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Abstract

Vision-language models (VLMs) have made significant progress in recent visual-
question-answering (VQA) benchmarks that evaluate complex visio-linguistic
reasoning. However, are these models truly effective? In this work, we show that
VLMs still struggle with natural images and questions that humans can easily
answer, which we term natural adversarial samples. We also find it surprisingly
easy to generate these VQA samples from natural image-text corpora using off-
the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach
to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with
10,000 human-verified VQA samples. Crucially, we adopt a vision-centric design
by pairing each question with two images that yield different answers, preventing
“blind” solutions from answering without using the images. This makes Natural-
Bench more challenging than previous benchmarks that can largely be solved with
language priors like commonsense knowledge. We evaluate 53 state-of-the-art
VLMs on NaturalBench, showing that models like BLIP-3, LLaVA-OneVision,
Cambrian-1, InternLM-XC2, Llama3.2-Vision, Molmo, Qwen2-VL, and even the
(closed-source) GPT-4o lag 50%-70% behind human performance (which is above
90%). We analyze why NaturalBench is hard from two angles: (1) Composi-
tionality: Solving NaturalBench requires diverse visio-linguistic skills, including
understanding attribute bindings, object relationships, and advanced reasoning like
logic and counting. To this end, unlike prior work that uses a single tag per sample,
we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation.
(2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose
the same answer regardless of the image. We show that debiasing can be crucial
for VLM performance. Lastly, we apply our benchmark curation method to diverse
data sources, including long captions (over 100 words) and non-English languages
like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.

1 Introduction

Recent vision-language models (VLMs) such as GPT-4o [61], GPT-4Vision [60], BLIP-3 (XGen-
MM) [79], LLaVA-OneVision [37], InternLM-XC2 [14], Llama3.2-Vision [17], Molmo [10] and
Qwen2-VL [76] have markedly improved performance on challenging visual-question-answering
(VQA) benchmarks like MMMU [83] and MME [18]. These benchmarks evaluate VLMs across
various domains, such as college-level subjects [53, 83], commonsense reasoning [18, 34], diagram
comprehension [30, 52], and complex problem-solving in mathematics, coding, physics, and temporal
forecasting [18, 50, 54]. Despite their progress, our research identifies a significant gap: these models
still struggle with seemingly simple questions about natural images. Figure 1 shows such VQA
samples that humans find easy to solve, while even the state-of-the-art models fail. We term these
natural adversarial samples [24] for VLMs.
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Figure 1: NaturalBench examples consist of two questions and two images with alternating answers
to prevent “blind” models from scoring well (e.g., those that predict the same answer regardless of the
image or question, as discussed in Section 3). We compare the ground-truth answer for each (image,
question) pair with predictions from leading VLMs including GPT-4o (gpt-4o-2024-08-06),
Qwen2-VL (72B), Llama3.2-Vision (90B), and Molmo (72B) (see Section 4). Even the best models
like GPT-4o lags far behind human performance (which is above 90%). Figure 2 shows the pipeline
for collecting these natural adversarial examples.

Collecting natural adversarial samples. In contrast to previous benchmarks that challenge VLMs
with carefully-curated VQA samples [5, 18, 50, 73], we propose a semi-automated method to
minimize human efforts by generating VQA samples from existing natural image-text datasets [42, 63]
(see Figure 2). First, we identify pairs of image-text samples that leading VLMs like CLIP [65]
fail to match correctly; typically, these pairs are visually and semantically similar. After collecting
these confounding pairs, we send both samples to ChatGPT [60] to generate questions that elicit
different answers for the two images. We hire human annotators to remove incorrect or irrelevant
question-answer (QA) pairs by examining their corresponding images. This process is notably
simpler than previous adversarial VQA benchmarks [40, 68] that train annotators to write new QA
pairs that fail a targeted VQA model. Nonetheless, our VQA samples pose a “natural” challenge to
state-of-the-art models without specifically targeting any.

Avoiding “blind” solutions. Crucially, pairing each question with two images that yield different
answers enforces VLMs to rely on the visual inputs. This approach contrasts with earlier benchmarks
that can be (partially) addressed by blind language models [5, 45] that do not look at images.
Indeed, we demonstrate that a suite of six popular VQA benchmarks [5, 18, 30, 50, 53, 83] can be
largely addressed by a blind ChatGPT that exploits language biases. For instance, benchmarks like
MME [18] contain questions like “Is there a black giraffe in the image?”, which can be answered
using commonsense knowledge that most giraffes are brown. Additionally, these benchmarks
may inadvertently capture an imbalanced answer distribution. For instance, in the MMStar
benchmark [5] (which excludes questions solvable by blind LLMs like ChatGPT), “Yes” is three
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Figure 2: Collecting NaturalBench. We use a semi-automated procedure to collect NaturalBench
from natural image-text corpora like Flickr30K [63]. First, we identify confounding pairs of image-
text samples that fail discriminative VLMs like CLIP [65] and BLIP-2 [39], e.g., they wrongly match
an image with another image’s caption. Next, we prompt ChatGPT to design questions that yield
different answers for each image, providing the original captions in the prompt. Section 3 details this
procedure. We hire human annotators to filter out incorrect VQA samples, such as “Is the motorcyclist
wearing a red and white uniform?”, which has an identical answer of “Yes” for both images. Unlike
previous adversarial benchmarks [20, 24, 40, 68], NaturalBench does not target any specific VQA
models nor perturb the images or questions. Section 6 extends this simple procedure to diverse data
sources (e.g., non-English) to highlight its potential for future dynamic evaluations [31] of VLMs.

times more likely than “No” to be the correct answer for yes-or-no questions. Section 4 shows that
such spurious answer patterns allow one to achieve performance gains by finetuning a blind GPT-3.5
solely on QA data from these VQA benchmarks. To prevent blind solutions from scoring well, we
introduce a balanced evaluation protocol: each test sample contains two images and two questions,
with answers alternating between different questions or images. Consequently, blind solutions that
choose the same answers regardless of the questions or images will not succeed under this protocol.

NaturalBench. We collect an initial benchmark with 5,800 yes-or-no and 1,800 multiple-choice
VQA samples using public image-text datasets [59, 63], surpassing the scale of recent benchmarks
like MMVP [73] and MMStar [5] (ranging from 300 to 1,500 samples). We hire a separate group of
humans to evaluate themselves on NaturalBench tasks, achieving a high accuracy above 90%. We
also evaluate over 50 open-source and closed-source VLMs. Popular models like LLaVA [48] and
mPLUG-Owl [80] perform only marginally better than random chance, and even the best closed-
source models such as GPT-4o and GPT-4Vision [60] lag significantly lag behind humans by more
than 50%. This suggests that NaturalBench would serve as an effective testbed for driving future
innovation in VLMs.

What are the challenges? We analyze why NaturalBench is difficult from two perspectives: (1)
Compositionality: Solving NaturalBench requires diverse visio-linguistic skills [26, 32, 36, 71],
such as attribute bindings, spatial/action/part relations, and advanced reasoning including comparison
and logic. While most benchmarks assign only one skill tag per sample, we tag each sample with
all applicable skills from a carefully defined taxonomy of 27 skills. Even the closed-source GPT-4o
still struggles with certain skills such as spatial orientation and comparison, for example, “Are the
two people looking in the same direction?”. (2) Biases: NaturalBench reveals significant biases in
VLMs, particularly their tendency to repeat the same answer across different images (or questions).
Our analysis suggests debiasing is a promising way to ground VLMs and reduce hallucinations, with
NaturalBench serving as a useful benchmark for bias mitigation [88].

Dynamic evaluations. To keep pace with model development and prevent data leakage [5, 78,
89], vision-language benchmarks must be continuously updated. Our benchmark curation method
seamlessly adapts to dynamic evaluations [31, 58] by incorporating new data sources. We expand
NaturalBench with over thousands of VQA samples constructed from two recent image-text datasets:
(1) DOCCI [59] with detailed captions over 100 words, and (2) XM3600 [69] with non-English
captions in Chinese and Hindi. Together, our first release of NaturalBench includes 10,000 samples,
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presenting diverse challenges for next-generation VLMs. We hope our efforts will inspire further
research into dynamic evaluations of VLMs.

