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Abstract
CLIP-based classifiers rely on the prompt con-001
taining a {class name} that is known to the002
text encoder. That is, CLIP performs poorly on003
new classes or the classes whose names rarely004
appear on the Internet (e.g., scientific names005
of birds). For fine-grained classification, we006
propose to (1) express the class name into a007
set of pre-defined text descriptors that describe008
the visual parts of that class; and (2) match009
the embeddings of the detected parts to their010
textual descriptors in each class to compute a011
logit score for classification. In a zero-shot set-012
ting where the class names are unknown, PEEB013
outperforms CLIP by a large margin (∼10× in014
accuracy). Compared to part-based classifiers,015
PEEB is not only the state-of-the-art on the016
supervised-learning setting (88.80% accuracy)017
but also the first to enable users to edit the class018
definitions to form a new classifier without re-019
training. Compared to concept bottleneck mod-020
els, PEEB is also the state-of-the-art in both021
zero-shot and supervised learning settings.022

1 Introduction023

Fine-grained bird classification (Wah et al., 2011;024

Van Horn et al., 2015) is a long-standing challenge025

in computer vision. Yet, state-of-the-art bird classi-026

fiers often have one or more of the following three027

limitations. First, many models both CNN-based028

(Krause et al., 2016) and ViT-based (He et al., 2022)029

are inherently black-box. That is, they have no030

built-in mechanisms that explain to users how a de-031

cision is made, e.g., which bird traits make a model032

think a given bird is Indigo Bunting? Second, many033

bird classifiers claim to be explainable (Chen et al.,034

2019; Donnelly et al., 2022) by comparing the input035

image with a set of learned, part-based prototypes036

or natural language concepts. Yet, such prototypes037

are feature vectors and therefore not editable by038

users. Third, textual concept-based models oper-039

ate at the image level and it is unknown what im-040

age details match a given descriptor (Menon and041

   
   back: vibrant green coloring
   beak: conical, silver-gray
   belly: rich red hue
   ...
   throat: bright red plumage

(a) textual concept explanations
operate at the image level

(c) PEEB explanations pair up each detected object part with a textual descriptor

Input image
   
   green back
   long, pointed beak
   yellow or red belly
    ...
   vibrant red throat

Text descriptors

(b) part-based prototypes represent
image patches and not editable by humans

Part prototypesInput image

Painted bunting
0.72

Figure 1: Existing explanations are either (a) textual but
at the image level; or (b) part-level but not textual. Com-
bining the best of both worlds, PEEB (c) first matches
each detected object part to a text descriptor, then uses
the part-level matching scores to classify the image.

Vondrick, 2022; Yang et al., 2023). Fourth, most 042

classifiers require either training-set images in a 043

supervised-learning setting or demonstration im- 044

ages in a zero-shot setting (Xian et al., 2018; Zhu 045

et al., 2018). This requirement is impractical when 046

building a classifier for a novel class whose photos 047

do not yet exist in the database. 048

To address the above problems, we propose 049

PEEB, a bird image classifier that is both explain- 050

able and editable via natural language. PEEB clas- 051

sifies images based only on the textual descriptor of 052

bird parts provided by humans (no images needed) 053

and grounds the descriptors to the visual bird parts 054

for more fine-grained explanations (Fig. 1). While 055

PEEB leverages CLIP’s encoders (Radford et al., 056

2021), it uses no class names (e.g., Indigo Bunting) 057

in the prompt. In contrast, CLIP-based classifiers 058

(Radford et al., 2021) and its extensions (Pratt et al., 059

2022; Menon and Vondrick, 2022) rely so heavily 060

on the known class names in the prompt that their 061

accuracy drops significantly when the names are re- 062

moved or replaced by uncommon alters (Sec. 5.1). 063

Using GPT-4, we construct a textual descriptor 064
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(OpenAI, 2023) to describe each bird part of ev-065

ery species (see Appendix C). PEEB first generates066

12 visual part embeddings, then localizes the 12067

bird parts in the input image based on these embed-068

dings (Fig. 2). The unnormalized distance (logits)069

between the input image and every class would070

be the sum of the 12 dot products between the071

paired visual and textual part embeddings (Fig. 3).072

Besides being editable by humans, PEEB outper-073

forms concept-based explainable classifiers across074

different zero-shot settings and prototypical part075

networks in a supervised fashion.076

To our knowledge, all existing public bird-image077

datasets (listed in Table A4) are limited in size078

(less than 100K images per dataset) and in the079

number of classes (less than 1,500 species per080

dataset), impeding large-scale, vision-language,081

contrastive learning research. Therefore, for our082

pre-training, we build Bird-11K, an unprecedent-083

edly large bird-image dataset of ∼290K images and084

∼11K species, i.e., basically all bird species on085

Earth (Sec. 3). Bird-11K is constructed from 7 ex-086

isting bird datasets and 55K new images that we087

collect from the Macaulay Library.088

Our main findings are:1089

1. CLIP-based classifiers depend mostly on class090

names in the prompt: the CUB accuracy of091

M&V classifier (Menon and Vondrick, 2022)092

drops substantially from 53.78% to 5.89% and093

5.95% after class names are removed or re-094

placed with scientific names in the prompts,095

respectively (Sec. 5.1).096

2. Our part-level pre-trained PEEB outperforms097

CLIP-based classifiers by +8 to +29 points in098

bird classification across CUB, NABirds, and099

iNaturalist datasets (Sec. 5.2).100

3. PEEB allows defining new classes in text dur-101

ing the test time without re-training the mod-102

els (Fig. 2). Besides interpretability and ed-103

itability, PEEB outperforms other text concept-104

based methods in the generalized-zero-shot105

setting (Sec. 5.3).106

4. On a zero-shot setting by Elhoseiny et al.107

(2017), PEEB also outperforms other existing108

state-of-the-art text concept-based methods109

(Sec. 5.4), especially on “hard” splits, show-110

ing strong generalization capabilities.111

1Code and dataset are released on https://anonymous.
4open.science/r/peeb-Bird-11K/README.md.

5. When compared with explainable classifiers in 112

supervised learning on CUB, PEEB scores an 113

88.80% accuracy, which is competitive to the 114

best CUB classifiers trained using supervised 115

learning (81–87% accuracy) in the literature 116

(Sec. 5.5) that are often not editable. 117

2 Related Work 118

Standard CNNs and Transformers It is common 119

to build bird classifiers based on standard CNNs 120

such as ResNets (He et al., 2016) or ViTs (He et al., 121

2022). Although high-performing, these models do 122

not admit an inherent explanation interface (Gun- 123

ning et al., 2021) and therefore rely on post-hoc 124

interpretability methods, which tend to offer in- 125

accurate and unstable, after-the-fact explanations 126

(Rudin, 2019; Bansal et al., 2020). In our work, 127

the textual part descriptors form a natural-language 128

bottleneck interface that enables users to observe 129

and edit the bird attributes that contribute to each 130

final prediction. That is, users can re-program the 131

classifier without having to re-train any network 132

(see Fig. 2). 133

Prototypical Part Networks There are bird clas- 134

sifiers, such as ProtoPNet (Chen et al., 2019), de- 135

signed with an explainability objective to learn 136

prototypes i.e., learnable concepts (Nauta et al., 137

2021; Donnelly et al., 2022; Nguyen et al., 2022; 138

Nauta et al., 2022; Kim et al., 2022; Wang et al., 139

2021). Yet, because such prototypes are real-valued 140

vectors, it is unknown how much users could in- 141

terpret and use them in a downstream task. In 142

contrast, PEEB is a bird classifier that relies on 143

part-based concepts but allows users to define the 144

textual descriptors of the birds of interest, while 145

prior prototype-based classifiers require complete 146

re-training if any prototype needs modifications. 147

Textual-based Concept Bottlenecks Recent 148

vision-language models (VLMs) are often consid- 149

ered interpretable due to their reliance on natu- 150

ral language concepts. However, several works 151

(Samuel et al., 2021; Yuksekgonul et al., 2023; 152

Esfandiarpoor and Bach, 2023), which rely on spe- 153

cific conditions such as differences in class-wise 154

captions (Esfandiarpoor and Bach, 2023) or learned 155

concept weights (Yang et al., 2023; Panousis et al., 156

2023; Oikarinen et al., 2023), are constrained and 157

lack the capability for generalization. Another line 158

of work with diverse approaches to process textual 159

concepts for training typically lacks immediate ed- 160

itability and often requires re-training or additional 161
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crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: distinct black patch
0.30

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with small white square
0.57

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: rusty
0.43

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with black tips
0.74

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

(a) Input image (b) Indigo Bunting 0.0331 (c) Eastern Bluebird 0.0445 (d) Example 
Indigo Bunting

PEEB

Explainable
Editable 
Bottleneck

Figure 2: Given an input image (a) from an unseen class of Eastern Bluebird, PEEB misclassifies it into Indigo

Bunting (b), a visually similar blue bird in CUB-200 (d). To add a new class for Eastern Bluebird to the list of 200
classes that PEEB considers when classifying, we clone the 12 textual descriptors of Indigo Bunting (b) and edit (-
-▸) the descriptor of throat and wings (c) to reflect their identification features described on AllAboutBirds.org
(“Male Eastern Bluebirds are vivid, deep blue above and rusty or brick-red on the throat and breast”). After the
edit, PEEB correctly predicts the input image into Eastern Bluebird (0.0445) out of 201 classes (c).

