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ABSTRACT

Depth completion aims to predict a dense depth map from a color image with
sparse depth measurements. Although deep learning methods have achieved state-
of-the-art (SOTA), effectively handling the sparse and irregular nature of input
depth data in deep networks remains a significant challenge, often limiting perfor-
mance, especially under high sparsity. To overcome this limitation, we introduce
the Gaussian Belief Propagation Network (GBPN), a novel hybrid framework
synergistically integrating deep learning with probabilistic graphical models for
end-to-end depth completion. Specifically, a scene-specific Markov Random Field
(MRF) is dynamically constructed by the Graphical Model Construction Network
(GMCN), and then inferred via Gaussian Belief Propagation (GBP) to yield the
dense depth distribution. Crucially, the GMCN learns to construct not only the
data-dependent potentials of MRF but also its structure by predicting adaptive
non-local edges, enabling the capture of complex, long-range spatial dependencies.
Furthermore, we enhance GBP with a serial & parallel message passing scheme,
designed for effective information propagation, particularly from sparse measure-
ments. Extensive experiments demonstrate that GBPN achieves SOTA performance
on the NYUv2 and KITTI benchmarks. Evaluations across varying sparsity levels,
sparsity patterns, and datasets highlight GBPN’s superior performance, notable
robustness, and generalizable capability.

1 INTRODUCTION

Dense depth estimation is critical for various computer vision and robotics tasks. While dedicated
sensors or methods provide sparse, irregular depth measurements (Schonberger & Frahm| [2016)),
acquiring dense depth directly is often challenging or costly. Depth completion (DC) bridges this
gap through inferring a dense depth map from sparse depth guided by a synchronized color image.
Sparse depth provides essential scale and absolute constraints, while the high-resolution color image
offers rich structural and semantic information necessary for propagating depth and filling missing
regions. Consequently, DC is a vital technique attracting increasing interest for enhancing downstream
applications like 3D object detection (Wu et al.,[2022)), novel view synthesis (Roessle et al.,[2022)),
and robotic manipulation (Li et al., [2023)).

Traditional DC methods mostly relied on hand-crafted pipelines (Ku et al., 2018)) or fixed graphical
models like Markov Random Fields (MRF) (Diebel & Thrun, 2005). Although offering some
robustness, their rigid, pre-defined priors struggled to capture complex geometry and fine details.
Recently, learning-based methods, primarily deep neural networks, have achieved impressive accuracy
improvements by directly regressing dense depth from extracted features (Ma & Karaman) 2018).
However, effectively processing sparse, irregular input within standard deep architectures remains
a significant challenge (Uhrig et al.,|2017; |[Huang et al,|2019; Tang et al., |2024)), often degrading
performance and robustness, particularly under high sparsity.

In this paper, we introduce the Gaussian Belief Propagation Network (GBPN), a novel hybrid
framework that synergistically combines deep learning’s representational power with the structured
inference of probabilistic graphical models. Unlike methods that directly regress depth, GBPN trains
a deep network (the Graphical Model Construction Network, GMCN) to dynamically construct a
scene-specific MRF over dense depth variables. Dense depth is then efficiently inferred via Gaussian
Belief Propagation (GBP) on the learned MRF.
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This formulation offers several key advantages. Firstly, learning to construct a scene-specific MRF
overcomes the limitations of fixed, hand-crafted models, enabling adaptation to diverse geometries.
Secondly, sparse depth measurements are naturally integrated as principled data terms within the
globally consistent MRF framework, inherently addressing input sparsity and irregularity by propa-
gating depth across the entire image. Finally, GBPN yields a depth distribution, providing valuable
confidence estimates for risk-aware downstream tasks, such as planning (Burns & Brockl [2007).

To realize this, our GMCN infers not only potentials of the MRF but also its structure by predicting
non-local edges, allowing the model to adaptively capture complex, long-range spatial dependencies
guided by image content. We also propose a novel serial & parallel message passing scheme for
GBP to enhance information flow, particularly from sparse measurements to distant unmeasured
pixels. The entire GBPN is trained end-to-end using a probability-based loss function leveraging the
estimated mean and precision from GBP, promoting the learning of reliable depth predictions along
with an estimate of their confidence.

We validate the efficacy of GBPN through extensive experiments on two leading DC benchmarks:
NYUv2 for indoor scenes and KITTI for outdoor scenes. Our method achieves state-of-the-art perfor-
mance on these datasets at the time of submission. Comprehensive ablation studies demonstrate the
effectiveness of each component within GBPN, including the dynamic MRF construction, propagation
scheme, and probability-based loss function, efc. Furthermore, evaluations across varying sparsity
levels, sparsity patterns, and datasets highlight GBPN’s superior performance, notable robustness,
and generalizable capability. Code and trained models will be available at omitted for blind review.

2 RELATED WORK

Research on depth completion (DC) has undergone a significant evolution, transitioning from tra-
ditional hand-crafted techniques to data-driven learning methods. Notably, concepts and principles
from traditional approaches have significantly influenced the design of recent learning-based methods.
This section briefly reviews these two lines of work and the combination of their respective strengths.

Traditional Hand-crafted Techniques. Early DC approaches largely relied on explicitly defined
priors and assumptions about scene geometry and texture, often borrowing techniques from traditional
image processing and inpainting. These methods constructed hand-crafted pipelines to infer dense
depth from sparse measurements. For example, proposed joint bilateral filtering
guided by color information to upsample low-resolution depth maps. (2018) employed a
sequence of classical image processing operators, such as dilation and hole filling, for depth map
densification. [Zhao et al| (2021b)) leveraged local surface smoothness assumptions to estimate depth
by computing surface normals in a spherical coordinate system. [Hawe et al| (2011)) reconstructed
dense disparity from sparse measurements by minimizing an energy function formulated by Com-
pressive Sensing. [Diebel & Thrun| (2005)) modeled depth completion as a multi-resolution Markov
Random Field (MRF) with simple smoothness potentials, and then solved using conjugate gradient
optimization. (Chen & Koltun|(2014)) developed a global optimization approach to reconstruct dense
depth modeled by MRF. While demonstrating effectiveness in certain scenarios, these hand-crafted
methods often struggle to capture complex geometric structures and fine-grained details.

Data-driven Learning Methods. In contrast, learning-based methods typically formulate DC as
an end-to-end regression task, taking color images and sparse depth maps as input and directly
predicting the target dense depth map. A primary focus in this line of work has been on effectively
handling the sparse input data and fusing information from different modalities (color and depth).
For explicitly processing sparse data, pioneering work by [Uhrig et al| (2017) introduced sparsity-
invariant convolutions, designed to handle missing data by maintaining validity masks. [Huang et al |
(2019) integrated the sparsity-invariant convolutions into an encoder-decoder architecture.
(2019) extended this concept by propagating a continuous confidence measure. However,
general-purpose network architectures employing standard convolutional layers, often combined
with sophisticated multi-modal fusion strategies, have frequently demonstrated strong performance.
For instance, (2020) proposed to learn content-dependent and spatially-variant kernels to
guide the fusion of color and depth features. Zhang et al.| (2023)) leveraged Transformer architectures
to capture long-range dependencies for feature extraction in depth completion. [Chen et al.| (2019)
used 2D convolutions for image features and continuous convolutions for 3D point cloud features,
followed by fusion. While achieving impressive results and learning complex mappings from data,
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purely data-driven methods often exhibit limited generalization performance, particularly when faced
with data of different sparsity levels.