2 Related Works

Benchmarks for vision-language models. Recent VLMs are commonly tested with popular VQA
benchmarks such as MMStar [5], MMMU [83], MME [18], ScienceQA [53], AI2D [30], MM-
Bench [50], MM-Vet [82], Seed-Bench [34], and MMVP [73]. These benchmarks evaluate complex
visio-linguistic skills, such as fine-grained perception, reasoning and cognition, commonsense knowl-
edge, and problem-solving across different fields. However, constructing them requires substantial
human effort, including designing skills for evaluation, sourcing relevant images, and training
annotators to create question-answer pairs [21, 40, 50, 68, 73, 82].

Biases in vision-language benchmarks. Despite careful construction, vision-language benchmarks
are prone to spurious statistical patterns [21, 66] exploitable by “blind” shortcut solutions. For exam-
ple, in the classic VQAv1 benchmark [2], questions starting with “Do you see a...” are answered “Yes”
87% of the time. Such language biases allow “blind” QA models to answer correctly without viewing
images. While the community spent years addressing these issues, recent benchmarks designed for
foundational VLMs still repeat these flaws [5, 45]. For example, image-text retrieval benchmarks
like ARO [84] contain nonsensical negative captions that can be easily ruled out by caption like-
lihood [45, 74] or grammar correctness [26]. Recent VQA benchmarks like MMBench [50] are
compromised by questions that can be solved using commonsense knowledge alone [5]. In this work,
we show that even a blind ChatGPT can approach SOTA performance on these benchmarks, casting
doubt on whether they truly assess visio-linguistic capabilities. As such, we design NaturalBench to
avoid “blind” solutions by enforcing a balanced evaluation protocol [21, 45, 71].

Adversarial samples for dynamic model evaluation. Historically, machine learning models took
decades to reach human performance on static benchmarks – for example, 15 years for MNIST [12]
and 7 years for ImageNet [11]. However, modern foundation models [38, 60, 65] often make new
benchmarks obsolete in just months or years [31]. In response, recent research advocates for dynamic
(lifelong) benchmarking protocols [31, 43, 57, 70]. The most popular approach is to collect adversarial
data samples through a human-and-model-in-the-loop procedure. For instance, Adversarial NLI [58]
and Dynabench [31] engage human annotators to continuously craft hard samples that fail existing
large language models. Similarly, adversarial VQA benchmarks [40, 68] ask humans to repeatedly
write difficult QA pairs for an image until one fails a VQA model. Hendrycks et al. [24] train
annotators to find web images that confuse pre-trained ImageNet classifiers. In contrast, our data
collection method does not target any specific models and requires only single-step verification by
human annotators, making it more efficient for dynamic benchmark curation.

3 Collecting NaturalBench

This section describes how we collect NaturalBench.

Natural adversarial samples for VLMs. For discriminative tasks like visual recognition, adversarial
samples are images that models misclassify [20, 24]. For generative VLMs trained on tasks like
VQA, we define their adversarial samples as image-question pairs that humans can easily answer but
models cannot. Existing work often maliciously perturbs input images or prompts to compromise
VLMs [16, 20, 27, 49, 55, 64]; instead, we challenge VLMs using natural image-question pairs.

Challenges in designing VQA benchmarks. Without careful curation, VQA benchmarks may
be solved by blind QA models that ignore the images [5, 21]. First, Figure 3 shows that recent
benchmarks often include questions solvable through commonsense knowledge. For example,
MMBench [50] includes questions like, “Is the African Elephant the smallest or largest land animal?”
which can be easily answered without seeing the image. Another question from MMMU [83] asks,
“Which artist belonging to the Bloomsbury group was Gertler in a relationship with?” The correct
answer is “Dora Carrington”, as the other options like “Vanessa Bell” and “Leonora Carrington” can
be ruled out with knowledge of art history. We also refer interested readers to the concurrent work
[5] for further discussion on this issue. Another easily overlooked bias is imbalanced answers. For
example, in the popular MME [18] benchmark, the question “Does this artwork exist in the form
of a painting?” is answered “Yes” 97.5% of the time, while “Does this artwork exist in the form
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of furniture?” is answered “No” 100% of the time. Even the concurrent MMStar [5] benchmark is
not exempt from this issue, despite efforts to filter out samples from existing benchmarks that can
be answered by blind language models. When MMStar asks about human emotions, “Sad” is three
times more likely to be correct than “Happy”. In MMStar’s color-related questions, “White” and
“Black” are up to ten times more likely to be correct than colors like “Purple”. Section 4 shows that
such spurious answer patterns can be exploited by finetuning a “blind” ChatGPT.

Figure 3: Example questions in previous benchmarks solvable by commonsense knowledge. We
provide example questions from existing VQA benchmarks that can be addressed using commonsense
knowledge. For these questions, a “blind” language model, such as ChatGPT (without vision input),
can already answer them without looking at the image.

Answer balancing (prior art). To avoid blind solutions, a VQA benchmark must ensure that
all candidate answers to a question are equally likely. However, balancing answer distribution
is challenging. For example, GQA [28] performs post-hoc balancing by discarding over 90% of
collected VQA samples. VQAv2 [21] uses a labor-intensive procedure to fix imbalances in VQAv1:
for each (image, question, answer) triplet, MTurk annotators review up to 24 similar images (searched
via nearest neighbor search) to find an alternative that leads to a different answer.

Efficient construction of balanced VQA samples (ours). We posit that foundation models [60, 65]
can significantly reduce the human effort required to create balanced VQA benchmarks. Specifically,
we automate the two most labor-intensive tasks: (1) finding pairs of similar images [21], and (2)
generating corresponding questions and answers [40]. Given an image-text dataset like Flickr30K [63],
our data curation pipeline (Figure 2) operates as follows. Step 1: We search for pairs of image-text
samples that are incorrectly matched by discriminative VLMs like CLIP, meaning they erroneously
match an image with another image’s caption. Step 2: We use generative LLMs like ChatGPT to
write questions that yield different answers for each image. We elaborate on this process below:

Step 1: Collecting pairs of image-text samples. We denote an image by i and a text caption by t.
VLMs like CLIP [65] compute a similarity score S(i, t) ∈ R, with higher scores indicating greater
similarity. For a pair of image-text samples {(i0, t0), (i1, t1)}, a correct match occurs when S(i0, t0)
and S(i1, t1) are both greater than S(i0, t1) and S(i1, t0). Conversely, a mismatch occurs when:

[S(i0, t0) < S(i0, t1)] or [S(i0, t0) < S(i1, t0)] or [S(i1, t1) < S(i0, t1)] or [S(i1, t1) < S(i1, t0)] (1)

Our Appendix shows that this adversarial procedure pairs visually and semantically similar images
more efficiently than other methods (e.g., random pairing) for creating challenging VQA samples.
Using Flickr30K [63], we identify all mismatches of both CLIP (ViT-L-14-LAION400m) [29] and
BLIP-2 [39]. Since each sample can mismatch with multiple others, we randomly keep one mismatch
per sample to collect about 2,000 unique pairs. We also hire annotators to discard around 800 pairs
where a caption can describe both images. Our Appendix shows that these pairs already form an
image-text retrieval benchmark in the same format as Winoground [71], challenging even the latest
SigLIP [85] models trained with more parameters and data [67].
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Step 2: Generating questions and answers. We ask ChatGPT to generate questions that yield dif-
ferent answers for two images. For example, given the caption pair t0 and t1, ChatGPT can generate
questions answered “Yes” for one image and “No” for the other using the below instruction:

I will present two captions for two images. Please help me generate two questions that highlight the differences
between the captions. The first question should result in a ‘Yes’ answer for Caption 1 and a ‘No’ for Caption 2.
The second question should result in a ‘No’ answer for Caption 1 and a ‘Yes’ for Caption 2.
Caption 1: {t0}
Caption 2: {t1}

Our Appendix shows how to modify this prompt for other question types (e.g., multiple-choice).
For each generated VQA sample (a triplet of image, question, and answer), we engage two human
annotators to select from the two candidate answers and “Unanswerable” [22]. We retain a sample
only if both annotators agree on the correct answer. This step is crucial to ensure the quality of
our benchmark. For samples that annotators fail or disagree on, we will resample new questions
using ChatGPT up to three times. Using 1,200 Flickr30K image pairs, we manage to collect 2,600
yes-or-no and 1,000 multiple-choice VQA samples. Section 6 shows how NaturalBench can be easily
expanded with new data, as we add 3,200 yes-or-no and 800 multiple-choice VQA samples collected
from DOCCI. In the main paper, we present results on the combined dataset of 7,600 English VQA
samples collected from Flickr30K [63] and DOCCI [59].