steps for new concepts (Ji et al., 2018; Zhu et al.,162

2018; Paz-Argaman et al., 2020; Chen et al., 2020;163

Kousha and Brubaker, 2021; Rao et al., 2023; Han164

et al., 2023). CLIP-based classifiers rely heavily165

on having correct class names rather than descrip-166

tors in text prompts (Pratt et al., 2022; Menon and167

Vondrick, 2022) and thus are neither explainable168

nor editable to humans. Unlike CLIP-based mod-169

els, PEEB reveals what image details are being170

used for classification by matching descriptors and171

visual bird part (e.g. beak in Fig. 3).172

Attribute-based Classifiers The Attribute Label173

Embedding (ALE) approach (Akata et al., 2015)174

employs a fixed set of attributes and trains an175

attribute-to-label weight matrix for zero-shot clas-176

sification. Several studies (Xu et al., 2020; Hanouti177

and Le Borgne, 2023) highlight its effectiveness on178

datasets like CUB, SUN (Xiao et al., 2010), and179

AWA (Xian et al., 2019). However, ALE has a lim-180

itation in terms of flexibility i.e. expanding label181

numbers necessitates overhauling the attribute set,182

weight matrix, and model re-training. This rigidity183

contrasts with our target for a scalable and adapt-184

able framework, leading us to explore alternatives185

beyond ALE despite its success.186

3 Bird-11K Dataset187

3.1 Dataset construction188

We combine bird images from 7 distinct datasets189

with ∼55K images (10,534 classes) collected from190

Cornell’s Macaulay Library, to form a unified191

Bird-11K dataset 2 (Table A4) for large-scale pre- 192

training. To the best of our knowledge, Bird- 193

11K, comprising 440,934 images spanning 11,183 194

classes, is the first bird dataset that encompasses 195

almost all species on Earth. Since PEEB learns 196

to match visual parts to textual descriptors, it re- 197

quires that bird images be distinctly visible and 198

sufficiently large for accurate part localization and 199

matching (See appendix E.3 for ablation study). 200

However, small and “hard-to-see” bird images in 201

Bird-11K make the dataset noisy and the training 202

complex. Thus, we employ OWL-ViTlarge (Min- 203

derer et al., 2022) to detect bird objects in all im- 204

ages using the query “bird” and filter out images 205

with the detected bird’s bounding boxes smaller 206

than 100 × 100 pixels. 207

To circumvent class ambiguity, we retain only 208

the child species and exclude all parent classes. 209

For instance, it is infeasible to systematically map 210

the parent class Cardinal to child classes such as 211

Yellow Cardinal or Northern Cardinal so we keep 212

only the child classes for more diverse training. 213

Following these filtration steps, the refined Bird- 214

11K dataset retains 294,528 images across 10,811 215

classes (Table A4). For each species in Bird-11K, 216

we generate a set of part-based descriptors using 217

GPT-4. Details of the descriptor generation are 218

provided in Appendix C. 219

2We do not redistribute the published datasets but release
a script to reconstruct Bird-11K.
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Image
Encoder

"back", "beak", "belly", ..., "throat"
    

Text
Encoder

12 part names

Visual Part
Embedding
Selection

Part MLP

Box MLP

12 visual part
embeddings

Long-tailed Duck

        

Long-tailed Duck

        

Painted Bunting

"back: vibrant green coloring",
"beak: conical, silver-gray",

"belly: rich red hue",
...,

"throat: bright red plumage"

Text
Encoder

Descriptor
Embedding
Matching

Painted Bunting

Frozen, shared weights

For classification

For box prediction

Figure 3: During inference, 12 visual part embeddings are selected based on the highest cosine similarity with
encoded part names. These visual part embeddings are processed through the Box MLP for box prediction (Ð→).
Simultaneously, the same embeddings are forwarded to the Part MLP, and the output is then matched with encoded
descriptors to make final predictions (Ð→). A detailed diagram is provided in Fig. A1.

3.2 Dataset splits for contrastive pre-training220

Two distinct zero-shot settings emerged in the re-221

cent literature. The first setting is conventional222

zero-shot (ZSL), which ensures a model is not ex-223

posed to any test classes during training. Adhere224

to the conventional setup, we execute different ex-225

clusion strategies on Bird-11K to make sure the226

test classes are never exposed to the pre-trained227

models. For evaluation, we employ the traditional228

CUB split proposed by Akata et al. (2015) and two229

harder splits: Super-Category-Shared/Exclusive230

(SCS/SCE) by Elhoseiny et al. (2017). For exam-231

ple, in ZSL on CUB, we exclude all CUB classes232

in Bird-11K for pre-training and fine-tune only on233

the corresponding training set given by a ZSL split.234

The second setting is generalized zero-shot235

(GZSL), where models like CLIP are trained on236

large-scale datasets that may inadvertently include237

a subset of the testing classes or images. In the238

GZSL test, we exclude all test sets from CUB,239

NABirds, and iNaturalist, and directly evaluate the240

pre-trained model without further fine-tuning.241

4 Method242

4.1 Backbone: OWL-ViT bird-part detector243

OWL-ViT (Minderer et al., 2022) is an open-244

vocabulary object detector that detects objects in an245

image, given text queries, even if those objects are246

unseen during training. OWL-ViT consists of four247

components: a standard Vision Transformer image248

encoder, and an architecturally identical text en- 249

coder, a box regression head, and a box classifica- 250

tion head. While the box regression head is a three- 251

layer Multilayer Perceptron (MLP) followed by a 252

GELU activation (Hendrycks and Gimpel, 2016) 253

for the first two linear layers, the box classification 254

head is simply a linear layer to project the visual 255

embeddings to the same dimensional space with 256

text embeddings. 257

4.2 Part-based, explainable, and editable bird 258

classifier (PEEB) 259

Architecture The PEEB model is composed of 260

two encoders—an image encoder and a text en- 261

coder—as well as three key components: a linear 262

projection block, a part MLP (Multi-Layer Percep- 263

tron), and a box MLP. Part MLP layer is designed 264

for mapping between visual parts and descriptors 265

that can be directly used for classification (Ð→ in 266

Fig. 3). This design allows PEEB to perform arbi- 267

trary ways of classification. The remaining compo- 268

nents of the model are adopted from the OWL-ViT 269

framework. Details of the components are provided 270

in Appendix A. 271

Model Inference For a given image, we first em- 272

ploy the 12 part names as textual queries and select 273

the visual part embeddings based on the cosine 274

similarity. These selected visual part embeddings 275

are then simultaneously fed into both the part MLP 276

and the box MLP. The box MLP will predict the 277

bounding box coordinates of each part. The output 278
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from the part MLP is matched against the encoded279

text descriptors, with predictions being made based280

on their aggregated cosine similarity. Specifically,281

we compute the dot product between the selected282

visual part embeddings and text embeddings of283

part descriptors, summing up the resulting twelve284

scores to form a logit for each class. Predictions285

are then obtained by applying the argmax to these286

logits. An overview diagram of PEEB’s inference287

process can be found in Fig. 3.288

4.3 Training strategy289

We empirically find that solely training the290

part MLP layer does not achieve the desired classi-291

fication accuracy, prompting us to update the image292

encoder. However, re-training this encoder impacts293

the linear projection and box MLP layers. As a294

result, we have to train all components together.295

All the components are initialized from the corre-296

sponding components in OWL-ViT, except for our297

proposed part MLP. Our training strategy has two298

phases: two-stage pre-training on the large-scale299

Bird-11K dataset and fine-tuning on downstream300

tasks. We provide full hyperparameter details of301

PEEB in appendix A.8.302

Objectives There are three objectives to train303

PEEB: (a) Train the part MLP layer contrastively304

to maximize the similarity between related part-305

descriptor pairs while minimizing the unrelated306

pairs using symmetric cross-entropy (CE) loss (Rad-307

ford et al., 2021); (b) Train the linear projection308

layer to mimic OWL-ViT’s behaviors (i.e. the simi-309

larity matrix) for part selection with symmetric CE310

loss; and (c) Train the box MLP layer for bound-311

ing box regression with DETR losses (Zheng et al.,312

2020) i.e. a linear combination of ℓ1 corner-to-313

corner distance loss and GIoU loss (Rezatofighi314

et al., 2019).315

Challenges One of the problems emerges when316

we jointly train all components together: the model317

learns at a significantly slow pace since PEEB318

needs to learn to optimize two symmetric cross-319

entropy losses while maintaining the high-quality320

predicted boxes. To address this problem, we split321

the pre-training phase into two stages: (1) train322

the image encoder and part MLP layer with the323

first objective; then (2) train the linear projection324

and box MLP layers with the second and third ob-325

jectives to accordingly adjust their weights to the326

changes in the image encoder. Notably, the text en-327

coder is always frozen because it was designed for328

open vocabulary, so its generalizability to unseen329

texts (i.e., descriptors of an unseen bird) should be 330

preserved. 331

4.3.1 Pre-training on Bird-11K dataset 332

Stage 1, contrastive learning with teacher 333

model: The image encoder and part MLP layer 334

are jointly trained using the symmetric CE loss, 335

which is particularly suitable for PEEB as it learns 336

the mapping between visual parts and descriptors. 337

In this stage, we follow the teacher model – OWL- 338

ViT to select part embeddings to ensure the selected 339

part embeddings are semantically meaningful, e.g., 340

can be used for box prediction (Fig. A2). 341

Stage 2, eliminate teacher dependency: 342

As the image encoder is modified in stage 1, 343

the linear project and the box MLP needs to be 344

updated accordingly. Specifically, we consider 345

the teacher model OWL-ViT as ground-truths and 346

train the linear projection layer using symmetric 347

CE loss (Fig. A3, 1a–c, 2a–c). For box MLP, 348

given the absence of human-annotated boxes for 349

individual parts, we obtain pseudo labels sourced 350

from OWL-ViTlarge as ground-truths for the train- 351

ing with DETR losses (Fig. A3, 2d). In this train- 352

ing step, the image encoder is frozen while the 353

part MLP layer is not involved. After two-step 354

training, PEEB can perform zero-shot classifica- 355

tion while providing the mappings between visual 356

parts and descriptors as faithful explanations. 357

4.3.2 Fine-tuning on target datasets 358

We can further fine-tune the pre-trained model 359

on downstream tasks, e.g., CUB, NABirds and 360

iNaturalist to compare with other baselines (e.g. 361

prototype-based approaches). In this phase, to 362

adapt to the downstream tasks, all components ex- 363

cept the text encoder are trained jointly and the loss 364

function for part MLP is changed from symmetric 365

CE to CE while other losses are kept intact. 366

5 Experiments & Results 367

We conduct systematic experiments to compare the 368

generalization ability of PEEB with explainable 369

methods on two zero-shot settings: GZSL (Sec. 5.1 370

– 5.3) and ZSL (Sec. 5.4). Notably, our method 371

demonstrates significantly superior performance in 372

GZSL and generalizes better in ZSL setting. 373

Moreover, following Donnelly et al., 2022, we 374

finetune and evaluate PEEB on downstream tasks 375

to measure the transferability compared to other 376

part- and text concept-based methods (Sec. 5.5). 377
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Results show that PEEB achieves decent perfor-378

