
Diffusion Probabilistic Models for Structured Node Classification

Hyosoon Jang 1 Seunghyeon Park 1 Sangwoo Mo 2 Sungsoo Ahn 1

Abstract

This paper studies structured node classification
on graphs, where the predictions should consider
dependencies between the node labels. In particu-
lar, we focus on solving the problem for partially
labeled graphs where it is essential to incorporate
the information in the known label for predicting
the unknown labels. To address this issue, we pro-
pose a novel framework leveraging the diffusion
probabilistic model for structured node classifica-
tion (DPM-SNC). At the heart of our framework
is the extraordinary capability of DPM-SNC to (a)
learn a joint distribution over the labels with an
expressive reverse diffusion process and (b) make
predictions conditioned on the known labels uti-
lizing manifold-constrained sampling. Since the
DPMs lack training algorithms for partially la-
beled data, we design a novel training algorithm
to apply DPMs, maximizing a new variational
lower bound. We also theoretically analyze how
DPMs benefit node classification by enhancing
the expressive power of GNNs. We extensively
verify the superiority of our DPM-SNC in diverse
scenarios, which include not only the transductive
setting but also the inductive setting.

1. Introduction
In this paper, we address the node classification problem,
which is a fundamental problem in machine learning on
graphs. One representative example is a transductive prob-
lem to classify documents from a partially labeled citation
graph (Sen et al., 2008). Recently, graph neural networks
(GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017)
have shown great success in this problem over their pre-
decessors (Borgwardt & Kriegel, 2005; Grover & Leskovec,
2016). Their success stems from the high capacity of non-
linear neural architectures combined with message passing.

1POSTECH 2KAIST. Correspondence to: Sungsoo Ahn <sung-
soo.ahn@postech.ac.kr>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling, Honolulu, Hawaii, USA. PMLR 202,
2023. Copyright 2023 by the author(s).

(a) Input (b) GCN (Kipf & Welling, 2016)

(c) GMNN (Qu et al., 2019) (d) DPM-SNC (ours)

Figure 1. Results of various methods to solve node classification on
a non-attributed and partially labeled cyclic grid. (a) The task is to
estimate p(yU |yL, G) where the known labels yL are highlighted
in green and the unknown labels yU are colored in gray. (b)-(d)
Red highlights the incorrect predictions made by the corresponding
algorithm. Conventional GNN (GCN) fails to make an informative
prediction while our DPM-SNC perfectly predicts all the labels.

However, the conventional GNNs are incapable of struc-
tured node classification: predicting node labels while con-
sidering the node-wise label dependencies. That is, given
a graph G with vertices V and node labels {yi : i ∈ V}, a
GNN with parameter θ outputs an unstructured prediction,
i.e., pθ(yi, yj |G) = pθ(yi|G)pθ(yj |G) for i, j ∈ V . Espe-
cially, this limitation becomes problematic in a transductive
setting where the prediction can be improved by incorporat-
ing the known labels, e.g., output pθ(yi|G, yj) for known
yj . In Figures 1(a) and 1(b), we elaborate on this issue with
an example where the conventional GNN fails to make an
informative prediction.

To resolve this issue, recent studies have investigated com-
bining GNNs with classical structured prediction algorithms,
i.e., schemes that consider the node label dependencies (Ma
et al., 2019a;b; Graber & Schwing, 2019; Qu et al., 2022;
Wang & Leskovec, 2020; Hang et al., 2021). They com-
bine GNNs with conditional random fields (Lafferty et al.,
2001), label propagation (Zhu & Ghahramani, 2002), or
iterative classification algorithm (Sen et al., 2008). Despite

Diffusion Probabilistic Models for Structured Node Classification

the promising outcomes demonstrated by these studies, their
approach relies on the classical algorithms to express joint
dependencies between node labels and may lack expressive
power or consistency in incorporating known labels.

Contribution. We propose a novel framework for struc-
tured node classification called DPM-SNC. Our key idea
is to leverage the diffusion probabilistic model (DPM) (Ho
et al., 2020), motivated by two significant advantages for
solving structured node classification: (a) it can effectively
learn joint dependencies between node labels, and (b) it can
easily incorporate conditions during inference via posterior
sampling. Figure 1 highlights that DPM significantly out-
performs previous methods when the prediction problem
requires a complete understanding of label dependencies.

However, DPM cannot be directly applied to the transduc-
tive scenario, where the model needs to maximize its log-
likelihood for partially labeled graphs. We propose a novel
training algorithm to address this challenge. Our method
maximizes a new variational lower bound of the marginal
likelihood of the graph over the unlabeled nodes, involving
the alternative optimization of DPM and a variational dis-
tribution. In addition, we provide a theoretical analysis that
supports the benefits of DPM-SNC for node classification
by enhancing the expressive power of GNNs.

We demonstrate the effectiveness of DPM-SNC on various
datasets. In the transductive setting, we conduct experiments
on synthetic and real-world benchmarks. In the inductive
setting, we conduct experiments on inductive node clas-
sification and the algorithmic reasoning tasks (Du et al.,
2022b). DPM-SNC outperformed baselines in both settings,
effectively learning joint dependencies.

2. Diffusion Probabilistic Models for
Structured Node Classification

In this section, we introduce the structured node classifi-
cation problem (Section 2.1). We then explain how the
diffusion probabilistic models (DPMs) offer a promising
solution for this problem (Section 2.2).

2.1. Structured node classification

We address structured node classification on partially la-
beled graphs. Our problem involves a graph G = (V, E ,x)
consisting of nodes V , edges E , and node attributes x =
{xi : i ∈ V}. We also denote the node labels by
y = {yi : i ∈ V}. We let VL and VU denote the set of
labeled and unlabeled nodes, while yL and yU denote the
corresponding labels for each set, e.g., yL = {yi : i ∈ VL}.
Our objective is to predict the unknown labels yU by train-
ing on the partially labeled graph, aiming to infer the true
conditional distribution p(yU |G,yL).

To address this problem while considering node label de-
pendencies, structured prediction algorithms (Lafferty et al.,
2001; Sen et al., 2008) try to solve two tasks: (a) learning
a joint distribution pθ(yU ,yL|G) to maximize the likeli-
hood of labeled data pθ(yL|G) and (b) inferring from the
distribution pθ(yU |G,yL) conditioned on known labels.

2.2. Diffusion probabilistic models for structured node
classification

In this work, we consider diffusion probabilistic models
for structured node classification (DPM-SNC) stems from
their (a) high expressivity in learning a joint distribution
over data and (b) the ability to easily infer from a posterior
distribution conditioned on partially observed data, where
both strengths benefit solving structured node classification.

To this end, we formally describe DPMs for a graph G as-
sociated with node-wise labels y. At a high level, DPMs
consist of two parts: forward and reverse processes. Given
the number of diffusion steps T , the forward process con-
structs a sequence of noisy labels y(1:T) = [y(1), . . . ,y(T)]
using a fixed distribution q(y(1:T)|y(0)). Next, given an
initial sample y(T) sampled from p(y(T)), the reverse pro-
cess pθ(y(0:T−1)|y(T), G) aims to recover the forward pro-
cess. To be specific, the forward and the reverse process
are factorized as q(y(1:T)|y(0)) =

∏T
t=1 q(y

(t)|y(t−1)) and
pθ(y

(0:T−1)|y(T), G) =
∏T

t=1 pθ(y
(t−1)|y(t), G).

By leveraging shared latent variables y(t) across multiple
steps in the reverse process, the reverse process effectively
considers the dependencies in the output. Also, DPMs can
easily infer from a posterior distribution conditioned on
partially observed data pθ(yU |G,yL). Specifically, the in-
cremental updating of y(t) for t = 1, . . . , T allows the DPM
to incorporate the known label yL, e.g., applying projection
with manifold-based corrections (Chung et al., 2022).

3. Training Diffusion Probabilistic Models on
Partially Labeled Graphs

We introduce a novel training algorithm for DPM-SNC on
partially labeled graphs, based on maximizing a variational
lower bound for the log-likelihood of known labels.

Variational lower bound. At a high-level, our algorithm
trains the DPM to maximize the log-likelihood of training
data log pθ(yL|G), which is defined as follows:

L = log pθ(yL|G) = log
∑
yU

∑
y(1:T)

pθ(yL,yU ,y
(1:T)|G).

However, this likelihood is intractable due to the exponen-
tially large number of possible combinations for the un-
known labels yU and the noisy sequence of labels y(1:T).
To address this issue, we train the DPM based on a new

Diffusion Probabilistic Models for Structured Node Classification

variational lower bound L ≥ LVLB, expressed as follows:

LVLB =Eq(yU |yL)

[
Eq(y(1:T)|y)

[
log

pθ(y,y
(1:T)|G)

q(y(1:T)|y)

]
− log q(yU |yL)

]
.

Here, q(·) is a variational distribution which is factorized
by q(yU ,y

(1:T)|yL) = q(y(1:T)|y)q(yU |yL), where y =
yU ∪ yL. We provide detailed derivation in Appendix A.1.

Training. To maximize the variational lower bound LVLB,
we alternatively update the reverse process pθ(y,y(1:T)|G)
and the variational distribution q(yU |yL), where the de-
tailed parameterization is described in Appendix A.2. In
particular, we train pθ(y,y

(1:T)|G) to maximize the Monte
Carlo approximation of LLVB by applying sampling to the
variational distribution q(y(1:T)|y)q(yU |yL).The detailed
training objective is described in Appendix A.3.

Next, we set the variational distribution q(yU |yL) to be
the empirical distribution of pθ(yU |G,yL) which can be
inferred using the manifold-constrained sampling (Chung
et al., 2022). This update is derived from the condition
q(yU |yL) = pθ(yU |G,yL) being necessary to maximize
LVLB, similar to the derivation of fixed-point iteration for
optimization (Rhoades, 1991). We describe the detailed
training procedure in Appendix A.4.

