Policy Optimization (PPO)55

with PeVFA and propose PPO-PeVFA algorithm. Our experimental results on several OpenAI Gym56

continuous control tasks demonstrate the effectiveness of both value generalization offered by PeVFA57

and learned policy representations, with an about 40% improvement in average returns achieved by58

our best variants on standard PPO in most tasks.59

We summarize our main contributions below. 1) We study the value generalization among policies60

induced by PeVFA. From both theoretical and empirical aspects, we shed the light on the situations61

where the generalization can be beneficial to the learning along policy improvement path. 2) We62

propose a framework for policy representation learning. To our knowledge, we make the first attempt63

to learn a low-dimensional embedding of over 10k network parameters for an RL policy. 3) We64

introduce GPI with PeVFA that leverages the value generalization in a general form. Our experimental65

results demonstrate the potential of PeVFA in deriving practical and more effective RL algorithms.66

2 Related Work67

Extensions of Conventional Value Function. Sutton et al. [56] propose General Value Functions68

(GVFs) as a general form of knowledge representation of rewards and arbitrary cumulants. Later,69

conventional value functions are extended to take extra inputs for different purposes of generalization.70

One notable work is Universal Value Function Approximator (UVFA) [45], which is proposed to71

generalize values among different goals for goal-conditioned RL. UVFA is further developed in72

[1, 37, 9] and influences the occurrence of other value function extensions in context-based Meta-RL73

[43, 29], Hierarchical RL [64] and multiagent RL [19, 14] and etc. Most of the above works study74

how to generalize the policy or value function among extrinsic factors, i.e., environments, tasks and75

opponents; while we mainly study the value generalization among policies along policy improvement76

path, an intrinsic learning process of the agent itself.77
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Policy Embedding and Representation. Although not well studied, representation (or embedding)78

learning for RL policies is involved in a few works [18, 14, 3]. The most common way to learn a79

policy representation is to extract from interaction experiences. As a representative, Grover et al. [14]80

propose learning the representation of opponent policy from interaction trajectories with a generative81

policy recovery loss and a discriminative triplet loss. These losses are later adopted in [64, 42].82

Another straightforward idea is to represent policy parameters. Network Fingerprint [17] is such a83

differentiable representation that uses the concatenation of the vectors of action distribution outputted84

by policy network on a set of probing states. The probing state set is co-optimized along with the85

primary learning objective, which can be non-trivial especially when the dimensionality of the set is86

high. Besides, some early attempts in learning low-dimensional embedding of policy parameters are87

studies in Evolutionary Algorithms [13, 44], mainly with the help of VAE [23]. Our work introduce a88

learning framework of policy representation including both above two perspectives.89

PVN and PVFs. Recently, several works study the generalization among policy space. Harb et al.90

[17] propose Policy Evaluation Network (PVN) to directly approximate the distribution of policy91

π’s objective function J(π) = Eρ0 [vπ(s0)] with initial state s0 ∼ ρ0. PVN takes as input Network92

Fingerprint (mentioned above) of policy network. After training on a pre-collected set of policies, a93

random initialized policy can be optimized in a zero-shot manner with the policy gradients of PVN by94

backpropagting through the differentiable policy input. We call such gradients GTPI for short below.95

Similar ideas are later integrated with task-specific context learning in multi-task RL [42], leveraging96

the generalization among policies and tasks for fast policy adaptation on new tasks. In PVN [17],97

as an early attempt, the generalization among policies is studied with small policy network and98

simple tasks; besides, the most regular online learning setting is not studied. Concurrent to our work,99

Faccio and Schmidhuber [10] propose a class of Parameter-based Value Functions (PVFs) that take100

vectorized policy parameters as inputs. Based on PVFs, new policy gradient algorithms are introduced101

in the form of a combination of conventional policy gradients and GTPI (i.e., by backpropagating102

through policy parameters in PVFs). Except for zero-shot policy optimization as conducted in PVN,103

PVFs are also evaluated for online policy learning. Due to directly taking parameters as input, PVFs104

suffer from the curse of dimensionality when the number of parameters is high. Besides, GTPI can105

be non-trivial to rein since policy parameter space are complex and extrapolation generalization106

error can be large when the value function is only trained on finite policies (usually much fewer than107

state-action samples) thus further resulting in erroneous policy gradients.108

Our work differs with PVFs from several aspects. First, we make use of learned policy representation109

rather than policy network parameters. Second, we do not resort to GTPI for the policy update110

in our algorithms but focus on utilizing value generalization for more efficient value estimation in111