mance while providing more faithful explanations379

(Figs. 4 and A9 to A11). According to the evalua-380

tion for visual part localization (Appendix E.7) and381

qualitative analysis (Appendix G), we find that the382

box prediction performance of PEEB is comparable383

with OWL-ViTbase32.384

5.1 CLIP-based classifiers depend mostly on385

class names (not part descriptors)386

M&V shows that incorporating descriptors gener-387

ated by GPT-3 (Brown et al., 2020) to class names388

increases CLIP accuracy on downstream tasks. Yet,389

it remains unknown how useful the descriptors390

are compared to the randomized descriptors for391

M&V’s method.392

Experiment To address the concern, we conduct393

two systematic studies: (1) randomly swap a set of394

part descriptors among classes in CUB, NABirds,395

and iNaturalist datasets and measure the contri-396

bution of descriptors by the difference in model397

performance on CUB test set (i.e., 200-way classifi-398

cation) using original and random descriptions. (2)399

Replace the common names with scientific names400

in CUB, NABirds, and iNaturalist and measure the401

difference in model performance. The first experi-402

ment aims to study the contributions of descriptions403

to the CLIP-based method, and the second exper-404

iment tries to understand the dependencies of the405

class names.406

Results When random descriptors are used, M&V407

’s accuracy drops marginally by -0.9 points, while408

PEEB’s performance significantly deteriorates, in-409

dicating a strong dependence on accurate descrip-410

tions. However, when only descriptors are used411

without class names (Table 1) or class names are412

replaced by scientific names (Table 2), M&V ’s ac-413

curacy reduces drastically to nearly random chance,414

underscoring the reliance of CLIP-based classifiers415

on class names.416

5.2 Part-based pre-trained PEEB417

outperforms CLIP-based classifiers418

The dependence on class names suggests CLIP is419

potentially exposed to class names during training.420

Thus, we compare PEEB with the CLIP-based clas-421

sifiers in the GZSL setting for a fair comparison.422

Experiments We conduct two-stage pre-training423

for PEEB on Bird-11K where CUB, NABirds, and424

iNaturalist test sets are excluded for evaluation.425

Note that the contrastive pre-training is on part426

level, that is, PEEB does not have direct access to 427

the class labels. 428

Results PEEB outperforms the baselines across 429

all three datasets, achieving improvements of (+10 430

to +12 points), (+28 to +29 points) and (+8 to +9 431

points) on CUB, NABirds and iNaturalist, respec- 432

tively (Table 2). 433

Table 1: We evaluate model accuracy on the CUB test
set using both original and incorrect descriptors. The re-
sults highlight M&V’s minimal dependency on descrip-
tors in contrast to our method’s significant performance
drop with shuffled descriptors.

CLIP M&V PEEB (ours)

Using class names ✓ ✓ ✗ ✗

Original Descriptors 52.02 53.78 5.89 64.33

Incorrect Descriptors n/a 52.88 0.59 0.88

Table 2: In GZSL setting, our method’s top-1 accuracy
is +8 to +29 points higher than the two baselines. When
using novel class names (or scientific names which are
less common), our method is around 10× better than the
others.

Methods CUB CUBsci NABirds NABirdssci iNaturalist iNaturalistsci

CLIP (2021) 52.02 5.95 39.35 4.73 16.36 2.03

M&V (2022) 53.78 7.66 41.01 6.27 17.57 2.87

PEEB (ours) 64.33 69.03 25.74

5.3 PEEB is superior to text concept-based 434

classifiers on GZSL setting 435

The advancements in Large Language Models 436

(LLMs) led to the emergence of text concept- 437

based approaches (Yuksekgonul et al., 2023; 438

Yan et al., 2023; Esfandiarpoor and Bach, 2023; 439

Panousis et al., 2023) aiming to provide a more 440

flexible and explainable classifier. We compare 441

PEEB in the GZSL setup on CUB test set with text 442

concept-based methods. 443

Experiment We conduct an experiment with the 444

same setting as in Sec. 5.2. While PEEB does 445

not use specific concepts, the descriptors it uti- 446

lizes (described in Appendix C) function as open- 447

vocabulary concepts. Most text concept-based 448

methods in GZSL require pre-defined concept sets, 449

limiting their applicability to similar datasets like 450

NABirds or iNaturalist. Hence, our evaluation is 451

focused solely on the CUB dataset. 452

Results As indicated in Table 3, our PEEB model 453

exhibits superior GZSL performance, outperform- 454

ing recent text concept-based approaches by +3 455
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Original Descriptors (a) Incorrect Descriptors (b)
Blue Jay Blue Jay 0.0059 Blue Jay 0.0058

M
&

V

0.367

0.360

0.364

0.366

0.363

0.366

0.359

bright blue, white, and black plumage

crest on its head

chunky bird with a full, rounded tail

black band around the neck and head
black, bristle-like feathers covering the
nostrils
blue wings and tail with black banding and white
tips
large, black beak.

0.361
0.326
0.357
0.372
0.363
0.364
0.370
0.364
0.360

bird species
also known as Oriental turtle dove or Rufous
turtle dove
medium-sized dove
predominantly grey or brown body
black and white striped patch on the neck
dark, slender bill
long, rounded tail with a white border
black eyes surrounded by a pale eye-ring
pinkish or reddish legs and feet

Blue Jay 0.6899 (c) Least Tern 0.0611 (d)

PE
E

B

0.871
0.871
0.809
0.876
0.869
0.842
0.828
0.854
0.828
0.857
0.869
0.868

crown: bold blue crest
forehead: vibrant blue hues
nape: transitional blue and white feathers
eyes: curious black orbs
beak: sturdy black bill
throat: white/gray frontal feathering
breast: blended blue and white plumage
belly: white/gray underbelly
back: striking blue feathers
wings: brilliant blue with black bands
legs: strong gray limbs
tail: long, blue, fan-like appendage

0.639
0.502
0.531
0.497
0.721
0.434
0.492
0.423
0.738
0.783
0.441
0.128

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

Figure 4: Given the correct descriptors, M&V correctly classifies the input image into Blue Jay (a). Yet, interestingly,
when randomly swapping the descriptors of this class with those of other classes, M&V’s top-1 prediction remains
unchanged (b), suggesting that the class names (hidden) in the prompt have the most influence over the prediction
(not the descriptors). In contrast, PEEB changes its top-1 prediction from Blue Jay (c) to Least Tern when the
descriptors are randomized (d).

to +10 points. Unlike the traditional approaches,456

which primarily rely on predefined concept pools,457

PEEB utilizes domain-specific, natural language458

descriptors. This distinctive approach enables459

PEEB to adapt more flexibly to various datasets460

such as NABirds and iNaturalist. In contrast, con-461

cept pool-based methods often necessitate manual462

concept updates and potential re-training for such463

extensions.464

Table 3: PEEB achieves SOTA performance in the
GZSL setup among the text concept-based methods.
Note: * One shot learning results. † k-means results
with k = 32.

Method CUB Concept-type

FuDD (2023) 54.30 Class-wise Captions
Han et al. (2023) 56.13 Evolving Descriptions
PCBM (2023) 61.00 Pre-defined Concept Pool
Yan et al. (2023) 60.27* Pre-defined Concept Pool
LaBo (2023) 54.19† Pre-defined Concept Pool

PEEB (Ours) 64.33 Class-wise Descriptors

5.4 PEEB generalizes to traditional ZSL465

Some vision-language approaches enable the466

model to process certain textual-based concepts (Ji467

et al., 2018; Zhu et al., 2018; Paz-Argaman et al.,468

2020; Chen et al., 2020; Kousha and Brubaker,469

2021; Rao et al., 2023), and therefore, ZSL is used470

to measure their generalization capability. In this 471

evaluation, we employed the traditional ZSL split 472

on CUB from Akata et al. and the Super-Category- 473

Similar/Exclusive (SCS/SCE) proposed by Elho- 474

seiny et al. on CUB and NABirds. The SCS (easy) 475

and SCE (hard) split are designed based on the 476

species hierarchy to intentionally have two levels 477

of difficulties from the ZSL test. 478

Experiment Adhere to the conventional ZSL set- 479

ting; we exclude all the CUB or NABirds classes 480

for pre-training and fine-tune the model following 481

Akata et al. or Elhoseiny et al.’s split. We randomly 482

select ∼10% from the training set as the validation 483

set and choose the checkpoints based on the lowest 484

validation loss. 485

Results PEEB outperforms all baselines across 486

3 test splits (from CUB and NABirds) by (+4 to 487

+10 points) in terms of harmonic mean, indicating 488

that PEEB is more generalized to not only seen 489

classes (80.78 vs 65.80) but also unseen classes 490

(all other results in Table 4). The easy tests (SCS) 491

guarantee the presence of classes similar to (but 492

distinct from) the ones in the training set. There- 493

fore, all baselines that learn better on the training 494

set tend to have better accuracy in the easy test. 495

Conversely, the hard splits (SCE) ensure the test 496

classes are from different categories of the training 497

classes. This distinction makes the hard test a more 498

accurate metric for assessing a model’s generaliza- 499
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tion ability. PEEB excels over all baselines by (+5500

to +15 points) (accuracy) for SCE split and +2.64501

points (accuracy) compared to CLORECLIP .502

Furthermore, we also evaluate the model that is503

pre-trained without all CUB and NABirds classes504

and compare them with CLIP and M&V meth-505

ods on CUBsci and NABirdssci. Interestingly,506

PEEB outperforms both baselines with (+10 to +12)507

points on CUB and (+1 to +3) points on NABirds508

(Appendix E.1). This finding further substantiates509

the generalization capability of our method.510

Table 4: PEEB consistently outperforms other vision-
language methods under Harmonic mean and especially
in the hard split (SCE) by (+5 to +15) points, highlight-
ing its generalization capability on ZSL.

Methods CUB NABirds
Seen Unseen Harmonic Seen Unseen Harmonic

Data split by Akata et al. (2015)

CLORECLIP (2022) 65.80 39.10 49.05
n/a

PEEB (ours) 80.78 41.74 55.04

SCS/SCE splits

SCS SCE Harmonic SCS SCE Harmonic
(Easy) (Hard) (Easy) (Hard)

S2GA-DET (2018) 42.90 10.90 17.38 39.40 9.70 15.56
GRZSL (2018) 44.08 14.46 21.77 36.36 9.04 14.48
ZEST (2020) 48.57 15.26 23.22 38.51 10.23 16.17
CANZSL (2020) 45.80 14.30 21.12 38.10 8.90 14.43
DGRZSL (2021) 45.48 14.29 21.75 37.62 8.91 14.41
DPZSL (2023) 45.40 15.50 23.11 40.80 8.20 13.66
PEEB (ours) 44.66 20.31 27.92 28.26 24.34 26.15

5.5 Finetuning pre-trained PEEB on511

CUB-200 yields a competitive explainable512

classifier in supervised learning513

We compare our model with explainable methods,514

such as ProtoPNet (Chen et al., 2019), using the515

conventional pre-training and fine-tuning approach516

on Bird-11K and the CUB dataset. We focus on517

evaluating how effectively the pre-trained PEEB518

transfers to downstream tasks, providing insights519

into its adaptability and performance.520

Experiment We further fine-tune all components521

of the pre-trained PEEB on the CUB dataset for522

comparison with other explainable methods. We523

fine-tune the pre-trained model for 30 epochs and524

select the best checkpoints based on validation loss.525

We provide the detailed hyperparameters in Ta-526

ble A2.527

Results In the CUB dataset, our model sets a528

new standard with 86.73% and 88.80% accuracy529

with two different backbones (Table 5), exceed-530

ing Deformable ProtoPNet (86.4%) and even Pro-531

toTree (87.20%). PEEB distinctly maps descriptors532

to visual inputs, facilitating easier debugging and533

clearer understanding as demonstrated in Fig. 4. 534

Table 5: PEEB is a state-of-the-art model (here, top-1
accuracy on CUB-200) w.r.t. explainable classifiers in
supervised learning. * Five ensembled models.