Combination of Models and Learning. More recently, a significant trend has emerged towards
approaches that combine the strengths of both traditional modeling and data-driven learning. These
methods aim to leverage the benefits of learned features and powerful network architectures while
incorporating explicit priors or structured inference mechanisms. A famous pioneering work is|Liu
et al.| (2015)), combining deep network with closed-form solver for monocular depth estimation. For
depth completion, a prominent line of work, exemplified by CSPN-based methods (Cheng et al.,
2019;2020; |Lin et al.|, 2022} |Park et al., |2020), employs deep networks to predict parameters for a
learned anisotropic diffusion process, refining the regressed depth from deep network. Wang et al.
(2023a) integrated traditional image processing techniques to generate an initial depth map before
applying a learned refinement module. Tang et al.|(2024) learned a bilateral filter-like propagation
process to effectively spread information from sparse measurements, (Qu et al.| (2020) combined
deep learning with a least-squares solver to estimate depth with constraints derived from sparse
measurements. |[Zuo & Deng|(2024) formulated depth completion as a learned optimization problem,
where a network predicts local depth differences used in an energy function iteratively minimized via
conjugate gradient. However, these methods still struggle with sparse data processing and limited
propagation range. Our method falls within this hybrid category, by learning a MRF and inferring it
via GBP, inherently addressing the issues of input sparsity and irregularity.

3 THE PROPOSED METHOD

3.1 OVERVIEW

Given a color image I € R¥*Wx3 regardless of how sparse depth is measured—whether via active
sensor, like LiDAR (Geiger et al., 2012), or passive method, like SFM (Schonberger & Frahm, [2016)),
or even interactive user guidance (Ron et al.| 2018)—we can project these depth measurements onto
the image plane to yield a sparse depth map S € R7*W  with the same resolution (H, W) as I.
The valid pixels in S are typically irregularly distributed, and may vary significantly in number and
location. Unlike most learning-based approaches that employ dedicated neural network layers to
process S (Eldesokey et al., 2019; [Huang et al.l [2019) and directly regress the dense depth map
X € RTXW "ag illustrated in Fig. |1} we formulate the dense depth estimation task as inference in a
Markov Random Field (MRF) (in Section[3:2), and infer X via Gaussian Belief Propagation (GBP)
(in Section[3.3). In this formulation, S serves as data term within the global optimization framework
of MRF, which eliminates the need for designing specific neural network architectures tailored to
processing sparse input data (Tang et al.,2024). Specifically, the MRF structure, particularly its edges,
is dynamically generated by a graphical model construction network (in Section [3.4), depending on
the input color image I and optionally on intermediate estimates of the dense depth distribution. The
entire framework is end-to-end trained with a probability-based loss function (in Section[3.3).

3.2 PROBLEM FORMULATION

We formulate the dense depth estimation problem using a Markov Random Field (MRF), i.e. a type
of undirected graphical model G = (V, &), where V is the set of nodes representing the image pixels
and & is the set of pairwise edges connecting neighboring pixels. As shown in Fig. [I] each node
1 € V is associated with a random variable x;, representing the depth at pixel 7. The joint probability
distribution over the depth variables is defined according to the MRF structure:

pXILS) o [T ¢ [ s )

i€V, (1,5)EE

where ¢; and 1;; are the abbreviations for ¢;(z;) and ;;(x;, z;), indicating unary and pairwise po-
tentials respectively, and V), is the set of nodes corresponding to pixels with a valid depth measurement
in the sparse map S.

The unary potential ¢; defined for pixel ¢ € V), constrains the quadratic distance between estimated
depth x; and the depth measurement s;, written as

wi(z; — s;)*

5 )- (@)

¢ = exp(—
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Figure 1: Overview of the proposed approach. Markov Random Field (MRF) is constructed depend-
ing on parameters dynamically generated from the Graphical Model Construction Network (GMCN),
and then optimized via Gaussian Belief Propagation (GBP) for the distribution of dense depth map.

Here, w; > 0is a weight indicating the confidence for the depth measurement, and ¢; is only available
if depth measurement s; is valid.

The pairwise potential 1);; defined for edge (i, j) € £, encourages spatial coherence between the
estimated depths of neighboring pixels 7 and j, expressed as

wij(zi — 35 — 1ij)°
; ). )

Here, w;; > 0 is a weight controlling the strength of the spatial constraint, and r;; is the expected
depth difference between x; and x; .

Vij = exp(—

In traditional MRF-based approaches, the parameters w, and r are typically hand-crafted based on
simple assumptions or features. For instance, r;; is often set to 0 to enforce simple smoothness
2005)), and w;; is commonly derived from local image features like color differences. These
approaches, while providing some robustness, often limited the model’s ability to capture complex
scene geometry and fine details, leading to suboptimal results. In contrast, we employ an end-to-end
trained deep network to dynamically construct the MRF based on the color image and optional
optimized intermediate dense depth map distribution. This allows the MRF to adaptively model
the scene, via placing stronger data constraints where measurements seem reliable, and applying
sophisticated smoothness constraints that vary based on image content. Moreover, we further enhance
the MRF’s expressive power with dynamic parameters and dynamic edges.

MRF with Dynamic Parameters. The constructed MRF is approximately inferred in an iterative
manner. Unlike traditional methods that define the MRF parameters a priori and keep them fixed
during optimization, our approach updates the MRF parameters dynamically as the iterative inference
progresses. This adaptive parameterization allows the MRF to evolve alongside the solution, making
it more responsive to the current state of the variables and potentially improving both the solution
quality and the convergence behavior of the optimization.

MRF with Dynamic Edges. Traditionally, the graph structure of an MREF, specifically the edges
connecting a variable to its neighbors, is fixed and predefined, e.g. 8-connected local pixels for each
variable. As illustrated in Fig.[I} alongside these fixed local edges (depicted in ), our framework
also dynamically estimates and establishes non-local connections for each pixel (shown in ).
This dynamic graph structure allows the MRF to capture dependencies beyond immediate spatial
neighbors, increasing its flexibility and capacity to model complex scene structures. Consequently,
during inference, each variable’s state is conditioned on both its predefined local neighbors and its
dynamically generated non-local connections.
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3.3 APPROXIMATE INFERENCE TECHNOLOGY
3.3.1 GAUSSIAN BELIEF PROPAGATION

For a high-resolution image, computing the exact posterior for the above MRF is computationally
prohibitive, due to the large number of variables and complex dependencies. Belief Propagation
(BP) [1988) is a widely used algorithm for performing approximate probabilistic inference
in graphical models. By iteratively operating on belief updating and message passing, BP enables
parallel computation and often exhibits reasonably fast empirical convergence compared to other
iterative inference methods (Weiss & Freeman),[1999). Though lacking formal convergence guarantees
for general graphs, it has been successfully applied to various graphs, even with cycles (Freeman et al.
[2000% [Sun et al] [2003)), known as loopy belief propagation. As introduced below and Section |é%£
we adopts damping tricks and graph decomposition to improve the stability and convergence.

In BP, the belief on variable x; is proportional to the product of its local evidence ¢; and incoming
messages from all neighboring variables, written as

biocgi [T myi “)

(.)€

Messages are computed by marginalizing over the variable of the sending node, considering its local
evidence and incoming messages from its other neighbors, expressed as

mjﬂ‘tx/ Vit [ e day. &)

(k,3)€E\(3,9)

The formulated MRF in Section [3.2]is a Gaussian graph model, for which we can use Gaussian Belief
Propagation (GBP) for inference. GBP assumes all beliefs b and messages m are
under Gaussian distribution. This assumption allows the complex integration and product operations
in eq. () to be simplified into algebraic updates on the parameters of the Gaussian distributions. We
can take moment form N '(z, A~1) or canonical form N ~1(n, A) as Gaussian parametrization for
convenience, where 77 = pA. Then, in GBP, the belief updating corresponding to eq. (@) is given by:

N = wisi + >, MNji,
(i.5)€€

6
ANi=wi+ Y Aj ©
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And message passing corresponding to eq. (3) is given by:
Hj—i = Py\i T Tij,
)

—1 _ -1 -1
Aj_n = Aj\i +w;;
Here, j \ 7 means the set of all messages sent to j except the message from i. We leave the detailed
derivation of Gaussian belief propagation in the Section[A.T.1] To improve convergence and stability,
we adopt the damping trick for message passing (Murphy et al] 2013) by applying weighted average
of the message from the previous iteration and the message computed in the current iteration, i.e.

