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ABSTRACT

Federated learning enables training machine learning models while preserving
the privacy of participants. Surprisingly, there is no differentially private dis-
tributed method for smooth, non-convex optimization problems with convergence
guarantees. The reason is that standard privacy techniques require bounding the
participants’ contributions, usually enforced via clipping of the updates. Existing
literature typically ignores the effect of clipping by assuming the boundedness of
gradient norms or analyzes distributed algorithms with clipping, but ignores DP
constraints. In this work, we study an alternative approach via smoothed normal-
ization of the updates, motivated by its favorable performance in the single-node
setting. By integrating smoothed normalization with an Error Compensation mech-
anism, we design a new distributed algorithm α-NormEC. We prove that our method
achieves a superior convergence rate over prior works. By extending α-NormEC
to the DP setting, we obtain the first differentially private distributed optimization
algorithm with provable convergence guarantees. Finally, our empirical results
from neural network training indicate robust convergence of α-NormEC across
different parameter settings.

1 INTRODUCTION

Federated Learning (FL) has become a viable approach for distributed collaborative training of
machine learning models (Konečný et al., 2016; McMahan et al., 2017; 2018). This growing interest
has spurred the development of novel distributed optimization methods tailored for FL, focusing on
ensuring high communication efficiency (Kairouz et al., 2021). Although FL optimization methods
ensure that private data is never directly transmitted, Boenisch et al. (2023) demonstrated that the
global models produced through FL can still enable the reconstruction of participants’ data. Therefore,
it is essential to study differentially private distributed optimization methods for differentially private
training (Dwork et al., 2014; McMahan et al., 2018; Sun et al., 2019).

To mitigate emerging privacy risks in FL, differential privacy (DP) (Dwork et al., 2014) has become
the standard for providing theoretical privacy guarantees in machine learning. DP is often enforced
by a clipping operator. It bounds gradient sensitivity, allowing the addition of DP noise to the updates
before communication. While gradient clipping enables DP as in Differentially Private Stochastic
Gradient Descent (DP-SGD) (Abadi et al., 2016), it also introduces a bias that can impede convergence
(Chen et al., 2020; Koloskova et al., 2023). Often, distributed DP gradient methods with clipping
have been studied under assumptions that are unrealistic for heterogeneous FL environments, such as
bounded gradient norms (Li et al., 2022; Wang et al., 2023; Lowy et al., 2023; Zhang et al., 2020b)
or effectively ignoring the impact of clipping bias. To our knowledge, convergence guarantees for
distributed DP methods remain elusive unless the impact of clipping bias is explicitly considered.

Error Feedback (EF), also known as Error Compensation (EC), such as EF21 (Richtárik et al., 2021)
has been employed to alleviate the clipping bias and achieve strong convergence for non-private
distributed methods with gradient clipping, as shown by Khirirat et al. (2023); Yu et al. (2023).
However, extending these methods to the private setting remains an open problem. Furthermore,
optimizing the convergence of distributed DP clipping methods is challenging because the clipping
threshold significantly influences both the convergence speed and DP noise variance. Extensive grid
search for the optimal clipping threshold is computationally expensive (Andrew et al., 2021) and
leads to additional privacy loss (Papernot & Steinke, 2022). Two major approaches have emerged
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Property DP-SGD Clip21 α-NormEC (Ours)
Non-private Convergence ✗ ✓ ✓

Private Convergence ✗ ✗ ✓

Operators Clipping / Normalization Clipping Normalization
Additional Assumptions Bounded gradient or heterogeneity No No

Table 1: Comparison of distributed private optimization methods. Unlike prior work, which either lacks private
convergence guarantees or requires restrictive assumptions like bounded gradients, α-NormEC is the first to
provide these guarantees under standard smoothness conditions alone.

to address the need to manually tune the clipping threshold. The first is to use adaptive clipping
techniques, such as adaptive quantile clipping, initially proposed by Andrew et al. (2021) and further
analyzed by Merad & Gaı̈ffas (2024); Shulgin & Richtárik (2024). The second, which is the focus of
this paper, is to replace clipping with a normalization operator.

Smoothed normalization, introduced by Bu et al. (2024); Yang et al. (2022), is the normalization
operator that offers an alternative to clipping. Unlike clipping, smoothed normalization eliminates the
need to tune the clipping threshold. By ensuring that the Euclidean norm of the normalized gradient
is bounded above by one, smoothed normalization guarantees robust performance of DP-SGD in
private setting. However, very limited literature characterizes properties of smoothed normalization
and a rigorous convergence analysis for DP-SGD using this operator, especially in the distributed
setting. While the method has been studied in the single-node setting, the convergence results rely
on unrealistic and/or restrictive assumptions, such as symmetric gradient noise (Bu et al., 2024) and
almost sure bounds on the gradient noise variance (Yang et al., 2022).

1.1 CONTRIBUTIONS

We propose α-NormEC, a distributed gradient method leveraging smoothed normalization and error
compensation. It is the first algorithm to achieve provable convergence for DP, non-convex distributed
optimization without relying on restrictive assumptions. Our key contributions are:

• Favorable properties of smoothed normalization. In Section 2.1, we show that smoothed nor-
malization exhibits a contractive-like property similar to biased compression operators (Beznosikov
et al., 2023; Shulgin & Richtárik, 2022). This property combined with novel, induction-based proof
technique essentially allows analyzing α-NormEC without ignoring the impact of bias.

• Convergence for non-convex, smooth problems without restrictive assumptions. In Section 3,
we prove that α-NormEC achieves the optimal convergence rate (Carmon et al., 2020) for minimizing
non-convex, smooth functions without imposing additional restrictive assumptions, such as bounded
gradient norms or bounded heterogeneity. Furthermore, α-NormEC achieves a faster convergence rate
than Clip21 (Khirirat et al., 2023) and does not require inaccessible knowledge of value f(x0)− f inf .

• The first provable convergence in the private setting. In Section 4, we extend α-NormEC to the
DP setting. Specifically, α-NormEC achieves the first convergence guarantees for DP, non-convex,
smooth problems without ignoring the bias introduced by smoothed normalization. This is the first
provably efficient distributed method in the DP setting under standard assumptions, thus addressing
the gap left by prior work (Khirirat et al., 2023). Theoretical comparisons between DP-SGD, Clip21,
and α-NormEC are summarized in Table 1.

• Robust empirical performance of α-NormEC. In Section 5, we verify the theoretical benefits of α-
NormEC in both non-private and private training via experiments. Our algorithm demonstrates robust
convergence across different parameter values and benefits from error compensation that enables
superior performance over vanilla distributed gradient normalization methods (such as DP-SGD). In
the private training, server normalization enhances the robustness of DP-α-NormEC across tuning
parameters. Finally, DP-α-NormEC without server normalization outperforms DP-Clip21.

1.2 RELATED WORK

Clipping and normalization. Clipping and normalization address many key challenges in machine
learning. They mitigate the problem of exploding gradients in recurrent neural networks (Pascanu
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et al., 2013), enhance neural network training for tasks in natural language processing (Merity et al.,
2018; Brown et al., 2020) and computer vision (Brock et al., 2021), enable differentially private
machine learning (Abadi et al., 2016; McMahan et al., 2018), and provide robustness in the presence
of misbehaving or adversarial workers (Karimireddy et al., 2021; Özfatura et al., 2023; Malinovsky
et al., 2023). In this paper, we consider smoothed normalization, introduced by Yang et al. (2022); Bu
et al. (2024), as an alternative to clipping, given its robust empirical performance and hyperparameter
tuning benefits in the DP setting.

Private optimization methods. DP-SGD (Abadi et al., 2016) is the standard distributed first-order
method that achieves the DP guarantee by clipping the gradient before adding noise scaled with the
clipped gradient’s sensitivity. However, existing DP-SGD convergence analyses often neglect the
clipping bias. Specifically, convergence results for smooth functions under differential privacy often
require either the assumption of bounded gradient norms (Zhang et al., 2020b; Li et al., 2022; Zhang
et al., 2022; Wang et al., 2023; Lowy et al., 2023; Murata & Suzuki, 2023; Wang et al., 2024) or
conditions where clipping is effectively inactive (Zhang et al., 2024; Noble et al., 2022). Thus, the
convergence behavior of DP-SGD in the presence of clipping bias remains poorly understood.

Single-node non-private methods with clipping. The impact of clipping bias has been extensively
studied in single-node gradient methods for non-private optimization. Numerous works have shown
strong convergence guarantees of clipped gradient methods under various conditions, including
nonsmooth, rapidly growing convex functions (Shor, 2012; Ermoliev, 1988; Alber et al., 1998),
generalized smoothness (Zhang et al., 2020a; Koloskova et al., 2023; Gorbunov et al., 2025; Vankov
et al., 2025; Lobanov et al., 2024; Hübler et al., 2024), and heavy-tailed noise (Gorbunov et al., 2020a;
Nguyen et al., 2023; Gorbunov et al., 2024; Hübler et al., 2025; Chezhegov et al., 2024).

Distributed non-private methods with clipping. Applying gradient clipping in the distributed setting
is challenging. Existing convergence analyses often rely on bounded heterogeneity assumptions,
which often do not hold in cases of arbitrary diverse clients. For example, federated optimization
methods with clipping have been analyzed under the bounded difference between the local and global
gradients (Wei et al., 2020; Liu et al., 2022; Crawshaw et al., 2023; Li et al., 2024). However, even in
the non-private setting, these distributed clipping methods do not converge for simple problems (Chen
et al., 2020; Khirirat et al., 2023) for arbitrary clipping threshold. To address the convergence issue,
one approach is to use error feedback mechanisms, such as EF21 (Richtárik et al., 2021), that are
employed by Khirirat et al. (2023); Yu et al. (2023) to compute local gradient estimators and alleviate
clipping bias. However, these distributed clipping methods using error feedback are limited to the
non-private setting, and extending them to the DP setting is still an open problem. In this paper,
we propose a distributed method that replaces clipping with smoothed normalization in the EF21
mechanism. Our method provides the first provable convergence in the DP setting and empirically
outperforms the distributed version of DP-SGD with smoothed normalization Bu et al. (2024); Yang
et al. (2022), a special case of Das et al. (2022).

