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ABSTRACT

This study focuses on differentially private linear regression in the over-
parameterized regime. We propose a new variant of the differentially private
Follow-The-Regularized-Leader (DP-FTRL) algorithm that uses a random noise
with a general covariance matrix for differential privacy. This leads to improved
privacy and utility (excess risk) trade-offs. Firstly, even when reduced to an ex-
isting DP-FTRL algorithm that uses an isotropic noise, our excess risk bound
is sharper as a function of the eigenspectrum of the data covariance matrix and
the ground truth model parameter. Furthermore, when unlabeled public data is
available, we can design a better noise covariance matrix structure to improve
the utility. For example, when the ground truth has a bounded ℓ2-norm, and
the eigenspectrum decays polynomially (i.e., λi = i−r for r > 1), our method
achieves Õ(N− r

1+2r ) and Õ(N− r
3+r∧

2r
1+3r ) excess error for identity and specially

designed covariance matrices, respectively. Notably, our method with a specially
designed covariance matrix outperforms the one with an identity matrix when the
eigenspectrum decays at least quadratically fast, i.e., r ≥ 2. Our proposed method
significantly improves upon existing differentially private methods for linear re-
gression, which tend to scale with the problem dimension, leading to a vacuous
guarantee in the over-parameterized regime.

1 INTRODUCTION

In recent years, machine learning has witnessed remarkable achievements across various domains,
such as finance and health care. The rapid advancements in large language models (e.g., ChatGPT
(Brown et al., 2020)) have further accelerated the use of machine learning techniques in our daily
lives. While these techniques offer numerous benefits, there is an increasing concern regarding the
privacy of sensitive personal information in the datasets used for training machine learning models
(Fredrikson et al., 2015; Shokri et al., 2017). For instance, over-parameterized neural networks
can memorize sensitive training data, posing significant privacy risks when deployed (Carlini et al.,
2019; 2021). Extensive research has been conducted on privacy-preserving machine learning to
mitigate these privacy concerns, primarily focusing on achieving differential privacy (DP) (Dwork
et al., 2006). DP is a rigorous definition of privacy that protects each individual’s privacy from
adversaries who can access the models and potentially the rest of the data.

Although numerous differentially private machine learning methods have been established in the
past decades (e.g., (Bassily et al., 2014; Wang et al., 2017; Bassily et al., 2019; Feldman et al.,
2020)), it is common wisdom that these methods tend to perform worse as the model sizes in-
crease. For instance, one commonly used approach for achieving differential privacy in empirical
risk minimization (ERM) is DP-SGD (Bassily et al., 2014; Abadi et al., 2016), a private variant of
stochastic gradient descent (SGD) that perturbs the gradient updates by adding isotropic Gaussian
noise. However, the utility guarantee (e.g., empirical risk) of DP-SGD scales with the number of
model parameters (Bassily et al., 2014) in the worst-case scenario due to the isotropic noise, leading
to a vacuous learning guarantee when the number of model parameters is significantly larger than
the number of training examples, which is often the case in modern machine learning tasks.

In recent years, there have been several efforts (Li et al., 2022b; Yu et al., 2022; De et al., 2022;
Mehta et al., 2022; Li et al., 2022a; Zhou et al., 2021; Song et al., 2021; Kairouz et al., 2020) to
address the challenges of applying differentially private machine learning methods to large models.
For example, recent studies (Li et al., 2022b; Yu et al., 2022; De et al., 2022; Mehta et al., 2022)
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demonstrate that leveraging DP-SGD for fine-tuning pre-trained large models can yield promising
performance on downstream language and vision tasks while maintaining reasonable privacy guar-
antees. Nevertheless, there is still a lack of theoretical understanding regarding scenarios in which
differentially private machine learning methods can effectively handle large models. To better under-
stand this problem, we propose to study the seemingly simple yet highly challenging linear models
in the over-parameterized regime.