N B 1-5; . . . . .
My = ML, ym;_y;",. Once again corresponding to Gaussian parameters update, given by:

Nj—it = Billj—it—1 + (1 — Bi)Nj—its

R . (8)
Nt =BiNjsip—1+ (1 —Bi)Nj5ie

3.3.2 PROPAGATION SCHEME

A crucial aspect of Belief Propagation is the definition of its message propagation scheme
2019). Both serial and parallel propagation schemes offer distinct advantages. Serial
propagation is effective at propagating information across the entire graph structure, allowing local
evidence to influence distant nodes. This is particularly important for depth completion, ensuring
that information from depth measurements propagates broadly, resulting in a dense depth estimation
where every variable receives sufficient incoming messages to form a valid belief. In contrast, parallel
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propagation, propagating messages over short ranges, is significantly more efficient by effectively
leveraging modern hardware parallelism.

To combine both advantages, we design a hybrid serial & parallel propagation scheme. As illustrated
in Fig. [I} our scheme splits the message passing into updates performed serially on directional
local connections and updates performed in parallel on non-local connections, decomposing the
loopy graph into loop-free sub-graphs. Specifically, we categorize edges £ in MRF into four sets
corresponding to local directional sweeps: left-to-right (LR), top-to-bottom (TB), right-to-left (RL),
and bottom-to-top (BT), denoted g, Erp, Err, and Epr respectively, and a set for non-local
connections, En . With this decomposition, each set of edges is with directionality and loop-free,
which is more stable for convergence.

For serial propagation, we sequentially perform message passing sweeps utilizing these four local
directional edge sets. Under each sweep direction, message and belief updates are processed serially
according to a defined order (e.g., column by column for horizontal sweeps). For instance, during
the sweep using edges £1,r (left-to-right), message updates for variables in column 7 are computed
only after updates related to column n — 1 have been completed. And the update for a variable
at pixel (m,n) incorporates messages received from specific neighbors in column n — 1, such as
those connected via edges from &, linking (m — 1,n — 1), (m,n — 1), and (m + 1,n — 1) to
(m,n). For non-local propagation, message updates for all pixels based on connections in €y, are
computed simultaneously. These non-local connections are dynamically generated to link pixels that
are relevant but not necessarily spatially adjacent.

The whole propagation scheme is detailed in Algorithm[I] We initialize the 1 and A parameters for
all messages on all relevant edges to 0. We empirically set a fixed total number of iterations 7". In
each iteration, we first sequentially perform the four directional local serial propagation sweeps (LR,
TB, RL, BT). Following the serial sweeps, we execute 7;, steps of parallel non-local propagation.
Finally, after T iterations, we yield the marginal beliefs for each pixel ¢. The estimated depth is the
mean p; = 1);/A; with the precision A; serving as a measure of confidence. The visualization of
propagation and learned edges is introduced in Section[A3]

Algorithm 1 Serial & Parallel Propagation Scheme

Require: Graph G = (V, €). Edge subsets ELr, E18,ERL, EBT,ENL-
Ensure: Estimated marginal belief represented by 7, A.

1: Initialization:

2: for all edges (i, ) € £ do > Initialize messages
3 Nj—si =0

4 Aj_”' = O

5: end for
6
7
8

: Iterations:
: fort =1toT do
: forall &1z, 1B, ERL, EBT dO > Serial Propagation
9: Serial message passing(eqs. (7) and (8)) and belief updating(eq. (6)))
10: end for
11: fort, =1to T, do > Parallel Propagation
12: message passing (eqs. (7) and (8)) for all (i, j) € Ey . in parallel
13: belief updating (eq. (6))
14: end for
15: end for
16: returnn, A

3.4 GRAPHICAL MODEL CONSTRUCTION NETWORK

As previously mentioned, the Markov Random Field (MRF) is dynamically constructed and subse-
quently optimized using Gaussian Belief Propagation (GBP). Our Graphical Model Construction
Network is designed to learn the parameters and structures of this MRF from input data.

We employ a U-Net architecture (Ronneberger et al.l 2015), comprising encoder and decoder layers,
to extract multi-scale features essential for MRF construction. Within the U-Net, we introduce a novel
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global-local processing unit. Each unit combines a dilated neighborhood attention layer
2022) and a ResNet block 2016). The dilated neighborhood attention layer is utilized
to capture long-range dependencies, effectively expanding the receptive field without increasing
computational cost. As a complement, the ResNet block focuses on extracting and refining local
features. More details about the network architecture is introduced in Section[A T2

We apply convolutional layers on the aggregated features to estimate the MRF parameters, such as r
and w. Additionally, the network estimates the damping rate 5 used in the GBP and the offsets for
constructing non-local neighboring pixels. Inspired by Deformable Convolutional Networks
2017), we employ bilinear interpolation to sample Gaussian parameters at these non-local
neighbor locations defined by the estimated float offsets. This approach ensures that gradients can be
effectively backpropagated during the training phase. Considering that GBP typically converges to an
accurate mean g but not the exact precision A (Weiss & Freeman| [1999), we also utilize convolution
layers to estimate a residual term. This residual is added to the estimated A from GBP, and a sigmoid
activation function is then applied to yield the updated precision.

We provide two approaches to construct the MRF: a color image-only approach (termed GBPN-1)
and a multi-modal fusion approach (termed GBPN-2) incorporating depth information. In GBPN-1,
the U-Net architecture receives a color image as its sole input to construct the MRF. The GBPN-2
utilizes a second U-Net that takes both the color image and the optimized depth distribution from the
GBPN-1 (i.e. pand A) as input. For GBPN-2, cross-attention is leveraged within the dilated attention
layers, where the query is generated from multi-modal features, while the keys and values are derived
from the color image features in the first U-Net.

3.5 PROBABILITY-BASED LOSS FUNCTION
We adopt the combination of L; and Lo loss as the loss on depth. For a pixel 7, the loss on depth is

2
L s = 2l +aus — oty
maz([i— 7))

; ®

K2

where 2 is the ground-truth depth and « is the hyperparameter to balance the L; and L loss. The
combined L; and Ly loss is normalized with the maximum L, loss across the image, which makes
the convergence more stable. As the output of our framework is the distribution of dense depth
map, which is in Gaussian and can be represented with 1; and A; for each pixel, we adopt the
probability-based loss (Kendall & Gall,[2017) as the final loss:

L DALY —log(As). (10)

_ 1
[Vl i€V,

Here, V, denotes the set of pixels with valid ground-truth depth. In this way, the precision A can also
be directly supervised, without the need for its ground-truth value.

4 EXPERIMENTS

We evaluate our proposed method, GBPN, on two leading depth completion benchmarks: NYUv2
(Silberman et al.} 2012) for indoor scenes and KITTI (Geiger et all 2012) for outdoor scenes. To
demonstrate its effectiveness, we provide comprehensive comparisons against state-of-the-art (SOTA)
methods in Section[f-I] We then perform thorough ablation studies in Section f-2]to analyze the
contribution of core components. We also assess the robustness of GBPN by varying input sparsity
levels in Section[f.3] a critical factor for real-world deployment. Finally, cross-dataset evaluations
in Section[f4] verify the model’s generalization capability. The appendix contains further analysis
on the experimental setup (Section [A2)), noise sensitivity (Section [A-6), and runtime efficiency

(Section[A77).

