GAUSSIAN BELIEF PROPAGATION NETWORK FOR DEPTH COMPLETION

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026

027 028

029

031

033

034

037

039

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Depth completion aims to predict a dense depth map from a color image with sparse depth measurements. Although deep learning methods have achieved stateof-the-art (SOTA), effectively handling the sparse and irregular nature of input depth data in deep networks remains a significant challenge, often limiting performance, especially under high sparsity. To overcome this limitation, we introduce the Gaussian Belief Propagation Network (GBPN), a novel hybrid framework synergistically integrating deep learning with probabilistic graphical models for end-to-end depth completion. Specifically, a scene-specific Markov Random Field (MRF) is dynamically constructed by the Graphical Model Construction Network (GMCN), and then inferred via Gaussian Belief Propagation (GBP) to yield the dense depth distribution. Crucially, the GMCN learns to construct not only the data-dependent potentials of MRF but also its structure by predicting adaptive non-local edges, enabling the capture of complex, long-range spatial dependencies. Furthermore, we enhance GBP with a serial & parallel message passing scheme, designed for effective information propagation, particularly from sparse measurements. Extensive experiments demonstrate that GBPN achieves SOTA performance on the NYUv2 and KITTI benchmarks. Evaluations across varying sparsity levels highlight GBPN's superior performance and notable robustness.

1 Introduction

Dense depth estimation is critical for various computer vision and robotics tasks. While dedicated sensors or methods provide sparse, irregular depth measurements (Schonberger & Frahm, 2016), acquiring dense depth directly is often challenging or costly. Depth completion (DC) bridges this gap through inferring a dense depth map from sparse depth guided by a synchronized color image. Sparse depth provides essential scale and absolute constraints, while the high-resolution color image offers rich structural and semantic information necessary for propagating depth and filling missing regions. Consequently, DC is a vital technique attracting increasing interest for enhancing downstream applications like 3D object detection (Wu et al., 2022), novel view synthesis (Roessle et al., 2022), and robotic manipulation (Li et al., 2023).

Traditional DC methods mostly relied on hand-crafted pipelines (Ku et al., 2018) or fixed graphical models like Markov Random Fields (MRF) (Diebel & Thrun, 2005). Although offering some robustness, their rigid, pre-defined priors struggled to capture complex geometry and fine details. Recently, learning-based methods, primarily deep neural networks, have achieved impressive accuracy improvements by directly regressing dense depth from extracted features (Ma & Karaman, 2018). However, effectively processing sparse, irregular input within standard deep architectures remains a significant challenge (Uhrig et al., 2017; Huang et al., 2019; Tang et al., 2024), often degrading performance and robustness, particularly under high sparsity.

In this paper, we introduce the Gaussian Belief Propagation Network (GBPN), a novel hybrid framework that synergistically combines deep learning's representational power with the structured inference of probabilistic graphical models. Unlike methods that directly regress depth, GBPN trains a deep network (the Graphical Model Construction Network, GMCN) to dynamically construct a scene-specific MRF over dense depth variables. Dense depth is then efficiently inferred via Gaussian Belief Propagation (GBP) on the learned MRF.

This formulation offers several key advantages. Firstly, training the network to construct a scenespecific MRF overcomes the limitations of fixed, hand-crafted models, enabling adaptation to diverse geometries. Secondly, sparse depth measurements are naturally integrated as principled data terms within the globally consistent MRF framework, inherently addressing input sparsity and irregularity. Finally, GBPN yields a depth distribution, providing valuable confidence estimates for risk-aware downstream tasks, such as planning (Burns & Brock, 2007).

To realize this, our GMCN infers not only potentials of the MRF but also its structure by predicting non-local edges, allowing the model to adaptively capture complex, long-range spatial dependencies guided by image content. We also propose a novel serial & parallel message passing scheme for GBP to enhance information flow, particularly from sparse measurements to distant unmeasured pixels. The entire GBPN is trained end-to-end using a probability-based loss function leveraging the estimated mean and precision from GBP, promoting the learning of reliable depth predictions along with an estimate of their confidence.

We validate the efficacy of GBPN through extensive experiments on two leading DC benchmarks: NYUv2 for indoor scenes and KITTI for outdoor scenes. Our method achieves state-of-the-art performance on these datasets at the time of submission. Comprehensive ablation studies demonstrate the effectiveness of each component within GBPN, including the dynamic MRF construction, the propagation scheme, and the probability-based loss function, *etc*. Furthermore, evaluation on data with varying sparsity highlights GBPN's superior accuracy and notable robustness to sparse input. Code and trained models will be publicly available at *omitted for blind review*.

2 Related Work

Research on depth completion (DC) has undergone a significant evolution, transitioning from traditional hand-crafted techniques to data-driven learning methods. Notably, concepts and principles from traditional approaches have significantly influenced the design of recent learning-based methods. This section briefly reviews these two main lines of work and the emerging trend of combining their respective strengths.

Traditional Hand-crafted Techniques. Early DC approaches largely relied on explicitly defined priors and assumptions about scene geometry and texture, often borrowing techniques from traditional image processing and inpainting. These methods constructed hand-crafted pipelines to infer dense depth from sparse measurements. For example, Kopf et al. (2007) proposed joint bilateral filtering guided by color information to upsample low-resolution depth maps. Ku et al. (2018) employed a sequence of classical image processing operators, such as dilation and hole filling, for depth map densification. Zhao et al. (2021b) leveraged local surface smoothness assumptions to estimate depth by computing surface normals in a spherical coordinate system. Hawe et al. (2011) reconstructed dense disparity from sparse measurements by minimizing an energy function formulated by Compressive Sensing. Diebel & Thrun (2005) modeled depth completion as a multi-resolution Markov Random Field (MRF) with simple smoothness potentials, and then solved using conjugate gradient optimization. While demonstrating effectiveness in certain scenarios, these hand-crafted methods often struggle to capture complex geometric structures and fine-grained details.

Data-driven Learning Methods. In contrast, learning-based methods typically formulate DC as an end-to-end regression task, taking color images and sparse depth maps as input and directly predicting the target dense depth map. A primary focus in this line of work has been on effectively handling the sparse input data and fusing information from different modalities (color and depth). For explicitly processing sparse data, pioneering work by Uhrig et al. (2017) introduced sparsityinvariant convolutions, designed to handle missing data by maintaining validity masks. Huang et al. (2019) integrated the sparsity-invariant convolutions into an encoder-decoder architecture. Eldesokey et al. (2019) extended this concept by propagating a continuous confidence measure. However, general-purpose network architectures employing standard convolutional layers, often combined with sophisticated multi-modal fusion strategies, have frequently demonstrated strong performance. For instance, Tang et al. (2020) proposed to learn content-dependent and spatially-variant kernels to guide the fusion of color and depth features. Zhang et al. (2023) leveraged Transformer architectures to capture long-range dependencies for feature extraction in depth completion. Chen et al. (2019) used 2D convolutions for image features and continuous convolutions for 3D point cloud features, followed by fusion. While achieving impressive results and learning complex mappings from data, purely data-driven methods often exhibit limited generalization performance, particularly when faced with data of different sparsity levels.

Figure 1: **Overview of the proposed approach.** Markov Random Field (MRF) is constructed depending on parameters dynamically generated from the Graphical Model Construction Network (GMCN), and then optimized via Gaussian Belief Propagation (GBP) for the distribution of dense depth map.

Combination of Models and Learning. More recently, a significant trend has emerged towards approaches that combine the strengths of both traditional modeling and data-driven learning. These methods aim to leverage the benefits of learned features and powerful network architectures while incorporating explicit priors or structured inference mechanisms. A prominent line of work, exemplified by CSPN-based methods (Cheng et al., 2019; 2020; Lin et al., 2022; Park et al., 2020), employs deep networks to predict parameters for a learned anisotropic diffusion process, refining the regressed depth from deep network. Wang et al. (2023a) integrated traditional image processing techniques to generate an initial depth map before applying a learned refinement module. Tang et al. (2024) learned a bilateral filter-like propagation process to effectively spread information from sparse measurements. Qu et al. (2020) combined deep learning with a least-squares solver to estimate depth with constraints derived from sparse measurements. Zuo & Deng (2024) formulated depth completion as a learned optimization problem, where a network predicts local depth differences used in an energy function iteratively minimized via conjugate gradient. Our method falls within this hybrid category, towards better accuracy and robustness. It leverages a deep network to construct a powerful Markov Random Field (MRF), where inference is performed using efficient Gaussian Belief Propagation.

3 THE PROPOSED METHOD

3.1 OVERVIEW

Given a color image $I \in \mathbb{R}^{H \times W \times 3}$, regardless of how sparse depth is measured—whether via active sensor, like LiDAR (Geiger et al., 2012), or passive method, like SFM (Schonberger & Frahm, 2016), or even interactive user guidance (Ron et al., 2018)—we can project these depth measurements onto the image plane to yield a sparse depth map $S \in \mathbb{R}^{H \times W}$, with the same resolution (H, W) as I. The valid pixels in S are typically irregularly distributed, and may vary significantly in number and location. Unlike most learning-based approaches that employ dedicated neural network layers to process S (Eldesokey et al., 2019; Huang et al., 2019) and directly regress the dense depth map $X \in \mathbb{R}^{H \times W}$, as illustrated in Fig. 1, we formulate the dense depth estimation task as inference in a Markov Random Field (MRF) (in Section 3.2), and infer X via Gaussian Belief Propagation (GBP) (in Section 3.3). In this formulation, S serves as data term within the global optimization framework of MRF, which eliminates the need for designing specific neural network architectures tailored to processing sparse input data (Tang et al., 2024). Specifically, the MRF structure, particularly its edges, is dynamically generated by a graphical model construction network (in Section 3.4), depending on the input color image I and optionally on intermediate estimates of the dense depth distribution. The entire framework is end-to-end trained with a probability-based loss function (in Section 3.5).