Error feedback. Error feedback, or error compensation, has been applied to improve the conver-
gence of distributed methods with gradient compression for communication-efficient learning. First
introduced by Seide et al. (2014), EF14 was extensively analyzed for first-order methods in both
single-node (Stich et al., 2018; Karimireddy et al., 2019; Stich & Karimireddy, 2020; Khirirat
et al., 2019) and distributed settings (Wu et al., 2018; Alistarh et al., 2018; Gorbunov et al., 2020b;
Qian et al., 2021b; Tang et al., 2019; Danilova & Gorbunov, 2022; Qian et al., 2023). Another
error feedback variant is EF21 proposed by Richtárik et al. (2021) that ensures strong convergence
under any contractive compression operator for non-convex, smooth problems. Recent variants, e.g.
EF21-SGD2M (Fatkhullin et al., 2024) and EControl (Gao et al., 2024), have been developed to obtain
the lower iteration and communication complexities than EF21 for stochastic optimization.

2 PRELIMINARIES

We focus on solving the finite-sum optimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where x ∈ Rd is the vector of model parameters of dimension d, and fi : Rd → R is either a loss
function on client i ∈ [1, n] (distributed setting) or data point i (single-node setting). Moreover,
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we impose the following assumption on objective functions commonly used for analyzing the
convergence of first-order optimization algorithms (Nesterov et al., 2018).

Assumption 1. Consider Problem (1).

1. Let f : Rd → R be bounded from below by a finite constant f inf , i.e. f(x) ≥ f inf > −∞
for all x ∈ Rd, and be L-smooth, i.e. ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ for all x, y ∈ Rd.

2. Let fi : Rd → R be Li-smooth, i.e. ∥∇fi(x)−∇fi(y)∥ ≤ Li ∥x− y∥ for all x, y ∈ Rd.

2.1 DP-SGD

To solve Problem (1), the most common approach that ensures the approximate (ϵ, δ)-differential
privacy (Dwork et al., 2006) is via the DP-SGD method (Abadi et al., 2016)

xk+1 = xk − γ
( 1

B

∑
i∈Bk

Ψ(∇fi(xk)) + zk
)
, (2)

where γ > 0 is the step size, Bk is a subset of {1, 2, . . . , n} with cardinality |Bk| = B, zk ∈ Rd is
the DP noise, and Ψ : Rd → Rd is an operator with bounded norm, i.e. ∥Ψ(g)∥ ≤ Φ for some Φ > 0
and any g ∈ Rd. The method (2) achieves (ϵ, δ)-DP (Abadi et al., 2016) if zk is zero-mean Gaussian
noise with variance

σ2
DP ≥ Φ2 · cB

2

n2
K log(1/δ)

ϵ2
, (3)

where c > 0 is a constant, and K > 0 is the total number of iterations. To obtain reasonable
DP guarantees, we usually choose ϵ ≤ 10 and δ ≪ 1/n, where n is the number of data points
(Ponomareva et al., 2023). Notice that the DP Gaussian noise variance (3) is scaled with the
sensitivity Φ.

The method (2) has been analyzed, e.g. by Zhang et al. (2020b; 2022), under the bounded gradient
norm assumption

∥∇fi(x)∥ ≤ Φ for all i and x ∈ Rd. (4)

However, this assumption has several limitations. First, the sensitivity Φ is typically infeasible to
compute for many loss functions used in training machine learning models. Even when it can be
estimated, the resulting upper bound is often overly pessimistic, leading to excessively large DP noise
and thus significantly degrading the convergence performance. Second, this assumption restricts
the class of models and loss functions f , as it excludes simple quadratic functions over unbounded
domains. Third, this assumption is “pathological” in the distributed setting because it restricts the
heterogeneity between different clients and can result in vacuous bounds (Khaled et al., 2020).

To enforce bounded sensitivity without imposing the bounded gradient norm, Abadi et al. (2016)
suggested clipping with threshold τ > 0

Clipτ (g) := min (1, τ/∥g∥) g. (5)

Here, the sensitivity Φ is the clipping threshold τ , as ∥Clipτ (g)∥ ≤ τ = Φ. In general, the method
(2) that uses clipping (5) is referred to as DP-SGD in the literature. However, it is challenging to
analyze the convergence of DP-SGD without additional restrictive assumptions such as the symmetric
noise assumption (Chen et al., 2020; Qian et al., 2021a). Even without DP noise, DP-SGD fails to
converge due to the clipping bias (Koloskova et al., 2023). Furthermore, since smaller values of τ
imply stronger privacy but larger bias, jointly optimizing convergence and privacy of DP-SGD by
carefully tuning τ and γ in the DP setting is a difficult task (Kurakin et al., 2022; Bu et al., 2024).

Smoothed normalization as an alternative to clipping. To eliminate the need to tune the clipping
threshold τ , smoothed normalization is an operator alternative (Bu et al., 2024; Yang et al., 2022):

Normα (g) :=
1

α+ ∥g∥
g, (6)

for some α ≥ 0 and satisfies the following property.
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Lemma 1. For any α ≥ 0, β > 0, and g ∈ Rd,

∥Normα (g)∥ ≤ 1, and ∥g − βNormα (g)∥2 =

(
1− β

α+ ∥g∥

)2

∥g∥2 . (7)

Clearly, smoothed normalization ensures that (A) the norm of the normalized vector is bounded above
by 1, and (B) the distance between the true vector and a β-multiple of the normalized vector is bounded
by a function of β, α, and ∥g∥. Although smoothed normalization with α = 0 recovers standard
normalization g/∥g∥ (Nesterov, 1984; Hazan et al., 2015; Levy, 2016), smoothed normalization
with α > 0 improves the contraction factor, compared to standard normalization. Specifically, as
∥g∥ → 0, the contraction factor of smoothed normalization approaches (1− β/α)2, while standard
normalization lacks this contraction property.

Although DP-SGD (2) with smoothed normalization achieves robust empirical empirical performance
in the DP setting (Bu et al., 2024), its theoretical convergence is limited to the single-node setting and
relies on restrictive assumptions like the central symmetry of stochastic gradients.

2.2 LIMITATIONS OF DP DISTRIBUTED GRADIENT METHODS

Extending the convergence results of DP-SGD to the distributed setting poses significant challenges
due to potential client heterogeneity. Existing results often address the bias introduced by the operator
(clipping or normalization) by relying on restrictive assumptions, such as imposing bounded gradient
norms (Li et al., 2022; Zhang et al., 2022; Murata & Suzuki, 2023; Wang et al., 2024), or assuming
that clipping is effectively turned off (Zhang et al., 2024; Noble et al., 2022). Recently, Li et al. (2024)
extended the analysis of Koloskova et al. (2023) to a distributed private setting under strong gradient
dissimilarity condition. However, their method fails to converge due to the clipping bias, as discussed
in the previous section. More importantly, even in the absence of the DP noise (zk = 0), the inherent
bias in the gradient estimator can severely impact the convergence. For instance, DP-SGD (2) diverge
exponentially when Ψ(·) is a Top-1 compressor (Beznosikov et al., 2023), and fail to converge when
Ψ(·) is clipping (Chen et al., 2020; Khirirat et al., 2023).

Also, DP-SGD that uses smoothed normalization (6) directly fails to converge, as shown in the
example below:

Example 1. Consider Problem (1) with n = 2, d = 1, f1(x) = 1
2 (x− 3)

2 and f2(x) = 1
2 (x+ 3)

2.
Then f(x) = 1

2 (f1(x)+ f2(x)) satisfies Assumption 1 and is minimized at x⋆ = 0. The iterates {xk}
generated by (2) (for B = 2) with zk = 0 and α = 0 do not progress when x0 = 2, as the gradient
estimator Normα

(
∇f1(xk)

)
+Normα

(
∇f2(xk)

)
results in

∇f1(x0)
∥∇f1(x0)∥

+
∇f2(x0)

∥∇f2(x0)∥
= −1/1 + 5/5 = 0.

Naively applying normalization to the gradients in DP-SGD leads to the method that does not converge
in the distributed setting without further assumptions. This fundamental limitation affects federated
averaging algorithms that apply normalization on the client updates (Das et al., 2022).

2.3 EF21 MECHANISM

One approach to resolve the convergence issues of distributed gradient methods with biased operators
is to use EF21, an error feedback mechanism developed by Richtárik et al. (2021). Instead of directly
applying the biased gradient estimator Ψ to the gradient, EF21 applies Ψ to the difference between
the true gradient and the current error feedback (memory) vector. At iteration k = 0, . . . ,K, each
client i receives the current iterate xk from the central server, and computes its local update gk+1

i via

gk+1
i = gki + βΨ(∇fi(xk)− gki ), (8)

where β > 0. Next, the central server receives the average of local error feedback vectors that are
communicated by all clients (1/n)

∑n
i=1 Ψ(∇fi(xk)− gki ), computes the global gradient estimator

gk+1 = gk +
β

n

n∑
i=1

Ψ(∇fi(xk)− gki ), (9)
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and updates the next iterate via xk+1 = xk − γgk+1. This method generalizes EF21 by replacing
a contractive compressor1 with other biased estimators, such as clipping in Clip21 proposed by
Khirirat et al. (2023). Although Clip21 attains the O(1/

√
K) convergence in the non-private setting,

deriving its convergence in the presence of the DP noise is a challenging task. As clipping does not
satisfy the contractive property similar to contractive compressors required by EF21 (Appendix A.3),
its convergence analysis relies heavily on separate descent inequalities when clipping is turned
on and off (Appendix A.4). Also, the clipping threshold τ intricately influences both privacy and
convergence guarantees. A sufficiently large τ is needed to achieve the descent inequality, but this
condition requires adding large Gaussian noise, which may in turn prevent the convergence when it is
accumulated.