MMMU-Test [83] MMStar-Test [5] MME-Test [18]

MMBench-Test [50] ScienceQA-Test [53] AI2D-Test [30]

Figure 4: Performance of GPT-3.5 vs. LLaVA-1.5 on previous VQA benchmarks. We split each benchmark
into equal-sized training and test sets, and report zero-shot (in blue) and finetuned (in green) results. Previous
benchmarks show strong language biases, allowing blind GPT-3.5 to exploit spurious answer patterns (see
Section 4) by finetuning on QA data without images. As a result, blind GPT-3.5 greatly surpasses random
chance performance (see the red dotted line) and sometimes even matches the performance of LLaVA-1.5-7B
finetuned using images. In contrast, Figure 5 shows that NaturalBench can effectively prevent blind solutions
from exceeding chance.

4 Experimental Results

We present model results to contrast NaturalBench with previous benchmarks.

NaturalBench is more robust against blind solutions. Popular VQA benchmarks like MME [18]
inadvertently encourage “blind” models that exploit language biases. We show this by using a random
half of each benchmark for training and testing on the other half. We finetune a blind LLM (GPT-3.5)
using auto (default) hyperparameters, while LLaVA-1.5 is finetuned with a learning rate of 2e-5 and
a batch size of 16. Both models are trained for 10 epochs. Figure 4 shows that GPT-3.5 finetuned
using only QA data (without images) significantly outperforms random chance and sometimes even
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NaturalBench-Test (G-Acc)

Figure 5: Performance of GPT-3.5, LLaVA-1.5, and GPT-4o on NaturalBench. We also split NaturalBench
(the English subset) into equal-sized training and test sets, and report zero-shot (in blue) and finetuned (in green)
results. We report group accuracy (G-Acc) (introduced in Section 4), which awards a point when all four (image,
question) pairs are answered correctly. We highlight key results: (1) Blind GPT-3.5 fails to surpass random
chance performance (red dotted line), regardless of finetuning. (2) LLaVA-1.5 improves by 9% by finetuning on
NaturalBench’s training images. (3) Even GPT-4o gains 10% G-Acc through vision finetuning on NaturalBench.
These findings confirm that NaturalBench is a more vision-centric benchmark, and a potentially useful dataset
for improving already advanced VLMs.

matches the performance of LLaVA-1.5 finetuned with images. In contrast, NaturalBench enforces a
balanced answer distribution for each question and image. Figure 5 confirms that NaturalBench’s
design prevents blind GPT-3.5 from exceeding random chance performance, establishing it as a more
vision-centric benchmark for reliable VLM evaluation. Additionally, vision finetuning of LLaVA-1.5
and GPT-4o 2 significantly boosts their performance over the original checkpoints, suggesting that
NaturalBench is a potentially useful dataset for improving future VLMs. In this paper, we focus on
model evaluation and leave data scaling for training to future work. We now proceed to evaluate more
models on NaturalBench.

Evaluation setup. To better understand model performance, we introduce three additional metrics.
We define the “question accuracy” (Q-Acc) metric to award a point only if a model correctly answers
a question for both images. Similarly, the “image accuracy” (I-Acc) metric awards a point when
a model correctly answers both questions for an image. Lastly, the “group accuracy” (G-Acc)
metric awards one point when a model correctly answers all four (image, question) pairs in a test
sample. These VQA metrics are analogous to Winoground’s retrieval metrics [71] for paired (image,
caption) samples. When reporting performance, we generate answers using each model’s default
decoding strategy and compare them to the ground-truth answers. Alternatively, Section 5 shows
that models can be evaluated deterministically by comparing the likelihood of each candidate answer
using VQAScore [44].

NaturalBench challenges all state-of-the-art VLMs. Table 1 shows that NaturalBench significantly
challenges leading VLMs, with most models performing only 5% to 20% above random chance
(in terms of G-Acc). Even models like InternLM-XC2-7B [15], despite being trained on Flickr30K
images (but not our questions), perform only 20.2% better than chance. Closed-source models trained
on proprietary datasets, such as GPT-4o and GPT-4v, still lag behind average human performance,
as measured by a separate group of three human annotators. We also note that Q-Acc (correctly
answering both questions for each image) is always lower than I-Acc (correctly answering both
images for each question). This is primarily due to models choosing the same answer for a question
regardless of the input image, which motivates our analysis in Section 5 on debiasing VLMs. Lastly,
we observe that latest models like Qwen2-VL, Molmo, and Llama3.2 improve with larger language
models. We now explore how NaturalBench identifies areas for future model improvement.

2Due to the high cost, we only finetune GPT-4o on NaturalBench, not other benchmarks. We use the ‘auto’
setting for vision finetuning of GPT-4o.

7



Table 1: Performance on NaturalBench. We report the performance of 53 leading VLMs on
NaturalBench. All models significantly lag behind human performance, with the performance gap (in
G-Acc) between humans and models highlighted in red. The latest models, such as BLIP-3 (XGen-
MM), Cambrian-1, LLaVA-OneVision, Llama3.2-Vision, Molmo, and Qwen2-VL lag significantly
behind humans by 55% to 70%. Even the best closed-source GPT-4o is still 52% behind humans.

Model Image Encoder Language Model NaturalBench Performance
Acc Q-Acc I-Acc G-Acc ∆Human

Human Performance – – 97.5 94.6 95.0 92.1 0.0
Random Chance – – 50.0 25.0 25.0 6.3 -85.8

Open-source Models

BLIP-2 [39] EVA-G FlanT5-3B 56.2 14.0 17.1 2.1 -89.9
FlanT5-11B 61.0 25.8 31.9 7.7 -84.4

InstructBLIP [9] EVA-G

Vicuna-7B 59.1 20.2 24.2 4.0 -88.1
Vicuna-13B 62.8 29.0 34.8 9.2 -82.9
FlanT5-3B 62.5 35.2 28.1 9.8 -82.3
FlanT5-11B 64.5 32.8 39.1 12.7 -79.4

Otter [33] CLIP-L-14 MPT-7B 57.4 20.9 24.9 3.8 -88.3
LlaMA-Adapter-v2.1 [19] CLIP-L-14 LaMA2-7B 58.3 19.4 23.2 4.4 -87.7
CogVLM-Agent-VQA [25] EVA2-E Vicuna-7B 64.9 31.1 34.7 10.3 -81.8
DeepSeek-VL-1.3B-Chat [51] SigLIP-L & SAM-B DeepSeek-LLM-1B 66.5 35.4 39.4 11.5 -80.6

ShareGPT4V [4] CLIP-L-14 Vicuna-7B 68.4 39.1 44.3 12.5 -79.6
Vicuna-13B 69.3 40.5 44.3 14.9 -77.2

LLaVA-1.5 [47] CLIP-L-14 Vicuna-7B 67.3 37.7 43.8 12.7 -79.4
Vicuna-13B 68.9 39.6 44.6 14.8 -77.3

CogVLM-Chat [77] EVA2-E Vicuna-7B 68.1 37.7 41.3 13.9 -78.2
InternLM-XC-V1 [87] EVA-G InternLM-7B 68.7 40.3 46.9 15.5 -76.6
InternLM-XC-V2-1.8B [15] CLIP-L-14 InternLM2-1.8B 70.5 43.3 46.9 16.6 -75.5
Qwen-VL-Chat [3] CLIP-G-16 Qwen-7B 70.0 42.6 46.8 17.1 -75.0
Phi-3-Vision [1] CLIP-L-14 Phi-3-Mini 70.4 43.4 48.7 17.2 -74.9
mPLUG-Owl2 [81] CLIP-L-14 Llama2-7B 70.4 43.7 48.7 17.4 -74.7
Bunny [23] SigLIP-SO Phi-2-2.7B 69.9 42.3 48.4 17.4 -74.7
mPLUG-Owl2.1 [81] CLIP-L-14 Qwen-7B 70.1 42.5 47.1 17.9 -74.2
Monkey-10B-chat [41] OpenCLIP-BigG Qwen-7B 71.1 43.9 48.3 18.2 -73.9