3.2 PROBLEM FORMULATION

We formulate the dense depth estimation problem using a Markov Random Field (MRF), *i.e.* a type of undirected graphical model $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of nodes representing the image pixels

and \mathcal{E} is the set of pairwise edges connecting neighboring pixels. As shown in Fig. 1, each node $i \in \mathcal{V}$ is associated with a random variable x_i , representing the depth at pixel i. The joint probability distribution over the depth variables is defined according to the MRF structure:

$$p(X|I,S) \propto \prod_{i \in \mathcal{V}_v} \phi_i \prod_{(i,j) \in \mathcal{E}} \psi_{ij},$$
 (1)

where ϕ_i and ψ_{ij} are the abbreviations for $\phi_i(x_i)$ and $\psi_{ij}(x_i, x_j)$, indicating unary and pairwise potentials respectively, and \mathcal{V}_v is the set of nodes corresponding to pixels with a valid depth measurement in the sparse map S.

The unary potential ϕ_i defined for pixel $i \in \mathcal{V}_v$, constrains the quadratic distance between estimated depth x_i and the depth measurement s_i , written as

$$\phi_i = \exp(-\frac{w_i(x_i - s_i)^2}{2}).$$
 (2)

Here, $w_i > 0$ is a weight indicating the confidence for the depth measurement, and ϕ_i is only available if depth measurement s_i is valid.

The pairwise potential ψ_{ij} defined for edge $(i,j) \in \mathcal{E}$, encourages spatial coherence between the estimated depths of neighboring pixels i and j, expressed as

$$\psi_{ij} = \exp(-\frac{w_{ij}(x_i - x_j - r_{ij})^2}{2}). \tag{3}$$

Here, $w_{ij} > 0$ is a weight controlling the strength of the spatial constraint, and r_{ij} is the expected depth difference between x_i and x_j .

In traditional MRF-based approaches, the parameters w, and r are typically hand-crafted based on simple assumptions or features. For instance, r_{ij} is often set to 0 to enforce simple smoothness (Diebel & Thrun, 2005), and w_{ij} is commonly derived from local image features like color differences. These approaches, while providing some robustness, often limited the model's ability to capture complex scene geometry and fine details, leading to suboptimal results. In contrast, we employ an end-to-end trained deep network to dynamically construct the MRF based on the color image and optional optimized intermediate dense depth map distribution. This allows the MRF to adaptively model the scene, via placing stronger data constraints where measurements seem reliable, and applying sophisticated smoothness constraints that vary based on image content. Moreover, we further enhance the MRF's expressive power with dynamic parameters and dynamic edges.

MRF with **Dynamic Parameters.** The constructed MRF is approximately inferred in an iterative manner. Unlike traditional methods that define the MRF parameters a priori and keep them fixed during optimization, our approach updates the MRF parameters dynamically as the iterative inference progresses. This adaptive parameterization allows the MRF to evolve alongside the solution, making it more responsive to the current state of the variables and potentially improving both the solution quality and the convergence behavior of the optimization.

MRF with Dynamic Edges. Traditionally, the graph structure of an MRF, specifically the edges connecting a variable to its neighbors, is fixed and predefined, *e.g.* 8-connected local pixels for each variable. As illustrated in Fig. 1, alongside these fixed local edges (depicted in green), our framework also dynamically estimates and establishes non-local connections for each pixel (shown in blue). This dynamic graph structure allows the MRF to capture dependencies beyond immediate spatial neighbors, increasing its flexibility and capacity to model complex scene structures. Consequently, during inference, each variable's state is conditioned on both its predefined local neighbors and its dynamically generated non-local connections.

3.3 APPROXIMATE INFERENCE TECHNOLOGY

3.3.1 Gaussian Belief Propagation

For a high-resolution image, computing the exact posterior for the above MRF is computationally prohibitive, due to the large number of variables and complex dependencies. Belief Propagation (BP) (Pearl, 1988) is a widely used algorithm for performing approximate probabilistic inference in graphical models. It was originally developed for graph with a tree structure to obtain exact marginals,

but has also been successfully applied to graphs with cycles (Freeman et al., 2000; Sun et al., 2003), known as loopy belief propagation. By iteratively operating on belief updating and message passing, BP enables parallel computation and often exhibits reasonably fast empirical convergence compared to other iterative inference methods (Weiss & Freeman, 1999).

In BP, the belief on variable x_i is proportional to the product of its local evidence ϕ_i and incoming messages from all neighboring variables, written as

$$b_i \propto \phi_i \prod_{(i,j) \in \mathcal{E}} m_{j \to i}. \tag{4}$$

Messages are computed by marginalizing over the variable of the sending node, considering its local evidence and incoming messages from its other neighbors, expressed as

$$m_{j\to i} \propto \int_{x_j} \psi_{ij} \phi_j \prod_{(k,j)\in\mathcal{E}\setminus(i,j)} m_{k\to j} \, dx_j.$$
 (5)

The formulated MRF in Section 3.2 is a Gaussian graph model, for which we can use Gaussian Belief Propagation (GBP) for inference. GBP (Bickson, 2008) assumes all beliefs b and messages m are under Gaussian distribution. This assumption allows the complex integration and product operations in eq. (5) to be simplified into algebraic updates on the parameters of the Gaussian distributions. We can take moment form $\mathcal{N}(\mu, \Lambda^{-1})$ or canonical form $\mathcal{N}^{-1}(\eta, \Lambda)$ as Gaussian parametrization for convenience, where $\eta = \mu \Lambda$. Then, in GBP, the belief updating corresponding to eq. (4) is given by:

$$\eta_i = w_i s_i + \sum_{(i,j) \in \mathcal{E}} \hat{\eta}_{j \to i},
\Lambda_i = w_i + \sum_{(i,j) \in \mathcal{E}} \hat{\Lambda}_{j \to i}.$$
(6)

And message passing corresponding to eq. (5) is given by:

$$\mu_{j \to i} = \mu_{j \setminus i} + r_{ij},$$

$$\Lambda_{j \to i}^{-1} = \Lambda_{j \setminus i}^{-1} + w_{ij}^{-1}.$$
(7)

Here, $j \setminus i$ means the set of all messages sent to j except the message from i. We leave the detailed derivation of Gaussian belief propagation in the Section A.1.1. To improve convergence and stability, we adopt the *damping* trick for message passing (Murphy et al., 2013) by applying weighted average of the message from the previous iteration and the message computed in the current iteration, *i.e.* $\hat{m}_{j \to i,t} = \hat{m}_{j \to i,t-1}^{\beta_i} m_{j \to i,t}^{1-\beta_i}$. Once again corresponding to Gaussian parameters update, given by:

$$\hat{\eta}_{j\to i,t} = \beta_i \hat{\eta}_{j\to i,t-1} + (1-\beta_i) \eta_{j\to i,t},$$

$$\hat{\Lambda}_{j\to i,t} = \beta_i \hat{\Lambda}_{j\to i,t-1} + (1-\beta_i) \Lambda_{j\to i,t}.$$
(8)

3.3.2 PROPAGATION SCHEME

A crucial aspect of any Belief Propagation algorithm is the definition of its message propagation scheme (Davison & Ortiz, 2019). Both serial and parallel propagation schemes offer distinct advantages. Serial propagation is effective at propagating information across the entire graph structure, allowing local evidence to influence distant nodes. This is particularly important for depth completion with sparse depth measurements; employing serial sweeps helps ensure that information from depth measurements propagates broadly, resulting in a dense depth estimation where every variable receives sufficient incoming messages to form a valid belief. In contrast, parallel propagation, propagating messages over short ranges, is significantly more efficient by effectively leveraging modern hardware parallelism.

To combine both advantages, we design a hybrid serial & parallel propagation scheme. As illustrated in Fig. 1, our scheme splits the message passing into updates performed serially on directional local connections and updates performed in parallel on non-local connections. Specifically, we categorize edges \mathcal{E} in MRF into four sets corresponding to local directional sweeps: left-to-right (LR), top-to-bottom (TB), right-to-left (RL), and bottom-to-top (BT), denoted \mathcal{E}_{LR} , \mathcal{E}_{TB} , \mathcal{E}_{RL} , and

271

272

273

274

275

276

277

278

279

280

281 282

283

284

285

286 287

288 289

290

291

292

293

295

296

297

298

299

300

301

303

304

306

307 308

309

310

311

312313

314

315

316

317

318

319 320

321

322

323

 \mathcal{E}_{BT} respectively, and a set for non-local connections, \mathcal{E}_{NL} . Note that $\mathcal{E}_{LR}, \dots, \mathcal{E}_{BT}$ represent the node connections with directionality implied by the sweep order.

For serial propagation, we sequentially perform message passing sweeps utilizing these four local directional edge sets. Under each sweep direction, message and belief updates are processed serially according to a defined order (e.g., column by column for horizontal sweeps). For instance, during the sweep using edges \mathcal{E}_{LR} (left-to-right), message updates for variables in column n are computed only after updates related to column n-1 have been completed. And the update for a variable at pixel (m,n) incorporates messages received from specific neighbors in column n-1, such as those connected via edges from \mathcal{E}_{LR} linking (m-1,n-1), (m,n-1), and (m+1,n-1) to (m,n). For non-local propagation, message updates for all pixels based on connections in \mathcal{E}_{NL} are computed simultaneously. These non-local connections are dynamically generated to link pixels that are relevant but not necessarily spatially adjacent.

The whole propagation scheme is detailed in Algorithm 1. We initialize the η and Λ parameters for all messages on all relevant edges to 0. We empirically set a fixed total number of iterations T. In each iteration, we first sequentially perform the four directional local serial propagation sweeps (LR, TB, RL, BT). Following the serial sweeps, we execute T_n steps of parallel non-local propagation. Finally, after T iterations, we yield the marginal beliefs for each pixel i. The estimated depth is the mean $\mu_i = \eta_i/\Lambda_i$ with the precision Λ_i serving as a measure of confidence. The visualization of propagation and learned edges is introduced in Section A.3.