3 α-NORMEC IN THE NON-PRIVATE SETTING

To address the convergence challenges of Clip21, we propose α-NormEC presented in Algorithm 1
Note that α-NormEC recovers EF21 and Clip21, when we replace smoothed normalization with
contractive compressor and clipping, respectively. Additionally we employ Server Normalization
(SN) xk+1 = xk − γĝk+1/

∥∥ĝk+1
∥∥ and adopt notation 0/0 = 0. In the main part we focus on

Algorithm 1, and in Appendix B.5 variation of α-NormEC without SN is analyzed. Our experiments
(in Appendix D.3) indicate that, while α-NormEC with SN offers robust performance, the variant
without it achieves fastest convergence.

Algorithm 1 (DP-)α-NormEC

1: Input: Step size γ > 0; β > 0; normalization parameter α > 0; initial points x0, g0i ∈ Rd for
i ∈ [1, n]; ĝ0 = 1

n

∑n
i=1 g

0
i ; zki ∈ Rd are sampled from Gaussian distribution with zero mean

and σ2
DP-variance.

2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute local gradient ∇fi(xk)
5: Compute ∆k

i = Normα

(
∇fi(xk)− gki

)
6: Update gk+1

i = gki + β∆k
i

7: Non-private setting: Transmit ∆̂k
i = ∆k

i

8: Private setting: Transmit ∆̂k
i = ∆k

i + zki
9: end for

10: Server computes ĝk+1 = ĝk + (β/n)
∑n

i=1 ∆̂
k
i

11: Server updates xk+1 = xk − γĝk+1/
∥∥ĝk+1

∥∥
12: end for
13: Output: xK+1

In the non-private setting, α-NormEC has a simpler convergence analysis and stronger guarantees
than Clip21. In the DP setting, α-NormEC is the first to achieve provable convergence under standard
assumptions. These advantages result from the contractive-like property of smoothed normalization,
which distinguishes it from clipping (see Appendix A.3). In contrast to EF21, which relies on
the strong contractivity of its compressors, α-NormEC leverages the monotonicity of smoothed
normalization to obtain the descent inequality.

The first theorem presents the convergence of α-NormEC in the non-private setting.
Theorem 1 (Non-private setting). Consider α-NormEC (Algorithm 1) for solving Problem (1), where
Assumption 1 holds. Let β, α, γ > 0 be chosen such that

β

α+R
< 1, and γ ≤ βR

α+R

1

Lmax
,

where R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥ and Lmax = maxi∈[1,n] Li. Then,

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤ f(x0)− f inf

γ(K + 1)
+ 2R+

L

2
γ.

1A contractive compressor (Stich et al., 2018) is defined by ∥g − C(g)∥2 ≤ (1− η)2 ∥g∥2 for η ∈ (0, 1].
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From Theorem 1, α-NormEC converges sublinearly up to the additive constant of 2R + L
2 γ. By

proper choices of parameters, α-NormEC attains (details in Appendix B.2):

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤
√

2L(f(x0)− f inf) + 2D

(K + 1)1/2
. (10)

The first term
√
2L(f(x0)− f inf)(K + 1)−1/2 matches classical gradient descent (Carmon et al.,

2020), while the second term 2D(K + 1)−1/2 comes from initializing x0, g0i ∈ Rd such that
R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥ = D(K + 1)−1/2 with D > 0. The upper-bound for R can be

ensured by, for instance, setting g0i = ∇fi(x0) + e, where e = (D/
√
K + 1, 0, . . . , 0) ∈ Rd.

Comparison to Clip21. In the non-private setting, α-NormEC has a simpler proof and provides
better convergence guarantees than Clip21. Specifically, the convergence bound of α-NormEC in
(10) exhibits a smaller factor than that of Clip21, as explained in Appendix B.3. Furthermore,
the hyperparameters of α-NormEC (β, α, γ), according to Theorem 1, are easier to implement. In
particular, the step-size γ for α-NormEC avoids reliance on the practically inaccessible sub-optimality
gap f(x0)− f(x⋆), in contrast to Clip21, whose step-size (Theorem 5.6 of Khirirat et al. (2019)) also
depends on maxi∈[1,n] ∥∇fi(x0)∥.

Comparison to EF21. Although α-NormEC incorporates Error Compensation similarly to EF21,
these two methods rely on fundamentally different operator conditions and proof techniques. EF21
requires a strong fixed contractivity condition of compressors. Smoothed normalization violates this
assumption as it satisfies state-dependent contractive-like property (7). That is why we rely on a
novel induction-based proof for α-NormEC as detailed in Appendix B.4.

Extensions of α-NormEC. Our analysis can be extended to establish the convergence of α-NormEC
without server normalization in Appendix B.5, and α-NormEC using stochastic local gradients in
Appendix B.6.

4 α-NORMEC IN THE DP SETTING

Next, we demonstrate that α-NormEC achieves provable convergence guarantees in the DP setting,
the feature that Clip21 lacks. As shown in Algorithm 1, each client applies smoothed normalization
to its gradient before injecting DP noise. Because smoothed normalization ensures the sensitivity is
always 1, we can prove that α-NormEC achieves DP and utility guarantees by appropriately choosing
the variance of the DP noise according to Abadi et al. (2016).

To show this, we present the convergence of DP-α-NormEC next.
Theorem 2 (DP setting). Consider DP-α-NormEC (Algorithm 1) for solving Problem (1), where
Assumption 1 holds. Let β, α, γ > 0 be chosen such that

β

α+R
< 1, and γ ≤ βR

α+R

1

Lmax
,

where R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥, and Lmax = maxi∈[1,n] Li. Then,

min
k∈[0,K]

E
[∥∥∇f(xk)∥∥] ≤ f(x0)− f inf

γ(K + 1)
+ 2R+

L

2
γ + 2

√
β2(K + 1)σ2

DP

n
.

In the DP setting, from Theorem 2, α-NormEC achieves the sublinear convergence up to the additive
term 2R+ γL/2 + 2

√
β2(K + 1)σ2

DP/n. Notice that α-NormEC in the DP setting introduces one
additional term that arises from the DP noise σ2

DP. This additive constant diminishes when we initialize
memory vectors g0i ∈ Rd such that R becomes small and when we properly choose parameters
γ, β > 0 (details in Appendix C.1.1). Furthermore, we can use secure aggregation techniques to
initialize the memory vector ĝ0 = 1

n

∑n
i=1 g

0
i at the server, without revealing clients’ local gradients

g0i . This is shown in Appendix C.3 by having all clients add cryptographic noise before their updates
are communicated to the server.

Utility guarantees. Unlike Clip21 (Khirirat et al., 2023), α-NormEC achieves (ϵ, δ)-DP2 and comes
with convergence guarantees. We show this by setting the standard deviation of the DP noise

2Privacy guaranty follows from Theorem 1 by Abadi et al. (2016).
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according to Theorem 1 of Abadi et al. (2016), i.e., σDP = O(
√

(K + 1) log(1/δ)ϵ−1), which

yields the utility bound O
(
∆ 4

√
d log(1/δ)

nϵ2

)
with constant ∆ =

√
Lmax(f(x0)− f inf) (further

details in Corollary 2). Unlike Clip21, α-NormEC provides the first utility bound in the DP distributed
setting that accounts for the effect of bounding sensitivity, a factor often neglected in the existing
literature. Our obtained utility bound applies for smooth problems without the bounded gradient norm
assumption, the limitation present in prior works for analyzing DP-SGD, such by Li et al. (2022);
Wang et al. (2023); Lowy et al. (2023); Zhang et al. (2020b).

5 EXPERIMENTS

We evaluate the performance of α-NormEC for deep neural network training in both non-private and
private settings. We conduct experiments on the CIFAR-10 (Krizhevsky et al., 2009) dataset using the
ResNet20 (He et al., 2016) model for the image classification task. The compared methods are run for
300 communication rounds. The convergence plots present results for tuned step size γ. Additional
experimental details and results are provided in Appendix D.

5.1 NON-PRIVATE TRAINING

0.01 0.1 1.0

0.
01

0.
1

1.
0

10
.0

83.76 84.35 84.11

85.64 85.78 85.38

84.47 84.66 84.66

81.82 82.16 81.84

Highest test accuracy

82

83

84

85

Figure 1: The highest test accuracy achieved by α-
NormEC with different α and β values.

α-NormEC demonstrates stable convergence
across the normalization parameter (α) val-
ues α, and robustness across β values. From
Figure 1, we observe that convergence of α-
NormEC is stable with respect to a wide range of
α values and robust to variations in β. The per-
formance of α-NormEC is primarily governed
by the choice of β. From Figure 1, optimal per-
formance (85-86% accuracy) is observed when
β is around 0.1. While α-NormEC is stable with
respect to α, extreme values of β lead to subop-
timal performance: very large values (β = 10.0)
result in lower accuracy (81-82%), while very
small values (β = 0.01) achieve moderate per-
formance (83-84%). The optimal configuration, achieving the highest 85.78% accuracy, is β = 0.1
and α = 0.1. Further analysis of the algorithm’s stability with respect to α and robustness to β,
including additional metrics (along with convergence curves) is provided in Appendix D.2.1. For
subsequent experiments, we set α = 0.01, which is consistent with recommendations from prior
work in the single-node setting (Bu et al., 2024).