4. Theoretical Analysis
We demonstrate that DPMs have enhanced the expressive
power for solving the graph isomorphism test compared to
conventional GNNs, implying improved expressive power
for node classification problems. We assess the expressive
power of our DPM-SNC by introducing its analog, aggre-
gated Weisfeiler-Lehman (AGG-WL) test. Then, with an
analog of GNNs, i.e., 1-dimensional WL (1-WL) test (Weis-
feiler & Leman, 1968), we introduce the following theorem.
Theorem 1. Let 1-WL-GNN be a GNN as powerful as the
1-WL test. Then, DPM-SNC using a 1-WL-GNN is strictly
more powerful than the 1-WL-GNN in distinguishing non-
isomorphic graphs.

We provide the formal proof in Appendix B. We remark that
our analysis can be easily extended to applying other latent
variable models, e.g., variational auto-encoders (Kingma &
Welling, 2013), for node classification.

5. Experiments
In the experiments, we consider the structured prediction
baselines: : LP (Wang & Zhang, 2006), PTA (Dong et al.,
2021), LPA (Wang & Leskovec, 2020), GMNN (Qu et al.,
2019), G3NN (Ma et al., 2019a), CLGNN (Hang et al.,
2021), SPN (Qu et al., 2022).

We provide the details of our implementation for transduc-
tive and inductive setting in Appendices C.1 and C.2 respec-
tively. For all experiments, we also describe the detailed
data statics in Appendix D, and the detailed experimental
setup in Appendix E.

5.1. Transductive setting

(a) Scattered nodes (b) Localized nodes

Figure 2. Illustration of two training nodes scenarios. Green high-
lights the training nodes, where the labels are known.

Table 2. The transductive node classification accuracy on synthetic
data. Bold number indicates the best score.

Method Scattered nodes Localized nodes

GCN 50.13±0.66 51.32±1.42

+ GMNN 64.24±3.21 48.23±4.81

+ G3NN 50.13±0.66 51.32±1.42

+ CLGNN 87.08±2.41 53.41±2.14

+ DPM-SNC 98.56±0.71 90.91±3.45

Synthetic data. First, we evaluate DPM-SNC on a 2× n
non-attributed cyclic grid, where each node is assigned a
binary label and neighboring nodes having different labels.
Then, we consider two scenarios: one where the known
labels are randomly scattered, and another where they are
clustered in a local region. Both scenarios are illustrated in
Figures 2(a) and 2(b). These two scenarios verify the capa-
bility for capturing both short and long-range dependencies
between node labels.

Table 2 shows that our method significantly improves accu-
racy compared to the baselines. Furthermore, our method
also excels in the localized labeled nodes scenario, while
the other baselines fail. This highlights the superiority of
DPM-SNC in considering label dependencies.

Homophilic graph. In real-world transductive node classifi-
cation tasks, we first consider five homophilic graph datasets:
Pubmed, Cora, and Citeseer (Yang et al., 2016); Photo and
Computer (Shchur et al., 2018). For all the datasets, we
evaluate the node-level accuracy, and the subgraph-level
accuracy which measures the ratio of nodes with all neigh-
boring nodes being correctly classified.

The results are presented in Table 1(a). Our method outper-
forms the structured prediction-specialized baselines in both
node-label accuracy and subgraph-level accuracy. These
results highlight the superiority of DPM-SNC in solving
real-world node classification problems. Furthermore, even

Diffusion Probabilistic Models for Structured Node Classification

Table 1. The transductive node classification performance. Bold numbers indicate (a) the best score among the structured prediction
methods using the same GNN (b) the best score among all methods.

(a): Node-level accuracy (N-Acc.) and subgraph-level (Sub-Acc.) accuracy on homophilic graphs.

Pubmed Cora Citeseer Photo Computer

Method N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc.

LP 69.1±0.0 45.7±0.0 68.1±0.0 46.9±0.0 46.1±0.0 29.8±0.0 81.0±2.0 37.2±1.7 69.9±2.9 15.1±1.1

PTA 80.1±0.2 55.2±0.4 82.9±0.4 62.6±0.8 71.3±0.4 51.4±0.7 91.1±1.5 51.0±1.5 81.6±1.7 26.3±1.0

GCN 79.7±0.3 55.8±0.6 81.4±0.8 59.3±1.1 70.9±0.8 49.8±0.6 91.0±1.2 52.0±1.0 82.4±1.5 27.0±1.5

+LPA 79.6±0.6 53.5±0.9 81.7±0.7 60.3±1.5 71.0±0.6 50.2±1.0 91.3±1.2 52.9±2.0 83.7±1.4 28.5±2.4

+GMNN 82.6±1.0 58.1±1.4 82.6±0.9 61.8±1.3 72.8±0.7 52.0±0.8 91.2±1.2 54.3±1.4 82.0±1.0 28.0±1.6

+G3NN 80.9±0.7 56.9±1.1 82.5±0.4 62.3±0.8 73.9±0.7 53.1±1.0 90.7±1.1 53.0±2.0 82.1±1.2 28.1±2.1

+CLGNN 81.7±0.5 57.8±0.7 81.9±0.5 61.8±0.8 72.0±0.7 51.6±0.9 91.1±1.0 53.4±1.8 83.3±1.2 28.5±1.4

+DPM-SNC 83.0±0.9 59.2±1.2 83.2±0.5 63.1±0.9 74.4±0.5 53.6±0.6 92.2±0.8 55.3±2.1 84.1±1.3 29.7±1.8

GCNII 82.0±0.8 57.2±1.1 84.0±0.6 63.4±0.8 72.9±0.5 52.1±0.7 91.2±1.2 53.2±1.5 82.5±1.4 26.6±1.3

+DPM-SNC 83.8±0.7 61.6±0.9 85.3±0.6 65.8±0.7 74.1±0.5 54.1±0.9 92.8±1.1 54.2±1.2 84.4±1.8 29.2±1.1

(b): Node-level accuracy on
heterophilic graphs.

Empire Rating

GCN 73.6±0.7 48.7±0.6

SAGE 85.7±0.6 53.6±0.3

GAT 80.8±0.3 49.0±0.6

GAT-sep 88.7±0.4 52.7±0.6

GT 86.5±0.7 51.1±0.6

GT-sep 87.3±0.3 52.1±0.8

DPM-SNC 89.5±0.4 54.6±0.3

Table 3. The inductive node classification performance. Bold num-
bers indicate the best score.

Method Pubmed Cora Citeseer PPI

GCN 54.5±0.5 59.6±0.5 49.8±0.4 99.1±0.0

+G3NN 53.9±0.7 59.7±0.4 50.7±0.4 99.3±0.0

+CLGNN 53.9±0.5 60.2±0.3 50.5±0.3 99.2±0.0

+SPN 54.9±0.4 60.3±0.5 51.0±1.0 99.3±0.0

+DPM-SNC 55.1±0.4 60.8±0.3 51.4±0.5 99.4±0.0

when we combine our method with GCNII (Chen et al.,
2020), our method achieves performance improvements. As
can be observed, DPM-SNC consistently improves perfor-
mance regardless of the backbone network. We provide the
complete experiments table in Appendix F.1.

Heterophilic graph. To validate whether our framework
can consider heterophily dependencies, we also consider
recently proposed heterophilic graph datasets: Empire and
Ratings (Platonov et al.), where most heterophily-specific
GNNs fail to solve. In Table 1(b), we compare our method
with base GNNs reported by Platonov et al..

We report our results in Table 1(b). Here, one can see
that our method again achieves competitive performance on
heterophilic graphs. These results stems from the capability
for considering label dependencies, involving heterophily
dependencies. We provide the complete experiments table
in Appendix F.2.

5.2. Inductive setting

Inductive node classification. Following Qu et al. (2022),
we construct small-scale graphs from Pubmed, Cora, and
Citeseer, and construct large-scale graphs from PPI (Zit-
nik & Leskovec, 2017). We evaluate graph-level accuracy
for small-scale graphs and micro-F1 score for large-scale
graphs. The graph-level accuracy measures the ratio of
graphs with where all the predictions are correct.

From Table 3, one can observe that our DPM-SNC shows

Table 4. The graph algorithmic reasoning tasks performance on
graph with ten nodes. Bold numbers indicate the best score.

Method Copy Connected Shortest

Feedforward 0.3016 0.1796 0.1233
Recurrent 0.3015 0.1794 0.1259
Programmatic 0.3053 0.2338 0.1375
Iterative feedforward 0.6163 0.4908 0.4588
IREM 0.0019 0.1424 0.0274
DPM-SNC 0.0011 0.0724 0.0138

competitive results. These results suggest that the DPM-
SNC also solves inductive node classification well, thanks
to their capability for learning the node label dependencies.
We provide the complete experiments table in Appendix F.3.

Algorithmic reasoning. We also evaluate DPM-SNC to pre-
dict the outcomes of graph algorithms. Here, we show that
the capability of DPM-SNC to make a structured prediction
even brings benefits to solving the graph algorithms reason-
ing tasks by incorporating a deep understanding between
algorithmic elements. We evaluate the performance of our
DPM-SNC on three graph algorithmic reasoning bench-
marks proposed by Du et al. (2022b): edge copy, connected
component, and shortest path. We report the performance
using the mean square error. We also compare our method
with five methods reported by Du et al. (2022b).

Table 4 shows that DPM-SNC achieves competitive results
compared to the baselines. These results suggest that the
DPM-SNC can easily solve algorithmic reasoning tasks
thanks to its ability to make structured predictions. We
provide the complete experiments table in Appendix F.4.

6. Conclusion
In this paper, we propose diffusion probabilistic models for
solving structured node classification (DPM-SNC). Exten-
sive experiments show that DPM-SNC outperforms existing
structured node classification methods.

Diffusion Probabilistic Models for Structured Node Classification

7. Acknowledgements
This work partly was supported by Institute of Informa-
tion & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government(MSIT)
(No. IITP-2019-0-01906, Artificial Intelligence Graduate
School Program(POSTECH)), the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No. 2022R1C1C1013366), and Basic Science
Research Program through the National Research Foun-
dation of Korea(NRF) funded by the Ministry of Educa-
tion(2022R1A6A1A03052954).