Methods Model size Backbone Accuracy

Base (ViT) (2021) 22M DeiT-S (2021) 84.28

– Concept bottleneck classifiers
Concept Bottleneck Models (2020) 11M ResNet-18 (2016) 80.10
CPM (2023) 155M ViT-B/16 (2021) 72.00
CDM (2023) 155M ViT-B/16 74.31
LaBo (2023) 427M ViT-L/14 81.90

– Part-based classifiers
ProtoPNet (2019) 22M DeiT-S 84.04
ProtoTree (2021) 92M* ResNet-50 (2016) 87.20*
TesNet (2021) 79M Dense121 (2017) 84.80
Deformable ProtoPNet (2022) 23M ResNet-50 86.40
ProtoPFormer (2022) 22M DeiT-S 84.85
ViT-Net (2022) 26M DeiT-S 84.26

PEEB (ours) 155M OWL-ViTbase32 86.73
PEEBB16 (ours) 155M OWL-ViTbase16 88.80

6 Discussion and Conclusion 535

Explainability and editability PEEB stands out 536

as a transparent and editable classifier to users by 537

grounding the text descriptors to the visual parts 538

in the image (Fig. 4-bottom). This transparent 539

decision-making process plays an important role in 540

user understanding. For instance, in Fig. 4 (up- 541

per right), the challenge of understanding why 542

the model predicts accurately persists, particularly 543

when we already know that the descriptors are in- 544

correct. In contrast, PEEB’s explanations not only 545

make errors like the mismatch between throat and 546

wings more apparent but also enable users to adjust 547

descriptions, thereby improving model accuracy 548

without the need for retraining (Fig. 2). 549

This study introduced PEEB, a pioneering part- 550

based, explainable, and editable bird classifier that 551

leverages textual descriptors for bird parts. By 552

grounding natural language descriptors with visual 553

features, PEEB brings transparency to its decision- 554

making. Besides, PEEB achieves superior perfor- 555

mance in both GZSL and ZSL settings compared 556

to existing state-of-the-art explainable models. It 557

underscores PEEB’s robustness and versatility in 558

handling a variety of classification scenarios, es- 559

pecially in fine-grained tasks like avian classifica- 560

tion. Moreover, our work contributes to the broader 561

research community by developing the Bird-11K 562

dataset, which encompasses a diverse range of bird 563

species and presents a valuable resource for fur- 564

ther explorations in fine-grained classification and 565

beyond. 566
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7 Limitations567

Text encoder may not fully comprehend the bird568

descriptors Our text encoder, pre-trained on a569

broad image-text dataset, may not fully capture570

the intricate details specific to birds. Furthermore,571

CLIP text encoders trained by contrastive learning572

are known to suffer from the binding problem and573

do not understand some logical operators such as574

“and”, “or”, or negation. PEEB accuracy depends575

directly on the quality of the text encoder.576

Dependency on image encoder for part visibil-577

ity The image encoder’s role in determining the578

visibility of bird parts in an image poses another579

limitation. Our model operates under the assump-580

tion that 12 parts are always visible in a bird image,581

requiring it to score these parts even when they582

might not be visually present. In an ideal scenario,583

the model should learn to assign the absence part584

a low score. This approach, which lacks direct su-585

pervision, relies heavily on unsupervised learning586

derived from class labels. Consequently, the lim-587

ited dataset size of approximately 290K training588

images in Bird-11K may not sufficiently support589

robust unsupervised learning.590

Hallucinations in GPT-4 descriptors The ac-591

curacy of our model is directly impacted by the592

quality of GPT-4 descriptors. Our empirical anal-593

ysis across 20 bird classes revealed that, on aver-594

age, 45% of these descriptors do not accurately595

reflect the birds’ features (Appendix F.1). How-596

ever, we observed that revising certain descriptors597

in the CUB dataset led to a significant improve-598

ment of +10 points in classification accuracy for599

those classes (Appendix F.2). This primitive obser-600

vation suggests that PEEB can be further improved601

if trained with human-labeled descriptors.602

Application beyond bird classification While603

PEEB is designed for fine-grained classification in604

general, our current work focuses exclusively on605

bird classification. This is not due to any inherent606

limitation in the model’s design but rather a result607

of the limited availability of fine-grained, open-608

source datasets in other domains. While the model609

can be applied to a wide range of fine-grained610

classification tasks, the lack of public, large-scale611

datasets for fine-grained classification (e.g., dogs612

or butterflies) has directed our focus towards this613

specific area for the time being.614
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A Architecture details923

A.1 Image encoder and text encoder924

We employ the image encoder and text encoder925

form OWL-ViT. In order to maintain a general un-926

derstanding of natural languages and avoid overfit-927

ting our training samples, we keep the text encoder928

frozen for all training and experiments. This setup929

allows our design to be flexible about the choice of930

text encoder, e.g., one can easily replace the text931

encoder without changing other architecture.932

A.2 Linear projection (for part embedding933

selection)934

The image embedding will be forwarded to a Lin-935

ear Projection layer, which is composed of a learn-936

able logit scale, a learnable logit shift, and an Ex-937

ponential Linear Unit (ELU) activation function.938

These processed image embeddings are then have939

the same dimension as the text embeddings. We se-940

lect a single image embedding for each text query.941

In this context, the text queries correspond to the942

component names of the target object, which in-943

cludes twelve distinct parts. This selection is based944

on the cosine similarity between the projected im-945

age embeddings and the text embeddings. Finally,946

the chosen images embeddings (before projection)947

will be sent to the Part MLP for classification and948

Box MLP for box prediction (Fig. A1, Step 1).949

A.3 Part MLP950

We introduce a Part MLP block to facilitate part-951

based classification. It comprises a three-layer952

MLP with GELU activations (Hendrycks and Gim-953

pel, 2016). All the linear layers in the MLP are954

designed to match the dimensions of the visual em-955

bedding except for the last layer, which is specif-956

ically tailored to align with the size of the text957

embedding. This component takes an image em-958

bedding as input and projects it into the same space959

as the text embedding so that it can be directly960

compared with the text embedding.961

A.4 Box MLP962

The Box MLP retained from OWL-ViT consists of963

a three-layer MLP. It takes the visual embedding964

as input and generates a four-element vector cor-965

responding to the center coordinates and size of966

a bounding box (e.g., [x, y, width, height]).967

It is important to note that the image embedding968

inputs of Box MLP and Part MLP layers are the969

same, as shown in Fig. A1, Step 2.970

A.5 Visual part embedding selection 971

As shown in Fig. A1 step 1, 1c, the image em- 972

beddings are first projected by a Linear Projection 973

layer and compute the dot product with the encoded 974

part names. The image embeddings (before linear 975

projection) are chosen as visual part embeddings 976

by selecting the embedding that has the highest 977

similarity scores with the corresponding part after 978

the linear projection. 979

A.6 Descriptor embedding matching 980

To enhance the model’s flexibility, we do not use 981

a linear layer for classification. Instead, we adopt 982

a strategy similar to CLIP: we compute the simi- 983

larity matrix of the projected visual embeddings 984

(image embeddings after processing by the Part 985

MLP) and the text embeddings. Then, we sum 986

the corresponding similarities of each part in the 987

class; the class with the highest score is considered 988

the predicted class as shown in Fig. A1, step 2, 989

2d. This design enables our proposed method to 990

perform arbitrary ways of classification. 991

A.7 Implementation details 992

Our experiments are conducted under PyTorch 993

(Paszke et al., 2019). We employ HuggingFace’s 994

(Wolf et al., 2020) implementation of OWL-ViT 995

and use their pre-trained models. The DETR losses 996

implementation (Carion et al., 2020) is employed 997

directly from their official implementation. 998

A.8 Training hyperparameters 999

We provide the hyperparameters of all models 1000

trained in this work. Table A1 shows the details of 1001

the pre-training models. Table A2 presents the de- 1002

tails of the fine-tuned models. All trainings utilize 1003

optimizer AdamW with Plateau Scheduler. 1004

A.9 Computational budget and 1005

infrastructures 1006

We use 8 Nvidia RTX A100 GPUs for our experi- 1007

ments. The pertaining approximate takes ∼24 hours 1008

on Bird-11K. The fine-tuning takes 2 to 4 hours 1009

with one single GPU. 1010
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Figure A1: During the test time, we perform 2 steps. Step 1: (a) Encode an input image and texts (i.e. 12 part names)
by the image and text encoder to get patch embeddings pi and text embeddings t′i. (b) Feed pi to linear projection
to get p′i in the same dimensional space with t′i and compute dot product between {p′i} and {t′i}. (c) argmax over
m embeddings to select 12 part embeddings.
Step 2: (a) Encode input texts (i.e. N sets of 12-part descriptors) with the same text encoder to get ti. (b) Feed the
selected part embeddings to box MLP to localize parts (in center format). (c) Also feed the selected part embeddings
to part MLP to get si in the same dimensional space with ti (d) Compute dot product between {si} and {ti}, then
diagonal sum for each class and argmax over logits to get predicted label ŷ.
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Figure A2: In pre-training stage 1, the objective is to let the Image Encoder learn the general representation of
different parts of the birds. Therefore, in pre-training stage 1, we train the Image Encoder and part MLP contrastively.
During the training, the Step 1 utilizes a teacher model (OWL-ViTbase32) to help PEEB select 12 part embeddings.
In Step 2, we update the model with symmetric Cross-Entropy loss. Here’s the flow of Step 1: (1a) We utilize the
teacher model to encode 12 part names and the image to derive the text embedding t′i, and the patch embedding
pi. (1b) Then the patch embeddings p is forwarded to linear projection to obtain p′, matching the dimension of
t′. (1c) We compute the dot product between p and t′ and apply argmax over p to derive 12 indices. In Step 2:
(2a), We first encode the descriptors and the image with the Text Encoder and Image Encoder to obtain descriptor
embeddings t and patch embeddings q. (2b), Then we select the 12 patch embeddings based on the 12 indices from
(1c). (2c), The 12 patch embeddings then forwarded to part MLP to derive s, which has the same dimension as t.
Then, we compute the similarity matrix for the patch embedding and the descriptor embedding by computing the
dot product between s and t. (2d), we construct a one-hot encoded matrix based on the descriptors as the ground
truth label and minimize the Symmetric Cross-Entropy loss between the similarity matrix in (2c) and the ground
truth label.
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Figure A3: In pre-training stage 2, the goal is to eliminate the teacher model to obtain a standalone classifier.
Therefore, the targeted components are linear projection and box MLP. Since these two components are taking
care of different functionalities for patch embedding selection and box prediction, respectively, stage 2 training is a
multi-objective training. We employ Symmetric Cross-Entropy loss to learn the patch embedding selection and
DETR losses to refine the box predictions. In Step 1: (1a), We first encode the 12 part names and the image with
Text Encoder and Image Encoder to obtain the text embedding t′i and patch embedding pi. (1b) Then the patch
embeddings p is projected by linear projection to obtain p′. (1c) We then compute dot product between p′ and t′

and one-hot encode the matrix via the dimension of p′ to obtain the “teacher logits”. In Step 2: (2a), We encoder
the image with Image Encoder to obtain patch embedding qi. (2b) The patch embeddings are then being projected
by linear projection to derive q′. (2c), We compute the dot product between projected patch embeddings q′ and part
name embeddings t′ to obtain the similarity matrix. Then, we employ Symmetric Cross-Entropy loss between the
similarity matrix and the “teacher logits” derived in (1c). (2d), Meanwhile, we select the 12 part embeddings by
taking argmax over q′. Then, the selected part embeddings are forwarded to box MLP to predict the coordinates of
each part. We compute the DETR losses for the predicted coordinates and update the model.
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Table A1: Pre-training details of our pre-trained models.