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We evaluate GBPN (the GBPN-2) on the official test sets of the NYUv2 (Silberman et al 2012)
dataset and the KITTI Depth Completion (DC) (Geiger et al.} 2012)) dataset. Quantitative comparisons
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between GBPN and other top-performing published methods are presented in Table[I} On the KITTI
DC benchmarkﬂ our method achieves the best iRMSE among all submissions at the time of writing,
and demonstrates highly competitive performance across other evaluation metrics. Specifically, our
method ranks second under RMSE among all published papers, where DMD3C (Liang et al.| 2025)
obtains the lowest RMSE. It’s worth noting that DMD3C utilizes exact BP-Net (Tang et al.,2024) but
incorporates additional supervision derived from a foundation model during training. In contrast, our
method is trained solely on the standard KITTTI training set from scratch, similar to BP-Net, while
surpassing BP-Net in all evaluation metrics. Training with more data or distilling from a widely
trained foundation model to improve our method is an interesting direction left for future work. On
the NYUv2 dataset, our method achieves the best RMSE. As the commonly used 47 o5 metric is
nearing saturation (typically > 99.6%), we provide results using the stricter 41 o2 and 7 g5 metrics
in Table [I] to better highlight the superiority of GBPN compared to other methods with publicly
available models on the NYUv2 dataset. More comparisons can be found in Section[A4]

Table 1: Performance on KITTI and NYUv2 datasets. For the KITTI dataset, results are evaluated
by the KITTI testing server. For the NYUv2 dataset, authors report their results in their papers. The
best result under each criterion is in bold. The second best is with underline.

KITTI NYUv2
RMSE| MAE| iRMSE| IiMAE] RMSE| REL] 1021 01057
(mm) (mm) (I/km)  (1/km) (m) (%) (%)
814.73 249.95 2.80 1.21 0.230 0.044 - -
758.38 226.50 2.56 1.15 0.115 0.022 - -
736.24 218.83 2.25 0.99 0.101 0.015 82.0 93.9
741.68 199.59 1.99 0.84 0.092 0.012 88.0 95.4
744.91 206.09 2.08 0.90 0.105 0.015 - -
709.12 192.71 1.88 0.82 0.090 0.012 - -
697.44 189.44 1.83 0.82 0.089 0.012 - -
708.87 203.45 2.01 0.88 0.090 0.012 87.5 95.3
696.51 189.96 1.87 0.81 0.091 0.011 - -
693.97 188.60 1.82 0.81 0.086 0.010 - -
686.46 187.95 1.83 0.81 0.091 0.011 - -
708.38 193.20 1.86 0.83 0.087 0.011 88.3 95.6
684.90 194.69 1.82 0.84 0.089 0.012 87.2 95.3
678.12 194.46 1.82 0.85 0.085 0.011 - -
GBPN | 68220 192.14 1.78 0.82 0.085 0.011 89.1 95.9

4.2 ABLATION STUDIES

We conduct ablation studies on the NYUv2 dataset to evaluate the contribution of core components in
our GBPN. Starting from a simple optimization-based baseline V;, we incrementally add components
to arrive at V5 to V. All models are trained with half amount epoches of the full training schedule,
due to resource constraints. Quantitative results, including RMSE and 07 (2, are presented in Table

Table 2: Ablation studies on NYUv2 dataset.

Basic Block Local Edges Dynamic MRF GBP Iters. Loss Criteria
Conv. Attn. 4 8 Param.  Edge 3 5 Probability | RMSE/(mm) ;.02 (%)
Vi v 342.70 21.58
Vs v v 340.84 25.23
Vs v v v v 108.29 83.71
Vi v v v v 109.54 83.27
Vs v v v v v 107.01 84.01
Vs v v v v v v 103.92 84.69
V7 v v v v v v v 101.42 85.19
Vg v v v v v v v 100.95 85.20
Vo v v v v v v v 100.69 85.27

The baseline model V; employs a convolutional U-Net to estimate an initial depth and confidence map
from RGB image, and then optimizes the parameters of an affine transformation using constraints
from sparse depth measurements. Similar to |Conti et al.| (2023)), this process involves solving a
weighted least squares problem based solely on depth observation constraints, without any pair-wise
terms. The model is trained using only an L2 loss on depth, following[Tang et al] (2020; [2024).

'http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark
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Figure 2: RMSE(mm) on NYUv?2 testset under various sparsity.

In our ablation study, we first replace the L2 loss in V; with our proposed optimization-based loss
function, resulting in V5 with slight performance improvement. Building on V5, we develop V3, Vy,
and V5, which generate depth by solving a fixed MRF with fixed local edges, but using features from
different backbones. All three variants outperform V5 by a large margin, with V5 achieving the best
RMSE. This confirms the effectiveness of our problem formulation and the proposed global-local
processing unit, which combines local convolutions with long-range attention. We then extend V3
by incorporating an MRF with dynamic parameters (V) and dynamic non-local edges (V7). The
performance gains of Vi and V7 demonstrate the advantage of a more expressive graph model.
Subsequently, we increase the number of local edges in V7 to construct Vg, and then the number of
iterations to form Vy. The performance improvements seen in Vg and Vy highlight the benefits of
more dense constraints and a greater number of optimization iterations. We attempt further increases
iteration numbers but observing little performance improvement, and finally choose Vy as GBPN-1.

4.3  SPARSITY ROBUSTNESS ANALYSIS

In real-world applications, the sparsity level of the input depth map may vary significantly depending
on the sensor and environment. To evaluate the robustness of our method on input sparsity, we
conducte experiments on the NYUv2 dataset, comparing our approach against other SOTA methods
with publicly available code and models. For this analysis, all methods for comparison are from
released models trained with 500 depth points on NYUv2. These models are then directly evaluated
on sparse inputs generated at various sparsity levels, ranging from 20 to 20,000 points.

1 S - GuideNet CFormer OGNI-DC BP-Net GBPN-1 GBPN-2

..

10

500

20000

e .

Figure 3: Qualitative comparisons under different sparsity. All comparing methods are trained
with 500 depth points and directly tested with depth input from various sparsity levels.

As demonstrated in Fig. 2] both GBPN-1 and GBPN-2 exhibit consistently better robustness across
the entire range of tested sparsity levels than others. For GBPN, the RMSE consistently decreases
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as the number of points increases. In contrast, the RMSE of methods like GuideNet
[2020) and CFormer (Zhang et al} 2023) increases notably when the number of depth points becomes
significantly denser (beyond approximately 5000 points) than the training sparsity (500 points). More
about sparsity robustness analysis is in Section[A23]

We also visualize qualitative results from these compared methods under various sparsity levels in
Fig. 3l In very sparse scenarios, such as the 10 points case visualized in the first row, depth maps
from our method maintain relatively sharp boundaries, whereas the results from other methods appear
ambiguous or messy. For the 50 and 100 points cases shown in the second and third rows, our method
can produce relatively clear depth maps with structural details, while results from others tend towards
being unclear and oversmooth. In very dense scenarios, i.e. 20,000 points case in the last row, our
method consistently produces very clear depth maps, while results from some comparison methods
tend to be noisy. We attribute this superior robustness to our problem formulation, which incorporates
sparse input data as a data term within a globally optimized MRF framework, making it inherently
robust to the irregularity and varying density of the input sparse measurements.