LLaVA-NeXT [48] CLIP-L-14

Vicuna-7B 70.2 42.5 47.6 15.0 -77.1
Mistral-7B 71.1 44.6 49.1 16.3 -75.8
Vicuna-13B 72.2 45.9 49.9 19.2 -72.9
Nous-Hermes-2-Yi-34B 73.5 48.2 50.9 22.7 -69.4

DeepSeek-VL-7B-Chat [51] SigLIP-L & SAM-B DeepSeek-LLM-7B 71.7 46.0 50.1 19.3 -72.8
BLIP-3 (XGen-MM) [79] CLIP-H-14 Phi-3-Mini 72.3 47.0 51.2 19.5 -72.6
InternVL-Chat-V1.1 [6] InternViT-6B Llama2-13B 73.4 48.5 52.3 20.3 -71.8
InternVL-Chat-V1.5 [7] InternViT-6B InternLM2-Chat-20B 75.3 52.3 55.9 23.1 -69.0
InternVL-Chat-V1.2-Plus [6] InternViT-6B Nous-Hermes-2-Yi-34B 75.5 52.7 56.2 23.4 -68.7
InternVL2-8B [8] InternViT-300M InternLM2.5-7B-Chat 74.0 50.4 54.4 23.5 -68.6

Cambrian-1 [72]
SigLIP-S-14 & CLIP-L-14
DINOv2-g &
CLIP-ConvNeXT-XXL

Llama-3-8B 71.5 44.6 47.9 19.4 -72.7
Vicuna-13B 75.4 52.6 55.7 25.5 -66.6
Nous-Hermes-2-Yi-34B 76.3 53.9 57.2 26.6 -65.5

InternLM-XC2-4KHD-7B [13] CLIP-L-14 InternLM2-7B 75.5 53.1 56.1 25.9 -66.2
InternLM-XC2-7B [15] CLIP-L-14 InternLM2-7B 76.0 53.9 56.7 26.5 -65.6
InternVL-Chat-V1.2 [6] InternViT-6B Nous-Hermes-2-Yi-34B 75.6 52.9 56.4 26.6 -65.5
InternVL2-26B [8] InternViT-6B InternLM2-Chat-20B 76.9 55.4 58.4 27.7 -64.4

LLaVA-OneVision [37] SigLIP-S-14 Qwen2-0.5B 68.7 39.8 46.2 15.6 -76.5
Qwen2-7B 77.2 56.1 58.8 28.8 -63.3

Llama3.2-Vision [17] ViT-H-14 Llama-3.1-8B 75.1 51.7 55.6 26.8 -65.3
Llama-3.1-70B 77.0 55.1 57.5 29.1 -63.0

Molmo [10] CLIP-L-14

OLMoE-1B 68.3 38.2 42.6 14.7 -77.4
OLMo-7B 72.8 46.8 50.3 20.7 -71.5
Qwen2-7B 75.3 52.0 55.8 26.7 -65.4
Qwen2-72B 76.4 53.9 57.0 29.3 -62.8

Qwen2-VL [76] CLIP-L-14
Qwen2-1.5B 74.1 50.8 54.4 23.4 -68.7
Qwen2-7B 76.7 55.5 58.5 29.1 -63.0
Qwen2-72B 79.9 61.3 64.0 36.9 -55.2

Closed-source Models
GPT-4Vision GPT-4 75.0 52.5 56.1 26.2 -65.9
GPT-4o GPT-4 81.6 64.4 66.4 39.6 -52.5

5 Why is NaturalBench Challenging?

We analyze why NaturalBench is challenging from (1) compositionality and (2) biases.

NaturalBench assesses visio-linguistic compositional reasoning. Solving a NaturalBench sample
often requires a combination of skills, including object recognition, attribute binding, relation under-
standing, and advanced reasoning such as logic, comparison, differentiation (instance discrimination),
counting, and world knowledge. For fine-grained evaluation, we manually tag each (image, question)
pair with all associated skills, unlike prior benchmarks that oversimplify by assigning a single skill
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tag per sample. Figure 6 showcases the skill taxonomy with 8 types of objects, 8 types of attributes,
3 types of relations (with spatial relation further divided into 4 subtypes [46]), and 5 types of rea-
soning [35]. This taxonomy is more compositional than previous benchmarks such as MMVP [73],
which assigns each sample a single tag from 8 skill types. The Appendix provides detailed skill
definitions, examples, and model performance for each skill. Several conclusions are noted: (1)
Certain skills are generally harder than others; for example, abstract attributes (e.g., helpful) are
harder than color or size attributes. Orientation (e.g., facing, towards) is harder than other spatial
relations like proximity (e.g., near, far) or projectivity (e.g., to the right, on top of). (2) Even the
strongest GPT-4o are challenged by advanced reasoning skills such as comparison (e.g., more than,
the same as, happier).

(a) Skill taxonomy (b) Examples of skill tags

Figure 6: Skill taxonomy and tagging. Figure (a) provides an overview of the compositional reasoning skills
evaluated by NaturalBench. Skill definitions and model performance per skill are presented in our Appendix.
Figure (b) shows NaturalBench samples with their associated skill tags. Unlike prior benchmarks that assign a
single tag per sample, NaturalBench tags each sample with all applicable skills for a fine-grained analysis.

NaturalBench exposes significant model biases. We find that most VLMs underperform on
NaturalBench due to biases towards certain answers, such as “Yes” for yes-or-no questions and “B”
for multiple-choice questions. We posit that mitigating these biases can improve model performance.
To show this, we adopt a scoring-based evaluation strategy using the generative likelihood of each
candidate answer (VQAScore [44]) to determine the model’s predicted answer. Specifically, given a
question q, an image i, and two candidate answers a0 and a1, we evaluate:

P (a0|q, i)− P (a1|q, i) > τ (2)

where τ is a threshold (default is 0). If this condition (Eq. 2) is met, the model predicts a0; otherwise,
it predicts a1. The Appendix shows that deterministic evaluation yields results largely consistent with
stochastic decoding while being more reproducible. Crucially, this formulation allows us to adjust
τ ∈ [−1, 1] for each NaturalBench sample (four image-question pairs) to avoid repeating the same
answers across images (or questions). Recall that Q-Acc awards a point when the model correctly
answers both images for a question. We can now calculate a debiased Q-Acc by adjusting τ so
that the model predicts different answers for each image. Similarly, a debiased I-Acc is calculated
by adjusting τ to ensure different predicted answers for each question (of the same image). For
debiased G-Acc, we tune τ to make the model predict a0 for two of the four image-question pairs
and a1 for the other two pairs. Table 2 shows that these metrics significantly outperform the original
ones by 35% to 40%, indicating that proper debiasing of the model can lead to notable performance
gains. Importantly, our debiased metrics reflect the ability of a VLM to correctly rank the set of
eight image-question-answer triples, such that the correct combinations are more probable than
incorrect ones. However, this protocol violates the original task of answering a single image-question
pair. This motivates us to study alternate debiasing techniques [88] in the Appendix. We believe
NaturalBench could be a promising testbed for techniques to ground VLMs and reduce biased
responses (hallucinations).

6 Extending to Dynamic Evaluation

We now show our benchmark curation method can facilitate dynamic evaluation [31, 70].

Expanding NaturalBench. Since benchmarks often leak into foundation models’ training data, it is
crucial to update benchmarks using new data sources. Our benchmark curation method can easily
adapt to new image-text datasets. We expand NaturalBench by incorporating two recently proposed
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Table 2: Debiased performance on NaturalBench. Many models underperform on NaturalBench
due to biases towards certain answers like “Yes” and “B”. To illustrate this, we compute a debiased
Q-Acc by adjusting the prediction threshold (as described in Section 5) to ensure the model predict
different answers for the two images of the same question. Similarly, debiased I-Acc ensures
different predicted answers for the two questions of the same image. For debiased G-Acc, we tune
the threshold so that the model predicts one answer for two (out of four) image-question pairs, and a
different answer for the other two pairs. The substantial performance gains of these metrics suggest
that proper debiasing can greatly improve performance. Our Appendix evaluates existing debiasing
techniques that do not require prior knowledge of image-question pairings.