More specifically, we consider the following private linear regression problem. Given a dataset
S = {(xi, yi)}N−1

i=0 , where each data point is drawn i.i.d. from some distribution D, we want to
find a model parameter ŵ that can ensure differential privacy while achieving a small (population)
excess risk: L(ŵ)− L(w∗), where

L(w) := E(x,y)∼D
[
ℓ(w;x, y) := 1/2 · (w⊤x− y)2

]
, (1.1)

x ∈ Rd is the feature, y ∈ R is the response, D is an unknown distribution over x and y, w ∈ Rd
is the model parameter, and w∗ is the minimizer of L(w). While differentially private linear regres-
sion has been extensively studied over the past decade (Vu & Slavkovic, 2009; Dwork et al., 2010;
Dimitrakakis et al., 2014; Foulds et al., 2016; Minami et al., 2016; Wang, 2018; Sheffet, 2019; Cai
et al., 2021; Varshney et al., 2022; Liu et al., 2023), most existing research focuses on the classical
setting (i.e., d < N ). These methods’ utility (e.g., excess risk) increases with the problem dimension
d, resulting in vacuous guarantees in the over-parameterized regime. For instance, state-of-the-art
methods (Varshney et al., 2022; Liu et al., 2023) for differentially private linear regression provide
an excess risk of Õ

(
d/N + d2/(ϵ2N2)

)
, where ϵ is the privacy parameter, assuming the condition

number of the data covariance matrix is a constant. Recently, a line of research (Kifer et al., 2012;
Talwar et al., 2015; Wang & Gu, 2019; Cai et al., 2021; Asi et al., 2021) has studied private high-
dimensional linear regression that achieves dimension-independent empirical risk. However, these
methods often assume sparse model parameters and restricted strongly convex/smooth objective loss
(Negahban et al., 2009; Loh & Wainwright, 2013). Therefore, a natural question we want to address
in this paper is that

Can one achieve a sharp, or even dimension independent, excess risk for differentially private
linear regression in the over-parameterized regime under standard assumptions?

Recently, another series of works (Dieuleveut & Bach, 2015; Berthier et al., 2020; Chen et al.,
2020a; Zou et al., 2021b) have shown that stochastic gradient descent (SGD) for linear regression in
the over-parameterized regime can achieve sharp excess risk that depends on the eigenspectrum of
the data covariance matrix, rather than the problem dimension. Motivated by these findings, we aim
to develop a private variant of SGD for linear regression that can yield similar sharp excess risk in
the over-parameterized regime. However, several key challenges must be addressed to design such
an algorithm and obtain strong theoretical guarantees. Firstly, ensuring differential privacy requires
adding random noise to the training algorithm (Bassily et al., 2014). However, characterizing the
effect of this random noise on the algorithm’s convergence becomes significantly more challeng-
ing in the over-parameterized regime. Secondly, to achieve strong privacy and utility trade-offs,
existing methods (Varshney et al., 2022; Liu et al., 2023) rely on large batch (or even full) gradi-
ents or privacy amplification techniques, which assume uniform sampling/random shuffling of the
training data and impose stringent conditions on privacy parameters (Feldman et al., 2022; Mironov
et al., 2019). Lastly, previous works typically propose adding isotropic noise to achieve differential
privacy. However, in the over-parameterized regime, isotropic noise may further compromise the
trade-off between privacy and utility.

Contributions. We develop a new private algorithm and establish corresponding analytical tools
to tackle the challenges mentioned earlier and achieve a sharp excess risk for private over-
parameterized linear regression. The main contributions of our work are summarized as follows.

• We propose a novel variant of the DP-FTRL algorithm (Kairouz et al., 2021) for the problem of
private linear regression (see Section 3.1). The key innovation of our proposed method lies in
using random noise with a general covariance matrix for differential privacy. By moving beyond
the conventional use of isotropic noise, our approach enables us to achieve improved privacy and
utility trade-offs in the over-parameterized regime.