GPI. Furthermore, we shed the light on two important problems — how value generalization among112

policies can happen formally and whether it is beneficial to learning or not — which are neglected in113

in previous works from both theoretical and empirical lens.114

3 Policy-extended Value Function Approximator115

In this section, we propose Policy-extended Value Function Approximator (PeVFA), an extension116

of conventional VFA that explicitly takes as input a policy representation. First, we introduce the117

formulation (Sec. 3.1), then we study value generalization among policies theoretically (Sec. 3.2)118

along with some empirical evidences (Sec. 3.3). Finally, we derive a new form of GPI (Sec. 3.4).119

3.1 Formulation120

Consider a Markov Decision Process (MDP) defined as 〈S,A, r,P, γ〉 where S is the state space, A121

is the action space, r is the (bounded) reward function, P is the transition function and γ ∈ [0, 1) is122

the discount factor. A policy π ∈ P (A)|S| defines the distribution over all actions for each state. The123

goal of an RL agent is to find an optimal policy π∗ that maximizes the expected long-term discounted124

return. The state-value function vπ(s) is defined as the expected discounted return obtained through125

following the policy π from a state s: vπ(s) = Eπ [
∑∞
t=0 γ

trt+1|s0 = s] for where rt+1 = r(st, at).126

We use V π to denote the vectorized form of value function.127

In a general form, we define policy-extended value function V : S × Π→ R over state and policy128

space: V(s, π) = vπ(s) for all s ∈ S and π ∈ Π. In this paper, we focus on V(s, π) and policy-129

extended action-value function Q(s, a, π) can be obtained similarly. We use V(π) to denote the value130
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Figure 2: Illustrations of value generalization among policies of PeVFA. Each circle denotes value
function (estimate) of a policy. (a) Global Generalization: values learned from known policies can be
generalized to unknown policies. (b) Local Generalization: values of previous policies (e.g., πt) can
be generalized to successive policies (e.g., πt+1) along policy improvement path.

vector for all states in the following. The key point is that PeVFA V is able to preserve the values of131

multiple policies. With function approximation, a PeVFA is expected to approximate the values of132

policies among policy space, i.e., {V π}π∈Π and then enable value generalization among policies.133

Formally, given a function g : Π→ X ⊆ Rn that maps any policy π to an n-dimensional represen-134

tation χπ = g(π) ∈ X , a PeVFA Vθ with parameter θ ∈ Θ is to minimize the approximation error135

over all possible states and policies generally:136

Fµ,p,ρ(θ, g,Π) =
∑
π∈Π

µ(π)‖Vθ(χπ)− V π‖p,ρ , (1)

where µ, ρ are distributions over policies and states respectively, ‖f‖p,ρ = (
∫
s
ρ(ds)|f(s)|p)1/p is137

ρ-weighted Lp-norm [26, 46] for any f : S → R. The policy distribution µ of interest depends on138

the scenario where value generalization is considered. As illustrated in Figure 2, we provide two139

value generalization scenarios. In the global generalization scenario, a uniform distribution over140

known policy set may be considered with a general purpose of value generalization for unknown141

policies. For the specific local generalization scenario along policy improvement path during GPI, a142

sophisticated distribution that adaptively weights recent policies more during the learning process143

may be more suitable in this case. In the following, we care more about the local generalization144

scenario and use uniform state distribution ρ and L2-norm for demonstration. The subscripts are145

omitted and we use ‖ · ‖ for clarity.146

3.2 Theoretical Analysis on Value Generalization among Policies147

In this part, we theoretically analyze the value generalization among policies induced by PeVFA. We148

start from a two-policy case and study whether the value approximation learned for one policy can be149

generalized to the other one. Later, we study the local generalization scenario (Figure 2(b)) and shed150

the light on the superiority of PeVFA for GPI. All the proofs are provided in Appendix A.151

For the convenience of demonstration, we use an identical policy representation function, i.e., χπ = π,152

and define the approximation loss of PeVFA Vθ for any policy π ∈ Π as fθ(π) = ‖Vθ(π)−V π‖ ≥ 0.153

We use the following definitions for a formal description of value approximation process with PeVFA154

and local property of loss function fθ that influences generalization [40, 63] respectively:155