Error compensation enables α-NormEC to outperform DP-SGD. From Figure 2, α-NormEC
outperforms DP-SGD with smoothed normalization (defined by Equation(2) with B = n and z ≡ 0).
This improvement is attributed to error compensation (EC), as confirmed by running α-NormEC
without server normalization (Line 11 of Algorithm 1). From Figure 2, α-NormEC achieves faster
convergence than DP-SGD with smoothed normalization for most β values, with the exception
of β = 10. However, such a large β is impractical for differentially private training due to the
resulting increase in noise variance. Moreover, while our algorithm demonstrates robust performance
across varying β values, DP-SGD with smoothed normalization exhibits greater sensitivity to this
parameter, notably struggling with convergence at β = 0.01. This comparison underscores how EC
not only accelerates convergence but also improves the algorithm’s stability with respect to parameter
selection. Appendix D.2.2 presents further details (such as accuracy convergence curves in Figure 6)
and optimal parameters with corresponding final accuracies (Table 7).

An ablation study examining the impact of server normalization is provided in Appendix D.2.3.
Furthermore, a comparison between α-NormEC and Clip21 is presented in Appendix D.2.4.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Communication round, k

10 1

100
Tr

ai
ni

ng
 L

os
s

= 0.01
= 0.1

= 1.0
= 10.0

Figure 2: Comparison of DP-SGD (2) [solid] and α-
NormEC (1) [dashed] without server normalization.

Figure 3: Comparison of methods in the Differentially
Private (DP) setting across different β values.

5.2 PRIVATE TRAINING

We analyze the performance of α-NormEC in the differentially private setting by setting the variance of
added noise at β

√
K log(1/δ)ϵ−1 for ϵ = 8, δ = 10−5 and vary β to simulate different privacy levels.

Figure 3 shows the training loss curves for DP-α-NormEC (with and without server normalization)
and DP-Clip213. Notably, compared to the non-private case, convergence in the DP setting is slower
and requires a smaller β (e.g., 0.01) for best performance.

From Figure 3 we observe three key findings: (1) DP-α-NormEC without Server Normalization
converges significantly faster than DP-Clip21 at all privacy levels (β ∈ {0.001, 0.01, 0.1}); (2) Server
normalization (SN) provides crucial stability at high noise levels at β = 1.0, only DP-α-NormEC
with SN maintains convergence; (3) While SN improves robustness, it comes with a slight reduction
in convergence speed at lower noise levels.

The complete analysis, including test accuracy results across different hyperparameter combinations
and detailed performance comparisons, is presented in Appendix D.3. Notably, server normalization
significantly reduces performance variation across different learning rates (γ), with at most 6% varia-
tion compared to 40% without normalization, demonstrating improved hyperparameter robustness.
The superiority of DP-α-NormEC is further confirmed in a high-privacy regime with a stricter budget
of ϵ = 1 in Appendix D.3.1.

6 CONCLUSION

We have proposed and analyzed α-NormEC, a novel distributed algorithm that integrates smoothed
normalization with the EF21 mechanism for solving non-convex, smooth optimization problems
in both non-private and private settings. Unlike Clip21, α-NormEC achieves strong convergence
guarantees that almost match those of classical gradient descent for non-private training and provides
the first utility bound for private training without relying on restrictive assumptions such as bounded
gradient norms. In neural network training, α-NormEC achieves robust convergence across varying
hyperparameters and significantly stronger convergence (due to error compensation) compared to
DP-SGD with smoothed normalization. In the private training, DP-α-NormEC benefits from server
normalization for increased robustness and outperforms DP-Clip21.

Our work implies many promising research directions. One direction is to extend α-NormEC to
accommodate the partial participation case, where the central server receives the updates from a
subset of clients. Another important direction is to modify α-NormEC to solve federated learning
problems, where the clients run their local updates before the local updates are normalized and
transmitted to the central server.

3DP-Clip21, unlike Clip21, does not have theoretical convergence guarantees.
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composite and distributed stochastic minimization and variational inequalities with heavy-tailed
noise. In Forty-first International Conference on Machine Learning, 2024. (Cited on page 3)

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth,
and Martin Takáč. Methods for convex (L0, L1)-smooth optimization: Clipping, acceleration, and
adaptivity. In The Thirteenth International Conference on Learning Representations, 2025. (Cited
on page 3)

Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex
optimization. Advances in neural information processing systems, 28, 2015. (Cited on page 5)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016. (Cited on page 8)
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Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. Differentially private federated learning
on heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp.
10110–10145. PMLR, 2022. (Cited on pages 3 and 5)
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A PRELIMINARIES

Notation. We use [a, b] to denote the set {a, a+ 1, a+ 2, . . . , b} for integers a, b such that a ≤ b,
and E [u] to represent the expectation of a random variable u. For vectors x, y ∈ Rd, ⟨x, y⟩ denotes
their inner product, and ∥x∥ :=

√
⟨x, x⟩ denotes the Euclidean norm of x. Finally, for functions

f, g : Rd → R, we write f(x) = O(g(x)) if f(x) ≤M · g(x) for some M > 0.

A.1 BASIC FACTS

For n ∈ N and x1, . . . , xn, x, y ∈ Rd,

⟨x, y⟩ ≤ ∥x∥ ∥y∥ , (11)
∥x+ y∥ ≤ ∥x∥+ ∥y∥ , and (12)∥∥∥∥∥ 1n

n∑
i=1

xi

∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥xi∥ . (13)

A.2 PROOF OF LEMMA 1

We prove the first statement by taking the Euclidean norm. Next, we prove the second statement.
From the definition of the Euclidean norm,

∥g − βNormα (g)∥2 (6)
= ∥g∥2 + β2

(α+ ∥g∥)2
∥g∥2 − 2β

∥g∥2

α+ ∥g∥

=

(
1− β

α+ ∥g∥

)2

∥g∥2 .

A.3 CONTRACTIVE COMPRESSION, CLIPPING AND NORMALIZATION

We summarize the properties of three key biased operators: contractive compressors, clipping, and
smoothed normalization in Table 2. Unlike clipping, smoothed normalization ensures the contractive-
like property similar to contractive compressors.
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Operator Property

Contractive compressor C : Rd → Rd ∥C(g)− g∥2 ≤ (1− η)2 ∥g∥2

Clipping Clipτ (g) := min
(
1, τ

∥g∥

)
g ∥Clipτ (g)− g∥2 ≤ max(0, ∥g∥ − τ)2

Smoothed normalization Normα (g) := 1
α+∥g∥g ∥Normα (g)− g∥2 ≤

(
1− 1

α+∥g∥

)2
∥g∥2

Table 2: Comparisons of contractive compressors, clipping, and smoothed normalization with their properties.
Smoothed normalization, unlike clipping, satisfies the contractive property similar to compressors.

A.4 COMPARISON OF EF21 WITH CLIPPING AND SMOOTHED NORMALIZATION

We compare the modified EF21 mechanism, where a contractive compressor is replaced with clipping
in Clip21 and with smoothed normalization in α-NormEC. To compare these modified updates, given
the optimal vector g⋆ ∈ Rd, we consider the single-node EF21 mechanism, which computes the
memory vector gk ∈ Rd according to

gk+1 = gk +Ψ(g⋆ − gk), (14)

where Ψ : Rd → Rd is the biased gradient estimator, and g0 ∈ Rd is the initial memory vector.

If Ψ(g) = Clipτ (g), then from Theorem 4.3 of Khirirat et al. (2023)∥∥gk − g⋆
∥∥ ≤ max(0,

∥∥g0 − g⋆
∥∥− kτ).

If Ψ(g) = Normα (g), then from Lemma 1∥∥g⋆ − gk
∥∥2 =

∥∥g⋆ − gk−1 − βNormα

(
g⋆ − gk−1

)∥∥2
=

(
1− β

α+ ∥g⋆ − gk−1∥

)2 ∥∥g⋆ − gk−1
∥∥2

...

=
∥∥g⋆ − g0

∥∥2 · k∏
l=1

(
1− β

α+ ∥g⋆ − gl−1∥

)2

.

In conclusion, while the EF21 mechanism with clipping ensures that the memory gk will reach g⋆
within a finite number of iterations k (when k ≥

∥∥g0 − g⋆
∥∥ /τ ), the EF21 mechanism with smoothed

normalization guarantees that gk will eventually reach g⋆ (provided that β/α < 1).

B NON-PRIVATE RESULTS

B.1 PROOF OF THEOREM 1

Proof outline. By the L-smoothness of the objective function f , and by the update for xk+1 in
α-NormEC, we obtain

V k+1 ≤ V k − γ
∥∥∇f(xk)∥∥+ Lγ2

2
+ 2γW k,

where V k := f(xk)− f inf , and W k := 1
n

∑n
i=1

∥∥∇fi(xk)− gk+1
i

∥∥. The key step to establish the
convergence is to bound

∥∥∇fi(xk)− gk+1
i

∥∥. Using Lemma 2 and appropriate choices of the tuning
parameters β, α, and γ, we get∥∥∇fi(xk)− gk+1

i

∥∥ ≤ max
i∈[1,n]

∥∥∇fi(x0)− g0i
∥∥ , ∀k ≥ 0.

Finally, substituting this bound into the previous descent inequality yields the convergence bound
in mink∈[0,K]

∥∥∇f(xk)∥∥. Deriving the bound on
∥∥∇fi(xk)− gk+1

i

∥∥ for α-NormEC by induction is
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similar to but simpler than Clip21. This simplified proof is possible because smoothed normalization
possesses a contractive property similar to the contractive compressor used in EF21.

We prove Theorem 1 by Lemma 2, which states
∥∥∇fi(xk+1)− gk+1

i

∥∥ ≤ R for some positive scalars
R, given that

∥∥∇fi(xk)− gki
∥∥ ≤ R, and hyperparameters α, β, γ are properly tuned.

Lemma 2 (Non-private setting). Consider α-NormEC (Algorithm 1) for solving Problem (1), where
Assumption 1 holds. If

∥∥∇fi(xk)− gki
∥∥ ≤ R, β

α+R < 1, and γ ≤ βR
α+R

1
Lmax

with Lmax =

maxi∈[1,n] Li, then
∥∥∇fi(xk+1)− gk+1

i

∥∥ ≤ R.