References
Banino, A., Balaguer, J., and Blundell, C. Pondernet: Learn-

ing to ponder. In 8th ICML Workshop on Automated
Machine Learning (AutoML). 22

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron,
H. Equivariant subgraph aggregation networks. arXiv
preprint arXiv:2110.02910, 2021. 11

Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low-
frequency information in graph convolutional networks.
In AAAI. AAAI Press, 2021. 21

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels
on graphs. In Fifth IEEE international conference on
data mining (ICDM’05), pp. 8–pp. IEEE, 2005. 1

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In International
conference on machine learning, pp. 1725–1735. PMLR,
2020. 4, 21

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
universal generalized pagerank graph neural network. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=n6jl7fLxrP. 21

Chung, H., Sim, B., Ryu, D., and Ye, J. C. Improving
diffusion models for inverse problems using manifold
constraints. arXiv preprint arXiv:2206.00941, 2022. 2, 3,
8, 9

Dong, H., Chen, J., Feng, F., He, X., Bi, S., Ding, Z., and
Cui, P. On the equivalence of decoupled graph convolu-
tion network and label propagation. In Proceedings of
the Web Conference 2021, pp. 3651–3662, 2021. 3, 21

Du, L., Shi, X., Fu, Q., Ma, X., Liu, H., Han, S., and Zhang,
D. Gbk-gnn: Gated bi-kernel graph neural networks for
modeling both homophily and heterophily, 2022a. 21

Du, Y., Li, S., Tenenbaum, J., and Mordatch, I. Learn-
ing iterative reasoning through energy minimization. In
International Conference on Machine Learning, pp. 5570–
5582. PMLR, 2022b. 2, 4, 16, 18, 22

Graber, C. and Schwing, A. Graph structured prediction
energy networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019. 1

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864, 2016. 1

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. NeurIPS, 30, 2017. 1,
21

Hang, M., Neville, J., and Ribeiro, B. A collective learning
framework to boost gnn expressiveness for node classifi-
cation. In International Conference on Machine Learning,
pp. 4040–4050. PMLR, 2021. 1, 3, 11, 21, 22

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 2020. 2, 7, 8

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. arXiv preprint arXiv:1905.12265, 2019. 20

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013. 3

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 1, 19, 21, 22

Lafferty, J., McCallum, A., and Pereira, F. C. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. 2001. 1, 2

Li, X., Zhu, R., Cheng, Y., Shan, C., Luo, S., Li, D.,
and Qian, W. Finding global homophily in graph neu-
ral networks when meeting heterophily. arXiv preprint
arXiv:2205.07308, 2022. 21

Ma, J., Tang, W., Zhu, J., and Mei, Q. A flexible genera-
tive framework for graph-based semi-supervised learning.
Advances in Neural Information Processing Systems, 32,
2019a. 1, 3, 21, 22

Ma, T., Xiao, C., Shang, J., and Sun, J. CGNF: Con-
ditional graph neural fields, 2019b. URL https://
openreview.net/forum?id=ryxMX2R9YQ. 1

Maurya, S. K., Liu, X., and Murata, T. Improving graph
neural networks with simple architecture design. arXiv
preprint arXiv:2105.07634, 2021. 21

https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=ryxMX2R9YQ
https://openreview.net/forum?id=ryxMX2R9YQ

Diffusion Probabilistic Models for Structured Node Classification

Murphy, R., Srinivasan, B., Rao, V., and Ribeiro, B. Re-
lational pooling for graph representations. In Interna-
tional Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019. 12

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and
Prokhorenkova, L. A critical look at the evaluation of
gnns under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning
Representations. 4, 17, 19, 20, 21

Qu, M., Bengio, Y., and Tang, J. Gmnn: Graph markov
neural networks. In International conference on machine
learning, pp. 5241–5250. PMLR, 2019. 1, 3, 16, 21

Qu, M., Cai, H., and Tang, J. Neural structured predic-
tion for inductive node classification. arXiv preprint
arXiv:2204.07524, 2022. 1, 3, 4, 17, 22

Rhoades, B. Some fixed point iteration procedures. In-
ternational Journal of Mathematics and Mathematical
Sciences, 14(1):1–16, 1991. 3

Schwarzschild, A., Borgnia, E., Gupta, A., Huang, F.,
Vishkin, U., Goldblum, M., and Goldstein, T. Can you
learn an algorithm? generalizing from easy to hard prob-
lems with recurrent networks. Advances in Neural Infor-
mation Processing Systems, 34:6695–6706, 2021. 22

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008. 1, 2

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018. 3, 17

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020. 21

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015. 22

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017. 16, 19

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ. 21, 22

Wang, F. and Zhang, C. Label propagation through linear
neighborhoods. In Proceedings of the 23rd international
conference on Machine learning, pp. 985–992, 2006. 3,
21

Wang, H. and Leskovec, J. Unifying graph convolutional
neural networks and label propagation. arXiv preprint
arXiv:2002.06755, 2020. 1, 3, 21

Wang, X. and Zhang, M. How powerful are spectral graph
neural networks. In International Conference on Machine
Learning, pp. 23341–23362. PMLR, 2022. 21

Weisfeiler, B. and Leman, A. The reduction of a graph to
canonical form and the algebra which appears therein. nti,
Series, 2(9):12–16, 1968. 3, 10

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018. 15

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40–48.
PMLR, 2016. 3, 17

Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. Label-
ing trick: A theory of using graph neural networks for
multi-node representation learning. Advances in Neural
Information Processing Systems, 34:9061–9073, 2021.
11

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804,
2020. 21

Zhu, J., Rossi, R. A., Rao, A., Mai, T., Lipka, N., Ahmed,
N. K., and Koutra, D. Graph neural networks with het-
erophily. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pp. 11168–11176, 2021.
21

Zhu, X. and Ghahramani, Z. Learning from labeled and
unlabeled data with label propagation. 2002. 1

Zitnik, M. and Leskovec, J. Predicting multicellular function
through multi-layer tissue networks. Bioinformatics, 33
(14):i190–i198, 2017. 4, 17

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

Diffusion Probabilistic Models for Structured Node Classification

A. Details of DPM on partially labeled graphs
A.1. Derivation of variational lower bound

In this section, we provide a detailed derivation of the variational lower bound in ??.

log pθ(yL|G) = logEpθ(yU ,y(1:T)|G)

[
pθ(yL|G,yU ,y

(1:T))
]

= logEq(yU ,y(1:T)|yL)

[
pθ(y,y

(1:T)|G)

q(yU ,y(1:T)|yL)

]
≥ Eq(yU ,y(1:T)|yL)

[
log pθ(y,y

(1:T)|G)− q(yU ,y
(1:T)|yL)

]
= Eq(yU ,y(1:T)|yL)

[
log pθ(y,y

(1:T)|G)− q(y(1:T)|y)− log q(yU |yL)
]

= Eq(yU |yL)

[
Eq(y(1:T)|y)[log pθ(y,y

(1:T)|G)− q(y(1:T)|y)]− log q(yU |yL)
]
.

A.2. Parameterization

We use a Gaussian diffusion (Ho et al., 2020) to parameterize the forward process q(y(1:T)|y) as follows:

q(y(1), . . . ,y(T)|y(0)) =

T∏
t=1

N (y(t);
√
1− βty

(t−1), βtI),

where I is an identity matrix, β1, . . . , βT are fixed variance schedules. Here, we set the variance schedule to promote
q(y(T)|y(0)) ≈ N (y(T);0, I) by setting βt < βt+1 for t = 0, . . . , T − 1 and βT = 1. We then parameterize initial
distribution p(yT) and reverse diffusion process pθ(y

(t−1)|G,y(t)) as N (y(T);0, I) and N (y(t−1);µθ(y
(t), G, t), σ2

t),
respectively. Here, we set σ2

t to βt. We also define µθ(y
(t), G, t) as follows:

µθ(y
(t), G, t) =

1
√
αt

(
y(t) − βt√

1− ᾱt
ϵθ(y

(t), G, t)

)
, (1)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. We implement the residual function ϵθ(y
(t), G, t) through a GNN. Finally, we

describe the distribution q(yU |yL) as an empirical distribution over a fixed-size buffer B containing multiple estimates of
the unknown labels yU . This buffer is updated throughout the training. The implementations are described in Appendix C.

A.3. Detailed training objective

We describe the detailed training objective of LVLB for optimization. We first rewrite LVLB as follows:

LVLB = Eq(yU |yL)

[
Eq(y(1:T)|y)

[
log pθ(y,y

(1:T)|G)− log q(y(1:T)|y)
]
− log q(yU |yL)

]
= Eq(yU |yL)

[
Eq(y(1:T)|y)

[T∑
t=1

log
pθ(y

(t−1)|G,y(t))

q(y(t)|y(t−1))
+ log p(y(T))

]
− log q(yU |yL)

]

= Eq(yU |yL)

[
Eq(y(1:T)|y)

[T∑
t=1

log
pθ(y

(t−1)|G,y(t))

q(y(t−1)|y(t),y)

q(y(t−1)|y)
q(y(t)|y)

+ log p(y(T))

]
− log q(yU |yL)

]

= Eq(yU |yL)

[
Eq(y(1:T)|y)

[T∑
t=1

log
pθ(y

(t−1)|G,y(t))

q(y(t−1)|y(t),y)
+ log

p(y(T))

q(y(T)|y)

]
− log q(yU |yL)

]

= Eq(yU |yL)

[T∑
t=1

Eq(y(1:T)|y)

[
log

pθ(y
(t−1)|G,y(t))

q(y(t−1)|y(t),y)

]
+ Eq(y(T)|y)

[
log

p(y(T))

q(y(T)|y)

]
− log q(yU |yL)

]

= Eq(yU |yL)

[T∑
t=1

L(t)
DPM + C − log q(yU |yL)

]
.