• We develop new analytical tools to characterize the effect of the additive random noise (with a
general covariance matrix Σ) on the convergence of our algorithm, which can be of independent
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interest. Equipped with these new tools, we prove that our method can achieve a sharp excess risk
as a function of the eigenspectrum of the data covariance matrix and Σ (see Section 4). Our results
can significantly outperform the state-of-the-art excess risk of Õ

(
d/N + d2/(ϵ2N2)

)
(Varshney

et al., 2022), where ϵ is the privacy budget, for private linear regression when the dimension d is
much larger than the number of examples N . We further show that by adding random noise with
a carefully designed covariance matrix Σ (see Section 3.2), our method can achieve improved
privacy and utility trade-offs compared to using isotropic noise (i.e., Σ = I).

• We illustrate our results by considering specific eigenspectrum decays (see Section 4 and Table
1). For the polynomial decay (i.e., λi = i−r for r > 1), our method achieves Õ(N− r

1+2r ) and
Õ(N− r

3+r∧
2r

1+3r ) excess risk for identity and designed noise covariance matrices under the con-
stant privacy budget (ϵ = O(1)). Additionally, if we are willing to pay for a large privacy budget,
i.e., ϵ = O

(
N

r
2+2r

)
and ϵ = O

(
N

1
1+r∨

r−1
2+2r

)
for identity and designed noise covariance matrices,

our method recovers the non-private excess risk (Zou et al., 2021b) of Õ(N− r
1+r ). For the expo-

nential eigenspectrum decay (i.e., λi = e−i), our method achieves Õ(N− 1
2 ) and Õ(N− 2

3 ) excess
risk for identity and designed noise covariance matrices under the constant privacy budget. If we
are willing to pay for a large privacy budget, i.e., ϵ = O

(
N

1
2

)
for both noise covariance matrices,

our method recovers the non-private excess risk (Zou et al., 2021b) of Õ(N−1). Notably, our
method with the designed noise covariance matrix achieves better privacy and utility trade-offs
when the eigenspectrum decays at least quadratically fast, i.e., r ≥ 2.

Notation. For x ∈ Rd, we use ∥x∥2 to denote its ℓ2 norm. For a positive semidefinite matrix A, we
define ∥x∥A = x⊤Ax. For two quantities a and b, we use a ≲ b if a ≤ C · polylog(N) · b; we use
a ≂ b if c/polylog(N) · b ≤ a ≤ C · polylog(N) · b, where C and c are absolute positive constants.
O(·) hides some constant parameters and Õ(·) further hides poly-logarithnmic terms. For any PSD
matrix A with eigen-decomposition A =

∑
i µiviv

⊤
i , where λi’s and vi’s are the eigenvalues of A

in non-increasing order and the corresponding eigenvectors, let Ak1:k2 :=
∑
k1<k≤k2 µiviv

⊤
i .

1.1 ADDITIONAL RELATED WORK

Differentially private empirical risk (DP-ERM) minimization has been widely studied in the litera-
ture (e.g., (Chaudhuri et al., 2011; Song et al., 2013; Bassily et al., 2014; Wang et al., 2017; Bassily
et al., 2019; Feldman et al., 2020; Asi et al., 2021)), where the goal is to solve the ERM problem
while achieving the differential privacy for the minimizer. It has been shown that DP-(S)GD and
its variants can achieve an excess risk of Õ

(
1/N1/2 + d1/2/(Nϵ)

)
under (ϵ, δ)-DP (see Section 2)

when the per example objective loss is convex and Lipschitz (Bassily et al., 2014). However, it is im-
portant to note that this result becomes vacuous for private over-parameterized linear regression, as
d often substantially exceeds N , and the objective loss is not Lipschitz unless the model parameters
lie within a bounded domain.