Model Image Encoder Language Model Q-Acc I-Acc G-Acc
Original Debiased Original Debiased Original Debiased

LLaVA-1.5 CLIP-L-14 Vicuna-13B 38.6 86.2 43.5 78.6 14.4 49.7
DeepSeek-VL-7B-Chat SigLIP-L SAM-B 45.8 86.6 49.9 81.8 19.4 54.8
BLIP-3 (XGen-MM) CLIP-H-14 Phi-3-Mini 46.8 88.6 51.1 81.9 19.5 55.3
InternVL-Chat-V1.5 InternViT-6B InternLM2-Chat-20B 52.6 92.3 56.0 86.1 24.3 66.0
InternVL-Chat-V1.2 InternViT-6B Nous-Hermes-2-Yi-34B 52.6 91.6 56.0 86.0 26.2 65.8
InternVL2-26B InternViT-6B InternLM2-Chat-20B 55.7 92.2 58.5 87.2 28.2 67.7
LLaVA-OneVision SigLIP-S-14 Qwen2-7B 55.4 92.1 58.2 87.2 28.6 67.8
GPT-4o - GPT-4 65.0 94.0 67.0 90.5 40.5 75.6

Table 3: NaturalBench statistics. We report model performance on each dataset in the Appendix.
Benchmark Statistics Collection Details

Source Question Type Language # VQA Samples # VLMs Used # Mismatched Pairs # Verified Pairs

NaturalBench
Flickr30K [63] Yes-or-No English 2,600 CLIP-L, BLIP-2, GPT-4 2,000 1,200
Flickr30K [63] Multiple-Choice English 1,000 CLIP-L, BLIP-2, GPT-4 2,000 1,200
DOCCI [59] Yes-or-No English 3,200 LongCLIP, GPT-4 3,300 1,000
DOCCI [59] Multiple-Choice English 800 LongCLIP, GPT-4 3,300 1,000

All Yes-or-No, Multiple-Choice English 7,600 - - -

NaturalBench (Multi-lingual)
XM3600 [69] Yes-or-No Chinese 1,200 NLLB-CLIP, GPT-4 2,400 400
XM3600 [69] Yes-or-No Hindi 1,200 NLLB-CLIP, GPT-4 2,400 400

All Yes-or-No Chinese, Hindi 2,400 - - -

datasets: (1) DOCCI [59] with fine-grained captions over 100 words, and (2) XM3600 [69] with
captions in Chinese and Hindi. Specifically, we use the latest longCLIP [86] for processing long
text sequences and NLLB-CLIP [75] for non-English captions. Our Appendix details the collection
process, model performance, and prompts used to collect VQA samples with ChatGPT. Table 3 shows
all benchmarks we have collected. We hope our efforts will inspire future work in studying dynamic
evaluations of VLMs.

7 Conclusion

Limitations. Our collected samples may inherit biases from web-scraped datasets and foundation
models [56, 62], making human verification crucial. While this work focuses on model performance
for individual skill tags, future work may analyze performance using combinations of skills.

Summary. We introduce NaturalBench to evaluate vision-language models on their natural adver-
sarial samples – samples that challenge models significantly more than humans. Unlike previous
benchmarks where “blind” models could succeed without the images, NaturalBench better reflects
VLMs’ genuine progress by penalizing solutions that ignore images. Furthermore, NaturalBench
offers comprehensive skill tags to assess compositional reasoning abilities and highlights model
biases in VLMs. Lastly, we show that our semi-automated method for benchmark curation can adapt
to new data sources, facilitating future dynamic evaluations of VLMs.
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NaturalBench: Evaluating Vision-Language Models on Natural
Adversarial Samples

Supplementary Material

Outline

This document supplements the main paper with detailed results. Below is the outline:

• Section A details the collection process of NaturalBench.
• Section B details VQA and image-text retrieval performance on NaturalBench.
• Section C provides skill definitions and analyzes model performance by skills.
• Section D reports other debiasing techniques on NaturalBench.

A Collection Details

We provide further details on the collection pipeline.

Step 1: Collecting pairs of image-text samples. We collect pairs of image-text samples by finding
mismatches of discriminative VLMs like CLIP. Recall that VLMs like CLIP [65] compute a similarity
score S(i, t) ∈ R, with higher scores indicating greater similarity between the image i and text
caption t. For a pair of image-text samples {(i0, t0), (i1, t1)}, a mismatch occurs when:

[S(i0, t0) < S(i0, t1)] or [S(i0, t0) < S(i1, t0)] or [S(i1, t1) < S(i0, t1)] or [S(i1, t1) < S(i1, t0)] (3)

Importantly, this adversarial procedure efficiently pairs similar image-text samples for two purposes.
First, these image-text pairs already form an image-text retrieval task that can be evaluated using
Winoground’s [71] evaluation protocols (after removing pairs where one caption can describe both
images). We term this benchmark NaturalBench-Retrieval and report the performance of CLIP
and SigLIP in Table 7. Next, by considering both images and captions, we can pair samples that are
semantically similar but not necessarily visually similar. This contrasts with MMVP [73] which only
pairs visually similar images close in DINO’s feature space.

Implementation of step 1. For Flickr30K [63], we retrieve pairs mismatched by both OpenCLIP
(LAION400M-ViT-L14) [29] and BLIP-2 (ViT-L) [39]. For DOCCI [59], we use both longCLIP-B
and longCLIP-L. However, since DOCCI’s captions are still too long to process, we use ChatGPT to
shorten them to below 230 characters per caption. We believe future advances in long-context CLIP
will streamline this process. Lastly, for XM3600, we use NLLB-CLIP [75] to process the Chinese
and Hindi captions.

Step 2: Generating questions and answers. We use ChatGPT to generate questions that yield
different answers for two images using their textual captions. We now show the actual prompts we
send to ChatGPT.

Default instruction for GPT-4. In practice, we use the below prompt to ask GPT-4 to directly output
a JSON dictionary for easier processing:

I will present two captions for two images. Please help me generate two questions that highlight the differences
between the captions. The first question should result in a ‘Yes’ answer for Caption 1 and a ‘No’ for Caption 2.
The second question should result in a ‘No’ answer for Caption 1 and a ‘Yes’ for Caption 2.
Caption 1: {t0}
Caption 2: {t1}
Please response in JSON format with question indices as the keys, starting from 0 and question-answer pairs
{{"Question":...,"Caption1 Answer":...,"Caption2 Answer":...}} as the values.

Instructions for generating Chinese and Hindi QA pairs. We can simply ask GPT-4 to generate
questions and answers in Chinese and Hindi:
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I will present two captions for two images. Please help me generate two questions in Chinese / Hindi that highlight
the differences between the captions. The first question should result in a ‘Yes’ answer for Caption 1 and a ‘No’ for
Caption 2. The second question should result in a ‘No’ answer for Caption 1 and a ‘Yes’ for Caption 2.
Caption 1: {t0}
Caption 2: {t1}
Please response in JSON format with question indices as the keys, starting from 0 and question-answer pairs
{{"Question":...,"Caption1 Answer":...,"Caption2 Answer":...}} as the values.

Instructions for generating multiple-choice QA pairs. We ask ChatGPT to generate multiple-
choice questions using the below prompt:

I will present two captions for two images. Please help me generate two multiple-choice questions that highlight
the differences between the captions. Each question should have options A and B. For the first question, option A
corresponds to Caption 1 and option B corresponds to Caption 2. For the second question, option A corresponds to
Caption 2 and option B corresponds to Caption 1.
Caption 1: {t0}
Caption 2: {t1}
Please response in JSON format with question indices as the keys, starting from 0 and question-answer pairs
{{"Question":...,"Caption1 Answer":...,"Caption2 Answer":...}} as the values.