Diffusion Probabilistic Models for Structured Node Classification

Here, L(t)
DPM is a training objective for a t step, and C is a constant with respect to the parameters θ. Following Ho et al.

(2020), we simplify L(t)
DPM with a residual function ϵθ(y

(t), G, t) in Equation (1).

L(t)
DPM = C − Eϵ∼N (0,I)

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ϵ− ϵθ(
√
ᾱty +

√
1− ᾱtϵ, G, t)

∥∥2
2

]
,

where C is a constant with respect to the parameters θ. An additional suggestion from Ho et al. (2020) is to set all weights
of the mean squared error to one instead of β2

t /2σ
2
tαt(1− ᾱt), and we follow this suggestion in this paper.

A.4. Training algorithm

Algorithm 1 Semi-supervised training algorithm of DPM-SNC

1: Input: Graph G, node attributes x, known labels yL, buffer size K, the number of inserted samples N1 at each iteration,
and the number of training steps N2 at each iteration.

2: Train a mean-field GNN pϕ(y|G).
3: Initialize the buffer B by pϕ(yU |G).
4: repeat
5: for i = 1, . . . , N1 do
6: Get yU ∼ pθ(yU |G,yL) using manifold-constrained sampling. ▷ Appendix A.5
7: Update B ← B ∪ {yU}.
8: If |B| > K, remove oldest one in B.
9: end for

10: for i = 1, . . . , N2 do
11: Sample yU ∼ B.
12: Update θ to maximize LVLB with G, and y = yL ∪ yU . ▷ Appendix A.3
13: end for
14: until converged

In this section, we provide a detailed training algorithm that maximizes variational lower bound LVLB with the parameteri-
zation specified in Appendix A.2. Specifically, we describe how our algorithm alternatively updates the reverse process
pθ(y,y

(1:T)|G) and the variational distribution q(yU |yL) defined by an empirical distribution over a buffer B.

First, reverse process pθ(y,y(1:T)|G) is trained to maximize Monte Carlo approximation of LLVB by applying sampling to
the variational distribution q(y(1:T)|y)q(yU |yL), i.e., sampling yU from the buffer B and applying the diffusion process
q(y(1:T)|y) to y = yU ∪ yL.

Next, we update the variational distribution q(yU |yL) by inserting samples from the distribution pθ(yU |G,yL) into the
buffer B. Here, we use manifold-constrained sampling of DPM to infer from the distribution pθ(yU |G,yL) (Chung
et al., 2022). The detailed sampling procedure is described in Appendix A.5. Furthermore, we initialize the buffer B
with samples from a mean-field GNN pϕ(y|G), which outputs an independent joint distribution over node labels, i.e.,
pθ(yU |G,yL) =

∏
i∈VU

pθ(yi|G). We describe the overall optimization procedure in Algorithm 1

Diffusion Probabilistic Models for Structured Node Classification

A.5. Manifold-constrained sampling

Algorithm 2 Manifold-constrained sampling

1: Input: Graph G, node attributes x, labels yL, and temperature of randomness τ2.
2: Get y(T) ∼ N (y(T);0, τ2I) ▷ Initial sampling
3: for t = T − 1, . . . , 0 do
4: Get z ∼ N (z;0, τ2I)

5: Set ỹ(t) ← 1√
αt

(
y(t+1) − βt+1√

1−ᾱt+1

ϵθ(y
(t+1), G, t+ 1)

)
+ σt+1z

6: Set ŷ(t+1) ← 1√
ᾱt+1

(
y(t+1) − 1−ᾱt+1√

1−ᾱt+1

ϵθ(y
(t+1), G, t+ 1)

)
7: Set ȳ(t) ←

(
ỹ(t) − γ ∂

∂y(t+1)

∥∥∥yL − ŷ
(t+1)
L

∥∥∥2
2

)
▷ Manifold-constrained gradient

8: Set y(t)
U ← ȳ

(t)
U

9: Get z ∼ N (z;0, τ2I)

10: Set y(t)
L ←

√
ᾱtyL +

√
1− ᾱtz ▷ Projection step

11: Set y(t) ← y
(t)
L ∪ y

(t)
U

12: end for
13: return y

(0)
U

To sample yU from pθ(yU |G,yL), we use a manifold-constrained sampling proposed by Chung et al. (2022). Here, the
update rule of the reverse process for t = 0, . . . , T − 1 is defined as follows:

ỹ(t) =
1
√
αt

(
y(t+1) − βt+1√

1− ᾱt+1
ϵθ(y

(t+1), G, t+ 1)

)
+ σt+1z, (2)

y
(t)
U = ȳ

(t)
U , ȳ(t) = ỹ(t) − γ

∂

∂y(t+1)

∥∥∥yL − ŷ
(t+1)
L

∥∥∥2
2
, (3)

y
(t)
L =

√
ᾱtyL +

√
1− ᾱtz, (4)

where z is sampled from N (z;0, τ2I). The Equation (2) is a temporal reverse diffusion step before applying the manifold-
constrained samplings. The Equation (3) applies the manifold-constrained gradient γ ∂

∂y(t+1) ∥yL − ŷ
(t+1)
L ∥22. Here, ŷ(t+1)

is the label estimate in t+ 1 steps defined as follows:

ŷ(t+1) =
1

√
ᾱt+1

(
y(t+1) − 1− ᾱt+1√

1− ᾱt+1
ϵθ(y

(t+1), G, t+ 1)

)
,

where γ is a hyper-parameter. We set γ to 1/∥yL − ŷ
(t+1)
L ∥22. The Equation (4) is a projection step. Additionally, we

introduce a parameter τ to control the randomness; when we set τ to zero, the modified reverse step becomes deterministic.
This allows us to control the randomness in obtaining samples. We describe the detailed sampling algorithm in Algorithm 2.

Diffusion Probabilistic Models for Structured Node Classification

B. WL test and GNN’s expressiveness
In this section, we provide the proof of Theorem 1 in detail.

B.1. Preliminaries

Algorithm 3 1-dimensional Weisfeiler-Lehman algorithm

1: Input: Graph G = (VG, EG,xG) and the number of iterations T .
2: Output: Color mapping χG : VG → C.
3: Initialize: Let χ0

G(v)← hash(xv) for v ∈ VG.
4: for t = 1, . . . , T do
5: for each v ∈ VG do
6: Set χt

G(v)← hash(χt−1
G (v), {{χt−1

G (u) : u ∈ NG(v)}})
7: end for
8: end for
9: Return: χT

G

We denote set as {}, and multiset as {{}}, which is a set allowing duplicate elements. We represent the cardinality of set or
multiset S as |S|. A graph is denoted as G = (VG, EG,xG), where VG stands for the set of nodes, EG for the set of edges,
and xG = {xG

v : v ∈ VG} for the node-wise attributes. We also use NG(v) := {u ∈ VG : {v, u} ∈ EG} to denote the set
of neighbor nodes of node v in graph G. We abbreviate a set of integers using the notation [m] := {0, . . . ,m}. We also
assume the hash functions are all injective and denote them by hash(·).
Definition 1 (Vertex coloring). Vertex coloring χG(v) is an injective hash function that maps a vertex v in graph G to a
color c from an abstract color set C. Next, with a slight abuse of notation, we let the graph color χG indicate the multiset of
node colors in graph G, i.e., χG := {{χG(v) : v ∈ VG}}.

Now we explain the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm (Weisfeiler & Leman, 1968), a classical algorithm
to distinguish non-isomorphic graphs. At a high level, the 1-WL test iteratively updates node colors based on their neighbors
until a stable coloring is reached. To be specific, given a vertex v, the initial node color χ0

G(v) is set using an injective hash
function on the node attribute xv. At each iteration, each node color is refined based on the aggregation of neighbor node
colors, e.g., {{χt−1

G (u) : u ∈ NG(v)}}. At the final T -th iteration, the algorithm returns the graph color χT
G. We provide a

detailed description in Algorithm 3.

The 1-WL test allows to compare a pair of graphs G,H using the refined graph colors χT
G, χ

T
H . If the two graph colors χT

G

and χT
H are not equivalent, two graphs G,H are guaranteed to be non-isomorphic. Otherwise, the test is inconclusive, i.e.,

the two graphs G,H are possibly isomorphic. We provide an example run of the 1-WL test in Figure 3(a), where the test is
inconclusive.

Related to the 1-WL algorithm, we first prove a characteristic of it that will be later used in our proof.

Lemma 1. Consider running 1-WL on two graphs G = (VG, EG,xG) and H = (VH , EH ,xH). If the initial graph colors
of two graphs are distinct, i.e., χ0

G ̸= χ0
H , the respective outputs of the 1-WL are also distinct, i.e., χT

G ̸= χT
H .

Proof. We first prove that χt
G ̸= χt

H is satisfied when χt−1
G ̸= χt−1

H . The rest of the proof is straightforward by induction
on t. To be specific, the 1-WL updates χt

G and χt
H as follows:

χt
G = {{hash(χt−1

G (v), {{χt−1
G (u) : u ∈ NG(v)}}) : v ∈ VG}}

χt
H = {{hash(χt−1

H (v), {{χt−1
H (u) : u ∈ NH(v)}}) : v ∈ VH}}.

Since hash(·) is an injective function, χt
G and χt

H are distinct for χt−1
G ̸= χt−1

H .

B.2. AGG-WL test

Next, we describe the newly proposed AGG-WL test, which is an analog of our DPM-SNC. Similar to the 1-WL test, our
AGG-WL test assigns node colors and iteratively refines them based on the neighbor node colors. However, AGG-WL

Diffusion Probabilistic Models for Structured Node Classification

generates augmented graphs at initialization, creating multiple “views” on the graph with diverse initial vertex coloring.
Then it applies 1-WL on each of the augmented graphs to obtain the augmented graph colors. Finally, AGG-WL aggregates
the augmented graphs colors.