Model Epoch Batch size LR Weight decay # in-batch classes Early stop Training set

Train Val Train Val

Pre-training stage 1

PEEB
[−test] 32 32 50 2e−4 0.01 48 50 5 Bird-11K

[−test]

PEEB
[−CUB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K

[−CUB]

PEEB
[−NAB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K

[−NAB]

Pre-training stage 2

PEEB[−test] 32 32 50 2e−5 0.01 48 50 5 Bird-11K[−test]

PEEB[−CUB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−CUB]

PEEB[−NAB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−NAB]

Table A2: Details of our fine-tuned models.

Model Fine-tune from Epoch Batch size LR Weight decay Early stop Training set

PEEBCUB
[−test] PEEB[−test] 30 32 2e−5 0.001 5 CUB

PEEBAkata
[−cub] PEEB

[−CUB] 5 32 2e−5 0.001 5 CUB ZSL (2015)

PEEBSCS
[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCS

PEEBSCE
[−cub] PEEB

[−CUB] 5 32 2e−5 0.001 5 CUB-SCE

PEEBSCS
[−nab] PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCS

PEEBSCE
[−nab] PEEB

[−NAB] 5 32 2e−5 0.001 5 NABirds-SCE

17



B Model and dataset notations1011

B.1 Dataset notations1012

Following the conventional setup of ZSL, we ex-1013

ecute certain exclusions to make sure none of1014

the test classes or descriptors are exposed during1015

pre-training. That is, Bird-11K[−CUB] and Bird-1016

11K
[−NAB] exclude all CUB and NABirds classes,1017

respectively. For GZSL, we exclude all test sets in1018

CUB, NABirds, and iNaturalist, denoted as Bird-1019

11K[−test]. We provide detailed statistics for the1020

three pre-training sets in Table A3.1021

Table A3: Three pre-training splits for PEEB.

Training set Number of images Number of classes

Train Val Train Val

Bird-11K[−test] 234,693 29,234 10,740 9,746

Bird-11K[−CUB] 244,182 28,824 10,602 9,608

Bird-11K
[−NAB] 216,588 27,996 10,326 9,332

B.2 Model notations1022

We adopt a strategy based on the datasets excluded1023

during training to simplify our model naming con-1024

vention. Specifically:1025

• PEEB[−test] is pre-trained model using Bird-1026

11K[−test] datset.1027

• PEEB[−CUB] is pre-trained model using the1028

Bird-11K[−CUB] dataset.1029

• PEEB[−NAB] is pre-trained model using the1030

Bird-11K[−NAB] dataset.1031

We named fine-tuned models after the pre-trained1032

model and the fine-tuned training set. For exam-1033

ple, PEEBCUB
[−test] is fine-tuned from PEEB

[−test], on1034

CUB training set.1035

C Generating part-based descriptors1036

CUB annotations initially comprise 15 bird parts.1037

However, distinctions between the left and right1038

part are not essential to our method, we merge1039

them into a single part (i.e., “left-wing” and “right-1040

wing” are merged into “wings”) Hence, we distilled1041

the original setup into 12 definitive parts: back,1042

beak, belly, breast, crown, forehead, eyes, legs,1043

wings, nape, tail, throat. To compile visual part-1044

based descriptors for all bird species within Bird-1045

11K, we prompted GPT-4 (OpenAI, 2023) with the1046

following input template:1047

A bird has 12 parts: back, beak, belly, breast, 1048
crown, forehead, eyes, legs, wings, nape, tail 1049
and throat. Visually describe all parts of 1050
{class name} bird in a short phrase in bullet 1051
points using the format ‘part: short phrase’ 1052

Where {class name} is substituted for a given 1053

bird name. 1054

The output is a set of twelve descriptors 1055

corresponding to twelve parts of the query species. 1056

e.g. The response for Cardinal is: 1057

1058

Cardinal: { 1059
back: vibrant red feathers , 1060
beak: stout , conical , and orange , 1061
belly: light red to grayish -white , 1062
breast: bright red plumage , 1063
crown: distinctive red crest , 1064
forehead: vibrant red feathers , 1065
eyes: small , black , and alert , 1066
legs: slender , grayish -brown , 1067
wings: red with black and white 1068

accents , 1069
nape: red feather transition to 1070

grayish -white , 1071
tail: long , red , and wedge -shaped , 1072
throat: bright red with sharp 1073

delineation from white belly 1074
} 1075

D Bird-11K dataset 1076

We provide a brief statistic of Bird-11K in Table A4. 1077

Bird-11K is a diverse and long-tailed avian dataset 1078

that only includes bird images. The descriptors gen- 1079

erated by GTP4 are in English and only describe 1080

the visual features of the corresponding class. We 1081

propose Bird-11K for academic research only. 1082

Table A4: Number of images and species of different
bird datasets. Our proposed dataset Bird-11K includes
almost all avians on Earth.

Dataset Images Species

CUB-200-2011 (Wah et al., 2011) 12,000 200
Indian Birds (Vaibhav Rokde, 2023) 37,000 25
NABirds v1 (Van Horn et al., 2015) 48,000 400
Birdsnap v7 (Berg et al., 2014) 49,829 500
iNaturalist 2021-birds (Van Horn et al., 2021) 74,300 1,464
ImageNet-birds (Deng et al., 2009) 76,700 59
BIRDS 525 (Piosenka, 2022) 89,885 525
Macaulay Library at the Cornell Lab of Ornithology 55,283 10,534

Bird-11K (Raw Data) 440,934 11,097
Bird-11K (pre-training set) 294,528 10,811

Data splits We provide data splits and metadata, 1083

e.g., file names, image size, and bounding boxes, 1084

along with the instruction of Bird-11K construction 1085

in our repository. Note that the Bird-11K dataset is 1086

for pre-training purposes; it is important to execute 1087

exclusion based on the test set. 1088
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License and terms1089

• CUB (Wah et al., 2011): The dataset can be1090

freely used for academic and research pur-1091

poses; commercial use is restricted.1092

• Indian Birds (Vaibhav Rokde, 2023): CC0:1093

Public Domain.1094

• NABirds v1 (Van Horn et al., 2015): For non-1095

commercial research purposes, other use is1096

restricted 3 here for detail: .1097

• Birdsnap v7 (Berg et al., 2014): The dataset1098

creator provides no specific license or terms1099

of use. We only use this dataset for academic1100

research until more specific details can be ob-1101

tained.1102

• iNaturalist 2021-birds (Van Horn et al., 2021):1103

CC0: Public Domain.1104

• ImageNet-birds (Deng et al., 2009): BSD-3-1105

Clause license.1106

• BIRDS 525 (Piosenka, 2022): CC0: Public1107

Domain1108

• Cornell eBird: We used the following 55,3841109

recordings from the Macaulay Library at the1110

Cornell Lab of Ornithology. The data is for1111

academic and research purposes only, not pub-1112

licly accessible unless requested. (Please refer1113

to our Supplementary Material for the full1114

list):1115
ML187387391, ML187387411, ML187387421, ML187387431, ML262407521,1116
ML262407481, ML262407531, ML262407491, ML262407511, ML2571941111117
ML257194071, ML257194081, ML257194061, ML495670791, ML495670781,1118
ML495670801, ML495670771, ML183436431, ML183436451, ML1834364411119
ML183436411, ML183436421, ML256545901, ML256545891, ML256545841,1120
ML256545851, ML256545831, ML169637941, ML238083081, ML1696378811121
ML169637911, ML238083111, ML238083051, ML169637971, ML299670841,1122
ML64989231, ML299670831, ML64989241, ML299670791, ML649892511123
ML246866001, ML246865941, ML246866011, ML246865961, ML246865971,1124
ML333411961, ML240835531, ML240835541, ML240835701, ML2408355911125
ML245260391, ML245260341, ML245260371, ML245260411, ML245260421,1126
ML245260431, ML245260441, ML240866351, ML240866331, ML2408663211127
ML240866341, ML240866371, ML248318661, ML248318571, ML248318591,1128
ML248318581, ML248318631, ML245204281, ML245204311, ML2452043711129
ML245204381, ML245204291, ML245603571, ML245603521, ML245603511,1130
ML245603491, ML245603501, ML245603601, ML245257771, ML2452576511131
ML245257631, ML245257661, ML245257761, ML247221051, ML247221061,1132
ML247221071, ML247221081, ML240365811, ML240365751, ML2403657811133
ML240365761, ML300579541, ML247298551, ML247298541, ML247298561,1134
ML247298611, ML247298571, ML247298591, ML247298601, ML247298631...1135

E Analysis1136

E.1 PEEB outperforms M&V in CUB and1137

NABirds in ZSL setting1138

To rigorously evaluate the ZSL capabilities of our1139

pre-trained models, we introduce a stress test on1140

the CUB and NABirds datasets. The crux of this1141

3See Terms of Use

test involves excluding all classes from the target 1142

dataset (CUB or NABirds) during the pre-training. 1143

The exclusion ensures that the model has no prior 1144

exposure to these classes. Subsequently, we mea- 1145

sure the classification accuracy on the target dataset, 1146

comparing our results against benchmarks set by 1147

CLIP and M&V in the scientific name test. In this 1148

experiment, we consider the scientific name test a 1149

ZSL test for CLIP and use them as the baseline be- 1150

cause the frequencies of scientific names are much 1151

lower than common ones. 1152

Experiment To conduct this test, we pre- 1153

train our model on Bird-11K
[−CUB] and Bird- 1154

11K
[−NAB], which deliberately exclude images 1155

bearing the same class label as the target dataset. 1156

Specifically, we test on our pre-train model 1157

PEEB[−CUB] and PEEB[−NAB] (see Table A1 for 1158

details), respectively. 1159

Results The primary objective is to ascertain the 1160

superiority of our pre-trained model, PEEB, against 1161

benchmarks like CLIP and M&V. For CUB, our 1162

method reported a classification accuracy of 17.9%, 1163

contrasting the 5.95% and 7.66% achieved by CLIP 1164

and M&V, respectively, as shown in Table A5. The 1165

PEEB score, which is marginally higher (+10) than 1166

M&V, highlights the advantages of our method 1167

that utilizes component-based classification. On 1168

the NABirds, our method surpassed the CLIP and 1169

M&V by (+1) point. The performance disparity 1170

between CUB and NABirds can be attributed to 1171

two factors: the elevated complexity of the task 1172

(555-way classification for NABirds versus 200- 1173

way for CUB) and the marked reduction in training 1174

data. An auxiliary observation, detailed in Ap- 1175

pendix E.3, indicates that our pre-trained model ne- 1176

cessitates at least 250k images to achieve admirable 1177

classification accuracy on CUB, but we only have 1178

210k images training images in Bird-11K[−NAB] 1179

(Table A3). 1180

Table A5: Stress test results on CUB and NABirds
datasets. Despite the ZSL challenge, our method consis-
tently surpasses CLIP and M&V. This underscores the
robust generalization of our approach, which leverages
descriptors for classification.