In recent years, several attempts (Jain & Thakurta, 2014; Song et al., 2021; Kairouz et al., 2020;
Zhou et al., 2021; Ma et al., 2022; Li et al., 2022a) have been made to achieve a tight excess risk in
the over-parameterized regime for DP-ERM. For instance, Song et al. (2021) studied the private gen-
eralized linear models (GLMs). They proved that DP-GD could achieve a dimension independent
excess risk of Õ

(
1/N1/2 +

√
rank/(ϵN)

)
under (ϵ, δ)-DP, where rank is the rank of the feature

matrix and can be as large as N . However, their result requires the per-example objective loss to be
convex and Lipschitz everywhere, limiting its applicability to the linear regression problem. Further-
more, DP-GD incurs significant computational complexity as it must compute the full gradient at
each of the n2 iterations. Subsequent works (Kairouz et al., 2020; Zhou et al., 2021) tried to extend
this result to general convex/non-convex objective losses but relied on the assumption that gradients
lie in a lower dimensional space. Ma et al. (2022) later showed that DP-SGD with a growing batch
size could achieve an excess risk of Õ

(
1/N1/2 + trace/(ϵN)

)
under (ϵ, δ)-DP, where trace is the

trace of the Hessian of the population loss. However, their result also assumes the per-example ob-
jective loss to be convex and Lipschitz everywhere. Li et al. (2022a) considered the case of a general
convex objective with an ℓ2 norm regularizer. While they showed that DP-SGD with O(n2) itera-
tions can achieve a dimension independent excess risk, their result requires not only the objective
loss to be Lipschitz but also imposes a stringent restricted Lipschitz continuity assumption.
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2 PROBLEM SETTING AND PRELIMINARIES

We focus on the linear regression problem, where the population risk is defined in (1.1). We consider
y = ⟨w∗,x⟩ + ζ, where w∗ is the ground truth model parameter and ζ is the label noise that is
independent of x. Our goal is to learn a privacy-preserving (see Definition 2.4) model parameter ŵ
that minimize the population risk given a dataset S =

{
(xi, yi)

}N−1

i=0
, where each data point (xi, yi)

is drawn i.i.d. from D. In this paper, we focus on the more challenging over-parameterized setting,
i.e., d > N . We next introduce our assumptions on the data distribution and label noise.

Assumption 2.1. Suppose x = H
1
2 z, where z is a zero mean σz-sub-Gaussian ran-

dom vector with an identity covariance matrix, i.e., for all vector v, the following holds
E
[
exp

(
⟨v, z⟩2/(σ2

zE[⟨v, z⟩2])
)]

≤ 2.

The sub-Gaussianity of the data has been considered in many previous works (Tsigler & Bartlett,
2020; Varshney et al., 2022; Liu et al., 2023) for (private) linear regression, which can imply
the fourth-order momentum condition made in (Zou et al., 2021b; Velikanov et al., 2022), i.e.,
Ex[xx

⊤Axx⊤] ≤ 16σ2
z · tr(HA)A for any PSD matrix A. In practice, most data follow the

sub-Gaussian distribution, such as the data with a bounded norm. We will show in our later analysis
that by imposing the following stronger assumption on the data distribution, we can design a specific
noise covariance matrix to achieve improved privacy and utility trade-offs.

Assumption 2.2. Suppose x = H
1
2 z, where z is a zero mean random vector with independent

sub-Gaussian coordinates with sub-Gaussian norm σz .

Assumption 2.3 further assumes that the coordinates of z are independent. This additional condition
is beneficial in sharply characterizing the eigenspectrum of the gram matrix composed by a set of
data points, which has been made in many prior works (Bartlett et al., 2020; Zou et al., 2021a; 2022).
Regarding the label noise, we make the following assumption.
Assumption 2.3. We assume the noise ζ is zero mean with variance σ2

ζ . We further assume ζ is
sub-Gaussian with sub-Gaussian norm Kσζ for some K > 0.