Definition 1 (π-Value Approximation) We define a value approximation process Pπ : Θ → Θ156

with PeVFA as a γ-contraction mapping on the approximation loss for policy π, i.e., for θ̂ = Pπ(θ),157

we have fθ̂(π) ≤ γfθ(π) where γ ∈ [0, 1).158

Definition 2 (L-Continuity) We call fθ is L-continuous at policy π if fθ is Lipschitz continuous at159

π with a constant L ∈ [0,∞), i.e., |fθ(π) − fθ(π′)| ≤ L · d(π, π′) for π′ ∈ Π with some distance160

metric d for policy space Π.161

With Definition 1, the consecutive value approximation for the policies along policy improvement path162

during GPI can be described as: θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . , as the green arrows illustrated in163

Figure 1. One may refer to Appendix A.1 for a discussion on the rationality of the two definitions.164
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To start our analysis, we first study the generalized value approximation loss in a two-policy case165

where only the value of policy π1 is approximated by PeVFA as below:166

Lemma 1 For θ
Pπ1−−−→ θ̂, if fθ̂ is L̂-continuous at π1 and fθ(π1) ≤ fθ(π2), we have: fθ̂(π2) ≤167

γfθ(π2) +M(π1, π2, L̂), whereM(π1, π2, L̂) = L̂ · d(π1, π2).168

Corollary 1 Pπ1
is γg-contraction (γg ∈ [0, 1)) for π2 when fθ(π2) > L̂·d(π1,π2)

1−γ .169

Lemma 1 shows that the post-Pπ1
approximation loss for π2 is upper bounded by a generalized170

contraction of prior loss plus a locality margin termM which is related to π1, π2 and the locality171

property of fθ̂. In general, the form ofM depends on the local property assumed. Some higher-172

order variants are provided in Appendix A.2. For a step further, Corollary 1 reveals the condition173

where a contraction on value approximation loss for π2 is achieved when PeVFA is only trained to174

approximate the values of π1. Concretely, such a condition is apt to reach with tighter contraction for175

policy π1 is, closer two policies, or smoother approximation loss function fθ̂.176

Then we consider the local generalization scenario as illustrated in Figure 2(b). For any iteration t177

of GPI, the values of current policy πt are approximated by PeVFA, followed by a improved policy178

πt+1 whose values are to be approximated in the next iteration. The value generalization from each179

πt and πt+1 can be similarly considered as the two-policy case. In addition to the former results, we180

shed the light on the value generalization loss of PeVFA along policy improvement path below:181

Lemma 2 For θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . with γt for each Pπt , if fθt is L̂t-continuous at πt182

for any t ≥ 0, we have fθt(πt+1) ≤ γtfθt−1(πt) +Mt, whereMt = Lt · d(πt, πt+1).183

Corollary 2 By induction, we have fθt(πt+1) ≤
∏t
i=0 γtfθ−1

(π0) +
∑t−1
i=0

∏t
j=i+1 γjMi +Mt .184

The above results indicate that the value generalization loss can be recursively bounded and has185

a upper bound formed by a repeated contraction on initial loss plus the accumulation of locality186

margins induced from each local generalization. An infinity-case discussion for Corollary 2 is in187

Appendix A.5. The next question is whether PeVFA with value generalization among policies is188

preferable to the conventional VFA. To this end, we introduce a desirable condition which reveals the189

superiority of PeVFA during consecutive value approximation along the policy improvement path:190

Theorem 1 During θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . , for any t ≥ 0, if fθt(πt) + fθt(πt+1) ≤191

‖V πt − V πt+1‖, then fθt(πt+1) ≤ ‖Vθt(πt)− V πt+1‖.192

Theorem 1 shows that the generalized value estimates Vθt(πt+1) can be closer to the true values of193

policy πt+1 than Vθt(πt). Note that Vθt(πt) is the value approximation for πt which is equivalent194

to the counterpart Vφt for a conventional VFA as value generalization among policies does not195

exist. To consecutive value approximation along policy improvement path, this means that the value196

generalization of PeVFA has the potential to offer closer start points at each iteration. If such closer197

start points can often exist, we expect PeVFA to be preferable to conventional VFA since value198

approximation can be more efficient with PeVFA and it in turn facilitates the overall GPI process.199