The complete algorithm is described in Algorithm 4. Given a graph G = (VG, EG,xG) and the set of possible node-wise
augmentations ZG , the algorithm generates augmented graph Gm. In particular, the augmented graph Gm is defined as
follows:

Gm = (VG, EG, x̃Gm

), x̃Gm

= {(xG
v ∥ zmv) : v ∈ V}, zm = {zmv : v ∈ V}, zm ∈ ZG

where zm is an augmentation method in ZG. The algorithm creates an augmented graph Gm by node-wise concatenation of
zm to its node attributes xG, where x̃Gm

denotes the node-wise attribute augmented by zm. The symbol ·∥· denotes the
concatenation of two elements. Furthermore, z0 is a unique token, where G0 has the same information as G. Also, with a
slight abuse of notation, we let the graph color returned by the AGG-WL χAGG

G indicate the multiset of augmented graph
colors, i.e., χAGG

G := {{χT
Gm : m ∈ [|ZG|]}}. Here, |ZG| denotes the cardinality of set ZG.

Algorithm 4 Aggregation Weisfeiler-Lehman algorithm

1: Input: Graph G = (VG, EG,xG), the number of iterations T , and the augmentation set ZG.
2: Output: Color mapping χG : VG → C.
3: Initialize: Generate |ZG| augmented graphs Gm = (VG, EG,xGm

) where x̃Gm

= {(xG
v ∥ zmv) : v ∈ VG} for

zm ∈ ZG. Let χ0
Gm(v)← hash(x̃Gm

v) for v ∈ VG,m ∈ [|ZG|].
4: for t = 1, . . . , T do
5: for each v ∈ V do
6: for m ∈ [|ZG|] do
7: χt

Gm(v)← hash(χt−1
Gm (v), {{χt−1

Gm (u) : u ∈ NGm(v)}})
8: end for
9: end for

10: end for
11: χAGG

G ← {{χT
Gm : m ∈ [|ZG|]}}

12: Return: χAGG
G

Our contribution is establishing the connection between the AGG-WL and the DPM-SNC: aggregation of refined graph
colors for augmented graphs and marginalization over latent variables. More detail between DPM-SNC and the AGG-WL
test is described in Appendix B.3.2.

We note that our algorithm bears some similarities with several previous studies. The DS-WL and DSS-WL test (Bevilacqua
et al., 2021) defined a modified WL-test based on the set of subgraphs (instead of augmented graphs) with a modified
edge set E ′. Hang et al. (2021) uses a collective algorithm to consider pseudo-labels as additional inputs to boost GNN
expressiveness. However, they rely on the assumption that one can find an “optimal” pseudo-label to discriminate a pair
of graphs, which may be hard to realize in practice. Zhang et al. (2021) proposed labeling tricks that learns to capture
dependence between nodes also by adding additional features, but mainly focus on link prediction in inductive settings.

B.3. Proof of Theorem 1

Let us start by restating Theorem 1.

Theorem 1. Let 1-WL-GNN be a GNN as powerful as the 1-WL test. Then, DPM-SNC using a 1-WL-GNN is strictly more
powerful than the 1-WL-GNN in distinguishing non-isomorphic graphs.

Proof. We divide the proof into two parts, Appendices B.3.1 and B.3.2. In Appendix B.3.1, we show that the AGG-WL
test is strictly more powerful than the 1-WL test. In Appendix B.3.2, we show that DPM-SNC using a 1-WL-GNN is as
powerful as the AGG-WL test. From these two proofs, one can conclude that DPM-SNC using a 1-WL-GNN is strictly
more powerful than 1-WL-GNNs in distinguishing non-isomorphic graphs.

Diffusion Probabilistic Models for Structured Node Classification

B.3.1. EXPRESSIVENESS OF AGG-WL TEST

In this subsection, we prove that the AGG-WL test is strictly more powerful that the 1-WL test. The high-level idea is
showing that (i) the AGG-WL test is at least as powerful as the 1-WL test, i.e., any two graphs distinguishable by the 1-WL
test is also distinguishable by the AGG-WL test, and (ii) there exist two non-isomorphic graphs that are indistinguishable by
the 1-WL test, but distinguishable by our AGG-WL test.

Lemma 2. AGG-WL is at least as powerful as WL in distinguishing non-isomorphic graphs, i.e., any two non-isomorphic
graphs G,H distinguishable by WL are also distinguishable by AGG-WL.

Proof. We first note that both 1-WL and AGG-WL can discriminate two non-isomorphic graphs with distinct sizes in a
straightforward way. Therefore, we focus on non-trivial cases for two graphs G = (VG, EG,xG), H = (VH , EH ,xH)
where the number of nodes and edges are same, i.e., |VG| = |VH |, |EG| = |EH |. The cardinality of the augmentation sets
are also the same, |ZG| = |ZH |. We prove if these two graphs G,H are distinguishable by the 1-WL, two graphs G,H are
also distinguishable by the AGG-WL, i.e., if χT

G ̸= χT
H , then χAGG

G ̸= χAGG
H .

First, since χT
G ̸= χT

H is satisfied, χT
G0 ̸= χT

H0 is trivial. Additionally, the initial graphs colors of graph augmented by
the unique token and any other augmentations are distinct, i.e., χ0

G0 ̸= χ0
H1 , . . . , χ0

H|ZH | . This implies χT
G0 ̸∈ χAGG

H =

{χT
H0 , . . . , χT

H|ZH |} according to Lemma 1 which shows distinct initial graph colors produce the distinct outputs of 1-WL.
Since χT

G0 ∈ χAGG
G , one can see that χAGG

G ̸= χAGG
H .

Next, we show that there exist two graphs G,H indistinguishable by the 1-WL test, but distinguishable by the AGG-WL test.
We first show a simple example from Figure 3(a), then for a family of circular skip link (CSL) graphs (Murphy et al., 2019).

Lemma 3. Two graphs A,B are indistinguishable by the 1-WL, but distinguishable by the AGG-WL.

Proof. In Figure 3(a), two graphs A,B with 6 nodes are given. Here, the graph color computed by the 1-WL are equivalent,
i.e., χT

G = χT
H (two light blue nodes and four gray nodes). Therefore, two graphs A,B are indistinguishable by the 1-WL.

Next, we prove that two graphs A,B are distinguishable by the AGG-WL. Since Lemma 1 shows 1-WL always computes a
distinct graph color from distinct initial graph colors, we only need to show that there exists augmented graphs Am, Bm

with the same initial color has distinct graph colors computed by the 1-WL. Then, for two augmented graph sets {Am : m ∈
[|ZVA |]} and {Bm : m ∈ [|ZVB |]}, we can show that the graph colors computed by AGG-WL are always distinct.

We show a simple case, where augmented graphs with non-zero augmentation on one node results distinct graph colors
computed by the AGG-WL. We denote “single binary node feature augmentation”, zi as the case where node i is non-zero
augmented and other nodes are augmented with zero, e.g., z3 = {0, 0, 1, 0, 0, 0}. In Figure 3(b) the non-zero augmented
node i is colored in blue, and others are colored transparent. After applying the 1-WL algorithm on each graph, we obtain
the graph color χT

Ai and χT
Bi for i ∈ {1, . . . , 6}. It is clear that {{χT

Ai : i ∈ {1, . . . , 6}}} ̸= {{χT
Bi : i ∈ {1, . . . , 6}}}, thereby

two graphs A,B are distinguishable by AGG-WL.

Circular skip link graphs. CSL graph is denoted as CSL(n, r), where n is the number of nodes, .i.e., V = {0, . . . , n− 1}
and r is the skip connection length. For n and r, r < n − 1 must hold. There exists 2n edges, between node i and
(i+ 1) mod n forming a cycle, and between nodes i and (i+ r) mod n forming a skip link for i ∈ {0, . . . , n− 1}.
Lemma 4. For n ≥ 8, r ∈ [3, n/2 − 1], two graphs CSL(n, 2) and CSL(n, r) are indistinguishable by the 1-WL, but
distinguishable by the AGG-WL.

Proof. We first give a brief proof of why CSL(n, 2) and CSL(n, r) are indistinguishable by the 1-WL, then prove they are
distinguishable by AGG-WL. We consider a non-trivial case where the node attributes are all same, i.e., χ0

G(v) = χ0
G(u) for

v, u ∈ VG.

Let the initial color be c0 for all the nodes for graphs CSL(n, 2) and CSL(n, r), χ0
G(v) = c0 ∀v ∈ VG, G ∈

{CSL(n, 2),CSL(n, r)}. Then, for all nodes v ∈ VG, the color refinement process can than be written as χ1
G(v) =

hash(c0, {{c0, c0, c0, c0}}). All nodes have identical colors c1 for both graphs CSL(n, 2),CSL(n, r), refining the initial
graph color. Therefore CSL(n, 2) and CSL(n, r) are indistinguishable by the 1-WL.

Diffusion Probabilistic Models for Structured Node Classification

(a) 1-WL (b) AGG-WL

Figure 3. An example of two non-isomorphic graphs A,B indistinguishable by 1-WL, but distinguishable by the AGG-WL. (a) Two
graphs A,B are associated with nodes sharing the same attribute. The 1-WL computes the same graph color for A,B, i.e., χT

A = χT
B . (b)

Applying AGG-WL with “single binary node feature augmentation” to the graphs A and B. This results in six cases for each graph. One
can see that the multiset of augmented graph colors are different, i.e., {{χT

Ai : i ∈ {1, . . . , 6}}} ̸= {{χT
Bi : i ∈ {1, . . . , 6}}}, thereby two

graphs A,B are distinguishable by the AGG-WL.

Now we consider the AGG-WL. Again, we only need to show that there exists augmented graphs Ai, Bj with the same
initial color but having distinct graph colors refined by the 1-WL. Given symmetry, there is only one case of an augmented
graph that adds a non-zero augmentation to one node. We use vi to denote the i-th node in graph and denote the augmented
node as v0. We denote each augmented graph as CSL(n, 2)1,CSL(n, r)1, and let the initial color χ0

G(v0) = c1, and
∀i ∈ {1, . . . , n− 1},∀G ∈ {CSL(n, 2)1,CSL(n, r)1} χ0

G(vi) = c0.