Method CLIP M&V PEEB (ours)

CUB 5.95 7.66 17.90

NABirds 4.73 6.27 7.47
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E.2 Performance measurement on different1181

noisy levels1182

In our evaluations, as indicated in Table 2, we dis-1183

cerned a marked performance disparity between the1184

iNaturalist dataset and others. Probing this further,1185

we identified image noise as a principal contributor1186

to these discrepancies.1187

Experiment A qualitative assessment of the iNat-1188

uralist test images revealed a significantly higher1189

noise level than CUB or NABirds. To systemati-1190

cally study this, we utilize the object detector OWL-1191

ViTlarge to measure the size of the bird within the1192

images. We formulated two filtered test sets based1193

on the detector’s output, categorizing them by the1194

bird’s size, specifically, the detected bounding box.1195

Images were filtered out if the bird’s size did not1196

exceed predetermined thresholds (areas of 1002 or1197

2002 pixels). Larger birds naturally reduced other1198

content by occupying more image space, thus serv-1199

ing as a proxy for reduced noise. All three test sets,1200

including the original, were evaluated using our1201

pre-trained model PEEB[−test].1202

Results The results presented in Table A6 reveal1203

a clear trend: as the image noise level decreases,1204

the classification accuracy consistently improves,1205

with gains ranging from (+6 to +17) points across1206

the various methods. Notably, cleaner images con-1207

sistently yield better results. At each noise level,1208

our method outperforms the alternatives. While our1209

method exhibits an impressive (+17 points) accu-1210

racy boost on the cleanest test set, this substantial1211

gain also indicates that our model is sensitive to1212

image noise.1213

Table A6: The table showcases the classification accu-
racies on iNaturalist as we vary the noise levels. The
data underscores that the performance disparity on iNat-
uralist is predominantly due to image noise. While all
methods improve with cleaner images, our model ex-
hibits the most substantial gains, particularly in the least
noisy sets.

Splits CLIP M&V PEEB (ours)

Original 16.36 17.57 25.74

> 1002 pixels 20.18 21.66 35.32

> 2002 pixels 22.88 24.90 42.55

E.3 Number of training images is the most 1214

critical factor towards classification 1215

accuracy 1216

Bird-11K, as shown in Fig. A4a, is a highly imbal- 1217

anced dataset characterized by a large amount of 1218

long-tailed classes. We conduct a comprehensive 1219

study to discern how variations in the number of 1220

classes and images affect the classification accu- 1221

racy of our pre-trained models. Predictably, the 1222

volume of training images occurred as the most 1223

influential factor. However, a noteworthy obser- 1224

vation was that the abundance of long-tailed data 1225

enhanced the model’s accuracy by approximately 1226

+1.5 points. 1227

Experiment We curated eight training sets based 1228

on varying class counts: 200, 500, 1,000, 2,000, 1229

4,000, 6,000, 8,000, and 10,740. For each set, we 1230

maximized the number of training images. It is im- 1231

portant to note that a set with a lesser class count is 1232

inherently a subset of one with a higher count. For 1233

instance, the 500-class set is a subset of the 2,000- 1234

class set. For each split, we apply the same training 1235

strategy as in Sec. 4.3.1, and choose the checkpoint 1236

with the best validation accuracy. We consider the 1237

CUB test set as a generic testing benchmark for all 1238

variants. 1239

Results As illustrated in Figure Fig. A4b, there 1240

is a pronounced correlation between the increase 1241

in the number of images and the corresponding 1242

surge in accuracy. For instance, an increment from 1243

106K to 164K images led to a rise in classification 1244

accuracy from 30.05% to 43.11%. The accuracy 1245

appears to stabilize around 60% when the image 1246

count approaches 250K. This trend strongly sug- 1247

gests that the volume of training images is the most 1248

critical factor for the pre-trained model. We believe 1249

that the accuracy of the pre-trained model could be 1250

further enhanced if enough data is provided. Inter- 1251

estingly, a substantial amount of long-tailed data 1252

bolsters the model’s performance, evident from 1253

+1.5 points accuracy improvement when compar- 1254

ing models trained on 2,000 classes to those on 1255

10,740 classes. Note that the additional classes in 1256

the latter set averaged merely 2.2 images per class. 1257
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(a) The Cumulative Distribution Function (CDF) plot for the
Bird-11K dataset.
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Figure A4: The CDF plot (a), underscores significant
imbalance of the Bird-11K dataset. While the dataset
has abundant long-tailed classes, e.g., a striking 80% of
the classes contribute to only 13.46% of the entire image
count. The plot (b) showcases the correlation between
the number of training images/classes and the resulting
classification accuracy. As the image count grows, there
is a noticeable surge in accuracy, which nearly stabilizes
upon surpassing 250K images. Additionally, a signif-
icant amount of long-tailed data contributes to a +1.5
points boost in accuracy.

E.4 Ablation study on the influence of parts1258

utilized1259

In this ablation study, we aimed to measure the im-1260

pact of varying the number of distinct “parts” (back,1261

beak, belly, breast, crown, forehead, eyes, legs,1262

wings, nape, tail, and throat) used in our model.1263

We experiment with a range from a single part to1264

all 12 identifiable parts. Interestingly, even with1265

a solitary part, the model could make correct pre-1266

dictions, though there was an evident decline in1267

performance, approximately -20 points.1268

Experiment Our testing ground is the pre-trained1269

model PEEB[−test], evaluated against the CUB test1270

set. We assessed the model’s prowess utilizing1271

various subsets of parts: 1, 3, 5, 8, and all 12.1272

These subsets were derived based on the frequency1273

of visibility of the parts within the CUB dataset, 1274

enabling us to compare the model’s performance 1275

when relying on the most frequently visible parts 1276

versus the least. For comparison, we also conduct 1277

a similar experiment on M&V, where we only use 1278

1, 3, 5, 8, and 12 descriptors (if possible). 1279

Results Relying solely on the most frequent part 1280

led to a decline in classification accuracy by around 1281

-20 points, registering at 45.44%. In contrast, uti- 1282

lizing the least frequent part resulted in a sharper 1283

drop of around -27, with an accuracy of 37.02%. 1284

As the model was furnished with increasing parts, 1285

its accuracy improved incrementally. The data un- 1286

derscores that optimal performance, an accuracy of 1287

64.33%, is attained when all 12 parts are included. 1288

For M&V, the accuracy keeps increasing homo- 1289

geneously from 5 to 12 descriptors, hinting that 1290

accuracy may increase further by increasing the 1291

number of descriptors. 1292

E.5 Training is essential for PEEB’s 1293

classification efficacy 1294

In this ablation study, we highlight the pivotal role 1295

of training in the performance of PEEB on bird 1296

classification tasks. We demonstrate that without 1297

adequate tuning, the results are indistinguishable 1298

from random chance. 1299

Experiment We conduct the experiment based 1300

on OWL-ViTbase32. We retain all components as 1301

illustrated in Fig. A1, with one exception: we sub- 1302

stitute the part MLP with the MLP layer present 1303

in the box prediction head of OWL-ViT because 1304

the proposed layers require training. The MLP 1305

layers in the box prediction head project the part 1306

embeddings to match the dimensionality of the text 1307

embeddings. Our focus is on assessing the clas- 1308

sification accuracy of the untuned PEEB on two 1309

datasets: CUB and NABirds. 1310

Results Table A8 reveals the outcomes of our 1311

experiment. Without training, PEEB yields classifi- 1312

cation accuracies of 0.55% for CUB and 0.31% for 1313

NABirds, both of which are proximate to random 1314

chance (0.5% for CUB and 0.1% for NABirds). 1315

However, with training, the model’s performance 1316

dramatically transforms: 64.33% for CUB (an in- 1317

crease of +63.78 points) and 69.03% for NABirds 1318

(a leap of +68.72 points) for PEEB[−test]. These 1319

pronounced disparities underscore the vital role of 1320

training in PEEB. 1321
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Table A7: Classification accuracy on the CUB test set that uses a different number of parts. Performance dips
significantly with just one part, especially for the least visible ones. Maximum accuracy is reached with all 12 parts.
The last row of the table also shows the accuracy of (Menon and Vondrick, 2022) method which employs a different
number of parts. It is evident that their method is insensitive to the number of parts used, which may not reflect a
realistic scenario.

Number of Parts (descriptors) 1 3 5 8 12

Accuracy (most frequent parts) 45.44 56.48 59.89 61.32 64.33

Accuracy (least frequent parts) 37.02 55.51 60.04 61.13 64.33

Accuracy of (Menon and Vondrick, 2022) 51.93 52.87 52.83 53.33 53.92

Table A8: Impact of Training on Classification Accura-
cies: Untuned PEEB yields 0.55% on CUB and 0.31%
on NABirds, almost mirroring random chance. With
training (PEEB[−test]), accuracy surges by +63.78 points
on CUB and +68.72 points on NABirds.