We engage two human annotators to select from the two candidate answers and “Unanswerable” [22]
for all generated QA pairs, retaining a sample only if both annotators agree on the correct answer.
In total, we spend around 500 annotator hours to collect all samples at 14 dollars per hour. For
the Chinese and Hindi subsets, the authors (who are native speakers of these languages) manually
examine all the questions.

Additional examples. Figure 7 provides additional examples of NaturalBench.

Figure 7: More NaturalBench examples.
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B NaturalBench Performance

We report model performance on different subsets of NaturalBench.

Performance on different subsets. Table 4 reports G-Acc on subsets of NaturalBench.

Table 4: Performance on different subsets of NaturalBench. We report the G-Acc performance of
53 leading VLMs on subsets of NaturalBench.

Model Image Encoder Language Model NaturalBench Performance
Flickr-YN Flickr-MCQ DOCCI-YN DOCCI-MCQ Overall

Human Performance – – 91.5 92.0 92.2 93.9 92.1
Random Chance – – 6.3 6.3 6.3 6.3 6.3

Open-source Models

BLIP-2 [39] EVA-G FlanT5-3B 2.7 0.8 2.3 0.5 2.1
FlanT5-11B 6.1 3.2 12.1 1.0 7.7

InstructBLIP [9] EVA-G

Vicuna-7B 2.9 0.4 6.8 0.5 4.0
Vicuna-13B 7.0 0.4 14.8 5.0 9.2
FlanT5-3B 9.6 1.2 15.1 0.5 9.8
FlanT5-11B 12.6 2.8 18.6 2.5 12.7

Otter [33] CLIP-L-14 MPT-7B 3.7 4.0 4.5 1.5 3.8
LlaMA-Adapter-v2.1 [19] CLIP-L-14 LlaMA2-7B 4.2 1.2 6.6 0.5 4.4
CogVLM-Agent-VQA [25] EVA2-E Vicuna-7B 12.2 2.8 13.6 0.5 10.3
DeepSeek-VL-1.3B-Chat [51] SigLIP-L & SAM-B DeepSeek-LLM-1B 7.8 3.6 15.5 17.0 11.5

LLaVA-1.5 [47] CLIP-L-14 Vicuna-7B 9.1 14.8 14.1 16.5 12.7
Vicuna-13B 9.1 21.2 15.1 24.0 14.8

ShareGPT4V CLIP-L-14 Vicuna-7B 10.0 13.2 12.9 18.5 12.5
Vicuna-13B 9.5 19.6 15.6 23.5 14.9

CogVLM-Chat [77] EVA2-E Vicuna-7B 14.6 15.6 14.5 7.5 13.9
InternLM-XC-V1 [87] EVA-G InternLM-7B 11.5 16.8 15.2 28.0 15.5
InternLM-XC-V2-1.8B [15] CLIP-L-14 InternLM2-1.8B 12.0 25.6 15.1 26.5 16.6
Qwen-VL-Chat [3] CLIP-G-16 Qwen-7B 16.0 16.8 16.9 21.5 17.1
Phi-3-Vision [1] CLIP-L-14 Phi-3-Mini 15.4 17.6 15.3 30.0 17.2
mPLUG-Owl2 [81] CLIP-L-14 LlaMA2-7B 14.0 20.0 17.3 25.5 17.4
Bunny [23] SigLIP-SO Phi-2-2.7B 12.0 16.8 18.9 30.0 17.4
mPLUG-Owl2.1 [81] CLIP-L-14 Qwen-7B 12.3 20.0 17.4 36.0 17.9
Monkey-10B-chat [41] OpenCLIP-BigG Qwen-7B 17.1 12.0 19.5 24.0 18.2

LLaVA-NeXT [48] CLIP-L-14

Vicuna-7B 12.5 17.6 14.5 22.0 15.0
Mistral-7B 13.7 21.6 14.6 24.5 16.3
Vicuna-13B 15.7 22.8 19.0 26.5 19.2
Nous-Hermes-2-Yi-34B 16.2 32.0 20.8 40.0 22.7

DeepSeek-VL-7B-Chat [51] SigLIP-L & SAM-B DeepSeek-LLM-7B 13.8 18.8 21.6 28.5 19.3
BLIP-3 (XGen-MM) [79] CLIP-H-14 Phi-3-Mini 13.7 19.2 21.6 30.5 19.5
InternVL-Chat-V1.1 [6] InternViT-6B LlaMA2-13B 19.7 21.6 16.5 36.0 20.3
InternVL-Chat-V1.5 [7] InternViT-6B InternLM2-Chat-20B 22.5 32.8 17.4 35.5 23.1
InternVL-Chat-V1.2-Plus [6] InternViT-6B Nous-Hermes-2-Yi-34B 26.5 31.2 17.0 29.5 23.4
InternVL2-8B [8] InternViT-300M InternLM2.5-7B-Chat 20.7 34.8 19.5 35.0 23.5

Cambrian-1 [72]
SigLIP-S-14 & CLIP-L-14
DINOv2-g &
CLIP-ConvNeXT-XXL

Llama-3-8B 16.2 15.6 24.6 14.0 19.4
Vicuna-13B 19.6 30.8 26.1 35.5 25.5
Nous-Hermes-2-Yi-34B 23.8 35.2 23.7 36.5 26.6

InternLM-XC2-4KHD-7B [13] CLIP-L-14 InternLM2-7B 22.8 33.2 24.3 34.0 25.9
InternLM-XC2-7B [15] CLIP-L-14 InternLM2-7B 25.4 38.4 21.8 34.0 26.5
InternVL-Chat-V1.2 [6] InternViT-6B Nous-Hermes-2-Yi-34B 21.8 34.4 24.5 41.0 26.6
InternVL2-26B [8] InternViT-6B InternLM2-Chat-20B 26.6 40.4 22.1 37.5 27.7

LLaVA-OneVision [37] SigLIP-S-14 Qwen2-0.5B 12.0 14.4 18.6 17.5 15.6
Qwen2-7B 27.0 32.8 26.0 41.5 28.8

Llama3.2-Vision [17] ViT-H-14 Llama-3.1-8B 16.2 29.2 30.0 45.5 26.8
Llama-3.1-70B 23.7 37.2 24.8 53.5 29.1

Molmo [10] CLIP-L-14

OLMoE-1B-7B 10.8 15.2 14.3 29.0 14.7
OLMo-7B 14.6 24.0 20.6 37.0 20.7
Qwen2-7B 20.6 31.2 25.8 44.5 26.7
Qwen2-72B 23.5 38.4 25.3 52.5 29.3

Qwen2-VL [76] CLIP-L-14
Qwen2-1.5B 17.4 22.8 25.6 35.0 23.4
Qwen2-7B 18.8 28.4 32.9 48.5 29.1
Qwen2-72B 28.2 36.0 40.5 52.0 36.9

Closed-source Models
GPT-4Vision – GPT-4 22.8 25.2 26.9 36.0 26.2
GPT-4o – GPT-4 37.5 40.4 39.0 48.0 39.6

Performance on NaturalBench-Hindi and NaturalBench-Chinese. Table 5 reports the perfor-
mance on the multilingual subsets of NaturalBench, evaluating only the models that claim to have
multilingual capabilities. We also report the performance of these datasets after using ChatGPT to
translate the questions and answers into English. This shows that most models are still better at
solving English VQA tasks.

Ablation on samples generated by different methods. Table 6 reports G-Acc on two types of
generated VQA samples: (1) Flickr-Adversarial, generated by sending caption pairs to GPT-4, (2)
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Table 5: Performance on NaturalBench-Chinese and NaturalBench-Hindi. We report G-Acc
for each dataset, evaluating only models with claimed multilingual capabilities. For both datasets,
we also provide G-Acc after translating the original Chinese or Hindi questions into English. This
simple translation often boosts performance, except for top models like InternVL-Chat-V1.2-Plus
and GPT-4o, which seem extensively trained in Chinese. NaturalBench-Hindi remains particularly
challenging for open-source models.