However, the condition in Theorem 1 is not necessarily met in practice. Intuitively, it depends on the200

locality margins that may be related to function family and optimization method of PeVFA, as well201

as the scale of policy improvement. We leave these further theoretical investigations for future work.202

Instead, we empirically examine the existence of such desirable generalizations in the following.203

3.3 Empirical Evidences204

We empirically investigate the value generalization of PeVFA with didactic environments. In this205

section, PeVFA Vθ is parameterized by neural network and we use the concatenation of all weights206

and biases of the policy network as a straightforward representation χπ for each policy, called Raw207

Policy Representation (RPR). Experimental details are provided in Appendix B.208

First, we demonstrate the global generalization (illustrated in Figure 2(a)) in a continuous 2D Point209

Walker environment. We build the policy set Π with synthetic policies, each of which is a randomly210

initialized 2-layer tanh-activated neural network with 2 units for each layer. The size of Π is 20k and211

the behavioral diversity of synthetic policies is verified (see Figure 7(b) in Appendix). We divide Π212

into training set (i.e., known policies Π0) and testing set (i.e., unseen policies Π1). We rollout the213
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Figure 3: Empirical evidences of two kinds of generalization of PeVFA. (a) Global generalization:
PeVFA shows comparable value estimation performance on testing policy set (red) after learning
on training policy set (blue). (b) Local generalization: PeVFA (Vθ(χπ)) shows lower losses than
conventional VFA (Vφ) before and after the value approximation training for successive policies
along policy improvement path. In (b), the left axis is for approximation loss (lower is better) and the
right axis is for average return as a reference of the policy learning process (green curve).

policies in the environment to collect trajectories, based on which we perform value approximation214

training. Our results show that a PeVFA trained on Π0 achieves reasonable generalization performance215

when evaluating on Π1. The average losses on training and testing set are 1.782 and 2.071 over 6216

trials. Figure 3(a) shows the value predictions for policies from training and testing set (100 for each).217

Next, we investigate the value generalization along policy improvement path, i.e., local generalization218

as in Figure 2(b). We use a 2-layer 8-unit policy network trained by standard PPO algorithm [50] in219

MuJoCo continuous control tasks. Parallel to the conventional value network Vφ(s) (i.e., VFA) in220

PPO, we set a PeVFA network Vθ(s, χπ) as a reference for the comparison on value approximation221

loss. Compared to Vφ, PeVFA Vθ(s, χπ) takes RPR as input and approximates the values of all222

historical policies ({πi}ti=0) in addition. We compare the value approximation losses of Vφ (red) and223

Vθ (blue) before (solid) and after (dashed) updating with on-policy samples collected by the improved224

policy πt+1 at each iteration. Figure 3(b) shows the results for InvertedPendulum-v1 and Ant-v1.225

Results for all 7 MuJoCo tasks can be found in Appendix B.2. By comparing approximation losses226

before updating (red and blue solid curves), we can observe that the approximation loss of Vθt(χπt+1
)227

is almost consistently lower than that of Vφt . This means that the generalized value estimates228

offered by PeVFA are usually closer to the true values of πt+1, demonstrating the consequence229

arrived in Theorem 1. For the dashed curves, it shows that PeVFA Vθt+1(χπt+1) can achieve lower230

approximation loss for πt+1 than conventional VFA Vφt+1 after the same number of training with the231

same on-policy samples. The empirical evidence above indicates that PeVFA can be preferable to232

the conventional VFA for consecutive value approximation. The generalized value estimates along233

policy improvement path have the potential to expedite the process of GPI.234

3.4 Reinforcement Learning with PeVFA235

Based on the results above, we expect to leverage the value generalization of PeVFA to facilitate236

RL. In Algorithm 1, we propose a general description of RL algorithm under the paradigm of237

GPI with PeVFA. For each iteration, the interaction experiences of current policy and the policy238

Algorithm 1 RL under the paradigm of GPI with PeVFA (V(s, χπ) is used for demonstration)
1: Initialize policy π0, policy representation model g, PeVFA V−1 and experience buffer D
2: for iteration t = 0, 1, . . . do
3: Rollout policy πt in the environment and obtain k trajectories Tt = {τi}ki=0
4: Get representation χπt = g(π) for policy πt and add experiences (χπt , Tt) in buffer D
5: if t % M = 0 then
6: Update PeVFA Vt−1(s, χπi) for previous policies with data {(χπi , Ti)}t−1

i=0
7: Update policy representation model g, e.g., with approaches provided in Sec. 4
8: end if
9: Update PeVFA Vt−1(s, χπt) for current policy χπt and set Vt ←− Vt−1