Iteration 1. We focus on the four nodes connected to v0. Since r ∈ [3, n/2− 1], two node vn−r, vr are distinct. The color
refinement can be written as following:

• For v ∈ {v1, v2, vn−1, vn−2}, χ1
CSL(n,2)1(v) = hash(c0, {{c1, c0, c0, c0}}) = c2.

• For v /∈ {v1, v2, vn−1, vn−2}, χ1
CSL(n,2)1(v) = hash(c0, {{c0, c0, c0, c0}}) = c3.

• For v ∈ {v1, vr, vn−1, vn−r}, χ1
CSL(n,r)1(v) = hash(c0, {{c1, c0, c0, c0}}) = c2.

• For v /∈ {v1, vr, vn−1, vn−r}, χ1
CSL(n,r)1(v) = hash(c0, {{c0, c0, c0, c0}}) = c3.

Since 1-WL showed χ1
CSL(n,2) = χ1

CSL(n,r) and augmented graphs showed χ1
CSL(n,2)1 = χ1

CSL(n,r)1 , two graphs are
indistinguishable.

Diffusion Probabilistic Models for Structured Node Classification

(a) Original graph and 1-WL coloring (b) AGG-WL coloring on CSL(8, 2)1,CSL(8, 3)1

Figure 4. Example on two non-attribute CSL(8, 2),CSL(8, 3) graph. (a) 1-WL returns same graph color for two graphs, i.e., χT
CSL(8,2) =

χT
CSL(8,3). (b) Considering symmetry, there is only one type of augmented graph that with non-zero augmentation on one node, we denoted

the augmented graph as CSL(8, 2)1 and CSL(8, 3)1. In the process of 1-WL assigning colors to augmented graph, they result different
graph color from the second iteration, and one can conclude χT

CSL(8,2)1 ̸= χT
CSL(8,3)1 . Therefore CSL(8, 2),CSL(8, 3) are distinguishable

by the AGG-WL.

Iteration 2. Again, we focus on four nodes connected to v0. Here, we describe color refinement for nodes v1, vn−1, v2, vn−2,
since the following is enough to prove two graph colors are distinct.

• For v ∈ {v1, vn−1}, χ2
CSL(n,2)1(v) = hash(c2, {{c1, c2, c2, c3}}) = c4.

• For v ∈ {v2, vn−2}, χ2
CSL(n,2)1(u) = hash(c2, {{c1, c2, c3, c3}}) = c5.

• For v ∈ {v1, vn−1}, χ2
CSL(n,r)1(v) = hash(c2, {{c1, c3, c3, c3}}) = c6.

Since c6 /∈ χ2
CSL(n,2)1 , two graphs are distinguishable, i.e., χt

CSL(n,2)1 ̸= χt
CSL(n,r)1 .

Then χT
CSL(n,2)1 ̸= χT

CSL(n,r)1 is satisfied as proved in Lemma 1, thereby two graphs CSL(n, 2) and CSL(n, r) are
distinguishable by the AGG-WL.

In Figure 4, we provide an example with CSL(8, 2) and CSL(8, 3), indistinguishable by the 1-WL but distinguishable the
AGG-WL.

B.3.2. CORRESPONDENCE BETWEEN DPM-SNC AND AGG-WL

Now, we explain the connection between the DPM-SNC and the AGG-WL test. At a high-level, we show how DPM-SNC
simulates the color refinement process of the AGG-WL. Our main idea stems from the marginalization in DPM-SNC. As a
latent variable model, it can define the probability of the graph color χ with the marginalization over augmented graphs,
i.e., pθ(χ|G) =

∫
pθ(χ|G, z)p(z|G)dz.1 Specifically, DPM-SNC considers sample space of graph colors, where each

member χ is obtained from pθ(χ|G, z) with an augmented graph Gm represented by (G, zm). By construction, DPM-SNC
considers graph colors refinements for multiple augmented graphs, similar to how AGG-WL works.

Lemma 5. DPM-SNC using a 1-WL-GNN is as powerful as the AGG-WL test in distinguishing non-isomorphic graphs.

1The node labels y is replaced to the graph color χ, and applying a latent variable is interpreted as applying an augmentation to the
given graph.

Diffusion Probabilistic Models for Structured Node Classification

Proof. We show that if two graphs G,H are distinguishable by AGG-WL test, it is also distinguishable by the DPM-SNC.
Assume that the two graphs G,H are distinguishable by the AGG-WL. Then, the following condition is satisfied.

χAGG
G = {{χT

Gm : m ∈ [|ZG|]}} ̸= χAGG
H = {{χT

Hm : m ∈ [|ZH |]}},

where the AGG-WL produces distinct sets of refined graph colors for G,H . Next, we discuss how the DPM-SNC can
distinguish G,H . To this end, we first assume a GNN which is as powerful as the 1-WL test (Xu et al., 2018), denoted
as 1-WL-GNN. Specifically, we denote χGNN

G as a graph color refined by the 1-WL-GNN, where χT
Gm ̸= χT

Hn implies
χGNN
Gm ̸= χGNN

Hn for any augmented graph pair Gm, Hn. Then, under the χAGG
G ̸= χAGG

H , the following condition is also
satisfied.

{{χGNN
Gm : m ∈ [|ZG|]}} ≠ {{χGNN

Hm : m ∈ [|ZH |]}}.

Here, we assume that DPM-SNC utilizes this 1-WL-GNN to output a graph color conditioned on an augmented graph, i.e.,
pθ(χ|G, z). Then, we can connect pθ(χ|G, zm) with χGNN

Gm as follows:

pθ(χ|G, zm) = I[χ = χGNN
Gm].

where I[a = b] is an indicator function whose value is 1 if a = b and 0 otherwise. Next, we also assume that p(z|G) is a
uniform distribution over ZG. Then one can show that:

pθ(χ|G) =
1

|ZG|
∑

m∈[|ZG|]

I[χ = χGNN
Gm].

Then it follows that pθ(χ|G) ̸= pθ(χ|H) since {{χGNN
Gm : m ∈ [|ZG|]}} ̸= {{χGNN

Hm : m ∈ [|ZH |]}}. Therefore, G,H are
distinguishable by DPM-SNC.

Our proof is valid when considering the multiple outputs. However, our practical implementation of DPM-SNC does not use
multiple outputs at inference time since the DPM only considers the multiple random variables in the training objective.2

To this end, in Appendix F.5, we also investigate the inference scheme which aggregates multiple outputs to make final
predictions.3

2Our inference method is described in Appendix C.1
3In practice, we also use a Gaussian diffusion for defining p(z|G), which still allows the GNN to consider infinite augmentations.

Diffusion Probabilistic Models for Structured Node Classification

C. Implementation
In this section, we provide more details on how we implement the DPM-SNC for experiments.

C.1. Transductive settings

Here, we provide the detailed implementation of DPM-SNC for transductive node classification.

Model architecture. We parameterize the residual function ϵθ(y
(t), G, t) of reverse diffusion step using a L-layer message-

passing GNN as follows:

ϵθ(y
(t), G, t) = g(h(L)),

h
(ℓ)
i = (COMBINE(ℓ)(h

(ℓ−1)
i , a

(ℓ)
i) + f(t))∥y(t)i),

a
(ℓ)
i = AGGREGATE(ℓ)({h(ℓ−1)

j |(i, j) ∈ E}),

where g(h(L)) is a multi-layer perceptron that estimates the residual using the final node representation. AGGREGATE(·)
and COMBINE(·) functions are identical to the backbone GNN, and ·∥· indicates the concatenation. Here, h0

i is xi∥y(t)i .
The f(·) is a sinusoidal positional embedding function (Vaswani et al., 2017). We fix the dimension of sinusoidal positional
embedding to 128.

Buffer construction. Following the temperature annealing approach of Qu et al. (2019) in sampling pseudo-labels for
optimization, we also control the temperature of randomness in obtaining yU from pθ(yU |G,yL) for buffer construction.
To be specific, we use the variance multiplied by the temperature τ ∈ [0, 1], instead of the original variance in the reverse
diffusion step, e.g., setting τ to zero makes the deterministic sampling.

Inference. To make final predictions yU from pθ(yU |G,yL) for evaluation, we eliminate the randomness in inference time,
i.e., set temperature τ to zero.4 If the target is one-hot relaxation of discrete labels, we also discretize the final prediction by
choosing a dimension with maximum value.

C.2. Inductive setting

Here, we provide the details of DPM-SNC for inductive node classification and graph algorithmic reasoning. For the
inductive node classification, we use the same model architecture as in the transductive setting and use the deterministic
inference strategy. For the graph algorithmic, we modify DPM-SNC to perform edge-wise prediction.

Graph algorithmic reasoning. Since the targets of the graph algorithmic reasoning task are defined on the edge-level, we
apply a diffusion process to the edge labels. We then recover the edge-level noisy labels through the reverse process.

The denoising model architecture in the reverse process has a similar architecture to the model architecture of IREM (Du
et al., 2022b). Specifically, the noisy edge target y(t) is updated as follows. First, the noisy edge labels y(t) and edge
features are concatenated and passed through to the GNN layer, which aggregates them to obtain the node representation.
Next, we apply element-wise addition of the time embedding vector to the node representation. Then, we concatenate a pair
of node representations and noisy targets for the given edges and then apply a two-layer MLP to update edge labels.

In contrast to the node classification, we maintain randomness at inference time, i.e., we use the stochastic reverse process
for obtaining edge labels. This approach is consistent with the IREM, which also includes randomness at inference time.

4We also investigate various stochastic inference strategies in Appendix F.5

Diffusion Probabilistic Models for Structured Node Classification

D. Data statistics
D.1. Synthetic data

We generate 1000× 2 non-attributed cyclic grid and 100× 2 non-attributed cyclic grid for scattered and localized training
nodes scenarios, respectively. Then, we split 30%, 30%, and 40% of the entire nodes into training, validation, and test nodes.