Algorithm 1 Serial & Parallel Propagation Scheme

```
Require: Graph \mathcal{G} = (\mathcal{V}, \mathcal{E}). Edge subsets \mathcal{E}_{LR}, \mathcal{E}_{TB}, \mathcal{E}_{RL}, \mathcal{E}_{BT}, \mathcal{E}_{NL}.
Ensure: Estimated marginal belief represented by \eta, \Lambda.
 1: Initialization:
 2: for all edges (i, j) \in \mathcal{E} do
                                                                                                    3:
         \eta_{j\to i}=0
 4:
         \Lambda_{i \to i} = 0
 5: end for
 6: Iterations:
 7: for t = 1 to T do
                                                                                                     for all \mathcal{E}_{LR}, \mathcal{E}_{TB}, \mathcal{E}_{RL}, \mathcal{E}_{BT} do
 9:
               Serial message passing(eqs. (7) and (8)) and belief updating(eq. (6))
10:
         end for
11:
         for t_n = 1 to T_n do
                                                                                                   ▶ Parallel Propagation
               message passing (eqs. (7) and (8)) for all (i, j) \in \mathcal{E}_{NL} in parallel
12:
13:
               belief updating (eq. (6))
14:
         end for
15: end for
16: return \eta, \Lambda
```

3.4 GRAPHICAL MODEL CONSTRUCTION NETWORK

As previously mentioned, the Markov Random Field (MRF) is dynamically constructed and subsequently optimized using Gaussian Belief Propagation (GBP). Our Graphical Model Construction Network is designed to learn the parameters and structures of this MRF from input data.

We employ a U-Net architecture (Ronneberger et al., 2015), comprising encoder and decoder layers, to extract multi-scale features essential for MRF construction. Within the U-Net, we introduce a novel global-local processing unit. Each unit combines a dilated neighborhood attention layer (Hassani & Shi, 2022) and a ResNet block (He et al., 2016). The dilated neighborhood attention layer is utilized to capture long-range dependencies, effectively expanding the receptive field without increasing computational cost. As a complement, the ResNet block focuses on extracting and refining local features. More details about the network architecture is introduced in Section A.1.2.

We apply convolutional layers on the aggregated features to estimate the MRF parameters, such as r and w. Additionally, the network estimates the damping rate β used in the GBP and the offsets for constructing non-local neighboring pixels. Inspired by Deformable Convolutional Networks (Dai et al., 2017), we employ bilinear interpolation to sample Gaussian parameters at these non-local neighbor locations defined by the estimated float offsets. This approach ensures that gradients can be

effectively backpropagated during the training phase. Considering that GBP typically converges to an accurate mean μ but not the exact precision Λ (Weiss & Freeman, 1999), we also utilize convolution layers to estimate a residual term. This residual is added to the estimated Λ from GBP, and a sigmoid activation function is then applied to yield the updated precision.

We provide two approaches to construct the MRF: a color image-only approach and a multi-modal fusion approach incorporating depth information. In the first approach, the U-Net architecture receives a color image as its sole input to construct the MRF. The second approach utilizes a second U-Net that takes both the color image and the optimized depth distribution from the first approach (*i.e.* μ and Λ) as input. For this multi-modal fusion approach, cross-attention is leveraged within the dilated attention layers, where the query is generated from multi-modal features, while the keys and values are derived from the color image features in the first U-Net.

3.5 PROBABILITY-BASED LOSS FUNCTION

We adopt the combination of L_1 and L_2 loss as the loss on depth. For a pixel i, the loss on depth is

$$L_i^X = \frac{\|\mu_i - x_i^g\|_2^2 + \alpha \|\mu_i - x_i^g\|_1}{max(\|\mu - x^g\|_1)},$$
(9)

where x_i^g is the ground-truth depth and α is the hyperparameter to balance the L_1 and L_2 loss. The combined L_1 and L_2 loss is normalized with the maximum L_1 loss across the image, which makes the convergence more stable. As the output of our framework is the distribution of dense depth map, which is in Gaussian and can be represented with μ_i and Λ_i for each pixel, we adopt the probability-based loss (Kendall & Gal, 2017) as the final loss:

$$L = \frac{1}{|\mathcal{V}_g|} \sum_{i \in \mathcal{V}_g} \Lambda_i L_i^X - \log(\Lambda_i). \tag{10}$$

Here, V_g denotes the set of pixels with valid ground-truth depth. In this way, the precision Λ can also be directly supervised, without the need for its ground-truth value.

4 EXPERIMENTS

We evaluate the performance of our proposed method, GBPN, on two leading depth completion benchmarks: NYUv2 (Silberman et al., 2012) for indoor scenes and KITTI (Geiger et al., 2012) for outdoor scenes. To demonstrate the effectiveness of our approach, we present comprehensive comparisons against state-of-the-art (SOTA) methods in Section 4.1. We conduct thorough ablation studies to analyze the contribution of different components in Section 4.2. Furthermore, we investigate the robustness of GBPN by varying input sparsity levels, a critical factor for practical real-world deployment, in Section 4.3. More analysis on experiment setup (Section A.2), generalizable capability (Section A.6), noise sensitivity (Section A.7) and runtime efficiency (Section A.8) are in the appendix.

4.1 Comparison with State-of-the-Art Methods

We evaluate GBPN on the official test sets of the NYUv2 (Silberman et al., 2012) dataset and the KITTI Depth Completion (DC) (Geiger et al., 2012) dataset. Quantitative comparisons between GBPN and other top-performing published methods are presented in Table 1. On the KITTI DC benchmark¹, our method achieves the best iRMSE among all submissions at the time of writing, and demonstrates highly competitive performance across other evaluation metrics. Specifically, our method ranks second under RMSE among all published papers, where DMD3C (Liang et al., 2025) obtains the lowest RMSE. It's worth noting that DMD3C utilizes exact BP-Net (Tang et al., 2024) but incorporates additional supervision derived from a foundation model during training. In contrast, our method is trained solely on the standard KITTI training set from scratch, similar to BP-Net, while surpassing BP-Net in all evaluation metrics. Training with more data or distilling from a widely trained foundation model to improve our method is an interesting direction left for future work. On the NYUv2 dataset, our method achieves the best RMSE. As the commonly used $\delta_{1.25}$ metric is nearing saturation (typically $\geq 99.6\%$), we provide results using the stricter $\delta_{1.02}$ and $\delta_{1.05}$ metrics in Table 1 to better highlight the superiority of GBPN compared to other methods with publicly available models on the NYUv2 dataset. More comparisons can be found in Section A.4.

http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark

Table 1: **Performance on KITTI and NYUv2 datasets.** For the KITTI dataset, results are evaluated by the KITTI testing server. For the NYUv2 dataset, authors report their results in their papers. The best result under each criterion is in **bold**. The second best is with underline.

		Kl	TTI			NYU	Jv2	
	RMSE↓	MAE↓	iRMSE↓	iMAE↓	RMSE↓	REL↓	$\delta_{1.02}\uparrow$	$\delta_{1.05}\uparrow$
	(mm)	(mm)	(1/km)	(1/km)	(m)		(%)	(%)
S2D (Ma & Karaman, 2018)	814.73	249.95	2.80	1.21	0.230	0.044	-	_
DeepLiDAR (Qiu et al., 2019)	758.38	226.50	2.56	1.15	0.115	0.022	_	_
GuideNet (Tang et al., 2020)	736.24	218.83	2.25	0.99	0.101	0.015	82.0	93.9
NLSPN (Park et al., 2020)	741.68	199.59	1.99	0.84	0.092	0.012	88.0	95.4
ACMNet (Zhao et al., 2021a)	744.91	206.09	2.08	0.90	0.105	0.015	_	_
DySPN (Lin et al., 2022)	709.12	192.71	1.88	0.82	0.090	0.012	_	_
BEV@DC (Zhou et al., 2023)	697.44	189.44	1.83	0.82	0.089	0.012	_	_
CFormer (Zhang et al., 2023)	708.87	203.45	2.01	0.88	0.090	0.012	87.5	95.3
LRRU (Wang et al., 2023a)	696.51	189.96	1.87	0.81	0.091	0.011	_	_
TPVD (Yan et al., 2024)	693.97	188.60	1.82	0.81	0.086	0.010	_	_
ImprovingDC (Wang et al., 2024)	686.46	187.95	1.83	0.81	0.091	0.011	_	_
OGNI-DC (Zuo & Deng, 2024)	708.38	193.20	1.86	0.83	0.087	0.011	88.3	95.6
BP-Net (Tang et al., 2024)	684.90	194.69	1.82	0.84	0.089	0.012	87.2	95.3
DMD3C (Liang et al., 2025)	678.12	194.46	1.82	0.85	0.085	<u>0.011</u>	_	_
GBPN	682.20	192.14	1.78	0.82	0.085	0.011	89.1	95.9

4.2 ABLATION STUDIES

We conduct comprehensive ablation studies on the NYUv2 dataset using the color image-only GMCN (as introduced in Section 3.4) to construct the MRF. The impact of various design choices on performance, measured by RMSE, is summarized in Table 2. We define several variants based on our full model (V_1) . We obtain V_2 by removing dynamic edge in V_1 , and get V_3 by further removing dynamic parameter updating. From the corresponding RMSE, we verify the dynamic MRF towards better performance. By comparing V_2 with V_4 , we can see the MRF with more local connections achieves better result. The effectiveness of probability-based loss function can be verified by comparing V_1 and V_5 . By comparing V_1 with V_6 , we see more iterations for GBP can converge to better result. For the basic block of GMCN, we replace the convolutional layer in the ResBlock with a multilayer perceptron in V_7 , and replace the attention layer with one more ResBlock in V_8 . We can see the priority of our global-local processing unit as the basic block by comparing V_1 , V_7 , and V_8 .