CUB NABirds

PEEB (no training) 0.55 0.31

PEEB[−test] pre-trained 64.33 69.03

PEEBCUB
[−test] finetuned 86.73 -

E.6 Failure analysis1322

Since PEEB has two branches, box detection, and1323

descriptor matching, we would like to find out,1324

in the failure case, what is the main cause. i.e.,1325

is it because of the mismatch in the descriptor to1326

the part embeddings? Or is it because the box1327

detection is wrong? From our ablation study, it1328

turns out that most errors come from the descriptor-1329

part matching.1330

Experiment We conduct the experiment with1331

PEEB[−test] on CUB test set. Specifically, we mea-1332

sure the box detection accuracy based on the key1333

point annotation in CUB dataset, i.e., We consider1334

the box prediction as correct if the prediction in-1335

cludes the human-annotated key point. We report1336

the box prediction error rate (in %) based on parts.1337

Results As shown in Table A9, the average error1338

rate difference between success and failure cases1339

is merely 0.38. That is, in terms of box prediction,1340

the accuracy is almost the same, disregarding the1341

correctness of bird identification. It indicates that1342

the prediction error is predominantly due to the mis-1343

match between descriptors and part embeddings.1344

We also noted that some parts, like Nape and Throat,1345

have a very high average error rate, which may1346

greatly increase the matching difficulties between1347

descriptors and part embeddings.1348

E.7 Evaluation of predicted boxes from PEEB 1349

Our proposed method primarily aims to facilitate 1350

part-based classification. While the core objective 1351

is not object detection, retaining the box prediction 1352

component is paramount for ensuring model ex- 1353

plainability. This section delves into an evaluation 1354

of the box prediction performance of our method 1355

against the OWL-ViTbase32 model. 1356

Experiment Given our focus on part-based clas- 1357

sification, we aimed to ascertain the quality of our 1358

model’s box predictions. To this end, we employed 1359

two metrics: mean Intersection over Union (IoU) 1360

and precision based on key points. We opted for 1361

mean IoU over the conventional mAP because: (1) 1362

Ground-truth boxes for bird parts are absent, and 1363

(2) our model is constrained to predict a single 1364

box per part, ensuring a recall of one. Thus, we 1365

treat OWL-ViTlarge’s boxes as the ground truth and 1366

evaluate the box overlap through mean IoU. Fur- 1367

thermore, leveraging human-annotated key points 1368

for bird parts, we measure the precision of pre- 1369

dicted boxes by determining if they contain the 1370

corresponding key points. We evaluate our fine- 1371

tuned models on their corresponding test sets. For 1372

instance, PEEBAkata
[−cub], fine-tuned based on the CUB 1373

split (Akata et al., 2015), is evaluated on the CUB 1374

test set. 1375

Results Our evaluation, as presented in Ta- 1376

ble A10, shows that PEEB’s box predictions do not 1377

match those of OWL-ViTbase32. Specifically, on av- 1378

erage, there is a -5 to -10 points reduction in mean 1379

IoU for CUB and NABirds datasets, respectively. 1380

The disparity is less distinct when examining pre- 1381

cision based on human-annotated key points; our 1382

method records about -0.14 points lower precision 1383

for CUB and -3.17 points for NABirds compared to 1384

those for OWL-ViTbase32. These observations rein- 1385

force that while PEEB’s box predictions might not 1386

rival these dedicated object detection models, they 1387
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Table A9: Error rate of Box Prediction in Failure and Success Cases. We report the box prediction error rate,
depending on whether the prediction box includes ground truth key points. No major difference is found between
them, which means the failure is largely due to the part-descriptor mismatch.

Body Part Average Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat

Failure Cases 16.52 23.38 3.28 8.06 15.96 7.41 24.72 7.29 5.63 3.36 64.79 7.25 27.07
Success Cases 16.14 23.03 2.96 7.44 18.64 7.13 21.53 3.93 6.85 2.68 68.66 6.40 24.38
Difference 0.38 0.35 0.33 0.62 -2.68 0.28 3.19 3.36 -1.22 0.68 -3.87 0.85 2.68

consistently highlight the same parts identified by1388

such models as shown in Fig. A5. It is important to1389

note that our approach utilized the same visual em-1390

beddings for both classification and box prediction1391

tasks. This alignment emphasizes the part-based1392

nature of our model’s predictions.1393

Table A10: Model evaluation on CUB and NABirds test
sets. We evaluate the predicted boxes on two ground-
truth sets; (1) predicted boxes from OWL-ViTlarge as
ground-truths, and (2) OWL-ViTlarge’s boxes that in-
clude the human-annotated key points. Our method has
slightly lower performance in terms of mean IoU but
comparable precision.

Models
Mean IoU

(1) All (2) w/ Keypoints Precision

CUB OWL-ViTlarge 100.00 100.00 83.83
OWL-ViTbase32 44.41 49.65 83.53
PEEB (Average) 35.98 40.14 83.39

PEEBCUB
[−test] 37.45 41.79 81.55

PEEBAkata
[−cub] 35.11 39.14 82.72

PEEBSCS
[−cub] 35.77 39.96 84.89

PEEBSCE
[−cub] 35.58 39.67 84.38

NABirds OWL-ViTlarge 100.00 100.00 85.01
OWL-ViTbase32 40.14 47.63 83.89
PEEB (Average) 36.47 42.01 80.72

PEEBSCS
[−nab] 36.45 42.03 80.09

PEEBSCE
[−nab] 36.49 41.99 81.34

F Study on GTP-4 generated descriptors1394

F.1 Noise measurement in GPT-4 generated1395

descriptors1396

In this section, we conduct an empirical analysis to1397

quantify the noise in descriptors generated by GPT-1398

4 for 20 different classes within the CUB dataset.1399

To achieve this, we manually inspect each descrip-1400

tor and tally the instances where at least one factual1401

error is present. Our findings reveal that every one1402

of the 20 classes contains descriptors with errors,1403

and on average, 45% of the descriptors necessi-1404

tate corrections. This substantial noise level under-1405

scores the need for further refinement in our work,1406

particularly in text descriptors.1407

We observe a notably high error rate in descrip-1408

tors on the back and wings, with approximately 1409

60% of these containing inaccurate information 1410

(refer to Table A11). This could be attributed to 1411

the challenges in distinguishing between the back 1412

and wings, given that the back is typically posi- 1413

tioned behind the wings, yet exhibits considerable 1414

variability in size and shape. Addressing all de- 1415

scriptor issues by revising all 11,000 fine-grained 1416

descriptors would demand a significant investment 1417

of time and resources, which is beyond the scope 1418

of the current work. As such, we identify this as an 1419

area for future research and development, aiming 1420

to enhance the quality of the Bird-11K dataset. 1421

F.2 Revising descriptors improves 1422

classification accuracy 1423

As mentioned in the limitation section, the descrip- 1424

tors are generated from GPT-4 and therefore noisy 1425

and incorrect. Given that PEEB accepts open vo- 1426

cabulary inputs for classification, a natural way to 1427

improve classification accuracy is to improve the 1428

correctness of the descriptors. 1429

Experiment We first collect descriptors of 183 1430

CUB classes from AllAboutBirds. We then prompt 1431

GPT-4 to revise our original descriptors by provid- 1432

ing the collected descriptor. We revise the descrip- 1433

tors with the following prompt: 1434

Given the following descriptors of {class 1435
name}: {AllAboutBirds descriptors}. Can you 1436
revise the incorrect items below (if any) of 1437
this bird, return them as a Python dictionary, 1438
and use the key as the part name for each item? 1439
If a partś descriptor is not specifically 1440
described or cannot be inferred from the 1441
definition, use your own knowledge. Otherwise, 1442
leave as is. Note: please use a double 1443
quotation mark for each item such that it works 1444
with JSON format. 1445

{Original descriptors} 1446

Where {class name} the placeholder for the class 1447

name, {AllAboutBirds descriptors} is the descrip- 1448

tion collected from AllAboutBirds, {Original 1449

descriptors} is the descriptors we used for train- 1450

ing. 1451
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Table A11: Summary of manual inspection results for 20 classes, highlighting the need for revision in GPT-4
generated descriptors. An average error rate of 45% indicates substantial room for improvement.

Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat Average

Error Rate 60 30 50 40 50 55 50 20 60 50 35 40 45

Due to the errors in the descriptors we used to1452

train PEEB, simply replacing the descriptors with1453

their revised version does not lead to better perfor-1454

mance. Because the incorrect descriptors in train-1455

ing change the meaning of some of the phrases. For1456

example, the belly of Blue bunting is pure blue, but1457

the descriptors from GPT-4 is soft, creamy white.1458

In addition, the GTP-4 uses the exact same de-1459

scriptor in the belly for other classes, e.g., Blue1460

breasted quail, which should be cinnamon. Blue1461

Fronted Flycatcher, which should be yellow. Train-1462

ing the same descriptors with different colors con-1463

fuses the model, and the model will convey the1464

phrase “creamy white” with a different meaning1465

to humans. Therefore, simply changing the de-1466

scriptors to their’ revised version will not work.1467

We empirically inspect the descriptors that PEEB1468

can correctly respond to and replace the class de-1469

scriptors with the revised version. Specifically, we1470

replace the descriptors of 17 classes in CUB and1471

test the classification accuracy on PEEB
[−test].1472

Results As shown in Table A12, the overall ac-1473

curacy increase +0.8 points. The average improve-1474

ment of the revised class is around +10.8, hitting1475

that if we have correct descriptors of all classes, we1476

may significantly improve the classification accu-1477

racy of the pre-trained model. However, correcting1478

all 11k class descriptors is too expensive and out1479

of the scope of this work. We leave it as a further1480

direction of improving the part-based bird classifi-1481

cation.1482

Table A12: The revised descriptors result in +0.8 for
PEEB[−test] in CUB. In particular, the average improve-
ment among the 17 revised classes is +10.8, hinting at
the large potential of our proposed model.