• Scattered training nodes: We randomly sample nodes in the graph to split them into training, validation, and test nodes.5

• Localized training nodes: We select the nodes in the region within the 30× 2 grid as training nodes. Then, we randomly
sample the remaining nodes in the graph to split them into validation and test nodes.

For illustrative purposes, we also describe both scenarios in Figure 5 with smaller graphs.

(a) Scattered-training (b) Scattered-test/validation (c) Localized-training (d) Localized-test/validation

Figure 5. Illustration of two scenarios. The non-gray nodes represent nodes in each split.

D.2. Transductive node classification datasets

Table 5. The data statistics of transductive node classification datasets.
Dataset ♯ nodes ♯ edges ♯ features ♯ classes ♯ (training/validation/test) nodes

Pubmed (Yang et al., 2016) 19717 44338 500 3 (60/500/1000)
Cora (Yang et al., 2016) 2708 5429 1433 7 (140/500/1000)
Citeseer (Yang et al., 2016) 3327 4732 3703 6 (120/500/1000)
Photo (Shchur et al., 2018) 7487 119043 745 8 (160/240/7087)
Computers (Shchur et al., 2018) 13381 34493 767 10 (200/300/12881)
Roman (Platonov et al.) 22662 32927 300 18 (11331/5665/5666)
Ratings (Platonov et al.) 24492 93050 300 5 (12246/6123/6123)

Here, we consider a graph with partially labeled nodes. We describe the data statistics in Table 5.

D.3. Inductive node classification datasets

Table 6. The data statistics of inductive node classification datasets.
(training/validation/test) data

Dataset ♯ features ♯ classes ♯ graphs Avg. ♯ nodes Avg. ♯ edges

Pubmed (Qu et al., 2022) 500 3 (60/500/1000) (6.0/5.4/5.6) (6.7/5.8/6.7)
Cora (Qu et al., 2022) 1433 7 (140/500/1000) (5.6/4.9/4.7) (7.0/5.8/5.3)
Citeseer (Qu et al., 2022) 3703 6 (120/500/1000) (4.0/3.8/3.8) (4.3/4.0, 3/8)
PPI (Zitnik & Leskovec, 2017) 500 3 (20/2/2) (2245.3/3257.0/2762.0) (61318.4/99460.0/80988.0)

Here, we consider datasets consists of a set of graphs. We describe the data statistics in Table 6.

5Additionally, we also consider training with an additional 2× 20 cyclic grid for visualization in Figure 1.

Diffusion Probabilistic Models for Structured Node Classification

D.4. Graph algorithmic reasoning datasets

Following Du et al. (2022b), we generate training graphs in each training step. Here, the training graphs are composed
of graphs of varying sizes, ranging from two to ten nodes. The node features are initialized to zero, and the labels are
defined on the edges, e.g., the shortest distance between two nodes. Then, we evaluate performance on graphs with ten
nodes. Furthermore, we also use graphs with 15 nodes to evaluate generalization capabilities.

Diffusion Probabilistic Models for Structured Node Classification

E. Experiments setup
In this section, we describe the detailed experimental setup. For all experiments, we use a single GPU of NVIDIA GeForce
RTX 3090. The hyper-parameters for each experiment are described in the following subsections.

E.1. Synthetic dataset

In this experiment, we implement each method with a one-layer GCN with 16 hidden dimensions. We search the learning
rate within {1e−3, 5e−3, 1e−2} for all methods. Other hyper-parameters of each method follow their default settings. For
DPM-SNC, we fix the diffusion step to 100. We also set the size of the buffer to 50 and insert five samples into the buffer for
every 30 training step. We use a pre-trained mean-field GNN until the buffer is updated 10 times. We report the performance
with ten different random seeds.

E.2. Transductive node classification

Table 7. The hyper-parameter search ranges for the homophilic graph. For hyper-parameters without a specific method in parentheses, it
applies to all methods in the respective category.

Method Hyper-parameters Search range

All methods learning rate {1e−3, 5e−3, 1e−2}
weight decay {1e−3, 5e−3, 1e−2}

GNN-based methods
(LPA, GMNN, G3NN,
CLGNN, DPM-SNC)

number of layers {2, 4}
hidden dimension {64, 128}
weight of constraints for structured-prediction (LPA, G3NN) {0.1, 1.0, 10.0}
pseudo-labels sampling temperature
(GMNN, CLGNN, DPM-SNC)

{0.1, 0.3, 1.0}

Non-GNN methods
(LP, PTA)

number of label propagation {10, 100}
hidden dimension (PTA) {64, 128}
damping factor {0.1, 0.3, 0.5}

Homophilc graph. We describe the hyper-parameter search ranges in Table 7. For the GNN-based methods, we parameterize
each method with GCN (Kipf & Welling, 2016) or GAT (Vaswani et al., 2017). Additionally, we apply dropout with p = 0.5
except for LP. Other hyper-parameters of each method follow their default settings. For DPM-SNC, we fix the diffusion step
to 80. We also set the size of the buffer to 50 and insert five samples into the buffer for every 100 training step. We use a
pre-trained mean-field GNN until the buffer is updated 20 times. We report the performance with ten different seeds.

Table 8. The hyper-parameter search ranges of DPM-SNC
for the heterophilic graph.

Hyper-parameters Search range

learning rate {3e−5, 1e−4, 3e−4}
weight decay {0, 1e−5, 1e−4}
number of layers {2, 4}
hidden dimension {256, 512}
sampling temperature {0.1, 0.3, 1.0}

Heterophilic graph. We describe the hyper-parameters for DPM-
SNC as we use the numbers reported by Platonov et al. for
baselines. We parameterize DPM-SNC with GAT-sep (Platonov
et al.). We describe the hyper-parameter search ranges in Table 8.
Additionally, we apply dropout with p = 0.5, and we fix the
diffusion step to 80. We also set the size of the buffer to 50 and
insert five samples into the buffer for every 100 training step. We
use a pre-trained mean-field GNN until the buffer is updated 100
times. We report the performance with ten different seeds.

E.3. Inductive node classification

Table 9. The hyper-parameter search ranges of all methods for the inductive node classificaiton.
Hyper-parameters Search range

learning rate {1e−3, 5e−3, 1e−2} for small-scale graphs and {3e−5, 1e−4, 3e−4} for huge-scale graphs
weight decay {1e−3, 5e−3, 1e−2} for small-scale graphs and {0, 1e−5, 1e−4} for huge-scale graphs
number of layers {2, 4}
hidden dimension {64, 128} for small-scale graphs and {512, 1024} for huge-scale graphs

We describe the hyper-parameter search ranges in Table 9. In this experiements, we parameterize each method with GCN
(Kipf & Welling, 2016) or GAT (Vaswani et al., 2017). For the small-scale graph datasets, i.e., Pubmed, Cora, and Citeseer,
we apply dropout with p = 0.5. For the huge-scale graph datasets, i.e., PPI, we include the linear skip connection between

Diffusion Probabilistic Models for Structured Node Classification

each GNN layer. Other hyper-parameters of each method follow their default settings. For DPM-SNC, we fix the diffusion
step to 80. We report the performance with ten and five different seeds for small-scale and large-scale graphs, respectively.

E.4. Algorithmic reasoning

Here, we describe the hyper-parameter settings for DPM-SNC as we use the numbers reported by Platonov et al. for
baselines. We search the learning rate and weight decay within {1e−4, 3e−4, 1e−3} and {0, 1e−5, 1e−4}, respectively.
The hyper-parameters of the model are the same as the model implementation of IREM, using a three-layer GINEConv (Hu
et al., 2019) with a 128 hidden dimension. We fix the diffusion step to 80.

Diffusion Probabilistic Models for Structured Node Classification

F. Additional experiments
F.1. Transductive node classification on homophilic graphs.

Table 10. The transductive node classification performance. N-Acc. and Sub-Acc. denote the node-level and subgraph-level accuracy,
respectively. Bold numbers indicate the best score among the structured prediction methods using the same GNN.

Pubmed Cora Citeseer Photo Computer

Method N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc. N-Acc. Sub-Acc.

LP (Wang & Zhang, 2006) 69.1±0.0 45.7±0.0 68.1±0.0 46.9±0.0 46.1±0.0 29.8±0.0 81.0±2.0 37.2±1.7 69.9±2.9 15.1±1.1

PTA (Dong et al., 2021) 80.1±0.2 55.2±0.4 82.9±0.4 62.6±0.8 71.3±0.4 51.4±0.7 91.1±1.5 51.0±1.5 81.6±1.7 26.3±1.0

GCN (Kipf & Welling, 2016) 79.7±0.3 55.8±0.6 81.4±0.8 59.3±1.1 70.9±0.8 49.8±0.6 91.0±1.2 52.0±1.0 82.4±1.5 27.0±1.5

+LPA (Wang & Leskovec, 2020) 79.6±0.6 53.5±0.9 81.7±0.7 60.3±1.5 71.0±0.6 50.2±1.0 91.3±1.2 52.9±2.0 83.7±1.4 28.5±2.4

+GMNN (Qu et al., 2019) 82.6±1.0 58.1±1.4 82.6±0.9 61.8±1.3 72.8±0.7 52.0±0.8 91.2±1.2 54.3±1.4 82.0±1.0 28.0±1.6

+G3NN (Ma et al., 2019a) 80.9±0.7 56.9±1.1 82.5±0.4 62.3±0.8 73.9±0.7 53.1±1.0 90.7±1.1 53.0±2.0 82.1±1.2 28.1±2.1

+CLGNN (Hang et al., 2021) 81.7±0.5 57.8±0.7 81.9±0.5 61.8±0.8 72.0±0.7 51.6±0.9 91.1±1.0 53.4±1.8 83.3±1.2 28.5±1.4

+DPM-SNC (ours) 83.0±0.9 59.2±1.2 83.2±0.5 63.1±0.9 74.4±0.5 53.6±0.6 92.2±0.8 55.3±2.1 84.1±1.3 29.7±1.8