Proof. From the definition of the Euclidean norm,

∥∥∇fi(xk+1)− gk+1
i

∥∥ (12)
≤

∥∥∇fi(xk+1)−∇fi(xk)
∥∥+ ∥∥∇fi(xk)− gk+1

i

∥∥
gk+1
i=

∥∥∇fi(xk+1)−∇fi(xk)
∥∥

+
∥∥∇fi(xk)− gki − βNormα

(
∇fi(xk)− gki

)∥∥
Lemma 1
≤

∥∥∇fi(xk+1)−∇fi(xk)
∥∥

+

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥
Assumption 1, and xk+1

≤ Lmaxγ +

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥ .
If
∥∥∇fi(xk)− gki

∥∥ ≤ R and β
α+R < 1, then

∥∥∇fi(xk+1)− gk+1
i

∥∥ ≤ R when

γ ≤ βR

α+R

1

Lmax
.

Now, we are ready to prove the result in Theorem 1 in four steps.

Step 1) Prove by induction that
∥∥∇fi(xk)− gki

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥. For

k = 0, this is obvious. Next, let
∥∥∇fi(xl)− gli

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥

for l = 0, 1, . . . , k. Then, if β/(α + R) < 1, and γ ≤ βR
α+R

1
Lmax

, then from Lemma 2∥∥∇fi(xk+1)− gk+1
i

∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(xk)− gk+1

i

∥∥. From the definition of the Euclidean norm,

∥∥∇fi(xk)− gk+1
i

∥∥ gk+1
i=

∥∥∇fi(xk)− gki − βNormα

(
∇fi(xk)− gki

)∥∥
Lemma 1
≤

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥
(∗)
≤

(
1− β

α+R

)
R ≤ R,

where we reach (∗) by the fact that
∥∥∇fi(xk)− gki

∥∥ ≤ R, β
α+R < 1, and γ ≤ βR

α+R
1

Lmax
.
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Step 3) Derive the descent inequality. By the L-smoothness of f , by the definition of xk+1, and
by the fact that ĝk+1 = gk+1,

f(xk+1)− f inf ≤ f(xk)− f inf − γ

∥gk+1∥
〈
∇f(xk), gk+1

〉
+
Lγ2

2

= f(xk)− f inf − γ
∥∥gk+1

∥∥+ γ

∥gk+1∥
〈
∇f(xk)− gk+1, gk+1

〉
+
Lγ2

2

(11)
≤ f(xk)− f inf − γ

∥∥gk+1
∥∥+ γ

∥∥∇f(xk)− gk+1
∥∥+ Lγ2

2
(12)
≤ f(xk)− f inf − γ

∥∥∇f(xk)∥∥+ 2γ
∥∥∇f(xk)− gk+1

∥∥+ Lγ2

2
(13)
≤ f(xk)− f inf − γ

∥∥∇f(xk)∥∥+ 2γ
1

n

n∑
i=1

∥∥∇fi(xk)− gk+1
i

∥∥+ Lγ2

2
.

Next, since
∥∥∇fi(xk)− gk+1

i

∥∥ ≤ R with R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥, we have

f(xk+1)− f inf ≤ f(xk)− f inf − γ
∥∥∇f(xk)∥∥+ 2γ max

i∈[1,n]

∥∥∇fi(x0)− g0i
∥∥+ Lγ2

2
.

Step 4) Finalize the convergence rate. Finally, by re-arranging the terms of the inequality,

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤ 1

K + 1

K∑
k=0

∥∥∇f(xk)∥∥
≤ [f(x0)− f inf ]− [f(xK+1)− f inf ]

γ(K + 1)
+ 2 max

i∈[1,n]

∥∥∇fi(x0)− g0i
∥∥+ L

2
γ

(†)
≤ f(x0)− f inf

γ(K + 1)
+ 2 max

i∈[1,n]

∥∥∇fi(x0)− g0i
∥∥+ L

2
γ,

where we reach (†) by the fact that f inf ≥ f(xK+1).

B.2 THE O(1/
√
K) CONVERGENCE OF α-NormEC IN THE NON-PRIVATE SETTING

From Theorem 2, we show that α-NormEC achieves the O(1/
√
K) convergence in the gradient norm,

which almost matches the convergence bound by classical gradient descent.

The next corollary shows the O(1/
√
K) rate of α-NormEC under specific choices of initialized

memory vectors g0i and the step size γ.
Corollary 1 (Non-private setting). Consider α-NormEC (Algorithm 1) for solving Problem (1) under
the same setting as Theorem 1. If we choose g0i ∈ Rd such that maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥ =

D(K + 1)−1/2 with any D > 0, γ ≤ β
Lmax

D
α+D

1
(K+1)1/2

, and α > β, then

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤ C

(K + 1)1/2
,

where C = Lmax(α+D)
βD (f(x0)− f inf) + 2D + L

2
βD

Lmax(α+D) .

Proof. If g0i ∈ Rd is chosen such that maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥ = D

(K+1)1/2
with any D > 0,

γ ≤ β
Lmax

D
α+D

1
(K+1)1/2

, and β < α, then from Theorem 1, we obtain γ ≤ βR
α+R

1
Lmax

with

R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥, and

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤ Lmax(α+D)

βD

f(x0)− f inf

(K + 1)1/2
+ 2

D

(K + 1)1/2
+
L

2

βD

Lmax(α+D)

1

(K + 1)1/2
.
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From Corollary 1, α-NormEC enjoys the O(1/
√
K) convergence in the gradient norm when we

choose g0i such that R = O(1/
√
K), and γ = O(β/

√
K).

By further choosing α > 1, and β = Lmax(α+D)
D

√
2(f(x0)−f inf )

L , which ensures Lmax(α+D)
βD (f(x0)−

f inf) = L
2

βD
Lmax(α+D) , the associated convergence bound from Corollary 1 becomes

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤
√

2L(f(x0)− f inf) + 2D

(K + 1)1/2
. (15)

This bound comprises two terms. The first term
√

2L(f(x0)− f inf)(K +1)−1/2 is the convergence
bound obtained by classical gradient descent Carmon et al. (2020), while the second term 2D(K +
1)−1/2 comes from the initialized memory vectors g0i for running the error-feedback mechanism.

B.3 COMPARISON TO Clip21

We show that the convergence bound of α-NormEC (15) has a smaller factor than that of Clip21 from
Theorem 5.6. of Khirirat et al. (2023).

To show this, let x̂K be selected uniformly at random from a set {x0, x1, . . . , xK}. Then, from
Theorem 5.6. of Khirirat et al. (2023), Clip21 achieves the following convergence bound:

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤ E
[∥∥∇f(x̂K)

∥∥]
≤

√
E
[
∥∇f(x̂K)∥2

]
≤ Lmax(f(x

0)− f inf)

τ(K + 1)1/2
+

√
(1 + C1/τ)C2

(K + 1)1/2
,

where τ > 0 is a clipping threshold, C1 = maxi∈[1,n]

∥∥∇fi(x0)∥∥, and C2 =

max(max(L,Lmax)(f(x
0)− f inf)), C2

1 ).

If τ = Lmax√
2L

√
f(x0)− f inf , then

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤

√
2L(f(x0)− f inf)

K + 1
+

√(
1 + C1

√
2L

Lmax

√
f(x0)−f inf

)
C2

(K + 1)1/2

≤

√
2L(f(x0)− f inf)

K + 1

+

√
C2 +O

(
max(

√
C1

4
√
f(x0)− f inf , C3

1/
√
f(x0)− f inf)

)
(K + 1)1/2

.

The first term in the convergence bound of Clip21 matches that of α-NormEC as given in (10).
However, the second term in the convergence bound of α-NormEC is D/

√
K + 1, where D > 0 can

be made arbitrarily small. In contrast, the corresponding term for Clip21 is C/
√
K + 1, where C > 0

may become significantly larger than D if x0 ∈ Rd is far from the stationary point, leading to a large
value of C1 = maxi∈[1,n]

∥∥∇fi(x0)∥∥.

B.4 COMPARISON TO EF21

α-NormEC modifies EF21 to support distributed optimization algorithms for training machine learn-
ing models under differential privacy. However, α-NormEC is not a special case of EF21, as the
two algorithms rely on fundamentally different biased operator conditions and convergence anal-
yses. Specifically, α-NormEC replaces the contractive compression operators used in EF21 with
smoothed normalization. While this modification enables practical advantages in private learning, it
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introduces significant analytical challenges. The convergence analysis of EF21 crucially depends on
the assumption that the compression operators are contractive, satisfying the condition:

ψk+1 ≤ (1− q)ψk, ∀q ∈ (0, 1],

where ψk =
∥∥∇fi(xk)− gki

∥∥ is the gradient estimation error. Nonetheless, this strong contractivity
condition does not hold in general for smoothed normalization. Rather, we prove that smoothed
normalization satisfies only a contractive-like property, which is insufficient for directly applying the
convergence analysis of EF21. To overcome this, we develop a new induction-based proof technique
that establishes the weaker monotonicity condition:

ψk+1 ≤ ψk,

which is sufficient to guarantee convergence within our novel analysis framework for α-NormEC.

B.5 ANALYSIS WITHOUT SERVER NORMALIZATION

In this section, we prove the convergence in the non-private setting for α-NormEC without the server
normalization– specifically, in the variant of Algorithm 1 where the server update in Step 11 becomes
xk+1 = xk − γgk+1.

To facilitate our analysis, we impose one additional assumption on the objective function.
Assumption 2. Let f : Rd → R satisfy f(x)− f inf ≤ ∆ for some ∆ > 0 and for all x ∈ Rd.

From Assumption 2, we can bound the gradient error norm in the next lemma.
Lemma 3. Consider α-NormEC (Algorithm 1) without the server normalization for solving
Problem (1), where Assumptions 1 and 2 hold. If

∥∥∇fi(xk)− gki
∥∥ ≤ R, β

α+R < 1, and
γ ≤ βR

α+R
1

R+
√
2L∆

1
Lmax

with Lmax = maxi∈[1,n] Li, then
∥∥∇fi(xk+1)− gk+1

i

∥∥ ≤ R.