We next introduce the notions of differential privacy (Dwork et al., 2006) and Rényi Differential
Privacy (RDP) (Mironov, 2017). In our privacy analysis, we use RDP and we state our results in
terms of (ϵ, δ)-DP by converting the RDP guarantee to (ϵ, δ)-DP.
Definition 2.4 ((ϵ, δ)-DP). A randomized mechanism M satisfies (ϵ, δ)-differential privacy if for
adjacent datasets S, S′ differing by one element, and any output subset O, it holds that P[M(S) ∈
O] ≤ eϵ · P[M(S′) ∈ O] + δ.
Definition 2.5 (RDP). A randomized mechanism M satisfies (α, ρ)-Rényi differential privacy
with α > 1 and ρ > 0 if for adjacent datasets S, S′ ∈ S differing by one element,
Dα

(
M(S)||M(S′)

)
:= logE

[(
M(S)/M(S′)

)α] ≤ ρ.

For a given function q, one can use the Gaussian mechanism M(S) = q(S)+z, where z is a random
Gaussian vector, to achieve differential privacy. For example, by adding centered isotropic Gaussian
noise, i.e., z ∼ N(0, σ2I), one can achieve (

√
1.25∆(q) log(2/δ)/σ, δ)-DP (Dwork et al., 2014)

and (α, α∆(q)2/(2σ2))-RDP (Mironov, 2017), where σ2 represents the noise magnitude. ∆(q) is
the ℓ2-sensitivity of q, defined as ∆(q) = supS,S′ ∥q(S) − q(S′)∥2, where S, S′ are two adjacent
datasets differing by one element. In this work, we propose adding non-isotropic noise, i.e., z ∼
N(0, σ2Σ), to improve privacy and utility trade-offs in the over-parameterized linear regression. To
this end, we derive the following result for the Gaussian mechanism with non-isotropic noise.
Lemma 2.6. Given a function q, the Gaussian mechanism M = q(S) + z, where z ∼ N(0, σ2Σ)
and Σ is positive definite, satisfies (α, α∆̄(q)2/(2σ2))-RDP, where ∆̄(q)2 = supS,S′ ∥q(S) −
q(S′)∥Σ−1 and S, S′ are two adjacent datasets differing by one element.

According to Lemma 2.6, when Σ = I, the above result recovers the Gaussian mechanism for RDP
using isotropic noise (Mironov, 2017).

Tree aggregation protocol. We aim to achieve strong privacy and utility trade-offs without relying
on large batch gradients or privacy amplification techniques. To this end, we propose to use the
tree aggregation protocol (Dwork et al., 2010; Chan et al., 2011), which was originally designed for
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Algorithm 1: DP-FTRL with Gaussian Noise N(0,Σ) (DP-FTRL-Σ)

1 Input: Training data {(xi, yi)}N−1
i=0 , Estimating data {(x̃i, ỹi)}mi=1, Covariance matrix Σ,

Noise multiplier τ , Clipping list Ψ = {}, Parameters η, C, ϵ̃, δ̃
2 Initialize w0 = 0
3 for t ∈ {0, . . . , N − 1} do
4 Obtain lt = RESIDUALEST({(x̃i, ỹi)}mi=1,wt, ϵ̃, δ̃) (Algorithm 2)
5 Set ψt = Clt, and add ψt to Ψ

6 Compute gt = CLIP(xtx
⊤
t wt−xtyt, ψt,Σ), where CLIP(ν, ψ,Σ) = ν ·min

{
1, ψ

∥ν∥Σ−1

}
7 Set the noise magnitude σ2 = τ2ψ2, where ψ = maxΨ
8 Send (gt, σ

2Σ) to the private tree aggregation protocol (Algorithm 3), and receive the
private previous sum g̃≤t