Table 2: Ablation studies on NYUv2 dataset.

	Basic	Block	Loca	l Edges	Dynami	c MRF	GBF	Iters.	Loss	Criteria
	Attn.	Conv.	4	8	Param.	Edge	3	5	Probability	RMSE(mm)
$\overline{V_1}$	√	✓		√	√	√		√	✓	100.23
V_2	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	✓	101.05
V_3	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark	102.74
V_4	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	103.43
V_5	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		101.14
V_6	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	100.78
V_7	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	102.63
V_8		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	100.85

4.3 Sparsity Robustness Analysis

In real-world applications, the sparsity level of the input depth map may vary significantly depending on the sensor and environment. To evaluate the robustness of our method on input sparsity, we conducte experiments on the NYUv2 dataset, comparing our approach against other SOTA methods with publicly available code and models. For this analysis, all methods for comparison are from released models trained with 500 depth points on NYUv2. These models are then directly evaluated on sparse inputs generated at various sparsity levels, ranging from 20 to 20,000 points. We denote our method variants as GBPN-1 (using the color image-only GMCN) and GBPN-2 (using the multi-modal fusion GMCN). As demonstrated in Fig. 2, both GBPN-1 and GBPN-2 exhibit consistently better robustness across the entire range of tested sparsity levels than others. For GBPN, the RMSE consistently decreases as the number of points increases. In contrast, the RMSE of methods like GuideNet (Tang et al., 2020) and CFormer (Zhang et al., 2023) increases notably when the number

of depth points becomes significantly denser (beyond approximately 5000 points) than the training sparsity (500 points). More about sparsity robustness analysis is in Section A.5.

Figure 2: RMSE(mm) on NYUv2 testset under various sparsity.

We also visualize qualitative results from these compared methods under various sparsity levels in Fig. 3. In very sparse scenarios, such as the 10 points case visualized in the first row, depth maps from our method maintain relatively sharp boundaries, whereas the results from other methods appear ambiguous or messy. For the 50 and 100 points cases shown in the second and third rows, our method can produce relatively clear depth maps with structural details, while results from others tend towards being unclear and oversmooth. In very dense scenarios, *i.e.* 20,000 points case in the last row, our method consistently produces very clear depth maps, while results from some comparison methods tend to be noisy. We attribute this superior robustness to our problem formulation, which incorporates sparse input data as a data term within a globally optimized MRF framework, making it inherently robust to the irregularity and varying density of the input sparse measurements.

Figure 3: **Qualitative comparison under different sparsity.** Our method is compared with GuideNet (Tang et al., 2020), CFormer (Zhang et al., 2023), OGNI-DC (Zuo & Deng, 2024) and BP-Net (Tang et al., 2024).

5 CONCLUSION

This paper presents the Gaussian Belief Propagation Network (GBPN), a novel framework that seamlessly integrates deep learning with probabilistic graphical models for depth completion. GBPN employs a Graphical Model Construction Network (GMCN) to dynamically build a scene-specific Markov Random Field (MRF). This learned MRF formulation naturally incorporates sparse data and models complex spatial dependencies through adaptive non-local edges and dynamic parameters. Dense depth inference is efficiently performed using Gaussian Belief Propagation, enhanced by a serial & parallel message passing scheme. Extensive experiments on the NYUv2 and KITTI benchmarks demonstrate that GBPN achieves state-of-the-art accuracy and exhibits superior robustness across varying sparsity levels. Training on larger, more diverse datasets or leveraging supervision from pre-trained foundation models are promising avenues for future work to enhance generalization and performance in broader scenarios.

486 REFERENCES

- Danny Bickson. Gaussian belief propagation: Theory and aplication. *arXiv preprint arXiv:0811.2518*, 2008.
- Brendan Burns and Oliver Brock. Sampling-based motion planning with sensing uncertainty. In *ICRA*, pp. 3313–3318. IEEE, 2007.
- Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun. Learning joint 2d-3d representations for depth completion. In *ICCV*, pp. 10023–10032, 2019.
- Xinjing Cheng, Peng Wang, and Ruigang Yang. Learning depth with convolutional spatial propagation network. *IEEE TPAMI*, 42(10):2361–2379, 2019.
 - Xinjing Cheng, Peng Wang, Chenye Guan, and Ruigang Yang. Cspn++: Learning context and resource aware convolutional spatial propagation networks for depth completion. In *AAAI*, volume 34, pp. 10615–10622, 2020.
 - Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In *ICCV*, pp. 764–773, 2017.
 - Andrew J Davison and Joseph Ortiz. Futuremapping 2: Gaussian belief propagation for spatial ai. *arXiv preprint arXiv:1910.14139*, 2019.
 - James Diebel and Sebastian Thrun. An application of markov random fields to range sensing. *NeurIPS*, 18, 2005.
 - Abdelrahman Eldesokey, Michael Felsberg, and Fahad Shahbaz Khan. Confidence propagation through cnns for guided sparse depth regression. *IEEE TPAMI*, 42(10):2423–2436, 2019.
 - William T Freeman, Egon C Pasztor, and Owen T Carmichael. Learning low-level vision. *IJCV*, 40: 25–47, 2000.
 - Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In *CVPR*, 2012.
 - Ali Hassani and Humphrey Shi. Dilated neighborhood attention transformer. *arXiv preprint* arXiv:2209.15001, 2022.
 - Simon Hawe, Martin Kleinsteuber, and Klaus Diepold. Dense disparity maps from sparse disparity measurements. In *ICCV*, pp. 2126–2133. IEEE, 2011.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, pp. 770–778, 2016.
 - Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong. Penet: Towards precise and efficient image guided depth completion. In *ICRA*, pp. 13656–13662. IEEE, 2021.
 - Zixuan Huang, Junming Fan, Shenggan Cheng, Shuai Yi, Xiaogang Wang, and Hongsheng Li. Hms-net: Hierarchical multi-scale sparsity-invariant network for sparse depth completion. *IEEE TIP*, 29:3429–3441, 2019.
 - Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? *NeurIPS*, 30, 2017.
- Johannes Kopf, Michael F Cohen, Dani Lischinski, and Matt Uyttendaele. Joint bilateral upsampling. *ACM TOG*, 26(3):96–es, 2007.
- Jason Ku, Ali Harakeh, and Steven L Waslander. In defense of classical image processing: Fast depth completion on the cpu. In 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22.
 IEEE, 2018.
 - Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks without residuals. *arXiv preprint arXiv:1605.07648*, 2016.

- Tianan Li, Zhehan Chen, Huan Liu, and Chen Wang. Fdct: Fast depth completion for transparent objects. *IEEE Robotics and Automation Letters*, 8(9):5823–5830, 2023.
- Yingping Liang, Yutao Hu, Wenqi Shao, and Ying Fu. Distilling monocular foundation model for fine-grained depth completion. *CVPR*, 2025.
 - Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and Hua Yang. Dynamic spatial propagation network for depth completion. In *AAAI*, volume 36, pp. 1638–1646, 2022.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018.
- Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction from sparse depth samples and a single image. In *ICRA*, pp. 4796–4803. IEEE, 2018.
 - Kevin Murphy, Yair Weiss, and Michael I Jordan. Loopy belief propagation for approximate inference: An empirical study. *arXiv preprint arXiv:1301.6725*, 2013.
 - Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So Kweon. Non-local spatial propagation network for depth completion. In *ECCV*, pp. 120–136. Springer, 2020.
 - Judea Pearl. *Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*. Morgan Kaufmann, 1988.
 - Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang, Shuaicheng Liu, Bing Zeng, and Marc Pollefeys. Deeplidar: Deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In *CVPR*, pp. 3313–3322, 2019.
 - Chao Qu, Ty Nguyen, and Camillo Taylor. Depth completion via deep basis fitting. In *WACV*, pp. 71–80, 2020.
 - Barbara Roessle, Jonathan T Barron, Ben Mildenhall, Pratul P Srinivasan, and Matthias Nießner. Dense depth priors for neural radiance fields from sparse input views. In *CVPR*, pp. 12892–12901, 2022.
 - Daniel Ron, Kun Duan, Chongyang Ma, Ning Xu, Shenlong Wang, Sumant Hanumante, and Dhritiman Sagar. Monocular depth estimation via deep structured models with ordinal constraints. In 2018 International Conference on 3D Vision (3DV), pp. 570–577. IEEE, 2018.
 - Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241. Springer, 2015.
 - Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In *CVPR*, pp. 4104–4113, 2016.
 - Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In *ECCV*, pp. 746–760, 2012.
 - Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large learning rates. In *Artificial intelligence and machine learning for multi-domain operations applications*, volume 11006, pp. 369–386. SPIE, 2019.
 - Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using belief propagation. 25 (7):787–800, 2003.
 - Jie Tang, Fei-Peng Tian, Wei Feng, Jian Li, and Ping Tan. Learning guided convolutional network for depth completion. *IEEE TIP*, 30:1116–1129, 2020.
 - Jie Tang, Fei-Peng Tian, Boshi An, Jian Li, and Ping Tan. Bilateral propagation network for depth completion. In *CVPR*, pp. 9763–9772, 2024.
 - Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and Andreas Geiger. Sparsity invariant cnns. In *IEEE International Conference on 3D Vision (3DV)*, pp. 11–20, 2017.