Model NaturalBench-Chinese NaturalBench-Hindi

Chinese English Hindi English

Random Chance 6.3 6.3 6.3 6.3

Open-source Models
DeepSeek-VL-7B-Chat 10.9 28.4 0.6 29.0
InternVL-Chat-V1.2-Plus 34.6 33.4 11.5 36.2
InternLM-XC2-7B 32.5 34.6 15.9 35.6

Closed-source Models
GPT-4o 41.2 38.7 40.3 40.9

Table 6: Ablation on different collection methods. We report G-Acc on datasets generated by
different collection methods from Flickr30K. Our adversarial procedure results in a much more
challenging dataset. Note that Flickr-Adversarial is the combination of Flickr-YN and Flickr-MCQ.

Model Model Performance (G-Acc)
Flickr-Adversarial Flickr-Random

Random Chance 6.3 6.3

Open-source Models
DeepSeek-VL-7B-Chat 15.2 80.7
BLIP-3(XGen-MM) 15.2 69.0
LLaVA-NeXT (Mistral-7B) 15.9 86.0
Phi-3-Vision 16.0 75.0
InternVL-Chat-V1.2-Plus 27.8 83.0
InternLM-XC2-7B 29.0 84.5

Closed-source Models
GPT-4o 38.3 72.5

Flickr-Random, generated by sending caption pairs of randomly matched image-text samples to
GPT-4. The results confirm that it is crucial to use discriminative VLMs to first search for confounding
pairs of image-text samples.

Performance on NaturalBench-Retrieval. Table 7 reports model performance on NaturalBench-
Retrieval. We only use Flickr image-text samples to construct this benchmark. We adopt the
evaluation metrics proposed by Winoground [71].
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Table 7: Image-text retrieval performance on NaturalBench-Retrieval. We evaluate CLIP and
SigLIP models on the human-verified 1,200 paired (image, text) samples from NaturalBench-Flickr.
We follow Winoground [71] to report text score, image score, and group score, with higher numbers
indicating better performance for all metrics. We exclude the CLIP (LAION400M-ViT-L14) model
used to collect these adversarial pairs. Overall, NaturalBench-Retrieval poses a significant challenge
to leading discriminative models.

Method Source Model Data Size Model Size (M) Retrieval Performance
Group Image Text

Random – – – – 16.67 25.00 25.00

CLIP [65]

OpenAI

RN50

400M

102 12.22 32.60 36.76
RN101 120 13.61 35.04 33.33
ViT-B-32 151 15.89 36.43 36.92
RN50x4 178 14.75 37.49 36.27
RN50x16 291 24.61 44.01 43.93
ViT-L-14 428 23.15 44.99 41.81
RN50x64 623 26.24 46.21 47.35

LAION

roberta-ViT-B-32

2B

212 16.22 39.36 38.79
ViT-H-14 986 24.04 49.31 48.82
ViT-g-14 1367 21.35 46.21 46.54
ViT-bigG-14 2540 21.04 44.49 43.69
xlm-roberta-base-ViT-B-32 5B 366 16.79 37.49 40.91
xlm-roberta-large-ViT-H-14 1193 22.82 47.35 47.51

DataComp

small: ViT-B-32 13M 151 12.06 22.90 21.19
medium: ViT-B-32 128M 151 16.95 28.28 33.01
large: ViT-B-16 1B 150 16.71 36.43 35.86
xlarge: ViT-L-14 13B 428 21.84 44.01 45.72

SigLIP [85] WebLI (English portion)
ViT-B

13B
172 24.29 48.57 49.06

ViT-L 430 31.21 54.93 54.44
ViT-SOViT 800 42.14 62.67 63.90
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C Skill Analysis

We now provide the skill definitions and report model performance by each skill tag.

Skill definitions and examples. Table 8 provides definitions to the skills in NaturalBench.

Skill analysis. Table 9 reports Q-Acc performance (awarding one point if the model answers
both images correctly for each question) on Object and Attribute tags. Table 10 reports Q-Acc
performance on Relation and Reasoning tags.

Additional examples. We provide additional tagging examples in Figure 8. We will release these
tags for more fine-grained analysis, such as evaluating models on combinations of skills.

Figure 8: More NaturalBench examples with skill tags.
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Table 8: Skill definitions.

Skill Type Definition Examples

Object

Basic entities within an image,
including animals, humans, food,
buildings, natural elements (nature),
vehicles, common items, and others.

Is there a car parked near the path? Is there a
person in this image? Is there a referee behind
the table? Is the dog fully submerged in the water
except for its head? Is the water body filled with
visible rocks and emanating ripples?

Attribute

Visual properties of entities, including
emotion, shape, size, color, state,
activity, gender, and abstract attributes
(e.g., helpful, lucky).

Is anyone in the picture sad or scared? Is the
woman extremely surprised? Is the woman alone
behind a glass partition? Is the man wearing
brown? Is the man wearing a red and white
striped apron? Is the old man in the image
wearing reflective safety jackets?

Spatial Relation

Physical arrangements of multiple
entities relative to each other [46],
including proximity (e.g., near, far),
topological (e.g., at, on, in, with,
surround, between, inside, outside) ,
projective (e.g., left of, right of, under,
in front of, below), orientation and
direction (e.g., facing, towards, across,
away from).

Is there a referee behind the table? Is the dog
looking up at the sky? Is there only one person in
the canoe? Is there a group of people standing
outside the gates? Is the man in the image looking
at the object to his left? Is the smiling woman
standing next to the bus?

Action Relation
Action interactions between entities,
e.g., pushing, kissing, hugging, hitting,
helping, and so on.

Is there a person holding a water bottle? Is the
black dog biting a stick? Is anyone using an
umbrella? Is the man holding a red pen? Is the
dog chasing after a toy outdoors? Is the person
jumping directly off a building without any
equipment?

Part Relation

Part-whole relationships between
entities – one entity is a component of
another, such as body part, clothing, and
accessories.

Is there a person wearing orange and yellow shirt
and jacket? Is anyone wearing yellow and orange
safety vests? Is the woman in the black dress
wearing gloves? Is a player using his back to
play the ball? Is the boy’s tongue sticking out?

Counting

Determining the quantity, size, or
volume of entities, e.g., objects,
attribute-object pairs, and
object-relation-object triplets.

Are there four people in the image? Does the dog
have two visible colors? Are there more than
four performers in the image?

Differentiation

Differentiating objects within a category
by their attributes or relations, such as
distinguishing between “old” and
“young” people by age, or “the cat on
top of the table” versus “the cat under
the table” by their spatial relations.

Does the girl on the left look sad while the girl on
the right look happy? Is there a cat sitting on a
grey cabinet in front of another cat sitting on the
stairs? Is one dog biting the ear of the other dog?
Is a man standing behind another man sitting at a
desk?

Comparison
Comparing characteristics like number,
attributes, area, or volume between
entities.

Does the scene involve players from three
different team colors? Does the tallest building
feature glass windows and side slopes? Is the
older person following the younger one? Are
there two dogs that are significantly different in
size? Is the man wearing the same color as the
woman in the image?

Logic

Understanding logical operators. We
only consider negation (as indicated by
“no”, “not”, or “without”) and
universality (as indicated by “every”,
“all”, “each”, “both”). Other logical
relations such as conjunction (as
indicated by “and”, “or”) are omitted.

Does the image show all men performing the same
action? Are both people looking in the same
direction? Is the bicycle rider performing a trick
without any audience? Is the main subject not
wearing shirt and lying down? Is the main activity
potentially related to craft or construction?

World Knowledge

Answering based on external
commonsense knowledge, including
social, symbolic, functional, physical,
natural knowledge and so on.