9 Update wt+1 = argminw∈Rd⟨g̃≤t,w⟩+ 1
2η∥w∥22

10 Ouput:wN = 1
N

∑N−1
t=0 wt

the partial sum problem. Consider the problem of privately releasing the partial sum
∑t
i=1 vi for

t ∈ [N ] given a stream of vectors v1, . . . ,vN . In this protocol, a complete binary tree is constructed
with leaf nodes as v1, . . . ,vN . Each internal node in the tree stores the sum of all leaf nodes in its
subtree. Therefore, each partial sum

∑t
i=1 vi can be computed using at most

⌈
log2 t

⌉
nodes in the

tree. Since each vi only affects at most k̄ =
⌈
log2N

⌉
+ 1 nodes, i.e., the nodes along the path

from vi to the root of the tree, the complete tree will be (ϵ, δ)-DP if we add random Gaussian noise
z ∼ N(0, σ2I) to each node, where σ2 = O(ψ2k̄ log(1/δ)/ϵ2) and ψ is the ℓ2-norm upper bound
of all vi’s. As a result, we will add at most

⌈
log2 t

⌉
Gaussian noises to the partial sum

∑t
i=1 vi to

obtain its differentially private estimate. See more detailed discussions in Appendix A.

3 PRIVATE OVER-PARAMETERIZED LINEAR REGRESSION

In this section, we present our proposed algorithm, which only takes one pass over the training
dataset and is able to achieve strong privacy and utility guarantees.

3.1 DIFFERENTIALLY PRIVATE ALGORITHM

Our proposed algorithm, i.e., DP-FTRL-Σ, is illustrated in Algorithm 1, which is a variant of the
DP-FTRL algorithm (Kairouz et al., 2021) with the key innovation of adding random noise with a
general covariance matrix for differential privacy.

Update rule. The main idea of DP-FTRL-Σ is to use the follow-the-perturbed-leader (FTRL) with
linearized losses (Hazan et al., 2016), where we seek to find the minimizer of the following regular-
ized cumulative past losses at t-th iteration: wt+1 = argminw∈Rd⟨

∑t
j=0 gi,w⟩+ ∥w∥22/(2η) with∑t

j=0 gi as the sum of previous stochastic gradients (see line 9). Note that wt+1 shares the same
update form with SGD when w0 = 0.

Privacy mechanism. To ensure the differential privacy of the learned model parameter, we propose
to use the tree aggregation protocol (Dwork et al., 2010; Chan et al., 2011; Guha Thakurta & Smith,
2013; Kairouz et al., 2021) to obtain a private estimate of

∑t
j=0 gi (see line 8). More specifically, at

the beginning of training, we create a binary tree T of size (2⌈log2N⌉+1 − 1) with N leaves. At t-th
iteration, the tree aggregation protocol receives the vector gt, computed using the data (xt, yt), then
updates the binary tree T accordingly. Finally, it outputs g̃≤t, which is computed using the values
stored in the current tree and perturbed by some random noise, as the private estimate of

∑t
j=0 gi. A

more detailed description can be found in Appendix A. Compared to previous approaches (Varshney
et al., 2022; Liu et al., 2023), the tree aggregation protocol has the advantage of providing strong pri-
vacy guarantees without requiring uniform sampling/random shuffling of the training data or using
large batches in each update. For example, it is possible to apply our analytical tools to DP-Shuffled
SGD (Varshney et al., 2022) to obtain dimensional independent utility guarantees. However, the
random shuffling technique behind DP-Shuffled SGD will lead to a stringent conditions on privacy
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parameter, i.e., ϵ ≤
√
N (Feldman et al., 2022; Varshney et al., 2022)), which is very restrictive

in practice (one often considers a constant level privacy budget). In addition, this requirement will
give us a much worse condition on N . At the same time, our method with the tree aggregation tech-
nique does not have such a requirement on ϵ. Note that our method requires more memory usage to
keep track of past stochastic gradients and noise vectors. Furthermore, we propose adding random
noise with a general covariance matrix Σ and magnitude σ2 (see line 8) inside the tree aggregation
protocol. This enables us to achieve improved privacy and utility trade-offs.