- Yufei Wang, Bo Li, Ge Zhang, Qi Liu, Tao Gao, and Yuchao Dai. Lrru: Long-short range recurrent updating networks for depth completion. In *ICCV*, pp. 9422–9432, 2023a.
 - Yufei Wang, Yuxin Mao, Qi Liu, and Yuchao Dai. Decomposed guided dynamic filters for efficient rgb-guided depth completion. *IEEE TCSVT*, 34(2):1186–1198, 2023b.
 - Yufei Wang, Ge Zhang, Shaoqian Wang, Bo Li, Qi Liu, Le Hui, and Yuchao Dai. Improving depth completion via depth feature upsampling. In *CVPR*, pp. 21104–21113, 2024.
 - Yair Weiss and William Freeman. Correctness of belief propagation in gaussian graphical models of arbitrary topology. *NeurIPS*, 12, 1999.
 - Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano Soatto. Unsupervised depth completion from visual inertial odometry. *IEEE Robotics and Automation Letters*, 5(2):1899–1906, 2020.
 - Xiaopei Wu, Liang Peng, Honghui Yang, Liang Xie, Chenxi Huang, Chengqi Deng, Haifeng Liu, and Deng Cai. Sparse fuse dense: Towards high quality 3d detection with depth completion. In *CVPR*, pp. 5418–5427, 2022.
 - Zhiqiang Yan, Kun Wang, Xiang Li, Zhenyu Zhang, Jun Li, and Jian Yang. Rignet: Repetitive image guided network for depth completion. In *ECCV*, pp. 214–230. Springer, 2022.
 - Zhiqiang Yan, Yuankai Lin, Kun Wang, Yupeng Zheng, Yufei Wang, Zhenyu Zhang, Jun Li, and Jian Yang. Tri-perspective view decomposition for geometry-aware depth completion. In *CVPR*, pp. 4874–4884, 2024.
 - Youmin Zhang, Xianda Guo, Matteo Poggi, Zheng Zhu, Guan Huang, and Stefano Mattoccia. Completionformer: Depth completion with convolutions and vision transformers. In *CVPR*, pp. 18527–18536, 2023.
 - Shanshan Zhao, Mingming Gong, Huan Fu, and Dacheng Tao. Adaptive context-aware multi-modal network for depth completion. *IEEE TIP*, 30:5264–5276, 2021a.
 - Yiming Zhao, Lin Bai, Ziming Zhang, and Xinming Huang. A surface geometry model for lidar depth completion. *IEEE Robotics and Automation Letters*, 6(3):4457–4464, 2021b.
 - Wending Zhou, Xu Yan, Yinghong Liao, Yuankai Lin, Jin Huang, Gangming Zhao, Shuguang Cui, and Zhen Li. Bev@ dc: Bird's-eye view assisted training for depth completion. In *CVPR*, pp. 9233–9242, 2023.
 - Yiming Zuo and Jia Deng. Ogni-dc: Robust depth completion with optimization-guided neural iterations. In *ECCV*, pp. 78–95. Springer, 2024.

A APPENDIX

A.1 ADDITIONAL METHOD DETAILS

A.1.1 GAUSSIAN BELIEF PROPAGATION

This section provides a detailed derivation of the Gaussian Belief Propagation (GBP) equations, which are summarized in the main paper due to page limitations. Following the formulation in the main paper, we model the joint probability distribution over the depth variables X using a Markov Random Field (MRF):

$$p(X|I,S) \propto \prod_{i \in \mathcal{V}_v} \phi_i \prod_{(i,j) \in \mathcal{E}} \psi_{ij},$$
 (11)

where ϕ_i is the unary potential for node i, and ψ_{ij} is the pairwise potential between node i and j. Specifically, we define the unary potential as:

$$\phi_i = \exp(-\frac{w_i(x_i - s_i)^2}{2}),$$
(12)

and the pairwise potential as:

$$\psi_{ij} = \exp(-\frac{w_{ij}(x_i - x_j - r_{ij})^2}{2}). \tag{13}$$

In Belief Propagation, the belief at each node i is calculated as the product of the local unary potential and all incoming messages from neighboring nodes

$$b_i \propto \phi_i \prod_{(i,j)\in\mathcal{E}} m_{j\to i}. \tag{14}$$

And the messages are updated iteratively according to

$$m_{j \to i} \propto \int_{x_j} \psi_{ij} \phi_j \prod_{(k,j) \in \mathcal{E} \setminus (i,j)} m_{k \to j} \, dx_j.$$
 (15)

All the above eqs. (11) to (15) are same as eqs. (1) to (5) in the main paper. We repeat them here for reading convenience.

In GBP, all beliefs and messages are assumed to be Gaussian distributions. Then, a message proportional to a Gaussian, can be written as

$$m_{j\to i} \propto \exp(-\frac{\hat{\Lambda}_{j\to i}}{2}x_i^2 + \hat{\eta}_{j\to i}x_i).$$
 (16)

Substituting the unary potential eq. (12) and the incoming messages eq. (16) into the belief equation eq. (14), we derive the belief

$$b_{i} \propto \phi_{i} \prod_{(i,j)\in\mathcal{E}} m_{j\to i}$$

$$\propto \exp\left(-\frac{w_{i}(x_{i}-s_{i})^{2}}{2}\right) \prod_{(i,j)\in\mathcal{E}} \exp\left(-\frac{\hat{\Lambda}_{j\to i}}{2}x_{i}^{2} + \hat{\eta}_{j\to i}x_{i}\right)$$

$$\propto \exp\left(-\frac{1}{2}\left(w_{i} + \sum_{(i,j)\in\mathcal{E}} \hat{\Lambda}_{j\to i}\right)x_{i}^{2} + \left(w_{i}s_{i} + \sum_{(i,j)\in\mathcal{E}} \hat{\eta}_{j\to i}\right)x_{i}\right).$$
(17)

Thus, the resulting belief b_i is also Gaussian, expressed as $\mathcal{N}^{-1}(\eta_i, \Lambda_i)$, with

$$\eta_i = w_i s_i + \sum_{(i,j) \in \mathcal{E}} \hat{\eta}_{j \to i},
\Lambda_i = w_i + \sum_{(i,j) \in \mathcal{E}} \hat{\Lambda}_{j \to i}.$$
(18)

The belief parameters in eq. (18) are identical to the eq. (6) of the main paper.

We can also define $b_{j\setminus i}$ as the belief on node j taking all messages, except the message from i. Thus, similar to eq. (17), we have

$$b_{j\setminus i} \propto \phi_j \prod_{(k,j)\in\mathcal{E}\setminus(i,j)} m_{k\to j}.$$
 (19)

And similar to eq. (18), $b_{j \setminus i}$ is in Gaussian $\mathcal{N}^{-1}(\eta_{j \setminus i}, \Lambda_{j \setminus i})$, with

$$\eta_{j \setminus i} = w_j s_j + \sum_{(k,j) \in \mathcal{E} \setminus (i,j)} \hat{\eta}_{k \to j},
\Lambda_{j \setminus i} = w_j + \sum_{(k,j) \in \mathcal{E} \setminus (i,j)} \hat{\Lambda}_{k \to j}.$$
(20)

Now, substituting the pairwise potential eq. (13) and the expression for $b_{j\setminus i}$ (from combining eq. (19) and eq. (20)) into the message update equation eq. (15), we get:

$$\begin{split} m_{j\rightarrow i} &\propto \int_{x_j} \psi_{ij} \phi_j \prod_{(k,j) \in \mathcal{E} \setminus (i,j)} m_{k\rightarrow j} \, dx_j \\ &\propto \int_{x_j} \psi_{ij} b_{j \setminus i} \, dx_j \\ &\propto \int_{x_j} \exp(-\frac{w_{ij}(x_i - x_j - r_{ij})^2}{2}) \exp(-\frac{\Lambda_{j \setminus i}}{2} x_j^2 + \eta_{j \setminus i} x_j) \, dx_j \\ &\propto \exp(-\frac{w_{ij}}{2} x_i^2 + w_{ij} r_{ij} x_i) \int_{x_j} \exp(-\frac{w_{ij}}{2} x_j^2 + (x_i - r_{ij}) w_{ij} x_j) \exp(-\frac{\Lambda_{j \setminus i}}{2} x_j^2 + \eta_{j \setminus i} x_j) \, dx_j \\ &\propto \exp(-\frac{w_{ij}}{2} x_i^2 + w_{ij} r_{ij} x_i) \int_{x_j} \exp(-\frac{w_{ij} + \Lambda_{j \setminus i}}{2} x_j^2 + (x_i w_{ij} - r_{ij} w_{ij} + \eta_{j \setminus i}) x_j) \, dx_j \\ &\propto \exp(-\frac{w_{ij}}{2} x_i^2 + w_{ij} r_{ij} x_i) \exp(\frac{(x_i w_{ij} - r_{ij} w_{ij} + \eta_{j \setminus i})^2}{2(w_{ij} + \Lambda_{j \setminus i})}) \\ &\propto \exp(-\frac{w_{ij}}{2} \chi_i^2 + w_{ij} r_{ij} x_i) \exp(\frac{(x_i w_{ij} - r_{ij} w_{ij} + \Lambda_{j \setminus i})^2}{2(w_{ij} + \Lambda_{j \setminus i})}) \\ &\propto \exp(-\frac{w_{ij}}{2(w_{ij} + \Lambda_{j \setminus i})} x_i^2 + \frac{w_{ij}}{w_{ij} + \Lambda_{j \setminus i}} (\mu_{j \setminus i} + r_{ij}) x_i) \\ &\propto \exp(-\frac{(x_i - (\mu_{j \setminus i} + r_{ij}))^2}{2(w_{ij} + \Lambda_{j \setminus i})}) \end{split}$$

Finally, the message $m_{j\to i}$ is in Gaussian $\mathcal{N}(\mu_{j\to i}, \Lambda_{j\to i}^{-1})$, with

$$\mu_{j \to i} = \mu_{j \setminus i} + r_{ij},$$

$$\Lambda_{j \to i}^{-1} = \Lambda_{j \setminus i}^{-1} + w_{ij}^{-1}.$$
(22)

The eq. (22) here is identical to the eq. (7) of the main paper.