Is the event related to the Olympics? Is there a
vertical depiction of Ramses III in the image?
Does the image suggest a relatively informal
social gathering? Is a single individual attempting
to score regardless of multiple defenders?
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Table 9: Model performance on Object and Attribute. We report Q-Acc on each tag.
Model Object Attribute

Animal Human Food Building Nature Vehicle Items Others Emotion Shape Size Color State Abstract Activity Gender

BLIP-3(XGen-MM) 18.6 16.2 15.4 20.8 21.7 22.2 21.2 17.6 9.1 19.3 24.1 21.8 20.2 20.4 16.5 14.0
Phi-3-Vision 15.6 17.1 15.4 17.7 15.6 19.0 18.5 16.7 18.2 17.5 19.0 18.9 16.8 15.6 15.2 15.8
DeepSeek-VL-7B-Chat 20.9 16.9 15.4 21.9 22.1 16.7 19.3 19.0 12.1 24.6 21.4 20.8 19.5 16.7 20.1 14.6
LLaVA-NeXT(Mistral-7B) 14.2 16.1 17.3 14.0 13.4 18.1 16.7 15.2 15.2 19.3 14.6 16.3 15.7 14.1 14.4 17.9
InternLM-XC-V2-7B 23.3 28.6 19.2 30.8 23.6 30.6 27.8 29.0 33.3 31.6 30.2 27.8 25.8 23.3 27.0 30.1
InternVL-Chat-V1.2-Plus 23.9 28.0 23.1 20.3 18.5 22.7 25.4 19.7 21.2 17.0 20.0 24.8 22.8 19.3 26.2 30.4
GPT-4o 35.4 39.7 44.2 40.1 41.3 38.4 42.8 38.3 39.4 42.1 40.7 39.0 41.1 38.9 35.5 43.2

Table 10: Model performance on Relation and Reasoning. We report Q-Acc on each tag.

Model Relation Reasoning
Action Part Proximity Topological Projective Orientation Count Logic Differ Compar World

BLIP-3(XGen-MM) 18.3 17.4 27.5 22.8 19.6 15.5 20.6 15.9 13.0 20.9 5.3
Phi-3-Vision 16.0 19.5 19.6 17.9 13.9 9.5 16.1 18.5 17.6 13.0 8.5
DeepSeek-VL-7B-Chat 17.5 16.2 29.4 21.4 17.9 14.7 19.6 16.4 11.1 11.3 10.6
LLaVA-NeXT(Mistral-7B) 15.9 18.6 18.6 17.0 16.1 13.8 17.1 21.2 17.6 12.2 9.6
InternLM-XC-V2-7B 27.3 29.3 29.4 27.9 24.4 24.1 30.7 25.9 27.8 27.8 17.0
InternVL-Chat-V1.2-Plus 23.6 28.1 31.4 24.4 19.3 18.1 23.9 26.9 25.0 15.7 12.8
GPT-4o 39.4 43.1 40.2 41.7 38.7 35.3 39.2 42.9 38.9 37.4 35.1
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D Debiasing Analysis

In the main paper, we show that debiasing within the image-text pairings significantly improves model
performance. Here, we explore debiasing techniques that don’t rely on knowing the image-question
pairings.

Deterministic evaluation using answer likelihood [44]. Recall that we can perform a scoring-based
evaluation strategy using the generative likelihood of each candidate answer (VQAScore [44]) to
determine the model’s predicted answer. Specifically, given a question q, an image i, and two
candidate answers a0 and a1, we evaluate:

P (a0|q, i)− P (a1|q, i) > τ (4)

where τ is a threshold (default is 0). If this condition (Eq. 4) is met, the model predicts a0; otherwise,
it predicts a1. Crucially, this formulation has two benefits: (1) it produces deterministic results
that are almost consistent with stochastic decoding (see Table 11), and (2) it allows us to adjust
τ ∈ [−1, 1] for debiasing. Recall that our main paper performs sample-level debiasing by optimizing
τ within each of the four image-question pairs. Alternatively, we can perform global-level debiasing
by searching for a single τ that maximizes G-Acc across all samples. We also implement the post-hoc
debiasing technique proposed in [88], which is equivalent to:

P (a0|q, i)
P (a0|q)

− P (a1|q, i)
P (a1|q)

> 0 (5)

where P (a|q) is estimated by sending no image tokens but just the question tokens to the VLM.
Table 11 shows that these alternate techniques still lag behind the performance of sample-level
debiasing. We hope NaturalBench can be a useful testbed for bias mitigation techniques for VLMs.

Table 11: Evaluating debiasing techniques on NaturalBench. We evaluate debiasing techniques
(as detailed in Section 5) that do not require prior knowledge of image-question pairings (unlike
sample optimal τ ). For comprehensiveness, we report both stochastic decoding and deterministic
evaluation using VQAScore, finding consistent results. We observe that the two post-hoc methods
– global-optimal τ and Post-Hoc debiasing – perform significantly worse than the (oracle) sample-
optimal τ . Global optimal τ shows only slight improvements, while Post-Hoc debiasing even reduces
performance in models like Bunny, InterVL-Chat-V1.2, and GPT-4o. This suggests NaturalBench
can be a valuable benchmark for testing future debiasing methods.
Model Stochastic Decoding Deterministic VQAScore Post-hoc Debiasing [88] Global Optimal τ Sample Optimal τ

Q-Acc I-Acc G-Acc Q-Acc I-Acc G-Acc Q-Acc I-Acc G-Acc Q-Acc I-Acc G-Acc Q-Acc I-Acc G-Acc

LLaVA-1.5 (Vicuna-7B) 37.7 43.8 12.7 36.7 42.7 12.2 38.2 44.5 13.9 39.9 45.8 14.0 83.4 76.3 44.3
LLaVA-1.5 (Vicuna-13B) 39.6 44.6 14.8 38.6 43.5 14.4 38.5 42.8 14.5 42.8 47.8 16.5 86.2 78.6 49.7
Phi3-Vision 43.4 48.7 17.2 43.6 48.9 17.7 45.1 48.6 19.3 44.7 49.3 18.4 85.7 78.5 50.0
Bunny 42.3 48.4 17.4 42.5 48.5 17.5 38.7 44.9 15.7 43.6 49.5 18.7 85.8 78.6 50.5
LLaVA-NeXT (Vicuna-7B) 42.5 47.6 15.0 42.0 47.1 15.0 44.2 48.9 18.0 43.4 48.5 16.5 86.7 79.6 50.3
LLaVA-NeXT (Mistral-7B) 44.6 49.1 16.3 45.0 49.4 17.0 46.8 51.1 19.6 45.3 49.7 17.4 88.3 81.6 56.0
LLaVA-NeXT (Vicuna-13B) 45.9 49.9 19.2 44.6 48.5 18.2 48.7 52.5 21.5 47.8 52.1 20.4 89.1 82.3 57.2
DeepSeek-VL-7B-Chat 46.0 50.1 19.3 45.8 49.9 19.4 - - - 46.4 50.4 19.7 86.6 81.8 54.8
BLIP-3(XGen-MM) 47.0 51.2 19.5 46.8 51.1 19.5 47.8 52.0 22.4 48.7 53.2 21.4 88.6 81.9 55.3
InternVL-Chat-V1.5 52.3 55.9 23.1 52.6 56.0 24.3 55.2 58.4 28.6 52.3 55.6 25.0 92.3 86.1 66.0
InternVL-Chat-V1.2-Plus 52.7 56.2 23.4 52.6 56.3 23.5 55.9 58.6 28.3 53.0 56.1 24.6 92.4 85.5 65.3
InternVL2-8B 50.5 54.5 23.6 50.4 54.3 23.7 52.2 55.9 25.5 50.4 54.3 23.7 88.7 83.2 58.6
InternVL-Chat-V1.2 52.9 56.4 26.6 52.6 56.0 26.2 52.3 54.3 25.8 53.6 56.8 27.2 91.6 86.0 65.8
InternVL2-26B 55.9 58.8 28.1 55.7 58.5 28.2 58.8 61.1 32.0 55.7 58.3 28.5 92.2 87.2 67.7
LLaVA-OneVision (Qwen2-0.5B) 39.8 46.3 15.7 39.1 44.6 14.5 39.1 44.5 15.8 39.2 46.3 16.2 84.6 77.2 47.5
LLaVA-OneVision (Qwen2-7B) 56.2 58.8 28.9 55.4 58.2 28.6 59.1 61.2 33.2 56.1 59.0 28.7 92.1 87.2 67.8
GPT-4o 64.4 66.4 39.6 65.0 67.0 40.5 61.6 63.2 37.6 64.9 67.1 40.7 94.0 90.5 75.6
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(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
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them? [Yes]
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(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 3
for detailed benchmark collection pipeline. We have released the code in our project
site.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See supplement.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplement.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] The assets used are all publicly sourced, and therefore explicit
consent was not required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] The data used are publicly available datasets
that do not contain offensive content and with consent for personally identifiable
information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] See Section 3.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [Yes] We pay the participants above the minimum
wage with an hourly pay.
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