Adaptive clipping. Gradient clipping (Abadi et al., 2016) (see line 6) is used to control the mag-
nitude of the stochastic gradient and thus determine the appropriate amount of random noise for
DP (see Lemma 2.6). The clipping parameter ψ could significantly affect the algorithm’s conver-
gence (Chen et al., 2020b). For instance, if ψ is set to be too small, the magnitude of the stochastic
gradient is significantly reduced, resulting in slower convergence. Conversely, if ψ is set to be too
large, excessive noise is added (the noise magnitude scales with ψ) to achieve DP, potentially caus-
ing divergence even though the stochastic gradient remains unchanged. Ideally, we want to select
ψ adaptively as the magnitude of the current stochastic gradient, i.e., ∥xtx⊤

t wt − xtyt∥Σ−1 , such
that no clipping is required. To this end, we propose to estimate the magnitude of the stochastic
gradient at t-th iteration using some estimating data {(x̃i, ỹi)}mi=1 and set the clipping parameter ψt
accordingly. Note that we have ∥xtx⊤

t wt − xtyt∥Σ−1 ≤ ∥xt∥Σ−1 · ℓ1/2(wt;xt, yt). Thus, we set
ψt = Clt (see line 5), where C is the upper bound of ∥xi∥Σ−1 for all xi in the training data and
lt is an estimate of ℓ1/2(wt;xt, yt), which can be obtained by the residual estimator established in
Liu et al. (2023). The key idea of the residual estimator, i.e., RESIDUALEST in line 4, is to use the
(private) empirical variance estimator of the residual

∑m
i=1(ỹi− x̃⊤

i wt)
2/m. A detailed description

can be found in Appendix A. It is worth noting that when no additional estimating data is available,
we can evenly split the training data and use one part as the estimating data. By doing so, all of our
results will still hold, with the only modification being to change N to N/2.

Note that when we choose Σ = I and use a fixed clipping parameter ψ, Algorithm 1 reduces to the
DP-FTRL algorithm (Kairouz et al., 2021). In the next section, we will provide a method to design
the non-isotropic noise, which allows us to achieve better privacy and utility trade-offs.

3.2 DESIGN OF THE NOISE COVARIANCE

As mentioned previously, the additive noise, i.e., z ∼ N(0, σ2Σ) (see line 8 in Algorithm 1), in our
method performs a trade-off between privacy and utility. Intuitively, stronger noise will lead to a
better privacy guarantee but can hurt the convergence of the optimization algorithm. The standard
choice of the noise covariance, i.e., Σ = I, can be understood as treating all coordinates equally.
However, we notice that (1) this type of noise will incur large variance error in terms of the excess
risk in the high-dimensional regime; (2) using the same Gaussian noise for all coordinates may be
too conservative, as some coordinates may not have sufficient signals that need to be protected; and
(3) the noise magnitude σ2 will also be determined by the choice of Σ (see Lemma 2.6).

Motivated by this, we seek to explore a better design of Σ that can (1) successfully protect the
gradient information and (2) achieve a faster convergence rate than when Σ = I. Note that for linear
problems, the stochastic gradient for the data pair (xi, yi) is parallel to the feature xi, implying that
the design of Σ should be related to the signal strengths of all coordinates of xi. More specifically,
an improved design of Σ should concern the data covariance matrix H: one may use stronger noise
perturbation along the large-eigenvalue directions of H. In contrast, the noise level can be relatively
weaker along the small-eigenvalue directions of H. Therefore, we consider the following design:

Σ = λI+H, (3.1)

where λ > 0 is a user-defined constant. It can be seen that when λ → ∞, we have Σ → λI,
which is nearly the same as the identity design (ignoring the scaling parameter). Moreover, the
noise magnitude σ2 is also determined by Σ, as discussed earlier. In our problem, σ2 scales with
tr(Σ−1H) (see Theorem 4.2) in order to achieve the desired privacy guarantee. If we choose Σ →
H when λ → 0, the noise magnitude σ2 → d, which explodes as d → ∞. This implies that λ
should be a positive constant. Therefore, λ is a knob to control the noise along different directions.