Proof. From the definition of the Euclidean norm,∥∥∇fi(xk+1)− gk+1
i

∥∥ (12)
≤

∥∥∇fi(xk+1)−∇fi(xk)
∥∥+ ∥∥∇fi(xk)− gk+1

i

∥∥
gk+1
i=

∥∥∇fi(xk+1)−∇fi(xk)
∥∥

+
∥∥∇fi(xk)− gki − βNormα

(
∇fi(xk)− gki

)∥∥
Lemma 1
≤

∥∥∇fi(xk+1)−∇fi(xk)
∥∥

+

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥
Assumption 1, and xk+1

≤ Lmaxγ
∥∥ĝk∥∥

+

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥ .
Next, since ∥∥ĝk∥∥ (12)

≤
∥∥∇f(xk)− ĝk

∥∥+ ∥∥∇f(xk)∥∥
(12)
≤ 1

n

n∑
i=1

∥∥∇fi(xk)− ĝki
∥∥+ ∥∥∇f(xk)∥∥

Assumption 1
≤ 1

n

n∑
i=1

∥∥∇fi(xk)− ĝki
∥∥+√2L[f(xk)− f inf ]

Assumption 2
≤ 1

n

n∑
i=1

∥∥∇fi(xk)− ĝki
∥∥+√

2L∆,
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by the fact that ĝk = gk, we obtain

∥∥∇fi(xk+1)− gk+1
i

∥∥ ≤ Lmaxγ

n

n∑
i=1

∥∥∇fi(xk)− gki
∥∥+ Lmaxγ

√
2L∆

+

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥ .
If
∥∥∇fi(xk)− gki

∥∥ ≤ R for all i, and β
α+R < 1, then

∥∥∇fi(xk+1)− gk+1
i

∥∥ ≤ R when

γ ≤ βR

α+R

1

R+
√
2L∆

1

Lmax
.

From Lemma 3, we can establish the convergence theorem for α-NormEC without server-side nor-
malization in the non-private setting, similar to the one for α-NormEC with server-side normalization
in Theorem 1.

Theorem 3. Consider α-NormEC (Algorithm 1) without server normalization for solving Problem (1),
where Assumptions 1 and 2 hold. Let β, α, γ > 0 be chosen such that

β

α+R
< 1, and γ ≤ βR

α+R

1

R+
√
2L∆

1

Lmax
,

where R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥ and Lmax = maxi∈[1,n] Li. Then,

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤ f(x0)− f inf

γ(K + 1)
+ 2R+

L

2
γ.

Proof. We prove the result in Theorem 3 in four steps.

Step 1) Prove by induction that
∥∥∇fi(xk)− gki

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥. For

k = 0, this is obvious. Next, let
∥∥∇fi(xl)− gli

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥ for

l = 0, 1, . . . , k. Then, if β/(α + R) < 1, and γ ≤ βR
α+R

1
R+

√
2L∆

1
Lmax

, then from Lemma 3∥∥∇fi(xk+1)− gk+1
i

∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(xk)− gk+1

i

∥∥. From the definition of the Euclidean norm,

∥∥∇fi(xk)− gk+1
i

∥∥ gk+1
i=

∥∥∇fi(xk)− gki − βNormα

(
∇fi(xk)− gki

)∥∥
Lemma 1
≤

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥
(∗)
≤

(
1− β

α+R

)
R ≤ R,

where we reach (∗) by the fact that
∥∥∇fi(xk)− gki

∥∥ ≤ R, β
α+R < 1, and γ ≤ βR

α+R
1

R+
√
2L∆

1
Lmax

.

Finally, we follow Step 3) and Step 4) by following the proof arguments in Theorem 1 to obtain the
final result.
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B.6 EXTENSION TO STOCHASTIC GRADIENTS

We can leverage our analysis to study α-NormEC, where clients compute their local stochastic
gradients ∇fi(xk; ξki,[b]) = 1

b

∑b
j=1 ∇fi(xk; ξki,j) with the mini-batch size b, instead of full local

gradients ∇fi(xk), in Step 4 of Algorithm 1.

We make the following assumption on the clients’ local stochastic gradients, which is stronger than
the unbiased and variance-bounded conditions of local stochastic gradients.

Assumption 3. Let 1
b

∑b
j=1 ∇fi(x; ξi,j) be the mini-batch stochastic gradient estimator of the local

gradient ∇fi(x) at client i such that almost surely for some σ > 0 and for any b > 0,∥∥∥∥∥∥1b
b∑

j=1

∇fi(x; ξi,j)−∇fi(x)

∥∥∥∥∥∥ ≤ σ

b
.

Here, ξi,1, . . . , ξi,b are independent and identically distributed random variables drawn from the data
distribution Di at client i.

From Assumption 3, we can bound the gradient error norm of α-NormEC for stochastic optimization
in the following lemma.

Lemma 4. Consider α-NormEC (Algorithm 1) that uses stochastic gradients ∇fi(xk; ξki,[b]) =
1
b

∑b
j=1 ∇fi(xk; ξki,j) for solving Problem (1), where Assumptions 1 and 3 hold. If∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥ ≤ R, β
α+R < 1, b ≥ 4σ(α+R)

R , and γ ≤ 1
Lmax

βR
2(α+R) , then∥∥∇fi(xk+1; ξk+1

i )− gk+1
i

∥∥ ≤ R.

Proof. From the definition of the Euclidean norm,∥∥∥∇fi(xk+1; ξk+1
i,[b] )− gk+1

i

∥∥∥ (12)
≤

∥∥∥∇fi(xk+1; ξk+1
i,[b] )−∇fi(xk+1)

∥∥∥
+
∥∥∥∇fi(xk; ξki,[b])−∇fi(xk)

∥∥∥
+
∥∥∇fi(xk+1)−∇fi(xk)

∥∥
+
∥∥∥∇fi(xk; ξki,[b])− gk+1

i

∥∥∥
gk+1
i

≤
∥∥∥∇fi(xk+1; ξk+1

i,[b] )−∇fi(xk+1)
∥∥∥

+
∥∥∥∇fi(xk; ξki,[b])−∇fi(xk)

∥∥∥
+
∥∥∇fi(xk+1)−∇fi(xk)

∥∥
+
∥∥∥∇fi(xk; ξki,[b])− gki − βNormα

(
∇fi(xk; ξki,[b])− gki

)∥∥∥ .
From Assumption 3,∥∥∥∇fi(xk+1; ξk+1

i,[b] )− gk+1
i

∥∥∥ ≤ 2σ

b
+
∥∥∇fi(xk+1)−∇fi(xk)

∥∥
+

∣∣∣∣∣∣1− β

α+
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥
∣∣∣∣∣∣
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥
xk+1+Assumption 1

≤ 2σ

b
+ Liγ

+

∣∣∣∣∣∣1− β

α+
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥
∣∣∣∣∣∣
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥ .
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If β/(α + R) < 1, b ≥ 4σ(α+R)
R , and γ ≤ 1

Lmax

βR
2(α+R) , then we can prove that∥∥∇fi(xk+1; ξk+1

i )− gk+1
i

∥∥ ≤ R.

From Lemma 4, we can establish the convergence theorem for α-NormEC that uses local stochastic
gradients.
Theorem 4. Consider α-NormEC (Algorithm 1) that uses stochastic gradients ∇fi(xk; ξki,[b]) =
1
b

∑b
j=1 ∇fi(xk; ξki,j) for solving Problem (1), where Assumptions 1 and 3 hold. Let β, α, γ > 0 be

chosen such that

b ≥ 4σ(α+R)

R
,

β

α+R
< 1 and γ ≤ βR

2(α+R)

1

Lmax
,

where R = maxi∈[1,n]

∥∥∥∇fi(x0; ξ0i,[b])− g0i

∥∥∥ and Lmax = maxi∈[1,n] Li. Then, almost surely,

min
k∈[0,K]

∥∥∇f(xk)∥∥ ≤ f(x0)− f inf

γ(K + 1)
+ 2

(σ
b
+R

)
+
L

2
γ.

Proof. We prove the result in Theorem 3 in four steps.

Step 1) Prove by induction that
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥ ≤ R for R =

maxi∈[1,n]

∥∥∥∇fi(x0; ξ0i,[b])− g0i

∥∥∥. For k = 0, this is obvious. Next, let
∥∥∥∇fi(xl; ξli,[b])− gli

∥∥∥ ≤ R

for R = maxi∈[1,n]

∥∥∥∇fi(x0; ξ0i,[b])− g0i

∥∥∥ for l = 0, 1, . . . , k. Then, from Lemma 4∥∥∥∇fi(xk+1; ξk+1
i,[b] )− gk+1

i

∥∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(xk)− gk+1

i

∥∥. From the definition of the Euclidean norm,∥∥∇fi(xk)− gk+1
i

∥∥ gk+1
i=

∥∥∥∇fi(xk)− gki − βNormα

(
∇fi(xk; ξki,[b])− gki

)∥∥∥
(12)
≤

∥∥∥∇fi(xk; ξki,[b])−∇fi(xk)
∥∥∥

+
∥∥∥∇fi(xk; ξki,[b])− gki − βNormα

(
∇fi(xk; ξki,[b])− gki

)∥∥∥
Lemma 1
≤

∥∥∥∇fi(xk; ξki,[b])−∇fi(xk)
∥∥∥

+

∣∣∣∣∣∣1− β

α+
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥
∣∣∣∣∣∣
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥ .
From Assumption 3,∥∥∇fi(xk)− gk+1

i

∥∥ ≤ σ

b
+

∣∣∣∣∣∣1− β

α+
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥
∣∣∣∣∣∣
∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥ .
By the fact that

∥∥∥∇fi(xk; ξki,[b])− gki

∥∥∥ ≤ R, and β/(α+R) < 1 from Step 1) of the proof,∥∥∇fi(xk)− gk+1
i

∥∥ ≤ σ

b
+

(
1− β

α+R

)
R ≤ σ

b
+R.