4.4 GENERALIZATION CAPABILITY

To demonstrate the generalization of GBPN, we evaluate state-of-the-art depth completion methods
on the VOID (Wong et al] [2020) benchmark, whose sparse depth is from visual odometry. All
methods are trained on NYUv2 with 500 random points and are evaluated zero-shot on the VOID
validation set under 150, 500, and 1500 point settings. Thus, this setup tests generalization across
different sparsity levels, sparsity patterns, and scene domains.

Table 3: Depth completion results on the VOID dataset at different sparsity levels (1500, 500, 150
points). RMSE and MAE are reported in meters.
VOID 1500 VOID 500 VOID 150

Method

RMSE (m) MAE (m) RMSE(m) MAE(@m) RMSE(@m) MAE (m)

OGNI (Zuo & Deng| 0.92 0.39 1.10 0.61 1.25 0.75
NLSPN (Park et al.] 2020} 0.69 0.22 0.76 0.30 0.93 043
CFormer (Zhang et al.|[2023] 0.73 0.26 0.82 0.38 0.96 0.48
BP-Net (Tang et al.] 2024} 0.74 0.27 0.80 0.37 0.94 0.47
GuideNet (Tang et al.|[2020 2.14 1.05 2.06 0.85 2.05 0.70
GBPN 0.68 0.22 0.74 0.30 0.90 0.41

As reported in Table 5] GBPN consistently surpasses other methods across all sparsity levels in both
RMSE and MAE. We believe this robustness stems from our model’s formulation, which integrates
sparse depth as principled observation terms within an MRF. By avoiding specialized neural layers
for sparse input, our method achieves stronger generalization. In contrast, GuideNet
performs poorly on this dataset, perhaps due to its direct application of standard convolutional
layers on sparse inputs.

5 CONCLUSION

This paper presents the Gaussian Belief Propagation Network (GBPN), a novel framework that
seamlessly integrates deep learning with probabilistic graphical models for depth completion. GBPN
employs a Graphical Model Construction Network (GMCN) to dynamically build a scene-specific
Markov Random Field (MRF). This learned MRF formulation naturally incorporates sparse data and
models complex spatial dependencies through adaptive non-local edges and dynamic parameters.
Dense depth inference is efficiently performed using Gaussian Belief Propagation, enhanced by
a serial & parallel message passing scheme. Extensive experiments on the NYUv2, KITTI, and
VOID benchmarks demonstrate that GBPN achieves state-of-the-art accuracy and exhibits superior
robustness and generalizable capability. Training on larger, more diverse datasets or leveraging
supervision from pre-trained foundation models and optimize the GBP implementation are promising
avenues for future works to enhance performance and efficiency for applications in broader scenarios.

10
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A APPENDIX

A.1 ADDITIONAL METHOD DETAILS

A.1.1 GAUSSIAN BELIEF PROPAGATION

This section provides a detailed derivation of the Gaussian Belief Propagation (GBP) equations,
which are summarized in the main paper due to page limitations. Following the formulation in the

13
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main paper, we model the joint probability distribution over the depth variables X using a Markov
Random Field (MRF):

pXILS) o< [T o I ¢ (an
1€V, (1,7)€E
where ¢; is the unary potential for node 7, and v;; is the pairwise potential between node ¢ and j.
Specifically, we define the unary potential as:

wi(w; — si)*

5 (12)

¢i = exp(—

and the pairwise potential as:

wij (T — x5 — Tij)z)

5 (13)

Vij = exp(—

In Belief Propagation, the belief at each node 7 is calculated as the product of the local unary potential
and all incoming messages from neighboring nodes

b; o< ¢; H M i (14)

(i,7)€€

And the messages are updated iteratively according to

mjﬂ'O(/ Yijbj H Mp—sj dx;. (15)
T

(k,3)€E\(3,9)

All the above eqs. (IT)) to (I3)) are same as eqgs. (I) to (5) in the main paper. We repeat them here for
reading convenience.

In GBP, all beliefs and messages are assumed to be Gaussian distributions. Then, a message
proportional to a Gaussian, can be written as

Aj—>i 2

T; +77j_>iCCZ‘). (16)

mj_s; < exp(—

Substituting the unary potential eq. (I2) and the incoming messages eq. (I6) into the belief equation
eq. (14), we derive the belief
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Thus, the resulting belief b; is also Gaussian, expressed as N/ ™! (i, A;), with

=W+ Y, T,
(i,j)ESA
(i,5)€E

(18)

The belief parameters in eq. are identical to the eq. (6) of the main paper.

We can also define b\ ; as the belief on node j taking all messages, except the message from 4. Thus,
similar to eq. (T7), we have

bjvi X ¢; H Mk (19)

(k,3)€EN(:5)
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And similar to eq. , b;\; is in Gaussian N (Mj\i> Aj\i), with

M =wis;+ 3 ko
(k) EEN(i27)
Aj\i = Wy + Z Ak_>j.
(k,5)€EN(4,4)

(20)

Now, substituting the pairwise potential eq. and the expression for b;\; (from combining eq.
and eq. (20)) into the message update equation eq. (I5), we get:
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Finally, the message m_; is in Gaussian N (p;_;, Aj_ii), with
Hj—i = Hg\i T Tig
-1 -1 —1
A =A+ w;

Jj—i J\i

(22)

The eq. here is identical to the eq. (7)) of the main paper.

A.1.2 GRAPHICAL MODEL CONSTRUCTION NETWORK

The Graphical Model Construction Network (GMCN) is designed to learn the parameters and
structures of the MRF from input data. We employ a U-Net architecture (Ronneberger et al.,|2015)),
comprising encoder and decoder layers, as the GMCN. The detailed network architecture of GMCN
with 256 x 320 input images is provided in Tabled] Note that for clarity, only the main operators
are listed here, with trivial operations like normalization, activation, and skip connections omitted.
The encoder of the U-Net extracts features at six different scales (E°, ..., E®). From scale 1 to 5,
feature extraction is performed using global-local units, which combine a dilated neighbor attention
layer (Hassani & Shil 2022)) to capture long-range dependencies with ResBlocks (He et al., [2016) for
robust local feature learning. The decoder then aggregates these multi-resolution features back to the
original input resolution using deconvolution layers and concatenation operations. This multi-scale
approach ensures that the network captures both fine-grained local details and broader contextual
information necessary for robust MRF construction. We explore two variations of the GMCN. The
first takes only color images as input, constructing the graphical model solely based on visual cues
using a single U-Net. The second incorporates intermediate optimized dense depth distributions as
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Table 4: Detailed Architecture of Graphical Model Construction Network (GMCN).