10: Update πt w.r.t Vt(s, χπt) by policy improvement algorithm and set πt+1 ←− πt
11: end for
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Figure 4: The framework of policy representation training. Policy network parameters used for OPR
or policy state-action pairs used for SPR are fed into policy encoder with permutation-invariant (PI)
transformations followed by an MLP, producing the representation χπ . Afterwards, χπ can be trained
by gradients from the value approximation loss of PeVFA (i.e., End-to-End), as well as (optionally)
the auxiliary loss of policy recovery or the contrastive learning (i.e., InfoNCE) loss.

representation are stored in a buffer (line 3-4). At an interval of M iterations, PeVFA is trained via239

value approximation for previous policies with the stored data and the policy representation model240

is updated according to the method used (line 5-8). This part is unique to PeVFA for preservation241

and generalization of knowledge of historical policies. Next, value approximation for current policy242

is performed with PeVFA (line 9). A key difference here is that the generalized value estimates243

(i.e., Vt−1(χπt)) are used as start points. Afterwards, a successive policy is obtained from typical244

policy improvement (line 10). Algorithm 1 can be implemented in different ways and we propose an245

instance implemented based on PPO [50] in our experiments later. In the next section, we introduce246

our methods for policy representation learning.247

4 Policy Representation Learning248

To derive practical deep RL algorithms, one key point is policy representation, i.e., a low-dimensional249

embedding of RL policy. Intuitively, policy representation influences the approximation and gener-250

alization of PeVFA. Thus, it is of interest to find an effective policy representation based on which251

the superiority of PeVFA can be leveraged to improve RL algorithms. To our knowledge, policy252

representation is not well studied and it remains unclear on how to obtain an effective representation253

for an RL policy in a general case in practice. In previous section, we demonstrate the effectiveness254

of using policy parameters as a naive representation when policy network is small, called RPR.255

However, a usual policy network may have large number of parameters, thus making it inefficient256

and even irrational to use RPR for approximation and generalization [17, 10]. More generally, policy257

parameters of the policy we wish to represent may not be accessible.258

To this end, we propose a general framework of policy representation learning as illustrated in Figure259

4. The first thing to consider is data source, i.e., from which we can extract the information for an260

effective policy representation. Recall that the policy is a distribution over state and action space261

of high dimensionality. The features of such a distribution is not directly available. Therefore, we262

consider two kinds of data source below that indirectly contains the information of policies: 1) Surface263

Policy Representation (SPR): The first data source is state-action pairs (or trajectories [14]), since264

they reflect how policy may behave under such states. This data source is general since no explicit265

form of policy is assumed. In a geometric view, learning policy representation from state-action pairs266

can be viewed as capturing the features of policy via scattering sample points on the curved surface267

of policy distribution. 2) Origin Policy Representation (OPR): The other data source is parameters of268

policy since they determine the underlying form of policy distribution. Such a data source is often269

available during the learning process of deep RL algorithms when policy is parameterized by neural270

networks. Generally, we consider a policy network to be an MLP with well represented state features271

(e.g., features extracted by CNN for pixels or by LSTM for sequences) as input.272

The remaining question is how we extract the policy representation from the data sources mentioned273

above. As shown in Figure 4, we use permutation-invariant (PI) transformations followed by an274

MLP to encode the data of policy π into an embedding χπ for both SPR and OPR. For SPR, each275
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state-action pair of {(si, ai)}ki=1 is fed into a common MLP, followed by a Mean-Reduce operation276

on the outputted features across k. For OPR, we perform PI transformation (similar as done for277

state-action pairs) inner-layer weights and biases {(wi, bi)}hi=1 for each layer first, where h denotes278

the number of nodes in this layer and wi, bi is the income weight vector from previous layer and279

the bias of ith node; then we concatenate encoding of layers and obtain the OPR. A illustrative280

description for the encoding of OPR is in Figure 12 of Appendix.281

To train the policy embedding χπ obtained above, the most straightforward way is to backpropagate282

the value approximation loss of PeVFA in an End-to-End (E2E) fashion as illustrated on the lower-283

right of Figure 4. In addition, we provide two self-supervised training losses for both OPR and SPR,284

as illustrated on the upper-right of Figure 4. The first one is an auxiliary loss (AUX) of policy recovery285