A.1.2 GRAPHICAL MODEL CONSTRUCTION NETWORK

The Graphical Model Construction Network (GMCN) is designed to learn the parameters and structures of the MRF from input data. We employ a U-Net architecture (Ronneberger et al., 2015), comprising encoder and decoder layers, as the GMCN. The detailed network architecture of GMCN with 256×320 input images is provided in Table 3. Note that for clarity, only the main operators are listed here, with trivial operations like normalization, activation, and skip connections omitted. The encoder of the U-Net extracts features at six different scales ($\mathbf{E}^0, ..., \mathbf{E}^5$). From scale 1 to 5, feature extraction is performed using global-local units, which combine a dilated neighbor attention layer (Hassani & Shi, 2022) to capture long-range dependencies with ResBlocks (He et al., 2016) for robust local feature learning. The decoder then aggregates these multi-resolution features back to the original input resolution using deconvolution layers and concatenation operations. This multi-scale approach ensures that the network captures both fine-grained local details and broader contextual information necessary for robust MRF construction. We explore two variations of the GMCN. The first takes only color images as input, constructing the graphical model solely based on visual cues using a single U-Net. The second incorporates intermediate optimized dense depth distributions as additional input to refine the constructed graphical model. This is achieved by introducing a second multi-modal fusion U-Net, which utilizes a cross-attention mechanism to effectively integrate features from the color-based U-Net and the depth information.

Table 3: Detailed Architecture of Graphical Model Construction Network (GMCN).

Tal	Table 3: Detailed Architec		Graphical Model Construction Network (rk (GMCN).		
	Output	Input	Operator	Output Size		
	\mathbf{E}_1^0	I	Conv. + ResBlock	(32, 256, 320)		
	\mathbf{E}_1^1	\mathbf{E}_1^0	Conv. + (Self-Attn. + ResBlock) ×2	(64, 128, 160)		
	\mathbf{E}_1^2	\mathbf{E}_1^1	Conv. + (Self-Attn. + ResBlock) ×2	(128, 64, 80)		
	\mathbf{E}_1^3	\mathbf{E}_1^2	Conv. + (Self-Attn. + ResBlock) ×2	(256, 32, 40)		
Color	\mathbf{E}_1^4	\mathbf{E}_1^3	Conv. + (Self-Attn. + ResBlock) ×2	(256, 16, 20)		
Image	\mathbf{E}_1^5	\mathbf{E}_1^4	Conv. + (Self-Attn. + ResBlock) ×2	(256, 8, 10)		
Only	\mathbf{D}_1^4	$\mathbf{E}_1^5, \mathbf{E}_1^4$	Deconv. + Concat. + Conv.	(256, 16, 20)		
GMCN	\mathbf{D}_1^3	$\mathbf{D}_1^4, \mathbf{E}_1^3$	Deconv. + Concat. + Conv.	(256, 32, 40)		
	\mathbf{D}_1^2	$\mathbf{D}_1^3, \mathbf{E}_1^2$	Deconv. + Concat. + Conv.	(256, 64, 80)		
	\mathbf{D}_1^1	$\mathbf{D}_1^2, \mathbf{E}_1^1$	Deconv. + Concat. + Conv.	(64, 128, 160)		
	\mathbf{D}_1^0	$\mathbf{D}_1^1, \mathbf{E}_1^0$	Deconv. + Concat. + Conv.	(32, 256, 320)		
	β_1, r_1, w_1, o_1	\mathbf{D}_1^0	Conv. + Conv.	(*, 256, 320)		
GBP	μ_1, Λ_1	$S, \beta_1, r_1, w_1, o_1$	Serial & Parallel Propagation	(*, 256, 320)		
	\mathbf{E}_2^0	I, μ_1, Λ_1	Conv. + ResBlock	(32, 256, 320)		
	\mathbf{E}_2^1	$\mathbf{E}_2^0, \mathbf{E}_1^1$	Conv. + (Self/Cross-Attn. + ResBlock) ×4	(64, 128, 160)		
	\mathbf{E}_2^2	$\mathbf{E}_2^1, \mathbf{E}_1^2$	Conv. + (Self/Cross-Attn. + ResBlock) ×4	(128, 64, 80)		
	\mathbf{E}_2^3	$\mathbf{E}_2^2, \mathbf{E}_1^3$	Conv. + (Self/Cross-Attn. + ResBlock) ×4	(256, 32, 40)		
Multi	\mathbf{E}_2^4	$\mathbf{E}_2^3, \mathbf{E}_1^4$	Conv. + (Self/Cross-Attn. + ResBlock) ×4	(256, 16, 20)		
Modal	\mathbf{E}_2^5	$\mathbf{E}_2^4, \mathbf{E}_1^5$	Conv. + (Self/Cross-Attn. + ResBlock) ×4	(256, 8, 10)		
Fusion	\mathbf{D}_2^4	$\mathbf{E}_2^5, \mathbf{E}_2^4$	Deconv. + Concat. + Conv.	(256, 16, 20)		
GMCN	\mathbf{D}_2^3	$\mathbf{D}_2^4, \mathbf{E}_2^3$	Deconv. + Concat. + Conv.	(256, 32, 40)		
	\mathbf{D}_2^2	$\mathbf{D}_2^3, \mathbf{E}_2^2$	Deconv. + Concat. + Conv.	(256, 64, 80)		
	$oxed{\mathbf{D}_2^1}$	$\mathbf{D}_2^2, \mathbf{E}_2^1$	Deconv. + Concat. + Conv.	(64, 128, 160)		
	$oxed{\mathbf{D}_2^0}$	$\mathbf{D}_2^1, \mathbf{E}_2^0$	Deconv. + Concat. + Conv.	(32, 256, 320)		
	β_2, r_2, w_2, o_2	\mathbf{D}_2^0	Conv. + Conv.	(*, 256, 320)		
GBP	μ_2, Λ_2	$S, \beta_2, r_2, w_2, o_2$	Serial & Parallel Propagation	(*, 256, 320)		
	•	•	•	•		

Figure 4: Visualization of estimated depth in Gaussian with μ and Λ . The results on KITTI are on the left, and results on NYUv2 are on the right.

A.2 EXPERIMENTS SETUP

A.2.1 DATASETS

We adopt the standard depth completion datasets, *i.e.* NYUv2 for indoor scenes and KITTI for outdoor scenes, to train and evaluate our method. We also evaluate our method on the VOID (Wong et al., 2020) dataset to validate the robustness and generalization.

The NYUv2 dataset (Silberman et al., 2012) comprises 464 scenes captured by a Kinect sensor. For training, we take the data proposed by Ma & Karaman (2018), utilizing 50,000 frames sampled from 249 scenes. Evaluation is performed on the official test set, which contains 654 samples from 215 distinct scenes. We follow common practice (Tang et al., 2020; Park et al., 2020; Zhang et al., 2023; Tang et al., 2024) to process data. Input images are initially down-sampled to 240×320 and then center-cropped to a resolution of 228×304 . Sparse depth maps are generated for each frame by randomly sampling 500 points from the ground truth depth map.

The KITTI depth completion (DC) dataset (Uhrig et al., 2017) was collected using an autonomous driving platform. Ground truth depth is derived from temporally aggregated LiDAR scans and further refined using stereo image pairs. The dataset provides 86,898 frames for training and 1000 frames for validation. An additional 1000 test frames are evaluated on a remote server with a public leaderboard². During training, we randomly crop frames to 256×1216 . For testing, full-resolution frames are used.

The VOID dataset (Wong et al., 2020) was collected using an Intel RealSense D435i camera, with sparse measurements by a visual odometry system at 3 different sparsity levels, *i.e.*, 1500, 500, and 150 points, corresponding to 0.5%, 0.15%, and 0.05% density. Each test split contains 800 images at 480×640 resolution. Though the dataset is collected for indoor scenes, the scenes, depth

²http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark

Figure 5: Visualization of intermediate results under the serial propagation of Gaussian Belief Propagation. Messages are propagated iteratively corresponding to local directional sweeps: left-to-right, top-to-bottom, right-to-left, and bottom-to-top.

measurement manner and depth sparsity in this dataset are distinct from NYUv2. As the collected ground truth data is noisy, this dataset is not used for training, but only for evaluation to validate the zero-shot generalization of DC methods to different sparsity patterns and scenes.

A.2.2 TRAINING DETAILS

Our method is implemented in PyTorch and trained on a workstation with 4 NVIDIA RTX 4090 GPUs. We incorporate DropPath (Larsson et al., 2016) before residual connections as a regularization technique. We use the AdamW optimizer (Loshchilov & Hutter, 2018) with a weight decay of 0.05 and apply gradient clipping with an L2-norm threshold of 0.1. Models are trained from scratch for approximately 300,000 iterations. We employ the OneCycle learning rate policy (Smith & Topin, 2019), where the learning rate is annealed to 25% of its peak value during the cycle. For KITTI, the batch size is 8 and the peak learning rate is 0.001. For NYUv2 dataset, we use a batch size of 16

Figure 6: Visualization of dynamically constructed non-local edges in MRF. The red point is the target node, and the green points are the dynamically constructed neighbor nodes.

and a peak learning rate of 0.002. The final model weights are obtained using Exponential Moving Average (EMA).