Finally, we follow Step 3) and Step 4) by following the proof arguments in Theorem 1 to obtain the
final result.

Theorem 4 states that α-NormEC using local stochastic gradients achieves the sublinear, almost sure
convergence up to the additive constants 2(σ/b+R) + γL/2. Here, the mini-batch size b must be
sufficiently large to ensure the convergence and to improve the accuracy of the solution obtained
from running the method.
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C PRIVATE RESULTS

C.1 PROOF OF THEOREM 2

We prove Theorem 2 by two useful lemmas:

1. Lemma 2, which states
∥∥∇fi(xk+1)− gk+1

i

∥∥ ≤ R for some positive scalars R, given that∥∥∇fi(xk)− gki
∥∥ ≤ R and the hyperparameters γ, β, α are properly tuned, and

2. Lemma 5, which bounds the difference in expectation between the memory vectors main-
tained by the central server and clients.

Lemma 5 (DP setting). Consider DP-α-NormEC (Algorithm 1) for solving Problem (1), where
Assumption 1 holds. If ĝ0 = 1

n

∑n
i=1 g

0
i , then

E

[∥∥∥∥∥ĝk+1 − 1

n

n∑
i=1

gk+1
i

∥∥∥∥∥
]
≤
√
β2(K + 1)σ2

DP

n
.

Proof. From the definition of gki and ĝk,

ek+1 = ek + βzk+1,

where ek = ĝk − 1
n

∑n
i=1 g

k
i , and zk = 1

n

∑n
i=1 z

k
i . By applying the equation recursively,

ek+1 = e0 + β

k+1∑
l=1

zl.

Therefore, by the triangle inequality,∥∥ek+1
∥∥ ≤

∥∥e0∥∥+ ∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥ .
If ĝ0 = 1

n

∑n
i=1 g

0
i , then e0 = 0 and therefore∥∥ek+1

∥∥ ≤

∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥ .
By taking the expectation,

E
[∥∥ek+1

∥∥] ≤ E

[∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥
]

= E


√√√√∥∥∥∥∥β

k+1∑
l=1

zl

∥∥∥∥∥
2


≤

√√√√√E

∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥
2
,

where we reach the last inequality by Jensen’s inequality. Next, by expanding the terms,

E
[∥∥ek+1

∥∥] ≤

√√√√β2

k+1∑
l=1

E
[
∥zl∥2

]
+ β2

∑
j ̸=i

E [⟨zi, zj⟩]

(∗)
=

√√√√β2

k+1∑
l=1

E
[
∥zl∥2

]
(‡)
≤

√√√√β2

n

k+1∑
l=1

σ2
DP,
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where we reach (∗) by the fact that E
[
⟨zj , zi⟩

]
= 0 for i ̸= j, and (‡) by the fact that E

[∥∥zk∥∥2] =
σ2
DP/n (as zki is independent of zkj for i ̸= j). Therefore,

E
[∥∥ek+1

∥∥] ≤
√
β2(k + 1)σ2

DP

n

k≤K

≤
√
β2(K + 1)σ2

DP

n
.

Now, we prove Theorem 2 in three steps.

Step 1) Prove by induction that
∥∥∇fi(xk)− gki

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥. For

k = 0, this is obvious. Next, let
∥∥∇fi(xl)− gli

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥

for l = 0, 1, . . . , k. Then, if β/(α + R) < 1, and γ ≤ βR
α+R

1
Lmax

, then from Lemma 2∥∥∇fi(xk+1)− gk+1
i

∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(xk)− gk+1

i

∥∥. From the definition of the Euclidean norm,∥∥∇fi(xk)− gk+1
i

∥∥ gk+1
i=

∥∥∇fi(xk)− gki − βNormα

(
∇fi(xk)− gki

)∥∥
Lemma 2
≤

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥ .
Step 3) Derive the descent inequality in E

[
f(xk)− f inf

]
. Denote gk = 1

n

∑n
i=1 g

k
i . By the

L-smoothness of f , and by the definition of xk+1,

f(xk+1)− f inf ≤ f(xk)− f inf − γ

∥ĝk+1∥
〈
∇f(xk), ĝk+1

〉
+
Lγ2

2

= f(xk)− f inf − γ
∥∥ĝk+1

∥∥+ γ

∥ĝk+1∥
〈
∇f(xk)− ĝk+1, ĝk+1

〉
+
Lγ2

2

(11)
≤ f(xk)− f inf − γ

∥∥ĝk+1
∥∥+ γ

∥∥∇f(xk)− ĝk+1
∥∥+ Lγ2

2
(12)
≤ f(xk)− f inf − γ

∥∥∇f(xk)∥∥+ 2γ
∥∥∇f(xk)− ĝk+1

∥∥+ Lγ2

2
(13)
≤ f(xk)− f inf − γ

∥∥∇f(xk)∥∥+ 2γ
1

n

n∑
i=1

∥∥∇fi(xk)− gk+1
i

∥∥
+2γ

∥∥ĝk+1 − gk+1
∥∥+ Lγ2

2
.

Next, let Fk be the history up to iteration k, i.e. Fk := {x0, z01 , . . . , z0n, . . . , xk, zk1 , . . . , zkn}. Then,

E
[
f(xk+1)− f inf

∣∣Fk
]

≤ f(xk)− f inf − γ
∥∥∇f(xk)∥∥+ 2γ

1

n

n∑
i=1

E
[∥∥∇fi(xk)− gk+1

i

∥∥∣∣Fk
]

+2γE
[∥∥ĝk+1 − gk+1

∥∥∣∣Fk
]
+
Lγ2

2
.

Next, by the upper-bound for
∥∥∇fi(xk)− gk+1

i

∥∥,

E
[∥∥∇fi(xk)− gk+1

i

∥∥∣∣Fk
]

≤ E

[∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥∣∣∣∣∣Fk

]

=

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(xk)− gki

∥∥
≤

(
1− β

α+R

)
R ≤ R,
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where we reach the second inequality by the fact that
∥∥∇fi(xk)− gki

∥∥ ≤ R, β
α+R < 1, and

γ ≤ βR
α+R

1
Lmax

. Thus,

E
[
f(xk+1)− f inf

∣∣Fk
]

≤ f(xk)− f inf − γ
∥∥∇f(xk)∥∥+ 2γR

+2γE
[∥∥ĝk+1 − gk+1

∥∥∣∣Fk
]
+
Lγ2

2
.

By taking the expectation, and by the tower property E [E [X|Y ]] = E [X],

E
[
f(xk+1)− f inf

]
= E

[
E
[
f(xk+1)− f inf

∣∣Fk
]]

≤ E
[
f(xk)− f inf

]
− γE

[∥∥∇f(xk)∥∥]+ 2γR

+2γE
[∥∥ĝk+1 − gk+1

∥∥]+ Lγ2

2
.

Next, by using Lemma 5,

E
[
f(xk+1)− f inf

]
≤ E

[
f(xk)− f inf

]
− γE

[∥∥∇f(xk)∥∥]+ 2γR

+2γ

√
β2(K + 1)σ2

DP

n
+
Lγ2

2
.

Therefore,

min
k∈[0,K]

E
[∥∥∇f(xk)∥∥] ≤ 1

K + 1

K∑
k=0

E
[∥∥∇f(xk)∥∥]

≤
E
[
f(x0)− f inf

]
− E

[
f(xK+1)− f inf

]
γ(K + 1)

+ 2R+ 2

√
β2(K + 1)σ2

DP

n
+
L

2
γ

≤ f(x0)− f inf

γ(K + 1)
+ 2R+ 2

√
β2(K + 1)σ2

DP

n
+
L

2
γ,

where we reach the last inequality by the fact that f inf ≥ f(xK+1).

C.1.1 DISCUSSION

By choosing g0i such that R = D
(K+1)1/6

with any D > 0, β = β0

(K+1)2/3
with β0 ∈ (0, 1], α > 1,

and γ ≤ A
(K+1)5/6

with A = β0D
Lmax(α+D) , then the conditions for β, α, γ in Theorem 2 are satisfied,

and from Theorem 2 DP-α-NormEC attains the O(1/K1/6) convergence rate in the gradient norm:

min
k∈[0,K]

E
[∥∥∇f(xk)∥∥] ≤ C

(K + 1)1/6
+

LA

2(K + 1)5/6
,

where C1 = f(x0)−f inf

A + 2D + 2β0σDP.

C.2 UTILITY GUARANTEE OF DP-α-NormEC

In this section, we present the utility guarantee of DP-α-NormEC.

Corollary 2 (Utility guarantee in DP setting). Consider DP-α-NormEC (Algorithm 1) for solving
Problem (1) under the same setting as Theorem 2. If σDP = O(

√
(K + 1) log(1/δ)ϵ−1), β = β0

K+1

with β0 = O
(√

∆
A

)
and α = R = O

(
4
√
d
√
∆A

)
for ∆ =

√
Lmax(f(x0)− f inf) and A =

√
log(1/δ)√

nϵ
, then Algorithm 1 satisfies (ϵ, δ)-DP and attains the bound

min
k∈[0,K]

E
[∥∥∇f(xk)∥∥] ≤ O

(
∆

4

√
d
log(1/δ)

nϵ2

)
.
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Proof: Let σDP = O
(√

(K+1) log(1/δ)

ϵ

)
, and β = β0

K+1 with 0 < β0 < α + R. Then, from

Theorem 2, we get γ ≤ β0R
α+R

1
Lmax

1
K+1 with R = maxi∈[1,n]

∥∥∇fi(x0)− g0i
∥∥, and

min
k∈[0,K]

E
[∥∥∇f(xk)∥∥] ≤ Lmax(α+R)(f(x0)− f inf)

β0R
+ 2R+ 2

β0
√

log(1/δ)√
nϵ

+
Lβ0R

2(α+R)Lmax

1

K + 1
.