[14], i.e., to recover the action distributions of π from χπ under different states. To be specific,286

an auxiliary policy decoder π̄(·|s, χπ) is trained through behavioral cloning, formally to minimize287

cross-entropy objective LAUX = −E(s,a) [log π̄(a|s, χπ)]. For the second one, we propose to train288

χπ by Contrastive Learning (CL) [54, 51]: policies are encouraged to be close to similar ones (i.e.,289

positive samples π+), and to be apart from different ones (i.e., negative samples π−) in representation290

space. For each policy, we construct positive samples by data augmentation on policy data, depending291

on SPR or OPR considered; and different policies along the policy improvement path naturally292

provide negative samples for each other. Finally, the embedding χπ is optimized through minimizing293

the InfoNCE loss [41] below: LCL = −E(π+,{π−})

[
log

exp(χTπWχπ+ )

exp(χTπWχπ+ )+
∑
π− exp(χTπWχπ− )

]
.294

Now, the training of policy representation model in Algorithm 1 can be performed with any com-295

bination of data sources and training losses provided above. A pseudo-code of the overall policy296

representation training framework and complete implementation details are provided in Appendix D.297

5 Experiments298

In this section, we conduct experimental study with focus on the following questions:299

Question 1 Can value generalization offered by PeVFA improve a deep RL algorithm in practice?300

Question 2 Can our proposed framework to learn effective policy representation?301

Our experiments are conducted in several OpenAI Gym continuous control tasks (one from Box2D302

and five from MuJoCo) [6, 58]. All experimental details and curves can be found in Appendix B.303

Algorithm Implementation. We use PPO [50] as the basic algorithm and propose a representative304

implementation of Algorithm 1, called PPO-PeVFA. PPO is a policy optimization algorithm that305

follows the paradigm of GPI (Figure 1, left). A value network Vφ(s) with parameters φ (i.e.,306

conventional VFA) is trained to approximate the value of current policy π; while π is optimized with307

respect to a surrogate objective [48] using advantages calculated by Vφ and GAE [49]. Compared with308

original PPO, PPO-PeVFA makes use of a PeVFA network Vθ(s, χπ) with parameters θ rather than309

the conventional VFA Vφ(s), and follows the training scheme as in Algorithm 1. Note PPO-PeVFA310

uses the same policy optimization method as original PPO and only differs at value approximation.311

Baselines and Variants. Except for original PPO as a default baseline, we use another two baselines:312

1) PPO-PeVFA with randomly generated policy representation for each policy, denoted by Ran PR;313

2) PPO-PeVFA with Raw Policy Representation (RPR), i.e., use the vector of all parameters of policy314

network as representation as adopted in PVFs [10]. Our variants of PPO-PeVFA differ at the policy315

representation used. In total, we consider 6 variants denoted by the combination of the policy data316

choice (i.e., OPR, SPR) and representation principle choice (i.e., E2E, CL, AUX).317

Experimental Details. For all baselines and variants, we use a normal-scale policy network with318

2 layers and 64 units for each layer, resulting in over 3k to 10k (e.g., Ant-v1) policy parameters319

depending on the environments. We do not assume the access to pre-collected policies. Thus the320

size of policy set increases from 1 (i.e., the initial policy) during the learning process, to about 1k to321

2 for a single trial. The dimensionality of all kinds of policy representation expect for RPR is set322

to 64. The buffer D maintains recent 200k steps of interaction experience and the policy data of323

corresponding policy. The number of interaction step of each trial is 1M for InvDouPend-v1 and324

LunarLander-v2, 4M for Ant-v1 and 2M for the others.325

Results. The overall experimental results are summarized in Table 1. In Figure 5, we provide326

aggregated results across all environments expect for InvDouPend-v1 and LunarLander-v2 (since327
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Table 1: Average returns (± half a std) over 10 trials for algorithms. Each result is the maximum
evaluation along the training process. Top two values for each environment are bold.