A.2.3 DETAILS ON EVALUATION METRICS

We verify our method on both indoor and outdoor scenes with standard evaluation metrics. For indoor scenes, root mean squared error (RMSE), mean absolute relative error (REL), and δ_{θ} are chosen as evaluation metrics. For outdoor scenes, the standard evaluation metrics are root mean squared error (RMSE), mean absolute error (MAE), root mean squared error of the inverse depth (iRMSE), and mean absolute error of the inverse depth (iMAE). These evaluation metrics are firstly calculated on each sample and then averaged among samples. And for each sample, they can be written as:

$$RMSE = \left(\frac{1}{n} \sum_{i \in \mathcal{V}_g} (x_i^g - x_i)^2\right)^{\frac{1}{2}},$$

$$iRMSE = \left(\frac{1}{n} \sum_{i \in \mathcal{V}_g} (\frac{1}{x_i^g} - \frac{1}{x_i})^2\right)^{\frac{1}{2}},$$

$$MAE = \frac{1}{n} \sum_{i \in \mathcal{V}_g} |x_i^g - x_i|,$$

$$iMAE = \frac{1}{n} \sum_{i \in \mathcal{V}_g} \left|\frac{1}{x_i^{gt}} - \frac{1}{x_i}\right|,$$

$$REL = \frac{1}{n} \sum_{i \in \mathcal{V}_g} \frac{|x_i^{gt} - x_i|}{x_i^g},$$

$$\delta_{\theta} = \frac{1}{n} \sum_{i \in \mathcal{V}_g} \left|\left\{max(\frac{x_i^g}{x_i}, \frac{x_i}{x_i^g}) < \theta\right\}\right|.$$
(23)

Here, V_q is the set of pixels with valid ground truth, and $n = |V_q|$ is the size of the set.

A.3 VISUALIZATION

The output of our GBPN is a dense depth distribution, modeled as a Gaussian and represented by its mean μ and precision Λ . The precision Λ can serve as a confidence measure for the estimated depth. As shown in Fig. 4, Λ tends to be small on object boundaries (indicating lower confidence/higher uncertainty), while tends to be large near the sparse point measurements.

We modify GBPN by removing dynamic parameters update and dynamic edges, and train it on the NYUv2 dataset using 500 sparse points per image. Consequently, this model uses only a serial propagation scheme, where messages are passed sequentially: left-to-right, top-to-bottom, right-to-left, and bottom-to-top. We then tested it on an extreme case with only a single depth measurement,

and illustrate the intermediate results in Fig. 5. After the first iteration, the four-directional serial message passing effectively propagates information from the single depth measurement across the entire image plane, leading to rapid convergence to a meaningful depth map. This visualization of intermediate results verifies the effective information propagation of the serial message passing scheme.

In traditional MRFs, graph edges connecting a variable to its neighbors are typically fixed and predefined (*e.g.*, an 8-connected pixel grid). As illustrated in Fig. 6, our framework enhances this static structure by incorporating dynamically inferred non-local edges for each pixel. These non-local edges connect pixels that are contextually relevant, regardless of their spatial proximity. This adaptive graph structure enables the MRF to capture long-range dependencies beyond immediate spatial neighborhoods, significantly enhancing its capacity to model complex scene structures. In GBPN, we employ a parallel message propagation scheme to pass messages simultaneously along these non-local edges. In this way, each variable is conditioned not only on its predefined local neighbors but also on these learned non-local connections.

A.4 MORE COMPARISON WITH STATE-OF-THE-ART (SOTA) METHODS

The comprehensive comparison of various depth completion methods on the KITTI and NYUv2 datasets is presented in Table 4. The results reveal that the proposed GBPN method achieves competitive performance across all metrics. On KITTI, it achieves the best iRMSE and second-best RMSE, indicating strong depth accuracy and consistency. On NYUv2, it matches the lowest RMSE and achieves the highest $\delta_{1.02}$ and $\delta_{1.05}$, reflecting excellent depth accuracy.

Table 4: **Performance on KITTI and NYUv2 datasets.** For the KITTI dataset, results are evaluated by the KITTI testing server. For the NYUv2 dataset, authors report their results in their papers. The best result under each criterion is in **bold**. The second best is with underline.

		K	ITTI			NYU	v2	
	RMSE↓	MAE↓	iRMSE↓	iMAE↓	RMSE↓	REL↓	$\delta_{1.02}\uparrow$	$\delta_{1.05}\uparrow$
	(mm)	(mm)	(1/km)	(1/km)	(m)		(%)	(%)
S2D (Ma & Karaman, 2018)	814.73	249.95	2.80	1.21	0.230	0.044	-	_
DeepLiDAR (Qiu et al., 2019)	758.38	226.50	2.56	1.15	0.115	0.022	_	_
CSPN++ (Cheng et al., 2020)	743.69	209.28	2.07	0.90	0.115	-	-	-
GuideNet (Tang et al., 2020)	736.24	218.83	2.25	0.99	0.101	0.015	82.0	93.9
FCFR Hu et al. (2021)	735.81	217.15	2.20	0.98	0.106	0.015	-	_
NLSPN (Park et al., 2020)	741.68	199.59	1.99	0.84	0.092	0.012	88.0	95.4
ACMNet (Zhao et al., 2021a)	744.91	206.09	2.08	0.90	0.105	0.015	_	_
RigNet Yan et al. (2022)	712.66	203.25	2.08	0.90	0.090	0.013	_	_
DySPN (Lin et al., 2022)	709.12	192.71	1.88	0.82	0.090	0.012	_	_
BEV@DC (Zhou et al., 2023)	697.44	189.44	1.83	0.82	0.089	0.012	_	_
DGDF (Wang et al., 2023b)	707.93	205.11	2.05	0.91	0.098	0.014	_	_
CFormer (Zhang et al., 2023)	708.87	203.45	2.01	0.88	0.090	0.012	87.5	95.3
LRRU (Wang et al., 2023a)	696.51	189.96	1.87	0.81	0.091	0.011	_	_
TPVD (Yan et al., 2024)	693.97	188.60	1.82	0.81	0.086	0.010	_	_
ImprovingDC (Wang et al., 2024)	686.46	187.95	1.83	0.81	0.091	0.011	_	_
OGNI-DC (Zuo & Deng, 2024)	708.38	193.20	1.86	0.83	0.087	0.011	88.3	95.6
BP-Net (Tang et al., 2024)	684.90	194.69	1.82	0.84	0.089	0.012	87.2	95.3
DMD3C (Liang et al., 2025)	678.12	194.46	1.82	0.85	0.085	0.011	-	_
GBPN	682.20	192.14	1.78	0.82	0.085	0.011	89.1	95.9

Visual comparisons with other SOTA open-source methods on the validation set of KITTI DC and the test set of NYUv2 are shown in Fig. 7 and Fig. 8. The official implementations and the best-performing models released by the authors are used to ensure fair comparisons, with the same sparse depth maps across all methods. Our results, presented in the last row, demonstrate sharper object boundaries and more detailed structures, while other methods tend to underperform in these challenging areas, leading to less accurate depth estimates.

Figure 7: **Qualitative comparison on KITTI validation set.** Comparing with GuideNet (Tang et al., 2020), NLSPN (Park et al., 2020), CFormer (Zhang et al., 2023) and BP-Net (Tang et al., 2024). Our method is presented in the last row, with key regions highlighted by rectangles for easy comparison

Figure 8: **Qualitative comparison on NYUv2 test set.** Our method is compared with BP-Net (Tang et al., 2024), NLSPN (Park et al., 2020), GuideNet (Tang et al., 2020), CFormer (Zhang et al., 2023) and OGNI-DC (Zuo & Deng, 2024). For clearer visualization, sparse depth points are enlarged. Our method is presented in the last row, with key regions highlighted by rectangles to facilitate comparison.

Figure 9: **Qualitative comparison on KITTI validation set with different LiDAR line.** Our method is compared with BP-Net (Tang et al., 2024), NLSPN (Park et al., 2020), GuideNet (Tang et al., 2020) and CFormer (Zhang et al., 2023).

1187

A.5 MORE COMPARISON ON SPARSITY ROBUSTNESS

A.5.1 SIMULATION WITH REDUCED LIDAR SCAN LINES

To further evaluate our model's performance on sparser inputs, we tested all compared methods using sub-sampled LiDAR data corresponding to 8, 16, 32, and 64 scan lines. A detailed comparison on the KITTI validation set is shown in Table 5. Across all levels of sparsity, our method consistently delivers the best performance for RMSE, REL, and MAE. Notably, under the most challenging 8-line setting, our model demonstrates a clear advantage over other methods. This underscores the robustness and adaptability of our method, particularly in scenarios with extremely sparse depth input. Visual results in Fig. 9 further support these findings. Our model effectively preserves structural details even with limited LiDAR information, whereas competing methods tend to produce smoother or more ambiguous results with fewer LiDAR lines.

Table 5: Performance on KITTI's validation set with different simulated lines. All compared methods are tested using sub-sampled LiDAR data with 8, 16, 32, and 64 scan lines.

						,							
LiDAR Scans		8-Line			16-Line			32-Line			64-Line		
Methods	RMSE	REL	MAE	RMSE	REL	MAE	RMSE	REL	MAE	RMSE	REL	MAE	
CFormer (Zhang et al., 2023)	3660.5	106.4	1720.3	2196.2	46.4	822.1	1242.2	21.9	380.9	745.6	10.7	197.3	
NLSPN (Park et al., 2020)	3244.2	92.3	1512.2	1949.8	38.4	676.2	1195.2	20.5	353.5	771.8	10.5	197.3	
BP-Net (Tang et al., 2024)	4541.9	143.8	1822.8	2362.7	52.0	1822.8	1425.2	29.6	399.6	715.2	10.4	194.0	
GuideNet (Tang et al., 2020)	5805.8	216.2	3109.2	3291.6	93.5	1455.8	1357.5	28.5	452.7	770.8	12.3	222.2	
GBPN	2750.4	79.5	1233.6	1744.1	31.6	560.6	1073.1	17.6	311.4	712.4	10.3	191.8	

A.5.2 SIMULATION WITH VARIOUS DEPTH DENSITY

The metrics on the NYUv2 validation set under various levels of input depth sparsity are presented in Table 6, ranging from 20 to 20,000 sparse points. For a thorough evaluation, given a sparsity level, each test image is sampled 100 times with different random seeds to generate the input sparse depth map. The performance of each method is averaged on these 100 randomly sampled inputs to reduce the potential bias due to random sampling, especially for high sparsity.