Output Input Operator Output Size
E I Conv. + ResBlock ( 32,256, 320)
E! Ef Conv. + (Self-Attn. + ResBlock) x2 (1 64,128,160)
E? El Conv. + (Self-Attn. + ResBlock) x2 (128, 64, 80)
E3 E? Conv. + (Self-Attn. + ResBlock) x2 (256, 32, 40)
Color E} E3 Conv. + (Self-Attn. + ResBlock) x2 (256, 16, 20)
Image E} E! Conv. + (Self-Attn. + ResBlock) x2 (256, 8, 10)
Only D4 E}, Ef Deconv. + Concat. + Conv. (256, 16, 20)
GMCN D3 D}, E? Deconv. + Concat. + Conv. (256, 32, 40)
D? D3}, E? Deconv. + Concat. + Conv. (256, 64, 80)
D!} D} El Deconv. + Concat. + Conv. ( 64,128,160)
DY Di, EY Deconv. + Concat. + Conv. ( 32,256, 320)
Bi1,r1,w1,01 DY Conv. + Conv. ( x,256,320)
GBP w1, A1 S, B1,r1, w1, 01 Serial & Parallel Propagation ( *,256,320)
EY Iopy, Ay Conv. + ResBlock ( 32,256, 320)
E} E},El Conv. + (Self/Cross-Attn. + ResBlock) x4 | ( 64,128,160)
EZ El E? Conv. + (Self/Cross-Attn. + ResBlock) x4 | (128, 64, 80)
E} E3 E3 Conv. + (Self/Cross-Attn. + ResBlock) x4 | (256, 32, 40)
Multi E} E3 Ef Conv. + (Self/Cross-Attn. + ResBlock) x4 | (256, 16, 20)
Modal E} E} E} Conv. + (Self/Cross-Attn. + ResBlock) x4 | (256, 8, 10)
Fusion D} E3 E4 Deconv. + Concat. + Conv. (256, 16, 20)
GMCN D3 D4 E3 Deconv. + Concat. + Conv. (256, 32, 40)
D2 D3, E2 Deconv. + Concat. + Conv. (256, 64, 80)
D} D2, E} Deconv. + Concat. + Conv. ( 64,128,160)
DY D}, EJ Deconv. + Concat. + Conv. ( 32,256,320)
B2, T2, w2, 02 DY Conv. + Conv. ( *,256,320)
GBP o, Ao S, B2, 19, Wws, 09 Serial & Parallel Propagation ( *,256,320)

additional input to refine the constructed graphical model. This is achieved by introducing a second
multi-modal fusion U-Net, which utilizes a cross-attention mechanism to effectively integrate features
from the color-based U-Net and the depth information.
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Figure 4: Visualization of estimated depth in Gaussian with x4 and A. The results on KITTI are on the
left, and results on NYUv2 are on the right.

A.2 EXPERIMENTS SETUP
A.2.1 DATASETS

We adopt the standard depth completion datasets, i.e. NYUv2 for indoor scenes and KITTI for
outdoor scenes, to train and evaluate our method. We also evaluate our method on the VOID
2020) dataset to validate the robustness and generalization.

The NYUv2 dataset (Silberman et al.} [2012) comprises 464 scenes captured by a Kinect sensor. For
training, we take the data proposed by [Ma & Karaman| (2018), utilizing 50,000 frames sampled from
249 scenes. Evaluation is performed on the official test set, which contains 654 samples from 215
distinct scenes. We follow common practice (Tang et al., 2020 [Park et al.| 2020} Zhang et al., 2023}
2024) to process data. Input images are initially down-sampled to 240 x 320 and then
center-cropped to a resolution of 228 x 304. Sparse depth maps are generated for each frame by
randomly sampling 500 points from the ground truth depth map.

The KITTI depth completion (DC) dataset (Uhrig et all,2017) was collected using an autonomous
driving platform. Ground truth depth is derived from temporally aggregated LiDAR scans and further
refined using stereo image pairs. The dataset provides 86,898 frames for training and 1000 frames for
validation. An additional 1000 test frames are evaluated on a remote server with a public leaderboarcﬂ
During training, we randomly crop frames to 256 x 1216. For testing, full-resolution frames are used.

The VOID dataset (Wong et al, 2020) was collected using an Intel RealSense D435i camera, with
sparse measurements by a visual odometry system at 3 different sparsity levels, i.e., 1500, 500,
and 150 points, corresponding to 0.5%, 0.15%, and 0.05% density. Each test split contains 800
images at 480 x 640 resolution. Though the dataset is collected for indoor scenes, the scenes, depth

http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark
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Figure 5: Visualization of intermediate results under the serial propagation of Gaussian Belief
Propagation. Messages are propagated iteratively corresponding to local directional sweeps: left-to-
right, top-to-bottom, right-to-left, and bottom-to-top.

measurement manner and depth sparsity in this dataset are distinct from NYUv2. As the collected
ground truth data is noisy, this dataset is not used for training, but only for evaluation to validate the
zero-shot generalization of DC methods to different sparsity patterns and scenes.

A.2.2 TRAINING DETAILS

Our method is implemented in PyTorch and trained on a workstation with 4 NVIDIA RTX 4090
GPUs. We incorporate DropPath (Larsson et al.,[2016)) before residual connections as a regularization
technique. We use the AdamW optimizer (Loshchilov & Hutter, [2018) with a weight decay of 0.05
and apply gradient clipping with an L2-norm threshold of 0.1. Models are trained from scratch for
approximately 300,000 iterations. We employ the OneCycle learning rate policy
[2019), where the learning rate is annealed to 25% of its peak value during the cycle. For KITTI, the
batch size is 8 and the peak learning rate is 0.001. For NYUv2 dataset, we use a batch size of 16
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Figure 6: Visualization of dynamically constructed non-local edges in MRF. The red point is the
target node, and the green points are the dynamically constructed neighbor nodes.

and a peak learning rate of 0.002. The final model weights are obtained using Exponential Moving
Average (EMA).

A.2.3 DETAILS ON EVALUATION METRICS

We verify our method on both indoor and outdoor scenes with standard evaluation metrics. For indoor
scenes, root mean squared error (RMSE), mean absolute relative error (REL), and &y are chosen as
evaluation metrics. For outdoor scenes, the standard evaluation metrics are root mean squared error
(RMSE), mean absolute error (MAE), root mean squared error of the inverse depth GRMSE), and
mean absolute error of the inverse depth (iMAE). These evaluation metrics are firstly calculated on
each sample and then averaged among samples. And for each sample, they can be written as:

RMSE = (n > iev, (@
irvsE = (LT o (G- £
MAE = | Ezevq |27 — @4l

IMAE =1 |4 - 1] 3)
xf”—xi‘

REL=1%,,
= ZzEV

Here, V, is the set of pixels with valid ground truth, and n = |Vg| is the size of the set.

A.3 VISUALIZATION

The output of our Gaussian Belief Propagation Network (GBPN) is a dense depth distribution,
modeled as a Gaussian and represented by its mean p and precision A. This precision A can serve
as a confidence measure for the estimated depth. As shown in Fig.[d] A is typically lower on object
boundaries—indicating higher uncertainty—and higher near sparse point measurements, where
confidence is greater.

To efficiently compute the depth distribution, GBPN employs a Serial & Parallel propagation scheme.
The ablation study (see Section[d.2]and Table [2) validates the efficacy of this design. For instance,
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introducing serial propagation (comparing V5 and V3) resulted in a substantial performance gain,
reducing RMSE from 340.84mm to 108.29mm. Furthermore, augmenting the model with parallel
propagation over non-local edges (comparing Vs and V7) yielded a further improvement, lowering
RMSE from 103.92mm to 101.42mm. In addition to these quantitative results, we provide the
qualitative analysis through visualizations to illustrate the impact of the propagation scheme.

To validate the information propagation capability of our serial propagation scheme, we modified
GBPN by removing dynamic parameters and edges, resulting in a model that uses only four-directional
(left-to-right, top-to-bottom, right-to-left, bottom-to-top) serial propagation. When trained on the
NYUv2 dataset with 500 sparse points and tested on an extreme case with only a single depth
measurement, the model successfully propagates information across the entire image within a single
iteration. The intermediate results, illustrated in Fig.[5] demonstrate rapid convergence to a meaningful
depth map, confirming the scheme’s effectiveness.

Unlike traditional MRFs with static, predefined graph edges (e.g., an 8-connected grid), our framework
enhances the graph structure by inferring dynamic, non-local edges for each pixel, as illustrated in
Fig.[f] These edges connect contextually relevant pixels beyond immediate spatial neighborhoods,
enabling the MRF to capture long-range dependencies and model complex scene structures more
effectively. GBPN uses a parallel propagation scheme to pass messages simultaneously along these
non-local connections, thereby conditioning each variable on both its local neighbors and its learned,
non-local context.