GAT (Veličković et al., 2018) 79.1±0.5 55.8±0.5 81.5±0.6 61.3±0.9 71.0±0.8 50.8±1.0 90.8±1.0 50.8±1.9 83.1±1.6 27.8±2.2

+LPA (Wang & Leskovec, 2020) 78.7±1.1 56.0±1.2 81.5±0.9 60.7±0.8 71.3±0.9 50.1±0.9 91.3±0.8 52.7±2.1 84.4±1.0 29.4±2.6

+GMNN (Qu et al., 2019) 79.6±0.8 57.0±0.7 82.3±0.7 62.2±0.8 71.7±0.9 51.4±0.9 91.4±1.0 53.1±1.6 83.3±2.0 29.1±1.8

+G3NN (Ma et al., 2019a) 77.9±0.4 55.9±0.5 82.7±1.3 62.7±1.3 74.0±0.8 53.7±0.5 91.5±0.9 52.6±2.2 83.1±1.7 28.8±2.4

+CLGNN (Hang et al., 2021) 80.0±0.6 57.5±1.2 81.8±0.6 61.5±0.9 72.1±0.8 52.1±0.8 90.6±0.8 51.9±1.8 82.6±1.2 28.4±1.8

+DPM-SNC (ours) 81.7±0.8 59.0±1.1 83.8±0.7 63.8±0.7 74.3±0.7 54.0±0.9 92.0±0.8 54.0±2.4 84.2±1.2 30.0±2.0

GCNII (Chen et al., 2020) 82.0±0.8 57.2±1.1 84.0±0.6 63.4±0.8 72.9±0.5 52.1±0.7 91.2±1.2 53.2±1.5 82.5±1.4 26.6±1.3

+DPM-SNC (ours) 83.8±0.7 61.6±0.9 85.3±0.6 65.8±0.7 74.1±0.5 54.1±0.9 92.8±1.1 54.2±1.2 84.4±1.8 29.2±1.1

We report the full experiments table in Table 10.

F.2. Transductive node classification on heterophilic graphs.

Table 11. The transductive node classification accuracy on heterophilic graphs. Bold numbers indicate the best score.
Empire Rating

H2GCN (Zhu et al., 2020) 60.11±0.52 36.47±0.23

CPGNN (Zhu et al., 2021) 63.96±0.62 39.79±0.77

GPR-GNN (Chien et al., 2021) 64.85±0.27 44.88±0.34

FSGNN (Maurya et al., 2021) 79.92±0.56 52.74±0.83

GloGNN (Li et al., 2022) 59.63±0.69 36.89±0.14

FAGCN (Bo et al., 2021) 65.22±0.56 44.12±0.30

GBK-GNN (Du et al., 2022a) 74.57±0.47 45.98±0.71

JacobiConv (Wang & Zhang, 2022) 71.14±0.42 43.55±0.48

GCN (Kipf & Welling, 2016) 73.69±0.74 48.70±0.63

SAGE (Hamilton et al., 2017) 85.74±0.67 53.63±0.39

GAT (Veličković et al., 2018) 80.87±0.30 49.09±0.63

GAT-sep (Platonov et al.) 88.75±0.41 52.70±0.62

GT (Shi et al., 2020) 86.51±0.73 51.17±0.66

GT-sep (Platonov et al.) 87.32±0.39 52.18±0.80

DPM-SNC (ours) 89.52±0.46 54.66±0.39

We report the full experiments table in Table 11.

Diffusion Probabilistic Models for Structured Node Classification

F.3. Inductive node classification.

Table 12. The inductive node classification performance. N-Acc., G-Acc., and F1 denote the node-level accuracy, graph-level accuracy,
and micro-F1 score, respectively. Bold numbers indicate the best score among the structured prediction methods using the same GNN.

Pubmed Cora Citeseer PPI

Method N-Acc. G-Acc. N-Acc. G-Acc. N-Acc. G-Acc. F1

GCN (Kipf & Welling, 2016) 80.25±0.42 54.58±0.51 83.36±0.43 59.67±0.51 76.37±0.35 49.84±0.47 99.15±0.03

+G3NN (Ma et al., 2019a) 80.32±0.30 53.93±0.71 83.60±0.25 59.78±0.47 76.34±0.37 50.76±0.47 99.33±0.02

+CLGNN (Hang et al., 2021) 80.22±0.45 53.98±0.54 83.45±0.34 60.24±0.38 75.71±0.40 50.51±0.38 99.22±0.04

+SPN (Qu et al., 2022) 80.78±0.34 54.91±0.40 83.85±0.60 60.35±0.57 76.25±0.48 51.02±1.06 99.35±0.02

+DPM-SNC (ours) 80.58±0.41 55.16±0.43 84.09±0.27 60.88±0.36 77.01±0.49 51.44±0.56 99.46±0.02

GAT (Veličković et al., 2018) 80.10±0.45 54.38±0.54 79.71±1.41 56.66±1.40 74.91±0.22 49.87±0.44 99.54±0.01

+G3NN (Ma et al., 2019a) 79.88±0.62 54.66±0.29 81.19±0.45 58.68±0.38 75.45±0.26 50.86±0.46 99.56±0.01

+CLGNN (Hang et al., 2021) 80.23±0.40 54.51±0.36 81.38±0.55 58.81±0.61 75.45±0.36 50.66±0.45 99.55±0.01

+SPN (Qu et al., 2022) 79.95±0.34 54.82±0.33 81.61±0.31 59.17±0.31 75.41±0.35 51.04±0.53 99.46±0.02

+DPM-SNC (ours) 80.26±0.37 54.26±0.47 81.79±0.46 59.55±0.49 76.46±0.60 52.05±0.71 99.63±0.01

We report the full experiments table in Table 12.

F.4. Graph algorithm reasoning.

Table 13. Performance on graph algorithmic reasoning tasks. Bold numbers indicate the best score. Same-MSE and Large-MSE indicate
the performance on ten, and 15 nodes, respectively.

Edge copy Connected components Shortest path

Method Same-MSE Large-MSE Same-MSE Large-MSE Same-MSE Large-MSE

Feedforward 0.3016 0.3124 0.1796 0.3460 0.1233 1.4089
Recurrent (Schwarzschild et al., 2021) 0.3015 0.3113 0.1794 0.2766 0.1259 0.1083
Programmatic (Banino et al.) 0.3053 0.4409 0.2338 3.1381 0.1375 0.1290
Iterative feedforward (Sohl-Dickstein et al., 2015) 0.6163 0.6498 0.4908 1.2064 0.4588 0.7688
IREM (Du et al., 2022b) 0.0019 0.0019 0.1424 0.2171 0.0274 0.0464
DPM-SNC (ours) 0.0011 0.0038 0.0724 0.1884 0.0138 0.0286

We report the full experiments table in Table 13.

Diffusion Probabilistic Models for Structured Node Classification

5 10 20 40 80
Diffusion steps

5

4

3

2

1Nu
m

be
r o

f l
ay

er
s 65.7 67.1 68.4 67.3 68.0

69.6 70.4 71.1 70.7 71.0

70.9 71.3 71.3 71.5 71.9

72.6 73.3 74.0 74.3 74.4

71.4 72.1 72.4 72.4 72.9

Figure 6. Accuracy with varying GNN
layers and diffusion steps.

0 20 40 60 80
Step

65

70

75

80

85

Ac
cu

ra
cy

Pubmed
Cora
Citeseer

Figure 7. Accuracy for changes in diffu-
sion steps.

0.02 0.04 0.06 0.08
Time (s)

71

72

73

74

75

Ac
cu

ra
cy

GCNII
DPM-SNC

Figure 8. Accuracy with varying infer-
ence time.

0.00 0.25 0.50 0.75 1.00
Temperature

50

60

70

80

Ac
cu

ra
cy

Pubmed
Cora
Citeseer

(a)

20 22 24 26 28 210

Number of samples
50

60

70

80

Ac
cu

ra
cy

Pubmed
Cora
Citeseer

(b)
Figure 9. (a) Accuracy with varying temperature. (b) Accuracy with the varying number of samples. The dashed line represents the
accuracy of the deterministic inference scheme.

F.5. Ablation stuides

Diffusion steps vs. number of GNN layers. We first verify that the performance gains in DPM-SNC mainly stem from the
reverse diffusion process which learns the joint dependency between labels. To this end, we vary the number of diffusion
steps along with the number of GNN layers. We report the corresponding results in Figure 6. One can observe that
increasing the number of diffusion steps provides a non-trivial improvement in performance, which cannot be achieved by
just increasing the number of GNN layers.

Accuracy over diffusion steps. We investigate whether the iteration in the reverse process progressively improves the
quality of predictions. In Figure 7, we plot the changes in node-level accuracy in the reverse process as the number of
iterations increases. The results confirm that the iterative inference process gradually increases accuracy, eventually reaching
convergence.

Running time vs. performance. Here, we investigate whether the DPM-SNC can make a good trade-off between running
time and performance. In Figure 8, we compare the change in accuracy of DPM-SNC with GCNII over the inference time
on Citeseer by changing the number of layers and diffusion steps for DPM-SNC and GCNII, respectively. The backbone
network of DPM-SNC is a two-layer GCN. One can observe that our DPM-SNC shows competitive performances compared
to the GCNII at a similar time. Also, while increasing the inference times of the GCNII does not enhance performance,
DPM-SNC shows further performance improvement.

Ablations on various inference schemes. We also study various inference strategies for our DPM-SNC. We first investigate
how temperature control affects label inference in real-world node classification tasks. In Figure 9(a), we plot the changes in
accuracy for various temperatures τ . One can see that reducing the randomness of DPM-SNC gives a better prediction in
real-world node classification tasks.

We also consider sampling various numbers of predictions for node-wise aggregation to improve performance. In Figure 9(b),
even the number of samples is increased to 210, the deterministic and the node-wise aggregation inference schemes show
similar accuracy, and there are only minor performance improvements on Citeseer. In practice, we use deterministic
inference in the node classification tasks since the node-wise aggregation requires a relatively long time.