Table 6: RMSE (m) on NYUv2 with depth input from various sparsity. The best metric under each sparsity level is in **bold**.

Points	20	50	100	200	500	1000	2000	5000	10000	20000
CFormer (Zhang et al., 2023)	0.932	0.709	0.434	0.142	0.091	0.071	0.056	0.045	0.066	0.204
NLSPN (Park et al., 2020)	0.691	0.429	0.248	0.136	0.092	0.072	0.056	0.042	0.035	0.035
OGNI-DC (Zuo & Deng, 2024)	1.523	1.149	0.696	0.172	0.088	0.069	0.054	0.040	0.032	0.030
BP-Net (Tang et al., 2024)	0.749	0.547	0.302	0.131	0.090	0.070	0.054	0.039	0.031	0.023
GuideNet (Tang et al., 2020)	0.908	0.603	0.478	0.187	0.101	0.081	0.070	0.087	0.195	_
GBPN-1	0.647	0.331	0.179	0.135	0.101	0.081	0.065	0.048	0.037	0.027
GBPN-2	0.649	0.364	0.198	0.120	0.085	0.067	0.053	0.039	0.032	0.026

Our method is listed in the last two rows, GBPN (with variants GBPN-1 and GBPN-2), consistently achieves the highly competitive performance across all sparsity levels. Under extremely sparse input, 20 and 50 points, GBPN-1 achieves the lowest RMSE, significantly outperforming other methods. As the number of input points increases, GBPN-2 starts to excel, obtaining the best performance at intermediate sparsity levels more than 100 points. Notably, both GBPN variants remain highly effective even at dense input levels (5000 and 20,000 points). In contrast, GuideNet (Tang et al., 2020) and Cformer (Zhang et al., 2023) has a worse performance when the input depth is significantly denser (beyond approximately 5000 points) than the training sparsity (500 points). Similar phenomenon has also been observed by (Zuo & Deng, 2024), and we attribute this to the lack of robustness to changes in input sparsity. Both GuideNet (Tang et al., 2020) and CFormer (Zhang et al., 2023) directly process the sparse depth map using convolutional layers, which are not optimal for handling sparse data. Our

Figure 10: **Qualitative comparison on NYUv2 test set with different sparsity.** Our method is compared with BP-Net (Tang et al., 2024), NLSPN (Park et al., 2020), GuideNet (Tang et al., 2020), CFormer (Zhang et al., 2023) and OGNI-DC (Zuo & Deng, 2024). For each sparsity level, the first row is input image, the second row is sparse map.

method alleviate this issue by treating sparse depth measurements as principled observation terms within a globally optimized MRF framework.

The qualitative comparison in Fig. 10 further confirms these findings. Despite varying sparsity levels, our method reconstructs sharper structures and more accurate depth boundaries compared to existing approaches. In particular, it maintains strong performance under sparse input conditions where other methods tend to blur edges or produce overly smooth estimations. These results demonstrate that GBPN is both robust and generalizable across a wide range of input sparsity, making it well-suited for real-world scenarios with depth measurements of various sparsity, *e.g.* SfM (Schonberger & Frahm, 2016).

A.6 GENERALIZATION CAPABILITY

To demonstrate the generalization capability of GBPN, we evaluate SOTA DC methods under a zero-shot generalization setting on the VOID (Wong et al., 2020) benchmark using 150, 500, and 1500 sparse points. All compared methods were trained on NYUv2 with 500 uniformly sampled points and directly evaluated on the VOID validation set without retraining. As shown in Table 7, GBPN consistently outperforms other methods across all sparsity levels under both RMSE and MAE metrics. We attribute this strong performance to our model's formulation, which treats sparse depth measurements as principled observation terms within the MRF. This eliminates the need for specialized neural layers to process sparse data, resulting in greater robustness and generalization. In comparison, GuideNet struggles on this dataset with different sparse depth patterns, perhaps due to its direct application of standard convolutional layers on sparse inputs.

Table 7: Depth completion results on the VOID dataset at different sparsity levels (1500, 500, 150 points). RMSE and MAE are reported in meters.

Method	VOID	1500	VOID	500	VOID 150		
	RMSE (m)	MAE (m)	RMSE (m)	MAE (m)	RMSE (m)	MAE (m)	
OGNI (Zuo & Deng, 2024)	0.92	0.39	1.10	0.61	1.25	0.75	
NLSPN (Park et al., 2020)	0.69	0.22	0.76	0.30	0.93	0.43	
CFormer (Zhang et al., 2023)	0.73	0.26	0.82	0.38	0.96	0.48	
BP-Net (Tang et al., 2024)	0.74	0.27	0.80	0.37	0.94	0.47	
GuideNet (Tang et al., 2020)	2.14	1.05	2.06	0.85	2.05	0.70	
GBPN	0.68	0.22	0.74	0.30	0.90	0.41	

A.7 Noise Sensitivity

In the real world, depth measurements may tend to be noisy due to sensor errors or environmental factors like fog. To evaluate the noise sensitivity of DC methods, we evaluate the compared methods with noisy depth input. Specifically, each sparse depth measurement is perturbed by a uniformly distributed relative error, θ . For instance, $\theta=1\%$ indicates an error uniformly sampled between -1% and 1% of the true depth value. All models were trained on the clean NYUv2 dataset and evaluated on these corrupted inputs. As shown in Table 8, GBPN consistently achieves the best RMSE across noise levels ranging from $\theta=1\%$ to $\theta=5\%$, demonstrating its robustness against noise and its ability to maintain stable and accurate depth predictions even under corrupted measurements.

Table 8: RMSE (mm) Comparison across different levels of noise in sparse depth measurements.

Method	$\theta = 1\%$	$\theta = 2\%$	$\theta = 3\%$	$\theta = 4\%$	$\theta = 5\%$
OGNI (Zuo & Deng, 2024)	89.82	93.31	98.77	107.11	116.23
NLSPN (Park et al., 2020)	93.48	96.86	101.93	110.38	119.72
CFormer (Zhang et al., 2023)	92.81	96.27	101.88	110.12	119.98
BP-Net (Tang et al., 2024)	90.63	93.54	98.43	106.12	113.85
GuideNet (Tang et al., 2020)	101.91	104.12	108.32	114.92	122.51
GBPN	87.17	90.41	95.60	104.01	113.10

A.8 EFFICIENCY COMPARISON

We compare the runtime efficiency of DC methods on samples from NYU and KITTI dataset with input resolution of 256×320 and 375×1216 , respectively. As shown in Table 9, GBPN achieves a competitive balance of runtime, memory usage, and parameter count compared with these SOTA methods. Here, GuideNet demonstrates the fastest inference speed, while CFormer and OGNI-DC are notably slower. Our GBPN exhibits a moderate inference time compared to these SOTA methods. Comparing with BP-Net(Tang et al., 2024), GBPN has a higher runtime but requires fewer parameters. The lower parameter count is because the Markov Random Field (MRF) is dynamically constructed by a relatively small network compared to other methods. In GBPN, the runtime ratio between the GMCN and the GBP stage is approximately 1:3.5. Most of the runtime is spent in the optimization stage. This is primarily limited by our custom Gaussian Belief Propagation (GBP) implementation. While this implementation is parallelized on GPUs, it has significant potential for further optimization compared to highly-tuned standard PyTorch layers. We will continue to improve it in future work.

Our GBPN also has the advantage of *flexible latency tuning*. As the target depth is optimized gradually in an iterative manner, we can trade off the model's latency and performance by simply adjusting the number of iterations. We list the trade-off in Table 10 by starting from our GBPN model with a total of 13 iterations and then gradually reducing the number of iterations. This property is highly beneficial for real applications' deployment, as GBPN can be easily tailored to specific latency requirements by simply adjusting the number of optimization iterations. In contrast, feed-forward networks like CFormer (Zhang et al., 2023) must complete their full inference pass to produce the result, making them difficult to adapt to varying latency budgets.

Table 9: Comparison of inference time (ms), GPU memory (GB), and number of parameters (M).

	25	6×320	37	5×1216		
Method	Runtime (ms)	GPU Memory (GB)	Runtime (ms)	GPU Memory (GB)	Params (M)	
GuideNet (Tang et al., 2020)	3.52	4.65	12.95	8.85	62.62	
NLSPN (Park et al., 2020)	8.50	1.26	39.34	5.69	26.23	
BP-Net (Tang et al., 2024)	19.87	5.31	77.64	9.07	89.87	
CFormer (Zhang et al., 2023)	115.50	1.98	150.76	7.85	83.51	
OGNI-DC (Zuo & Deng, 2024)	177.02	2.77	266.06	9.25	84.37	
GBPN	44.57	4.47	137.49	8.70	39.03	

Table 10: Trade-off between latency and accuracy on the NYUv2 validation set under different number of iterations.

Iteration	5	6	7	8	9	10	11	12	13
RMSE under 500 points (m)	0.146	0.141	0.117	0.106	0.099	0.098	0.090	0.087	0.085
RMSE under 400 points (m)	0.157	0.151	0.126	0.114	0.107	0.104	0.096	0.093	0.091
RMSE under 300 points (m)	0.178	0.171	0.140	0.128	0.119	0.113	0.104	0.101	0.100
RMSE under 200 points (m)	0.241	0.228	0.184	0.173	0.154	0.137	0.124	0.121	0.119
RMSE under 100 points (m)	0.471	0.439	0.356	0.344	0.252	0.298	0.238	0.233	0.214
Runtime (ms)	22.17	24.98	27.97	31.35	33.41	36.55	39.27	42.00	44.57

A.9 DECLARATION OF LLM USAGE

This is an original research paper. The core method development in this research does not involve LLMs as any important, original, or non-standard components. LLM is used only for editing and formatting purposes.