Descriptors Original Partially Revised Avg. Improvement

PEEB[−test] 64.33 65.14 10.80

G Qualitative Inspections1483

G.1 Visual comparison of predicted boxes1484

We provide a visual comparison of the box pre-1485

diction from OWL-ViTlarge, OWL-ViTbase32, and1486

PEEB in Fig. A5. We find that despite the fact 1487

that our predicted boxes have lower mean IoU com- 1488

pared to OWL-ViTlarge, they are visually similar to 1489

the boxes as OWL-ViTbase32. 1490

G.2 Qualitative examples of using 1491

randomized descriptors 1492

We visually compare M&V and PEEB based on 1493

their utilization of descriptors. (Figs. A6 to A8). 1494

Specifically, we randomly swap the descriptors of 1495

the classes and then use these randomized descrip- 1496

tors as textual inputs to the tested models to see 1497

how they perform. We observe that the scores from 1498

M&V tend to cluster closely together. Surprisingly, 1499

M&V’s prediction remains unchanged despite the 1500

inaccurate descriptors. In contrast, PEEB, when 1501

presented with randomized descriptors, attempts 1502

to identify the best match grounded on the given 1503

descriptors. 1504

G.3 Examples of PEEB explanations 1505

Figs. A9 to A11 are examples of how PEEB makes 1506

classification based on the descriptors and how it 1507

can reject the predictions made by M&V. Since 1508

we aggregate all descriptors for the final deci- 1509

sion, even if some of them are similar in two 1510

classes, our method can still differentiate them 1511

from other descriptors. For instance, in Fig. A9, 1512

while other descriptors are similar, PEEB can still 1513

reject chesnut-sided warbler thanks to the distinct 1514

features of forehead, throat and belly. 1515
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Original PEEB OWL-ViTbase32 OWL-ViTlarge

Figure A5: Our predicted boxes (second column) often align closely with those of OWL-ViTbase32 (third column).
However, slight shifts can lead to significant IoU discrepancies. For instance, in the first row, both PEEB and
OWL-ViTbase32 accurately identify the tail. Yet, variations in focus yield a stark IoU contrast of 0.45 versus 0.81.
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Original Descriptor Random nonsense Descriptor

M
&

V
PE

E
B

cerulean warbler
0.344

0.350

0.346

0.350

0.344

0.351

0.347

Small bird

Distinctive blue color on the upper parts and white
underneath

Thin, pointed beak

Black streaks on the back and flank

Black line through the eyes

Males are brighter blue than females

Often found in trees or shrubs

cerulean warbler | 0.006

0.347

0.347

0.343

0.347

0.351

0.351

long, curved beak

brownish-tan feathers

relatively large size for a shorebird

long legs

a small head in relation to its body

typically found in open grasslands or wetlands.

cerulean warbler | 0.006

 
0.875
0.864
0.865
0.874
0.876
0.843
0.849
0.872
0.838
0.853
0.875
0.866

crown: bright cerulean blue
forehead: blue and unmarked
nape: blue, similar to the crown
eyes: black, round and tiny
beak: small, pointed, and black
throat: clean white contrasting with blue upperparts
breast: blue-gray with dark streaks
belly: white and unmarked
back: deep blue with streaks of black
wings: cerulean blue with black edging
legs: dark gray and slender
tail: blue-black with white edges

cerulean warbler | 0.688
0.310
0.252
0.529
0.810
0.657
0.486
0.557
0.339
0.368
0.665
0.561
0.452

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

least tern | 0.041

Figure A6: Qualitative example of original descriptors vs. randomized descriptors. Upon swapping descriptors
randomly, the prediction outcomes from M&V exhibit minimal variations.

Original descriptor Random nonsense descriptor

M
&

V
PE

E
B

indigo bunting
0.374

0.372

0.373

0.366

0.371

0.354

Bright blue plumage (in males)

Small, finch-like body

Short, conical beak

Brownish wings and tail (in females and juveniles)

A habitat setting such as open areas with shrubs or trees,
or forest edges

Often seen near bird feeders.

indigo bunting | 0.006
0.378

0.374

0.374

0.368

0.370

0.366

0.376

0.378

medium-sized wading bird

slate-blue plumage

long, slender neck

long, dark legs

sharp, pointed beak

white morph with completely white plumage
often found near bodies of water, such as wetlands or
marshes
may be seen standing or walking slowly while hunting for
prey

indigo bunting | 0.006

 
0.357
0.753
0.748
0.452
0.813
0.676
0.612
0.530
0.568
0.684
0.375
0.492

crown: bold, indigo-blue crest
forehead: deep indigo-blue hue
nape: rich indigo-blue
eyes: small, dark, and alert
beak: short, conical, and silver-gray
throat: vivid indigo-blue with lighter shades
breast: bright indigo-blue plumage
belly: lighter indigo blue shading to white
back: vibrant indigo-blue feathers
wings: striking indigo-blue with black edges
legs: slender grayish-blue
tail: tapered, black with blue edges

indigo bunting | 0.154
0.437
0.387
0.624
0.448
0.663
0.482
0.534
0.370
0.457
0.314
0.753
0.420

crown: deep blue with smooth contour
forehead: bright blue and flat
nape: rich blue and rounded
eyes: black, small and circular
beak: silver-colored, conical shape
throat: bright blue and smooth
breast: vibrant blue feathers
belly: lighter blue plumage
back: deep blue feathers
wings: blue and black striped pattern
legs: dark grey, sturdy
tail: long, dark blue feathers

tennessee warbler | 0.072

Figure A7: Qualitative example of original descriptors vs. randomized descriptors. Since PEEB’s decision is
made by the descriptors, the model will try to find the descriptors that best match the image. e.g., in the random
descriptors, most parts are blue.
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Original descriptor Random nonsense descriptor
M

&
V

PE
E

B

vermilion flycatcher
0.365

0.365

0.376

0.362

0.370

0.366

0.351

small bird species

bright red or vermilion plumage, especially in males

females and juveniles are more brown or grey

black mask around the eyes in adult males

relatively short beak

often perches on branches or wires

native to the Americas, particularly in warmer climates.

vermilion flycatcher | 0.006
0.351

0.376

0.380

0.366

0.366

0.367

0.362

0.364

small bird species (swallow)

glossy blue-black upperparts

pale underparts, usually white or light grey

deeply forked tail with long, slender outer feathers

pointed wings

short, pointed beak

often seen flying or perched near water or open areas

typically found in Africa and Asia

vermilion flycatcher | 0.006

 
0.659
0.440
0.487
0.558
0.775
0.676
0.727
0.293
0.646
0.622
0.541
0.578

crown: intense red-orange plumage
forehead: bright vermilion feathers
nape: striking vermilion feathers
eyes: sharp black beads
beak: short, pointy black beak
throat: vivid red-orange feathers
breast: fiery red-orange coloring
belly: bright vermilion hue
back: vibrant red-orange feathers
wings: black with red-orange highlights
legs: thin dark gray limbs
tail: long black with red-orange edges

vermilion flycatcher | 0.068
0.549
0.775
0.534
0.819
0.781
0.569
0.754
0.589
0.508
0.533
0.635
0.362

crown: deep rusty red
forehead: bright red-orange
nape: rich red hue
eyes: small and black
beak: strong, curved and crossed tip
throat: bright reddish-orange
breast: vibrant reddish-orange
belly: pale red-orange
back: dark rusty red
wings: dark brown with red-orange edges
legs: short and dark
tail: black with reddish tinge

red headed woodpecker | 0.103

Figure A8: Qualitative example of original descriptors vs. randomized descriptors. M&V maintains similar scores
even for mismatched descriptors. For instance, “bright red or vermilion plumage, especially in males” receives a
score lower than “glossy blue-black upperparts”. Conversely, PEEB leverages the descriptors for classification,
consistently relying on the descriptors that most closely align with the image.

0.637
0.374
0.613
0.430
0.527
0.552
0.596
0.261
0.665
0.618
0.608
0.327

crown: olive-green with faint black crown stripe
forehead: yellowish-green
nape: olive-green
eyes: dark with thin white eye-ring
beak: short, thin, and pointed
throat: yellow-orange
breast: bright yellow-orange with black streaks
belly: creamy white with subtle yellow wash
back: olive-green with black streaks
wings: blue-gray with white wing bars
legs: pale pinkish-gray
tail: blue-gray with white outer tail feathers

Our prediction: bay breasted warbler  0.431
because of the following...

0.433
0.097
0.613
0.480
0.488
0.268
0.339
0.085
0.630
0.585
0.585
0.367

crown: yellow with black stripe
forehead: bright yellow
nape: olive-green
eyes: black with white eye-ring
beak: thin, pointy, and black
throat: bright white
breast: white with distinct chestnut streaks
belly: white and unmarked
back: olive-green with streaks
wings: grayish-blue with two white wing-bars
legs: pale pinkish-brown
tail: grayish-blue, white-edged feathers

M&V's prediction: chestnut sided warbler  0.125
but we rejected it because...

Figure A9: An example of PEEB explanation. We can see that the descriptors of these two classes are largely
similar, but PEEB makes the correct prediction based on the distinctive feature of the forehead in the two classes.

0.652
0.709
0.578
0.432
0.377
0.568
0.491
0.679
0.545
0.536
0.622
0.514

crown: smooth white with light gray area
forehead: white feathers
nape: white turning to pale gray
eyes: dark and round, surrounded by white
feathers
beak: dark red to orange, sturdy and sharp
throat: white feathers
breast: white feathers with gray shading
belly: white feathers
back: pale gray feathers
wings: pale gray with black tips and a white
trailing edge
legs: pinkish-red and medium-length
tail: white with black terminal band

Our prediction: heermann gull  0.786
because of the following...

0.149
0.676
0.224
0.000
0.000
0.403
0.000
0.180
0.433
0.167
0.112
0.000

crown: grey, subtly streaked
forehead: flat, extended white feathers
nape: white, short plumage
eyes: dark, intelligent gaze
beak: sharp, yellow-tipped hook
throat: white, soft feathering
breast: white, well-rounded
belly: smooth, white plumage
back: sleek, white-grey feathered
wings: long, black-tipped with white-grey
feathers
legs: vibrant red, slender
tail: white, fan-shaped feathers

M&V's prediction: red legged kittiwake  0.006
but we rejected it because...

Figure A10: An example of PEEB explanation. M&V incorrectly classifies it as red-legged kittiwake where the
heermann gull does not have red legs but a red beak. This example shows that CLIP is strongly biased towards
some particular descriptors.
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0.696
0.688
0.722
0.483
0.475
0.672
0.614
0.624
0.688
0.575
0.645
0.699

crown: orange-yellow with pale edges
forehead: yellowish with faint markings
nape: olive-brown, blending into the back
eyes: small and dark, framed by eye-ring
beak: short and sharp, black-colored
throat: bright yellow, blending into the breast
breast: bright yellow with dark streaks
belly: creamy white with faint streaks
back: olive-brown back with streaks
wings: olive-brown with white-edged feathers
legs: long and skinny, with blackish coloring
tail: short and dark, with white outer feathers

Our prediction: palm warbler  0.819
because of the following...

0.000
0.309
0.000
0.212
0.149
0.173
0.551
0.306
0.100
0.220
0.000
0.142

crown: yellowish-green
forehead: yellow with black markings
nape: greenish-yellow
eyes: dark with thin white eye-ring
beak: small and pointed
throat: bright yellow
breast: bright yellow with faint streaks
belly: yellowish with light brown streaks
back: olive-green with faint streaks
wings: dark grayish-brown with white streaks
legs: pinkish-brown
tail: dark grayish-brown with white edges

M&V's prediction: prairie warbler  0.002
but we rejected it because...

Figure A11: An example of PEEB explanation. We can see that when the descriptor does not match the image,
the matching score tends to be zero, e.g., crown: yellowish-green. The clear differences in scores provide us
transparency of the model’s decision.
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