If β0 = O
(√

Lmax(f(x0)−f inf )
A

)
and α = R = O

(
4
√
d
√
Lmax(f(x0)− f inf)A

)
for A =

√
log(1/δ)√

nϵ
, then

min
k∈[0,K]

E
[∥∥∇f(xk)∥∥] ≤ O

(
4
√
d
√
Lmax(f(x0)− f inf)A

)
.

C.3 PRIVATE INITIALIZATION OF THE MEMORY VECTORS

Secure aggregation can be used in α-NormEC to initialize the server’s aggregated memory vector,
ĝ0 = 1

n

∑n
i=1 g

0
i , while keeping the clients’ individual memory vectors, g0i , private. For example,

clients that share a random seed can add and subtract identical cryptographic noise, h, from their
respective vectors (e.g., g01 + h and g02 − h). When these are aggregated by the server, the noise
cancels out, preserving the accuracy of the average: 1

2 (g
0
1 + h) + 1

2 (g
0
2 − h) = 1

2 (g
0
1 + g02). This

method protects the individual vectors from the server without compromising the accuracy of the
overall average.

Furthermore, we can extend this initialization for ĝ0 to include general DP noise. Specifically, we
can set ĝ0 = 1

n

∑n
i=1(g

0
i + e0i ), where e0i is the DP noise that Client i adds to its local memory

vector before communicating it to the server. Our analysis, especially in Lemma 5, shows that
this generalized initialization can be accommodated. The worst-case bound for the error term,
E
[∥∥ĝk+1 − 1

n

∑n
i=1 g

k+1
i

∥∥], will simply include an additional term, e = 1
n

∑n
i=1 e

0
i , i.e.

E

[∥∥∥∥∥ĝk+1 − 1

n

n∑
i=1

gk+1
i

∥∥∥∥∥
]
≤
√
β2(K + 1)

n
σ2
DP +

√√√√ 1

n

n∑
i=1

∥e0i ∥.
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D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

We include details on experimental setups and additional results in the non-private and private training
for the ResNet20 model on the CIFAR-10 dataset.

D.1 ADDITIONAL EXPERIMENTAL DETAILS

The dataset was split into train (90%) and test (10%) sets. The train samples were randomly shuffled
and distributed across 10 workers. Every worker computed gradients with batch size 32. The training
was performed for 300 communication rounds. The random seed was fixed to 42 for reproducibility.

All the methods were run with a constant step size (learning rate) without other techniques, such as
schedulers, warm-up, or weight decay. They were evaluated across the following hyperparameter
combinations:

• step size γ: {0.001, 0.01, 0.1, 1.0},
• Sensitivity/clip threshold β: {0.01, 0.1, 1.0, 10.0},
• Smoothed normalization value α: {0.01, 0.1, 1.0}.

Our implementation is based on the public GitHub repository Idelbayev. Experiments were performed
on a machine with a single GPU: NVIDIA GeForce RTX 3090.

D.2 NON-PRIVATE TRAINING

D.2.1 SENSITIVITY OF α-NormEC TO PARAMETERS β, α
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Figure 4: Minimal train loss (left), final train loss (middle), and final test accuracy (right) achieved by non-
private α-NormEC, after 300 communication rounds using a fine-tuned constant step size γ.

Figure 4 supplements the results in Figure 1 with other metrics. Figure 5 displays convergence curves
across different combinations of α, β parameters with optimally selected step sizes γ.
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Figure 5: Training loss and test accuracy of non-private α-NormEC with α = 0.01 [solid], 0.1 [dashed], and
1.0 [dotted], and β = 0.01 [blue], 0.1 [green], 1.0 [orange], and 10.0 [red].
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D.2.2 BENEFITS OF ERROR COMPENSATION

Leveraging error compensation (EC), α-NormEC without server normalization achieves superior
performance compared to DP-SGD with direct smoothed normalization across a range of β and γ
hyperparameter settings (where α = 0.01), in terms of the final test accuracy reported in Figure 6 and
Table 7. From Table 7, α-NormEC without server normalization consistently outperforms DP-SGD
across most combinations. This trend is particularly evident for small β values (β = 0.01), where
DP-SGD achieves only 51.10% accuracy while α-NormEC reaches 84.04%. The only exception is
β = 10.0, where DP-SGD outperforms α-NormEC. However, this combination is less practical in
the private setting, as too high β values imply high private noise, thus leading to slow algorithmic
convergence.
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Figure 6: Comparison of DP-SGD (2) [solid] and α-
NormEC (1) [dashed] without server normalization.

Method β γ Final Accuracy

α-NormEC 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%

10.0 0.01 79.25%

DP-SGD (2) 0.01 1.0 51.10%
0.1 1.0 79.68%
1.0 1.0 83.89%

10.0 0.1 84.50%

Figure 7: Best configurations and final test accura-
cies.

D.2.3 EFFECT OF SERVER NORMALIZATION

We investigate the impact of server-side normalization (Line 11 in Algorithm 1) on the convergence
performance of α-NormEC. We reported training loss and test accuracy of α-NormEC without and
with server normalization in Figure 8 while summarizing their final test accuracy in Table 3.

α-NormEC without server normalization generally achieves faster convergence in training loss and
higher test accuracy than α-NormEC with server normalization across varying β values. Notably, at
β = 0.1, α-NormEC without server normalization achieves the highest test accuracy of 86.09%. Only
at the large value of β = 10.0 does server normalization improve the test accuracy of α-NormEC
without server normalization by approximately 2.2%.
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Figure 8: Training loss and test accuracy of α-NormEC with [solid] and without [dashed] server normalization.
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Method: α-NormEC β γ Final Accuracy

With server normalization 0.01 0.01 82.86%
0.1 0.1 85.43%
1.0 0.1 84.29%
10.0 0.1 81.48%

Without server normalization 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%
10.0 0.01 79.25%

Table 3: Best configurations and final test accuracies of α-NormEC with and without server normalization.

D.2.4 COMPARISON OF Clip21 AND α-NormEC

Figure 9 and Table 10 show that α-NormEC without server normalization4 achieves comparable
convergence performance to Clip21 for most β values. At small β values (0.01, 0.1), α-NormEC
without server normalization attains slightly lower final test accuracy. However, at high β = 10.0,
Clip21 maintains the higher test accuracy, as the large clipping threshold effectively disables clipping.
Furthermore, in most cases, both methods achieve their best performance with γ = 0.1, except for
α-NormEC at β = 10.0, where a smaller learning rate (γ = 0.01) was optimal.
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Figure 9: Training loss and test accuracy of Clip21 [solid] and α-NormEC [dashed] without server normalization
in the non-private training.

Method β γ Final Accuracy

Clip21 0.01 0.1 83.00%
0.1 0.1 85.91%
1.0 0.1 84.78%
10.0 0.1 83.19%

α-NormEC 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%
10.0 0.01 79.25%

Figure 10: Best configurations and final test accuracies.

4We ran α-NormEC without server normalization because it showed better performance than α-NormEC
with server normalization according to Appendix D.2.3.
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D.3 PRIVATE TRAINING
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Figure 11: The highest test accuracy of DP-Clip21.

We complement the results in Section 5.2 with test
accuracy convergence curves in Figure 13 (right).
Additionally, Figures 12 and 11 present a compre-
hensive heatmap analysis of the highest test accu-
racy achieved by DP-α-NormEC with and without
server normalization (SN) and Clip21 across differ-
ent privacy levels (β) and learning rates (γ).

The heatmaps reveal that without server normaliza-
tion, performance is highly sensitive to hyperparam-
eter selection, with accuracy ranging from 10% to
77.56% depending on the specific β-γ combination.
With server normalization, this sensitivity is signif-
icantly reduced, with performance varying more gradually across the parameter space. The rightmost
heatmap quantifies this difference, showing that server normalization provides substantial benefits
(up to +53.49%) at high privacy levels (β = 1.0) and larger step sizes, while the non-normalized
version can perform better at lower privacy levels with specific step sizes.
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Figure 12: The highest test accuracy of DP-α-NormEC with [left] and without [center] Server Normalization
(SN), and their difference [right].
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Figure 13: Training loss and test accuracy of DP-Clip21 [solid], and DP-α-NormEC with [dotted] and without
[dashed] server normalization (SN) across different β values (with fine-tuned step sizes).

D.3.1 STRICTER PRIVACY BUDGET (ϵ = 1)

To validate our method under a stricter privacy guarantee, we present additional results for ϵ = 1
in Figure 14. As expected, the increased DP noise in this high-privacy regime reduces the overall
performance for both methods compared to the ϵ = 8 setting. However, the results demonstrate a
consistent performance advantage and smaller variability for DP-α-NormEC over DP-Clip21. For
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each corresponding hyperparameter setting for β, DP-α-NormEC achieves both a lower training loss
and higher test accuracy, confirming its effectiveness in this practical setting.
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Figure 14: Training loss and test accuracy of DP-Clip21 [solid] and DP-α-NormEC [dashed] across different β
values for ϵ = 1. DP-α-NormEC demonstrates both faster convergence and higher final accuracy for each β.

D.3.2 SHORTER TRAINING
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Figure 15: Best test accuracy of DP-α-
NormEC across different β, γ values.

We present additional results in Figures 15, 16 by running
DP-α-NormEC for 150 communication rounds. The step
size γ is tuned for every parameter β. In the non-private
setting, (reasonably) longer training is basically always
beneficial. However, in the private scenario, it may not
hold due to increased noise variance as it scales with a
number of iterations. Interestingly, we observe that for
β = 1, the highest achieved accuracy after 150 iterations is
almost the same as after a doubled communication budget
of 300 iterations.
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Figure 16: Training loss and test accuracy of DP-α-NormEC across different β values.
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