It is worth noting that while the theoretical computational complexity of parallel propagation is
similar to that of serial propagation (and significantly less than the cost of generating the MRF in
GMCN, as detailed in Section[A77), its practical implementation is far more efficient. The parallel
scheme readily leverages modern hardware parallelism, resulting in faster execution.

A.4 MORE COMPARISON WITH STATE-OF-THE-ART (SOTA) METHODS

The comprehensive comparison of various depth completion methods on the KITTI and NYUv2
datasets is presented in Table 5] The results reveal that the proposed GBPN method achieves
competitive performance across all metrics. On KITTI, it achieves the best iRMSE and second-best
RMSE, indicating strong depth accuracy and consistency. On NYUv2, it matches the lowest RMSE
and achieves the highest §; g2 and d1 o5, reflecting excellent depth accuracy.

Visual comparisons with other SOTA open-source methods on the validation set of KITTI DC
and the test set of NYUv2 are shown in Fig. [7]and Fig.[8] The official implementations and the
best-performing models released by the authors are used to ensure fair comparisons, with the same
sparse depth maps across all methods. Our results, presented in the last row, demonstrate sharper
object boundaries and more detailed structures, while other methods tend to underperform in these
challenging areas, leading to less accurate depth estimates.

A.5 MORE COMPARISON ON SPARSITY ROBUSTNESS
A.5.1 SIMULATION WITH REDUCED LIDAR SCAN LINES

To further evaluate our model’s performance on sparser inputs, we tested all compared methods using
sub-sampled LiDAR data corresponding to 8, 16, 32, and 64 scan lines. A detailed comparison on
the KITTI validation set is shown in Table[6] Across all levels of sparsity, our method consistently
delivers the best performance for RMSE, REL, and MAE. Notably, under the most challenging 8-line
setting, our model demonstrates a clear advantage over other methods. For example, compared to
BP-Net, GBPN reduces the RMSE from 4541.9 mm to 2750.4 mm, yielding a substantial 1791.5 mm
absolute improvement. This underscores the robustness and adaptability of our method, particularly
in scenarios with extremely sparse depth input. Visual results in Fig.[9]further support these findings.
Our model effectively preserves structural details even with limited LiDAR information, whereas
competing methods tend to produce smoother or more ambiguous results with fewer LiDAR lines.
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Figure 9: Qualitative comparison on KITTI validation set with different LiDAR line. Our method

is compared with BP-Net (Tang et al., 2024), NLSPN 2020), GuideNet (Tang et al.}[2020)
and CFormer (Zhang et al., 2023).
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Table 5: Performance on KITTI and NYUv2 datasets. For the KITTI dataset, results are evaluated
by the KITTI testing server. For the NYUv2 dataset, authors report their results in their papers. The
best result under each criterion is in bold. The second best is with underline.

KITTI NYUV2
RMSE] MAE|] iRMSE] IMAE] RMSE] REL] 61027 01051

(mm) (mm)  (A/km)  (1/km) (m) (%) (%)
S2D (Ma & Karaman|[2018) 81473  249.95 2.80 1.21 0230  0.044 - -
DeepLiDAR (Qiu et al.[[2019) 758.38 226.50 2.56 1.15 0.115 0.022 - -
CSPN++ (Cheng et al.|[2020) 743.69 209.28 2.07 0.90 0.115 - - -
GuideNet (Tang et al.|[2020) 736.24 218.83 2.25 0.99 0.101 0.015 82.0 939
FCFR [Hu et al.|(2021) 735.81 217.15 2.20 0.98 0.106 0.015 - -
NLSPN (Park et al.|[2020) 741.68 199.59 1.99 0.84 0.092 0.012 88.0 954
ACMNet (Zhao et al.|[2021a) 74491  206.09 2.08 0.90 0.105  0.015 - -
RigNet|Yan et al.|(2022) 712.66 203.25 2.08 0.90 0.090 0.013 - —
DySPN (Lin et al.||2022) 709.12 192.71 1.88 0.82 0.090 0.012 - -
BEV@DC (Zhou et al.|[2023) 697.44 189.44 1.83 0.82 0.089 0.012 - -
DGDF (Wang et al./[2023b) 707.93 205.11 2.05 0.91 0.098 0.014 - -
CFormer (Zhang et al.|[2023) 708.87  203.45 2.01 0.88 0.090 0.012 875 95.3
LRRU (Wang et al.|[2023a) 696.51 189.96 1.87 0.81 0.091 0.011 - —
TPVD (Yan et al.|[2024) 693.97 188.60 1.82 0.81 0.086 0.010 - —
ImprovingDC (Wang et al.|[2024) 686.46 187.95 1.83 0.81 0.091 0.011 - -
OGNI-DC (Zuo & Deng!2024) 708.38 193.20 1.86 0.83 0.087 0.011 88.3 95.6
BP-Net (Tang et al.|[2024) 684.90 194.69 1.82 0.84 0.089 0.012 87.2 95.3
DMD3C (Liang et al.|2025) 678.12  194.46 1.82 0.85 0.085  0.011 - -
GBPN ‘ 682.20 192.14 1.78 0.82 0.085 0.011 89.1 95.9

Table 6: Performance on KITTI’s validation set with different simulated lines. All compared methods
are tested using sub-sampled LiDAR data with 8, 16, 32, and 64 scan lines.

LiDAR Scans 8-Line 16-Line 32-Line 64-Line

Methods RMSE REL MAE RMSE REL MAE RMSE REL MAE RMSE REL MAE

CFormer (Zhang et al.[|2023)  3660.5 1064 17203 21962 464 822.1 12422 219 3809 7456 107 1973
NLSPN (Park et al.|{2020) 32442 923 15122 19498 384 6762 11952 205 3535 771.8 105 1973
BP-Net (Tang et al.|[2024) 45419 143.8 18228 23627 52.0 1822.8 14252 29.6 399.6 7152 104 194.0
GuideNet (Tang et al.[|2020) ~ 5805.8 216.2 3109.2 3291.6 93.5 14558 1357.5 285 4527 770.8 123 2222

GBPN 27504 795 1233.6 17441 31.6 560.6 10731 17.6 3114 7124 103 1918

A.5.2 SIMULATION WITH VARIOUS DEPTH DENSITY

The metrics on the NYUv2 validation set under various levels of input depth sparsity are presented in
Table([7] ranging from 20 to 20,000 sparse points. For a thorough evaluation, given a sparsity level,
each test image is sampled 100 times with different random seeds to generate the input sparse depth
map. The performance of each method is averaged on these 100 randomly sampled inputs to reduce
the potential bias due to random sampling, especially for high sparsity.

Table 7: RMSE (m) on NYUv2 with depth input from various sparsity. The best metric under each
sparsity level is in bold.