Benchmarks Origin Policy Representation (Ours) Surface Policy Representation (Ours)

Environments PPO Ran PR RPR E2E CL AUX E2E CL AUX

HalfCheetah-v1 2621 2470 2325 ± 399.27 3171 ± 427.63 3725 ± 348.55 3175 ± 517.52 2774 ± 233.39 3349 ± 341.42 3216 ± 506.39
Hopper-v1 1639 1226 1097 ± 213.47 2085 ± 310.91 2351 ± 231.11 2214 ± 360.78 2227 ± 297.35 2392 ± 263.93 2577 ± 217.73

Walker2d-v1 1505 1269 317 ± 152.68 1856 ± 305.51 2038 ± 315.51 2044 ± 316.32 1930.57 ± 456.02 2203 ± 381.95 1980 ± 325.54
Ant-v1 2835 2742 2143 ± 406.64 3581 ± 185.43 4019 ± 162.47 3784 ± 268.99 3173 ± 184.75 3632 ± 134.27 3397 ± 200.03

InvDouPend-v1 9344 9355 8856 ± 551.90 9357 ± 0.29 9355 ± 0.64 9355 ± 0.68 9355 ± 0.89 9356 ± 0.96 9355 ± 1.42
LunarLander-v2 219 226 -22 ± 35.08 238 ± 3.37 239 ± 3.70 234 ± 3.47 236 ± 3.13 234 ± 3.13 235 ± 5.70

most algorithms achieve near-optimal results), where all returns are normalized by the results of PPO328

in Table 1. Full learning curves are omitted and can be found in Appendix F.2.329
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Figure 5: Normalized averaged returns
aggregated over 4 MuJoCo tasks.
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Figure 6: A t-SNE visualization for
representations learned by PPO-PeVFA
OPR (E2E) in Ant-v1. In total, 6k poli-
cies from 5 trials (denoted by different
markers) are plotted, which are colored
according to average return.

To Question 1. From Table 1, we can find that both PPO-330

PeVFA w/ OPR (E2E) and PPO-PeVFA w/ SPR (E2E)331

outperforms PPO in all 6 tasks, and achieve over 20%332

improvement in Figure 5. This demonstrates the effec-333

tiveness of PeVFA. Moreover, the improvement is further334

enlarged (to about 40%) by CL and AUX for both OPR335

and SPR. This indicates that the superiority of PeVFA can336

be further utilized with better policy representation that337

offers a more suitable space for value generalization.338

To Question 2. In Table 1, consistent degeneration is339

observed for PPO-PeVFA w/ Ran PR due to the nega-340

tive effects on generalization caused by the randomness341

and disorder of policy representation. This phenomenon342

seems to be more severe for PPO-PeVFA w/ RPR due343

to the complexity of high-dimensional parameter space.344

In contrast, the improvement achieved by our proposed345

PPO-PeVFA variants shows that effective policy repre-346

sentation can be learned from policy parameters (OPR)347

and state-action pairs (SPR) though value approximation348

loss (i.e., E2E) and further improved when additional self-349

supervised representation learning is involved as CL and350

AUX. Overall, OPR slightly outperforms SPR as CL does351

over AUX. We hypothesize that it is due to the stochas-352

ticity of state-action pairs which serve as inputs of SPR353

and training samples for AUX. This reveals the space for354

future improvement. In addition, we visualize the learned355

representation in Figure 6. We can observe that policies356

from different trials are locally continuous and show dif-357

ferent modes of embedding trajectories due to random358

initialization and optimization; while a global evolvement359

among trials emerges with respect to policy performance.360

6 Conclusion and Future Work361

In this paper, we propose Policy-extended Value Function Approximator (PeVFA) and study value362

generalization among policies. We propose a new form of GPI based on PeVFA which is potentially363

preferable to conventional VFA for value approximation. Moreover, we propose a general framework364

to learn low-dimensional embedding of RL policy. Our experiments demonstrate the effectiveness of365

the generalization characteristic of PeVFA and our proposed policy representation learning methods.366

Our work opens up some research directions on value generalization among policies and policy367

representation. A possible future study on the theory of value generalization among policies is to368

consider the interplay between approximation error, policy improvement and local generalization369

during GPI with PeVFA. Besides, analysis on influence factors of value generalization among policies370

(e.g., policy representation, architecture of PeVFA) and other utilization of PeVFA are expected. For371

better policy representation, inspirations on OPR may be got from studies on Manifold Hypothesis of372

neural network; the selection of more informative state-action pairs for SPR is also worth research.373
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