Points ‘ 20 50 100 200 500 1000 2000 5000 10000 20000
CFormer (Zhang et al.|[2023) 0932 0.709 0.434 0.142 0.091 0.071 0.056 0.045 0.066 0.204
NLSPN (Park et al.|[2020) 0.691 0429 0.248 0.136 0.092 0.072 0.056 0.042 0.035 0.035
OGNI-DC (Zuo & Deng|[2024) | 1.523 1.149 0.696 0.172 0.088 0.069 0.054 0.040 0.032 0.030
BP-Net (Tang et al.|[2024) 0.749 0.547 0302 0.131 0.090 0.070 0.054 0.039 0.031 0.023
GuideNet (Tang et al.|[2020) 0.908 0.603 0.478 0.187 0.101 0.081 0.070 0.087 0.195 —

GBPN-1 0.647 0331 0.179 0.135 0.101 0.081 0.065 0.048 0.037 0.027
GBPN-2 0.649 0.364 0.198 0.120 0.085 0.067 0.053 0.039 0.032 0.026
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Our method is listed in the last two rows, GBPN (with variants GBPN-1 and GBPN-2), consistently
achieves the highly competitive performance across all sparsity levels. Under extremely sparse input,
20 and 50 points, GBPN-1 achieves the lowest RMSE, significantly outperforming other methods.
As the number of input points increases, GBPN-2 starts to excel, obtaining the best performance
at intermediate sparsity levels more than 100 points. Notably, both GBPN variants remain highly
effective even at dense input levels (5000 and 20,000 points). In contrast, GuideNet
and Cformer has a worse performance when the input depth is significantly denser
(beyond approximately 5000 points) than the training sparsity (500 points). Similar phenomenon has
also been observed by (Zuo & Deng] [2024)), and we attribute this to the lack of robustness to changes
in input sparsity. Both GuideNet (Tang et al} 2020) and CFormer (Zhang et al| [2023) directly process
the sparse depth map using convolutional layers, which are not optimal for handling sparse data.
In addition, these methods were trained exclusively with 500 valid points. When presented with a
significantly denser input at test time, the input distributions passed to the initial convolutional layers
differ drastically from what the network was trained on. This domain shift may cause the network to
produce worse results, regardless of whether the input density is increased or decreased. Our method
alleviate this issue by treating sparse depth measurements as principled observation terms within a
globally optimized MRF framework.

The qualitative comparison in Fig. [I0] further confirms these findings. Despite varying sparsity levels,
our method reconstructs sharper structures and more accurate depth boundaries compared to existing
approaches. In particular, it maintains strong performance under sparse input conditions where other
methods tend to blur edges or produce overly smooth estimations. These results demonstrate that
GBPN is both robust and generalizable across a wide range of input sparsity, making it well-suited for
real-world scenarios with depth measurements of various sparsity, e.g. SfM (Schonberger & Frahm|

2016).

A.6 NOISE SENSITIVITY

In the real world, depth measurements may tend to be noisy due to sensor errors or environmental
factors like fog. To evaluate the noise sensitivity of DC methods, we evaluate the compared methods
with noisy depth input. Specifically, each sparse depth measurement is perturbed by a uniformly
distributed relative error, 6. For instance, # = 1% indicates an error uniformly sampled between —1%
and 1% of the true depth value. All models were trained on the clean NYUv2 dataset and evaluated
on these corrupted inputs. As shown in Table[8] GBPN consistently achieves the best RMSE across
noise levels ranging from 6 = 1% to 8 = 5%, demonstrating its robustness against noise and its
ability to maintain stable and accurate depth predictions even under corrupted measurements.

Table 8: RMSE (mm) Comparison across different levels of noise in sparse depth measurements.
Method 0=1% 6=2% 0=3% 0=4% 60=5%

89.82 93.31 98.77 107.11 116.23

NLSPN (Park ot al.| 2020 9348 9686 10193 11038 119.72
9281 9627 101.88 110.12 119.98

CFormer (Zhang et al.[[2023]
Tang et al.| 2024 90.63  93.54 9843 10612 113.85

GuideNet (Tang et al. 101.91 104.12 10832 11492 12251
GBPN 87.17 9041 95.60 104.01 113.10

A.7 EFFICIENCY COMPARISON

We compare the runtime efficiency of DC methods on samples from NYU and KITTI dataset with
input resolution of 256 x 320 and 352 x 1216, respectively. As shown in Table[9} GBPN achieves
a competitive balance of runtime, memory usage, and parameter count compared with these SOTA
methods. Here, GuideNet demonstrates the fastest inference speed, while CFormer and OGNI-DC
are notably slower. Our GBPN exhibits a moderate inference time compared to these SOTA methods.
Comparing with BP-Net(Tang et al.| 2024), GBPN has a higher runtime but requires fewer parameters.
The lower parameter count is because the Markov Random Field (MRF) is dynamically constructed
by a relatively small network compared to other methods.
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Figure 10: Qualitative comparison on NYUV2 test set with different sparsity. Our method is

compared with BP-Net 2024), NLSPN (Park et al} 2020), GuideNet 2020),
CFormer (Zhang et al,2023)) and OGNI-DC (Zuo & Deng}, [2024)). For each sparsity level, the first

row is input image, the second row is sparse map.

Table 9: Comparison of inference time (ms), GPU memory (GB), and number of parameters (M).

256 x 320 352 x 1216
Method Runtime GPU Memory Runtime GPU Memory Params (M)
(ms) (GB) (ms) (GB)
GuideNet (Tang et al.] 2020| 3.52 4.65 12.95 8.85 62.62
NLSPN dPark et al.|[2020 8.50 1.26 39.34 5.69 26.23
BP-Net (ITang et al.|[2024 19.87 5.31 77.64 9.07 89.87
CFormer (Zhang et al.|[2023 115.50 1.98 150.76 7.85 83.51
OGNI-DC (Zuo & Deng![2024 177.02 277 266.06 9.25 84.37
GBPN 44.57 4.47 137.49 8.70 39.03

Our GBPN consists of a Graphical Model Construction Network (GMCN) to dynamically construct a
scene-specific Markov Random Field (MRF), and a Gaussian Belief Propagation (GBP) module for
depth distribution inference. We analyzed the computation and runtime of these two components
at an input resolution of 256 x 320. The GMCN is built using highly-optimized PyTorch layers,
whereas our GBP module is a custom implementation. As shown in Table[I0} the computation of
the GBP module are roughly 200 times lower than those of the GMCN, yet it requires 3 times more
computation time. This inefficiency, where less computation takes more time, is primarily due to the
limitations of our custom GBP implementation. Although our current implementation is parallelized
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on GPUs, it lacks the extensive optimization like the standard PyTorch layers and thus has significant
potential for acceleration in future work.

Table 10: Comparison of computation and runtime between GMCN and GBP.

Components Computation (GFLOPs) Runtime (ms)

GMCN 62.58 11.03
GBP 0.26 33.54

Our GBPN also has the advantage of flexible latency tuning. As the target depth is optimized gradually
in an iterative manner, we can trade off the model’s latency and performance by simply adjusting the
number of iterations. We list the trade-off in Table[TT|by starting from our GBPN model with a total of
13 iterations and then gradually reducing the number of iterations. This property is highly beneficial
for real applications’ deployment, as GBPN can be easily tailored to specific latency requirements
by simply adjusting the number of optimization iterations. In contrast, feed-forward networks like
CFormer (Zhang et al., [2023)) must complete their full inference pass to produce the result, making
them difficult to adapt to varying latency budgets.

Table 11: Trade-off between latency and accuracy on the NYUv2 validation set under different
number of iterations.

Iteration 5 6 7 8 9 10 11 12 13

RMSE under 500 points (m) 0.146  0.141 0.117 0.106  0.099 0.098 0.090 0.087 0.085
RMSE under 400 points (m) ~ 0.157 0.151 0.126  0.114 0.107 0.104 0.096 0.093  0.091
RMSE under 300 points (m) 0.178 0.171 0.140 0.128 0.119 0.113 0.104 0.101 0.100
RMSE under 200 points (m) 0.241  0.228 0.184 0.173 0.154 0.137 0.124 0.121 0.119
RMSE under 100 points (m)  0.471 0439 0356 0344 0252 0.298 0.238 0.233 0.214

Runtime (ms) 22.17 2498 2797 3135 3341 3655 3927 4200 44.57

A.8 DECLARATION OF LLM USAGE
This is an original research paper. The core method development in this research does not involve

LLMs as any important, original, or non-standard components. LLM is used only for editing and
formatting purposes.
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