However, it is also worth noting that H, i.e., the population covariance of the data, cannot be realized
in practice. In this work, we consider the scenarios in which we are allowed to access a set of
unlabeled public data {x̃i}Mi=1, which is sampled from the same distribution as the training data
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points. In general, we consider the case that M ≥ N . Therefore, we propose to use the unlabeled
data first to generate an estimation of H and then design the noise covariance matrix as follows

Σ =
(
λI+ X̃X̃⊤)/M, (3.2)

where X̃ = [x̃1, . . . , x̃M ] ∈ Rd×M and λ > 0 is a user-defined parameter. The idea of using
public data in the DP methods has been widely used in the literature (Kairouz et al., 2020; Yu et al.,
2022; Zhou et al., 2021). In addition, getting unlabeled public data is generally cheaper than labeled
training data. Note that if we do not have a public dataset, we can use the isotropic noise in our
method to still get a sharp excess risk bound (see Corollary 4.3).

4 MAIN RESULTS

In this section, we provide the privacy and utility guarantees of our proposed method.
Theorem 4.1 (Privacy guarantee). If we set τ2 = 4k̄

(
log(1/δ) + ϵ)/ϵ2, ϵ̃ = ϵ/

√
8N log(2/δ),

δ̃ = δ/(2N), where k̄ = ⌈log2N⌉+ 1, then Algorithm 1 is (ϵ, δ)-DP.

The choice of ϵ̃, δ̃ in Theorem 4.1 is to ensure that RESIDUALEST (see Algorithm 2 in Appendix
A) is (ϵ, δ)-DP when the estimating data {(x̃i, ỹi)}mi=1 are not public available. Furthermore, our
privacy guarantee does not rely on large batch gradients (Liu et al., 2023) or privacy amplification
techniques (Varshney et al., 2022), which often impose stringent conditions on privacy parameters.
For example, the DP-SHUFFLED SGD (Varshney et al., 2022) requires the privacy budget ϵ ≤
1/

√
N due to the random shuffling of the training data.

Next, we provide the utility guarantee, i.e., the excess risk, of our proposed method.

Theorem 4.2 (Utility guarantee for general Σ). Under the same conditions of τ2, ϵ̃, δ̃ as in
Theorem 4.1, and suppose Assumptions 2.1, 2.3 hold. If we choose the clipping parameter
C = 6σz

√
(1 + σ2

z) tr(Σ
−1H) logN , step size η ≤ 1/

(
16(1 + σ4

z) tr(H) log2N
)
, and the num-

ber of estimating data m = Ω(log2(N/δ̃)/ϵ̃), then with probability at least 1 − 1/N , the output of
Algorithm 1 satisfies

E
[
L(wN )

]
− L(w∗) ≤ errbias + errvariance,

where

errbias ≲
∥w0 −w∗∥2

H−1
0:k

η2N2
+ ∥w0 −w∗∥2Hk:∞

+
σ4
z

(
∥w0 −w∗∥2I0:k +Nη∥w0 −w∗∥2Hk:∞

)
Nη(1− σ4

zη tr(H))
· Λ;

errvariance ≲ σ2
ζσ

4
z

(
1 + η

(∑
i≤k

λi +Nη
∑
i≥k

λ2i

))
· Λ + τ2σ4

zη⟨I0:k +NηHk:∞, Ḡp⟩ · Λ

+ τ2⟨H−1
0:k +N2η2Hk:∞, Ḡp⟩ ·

1

N

with arbitrary k ≥ 1, Λ = k/N + Nη2
∑
i>k λ

2
i , Ḡp = ησ4

z tr(HΣ) ·
(
I0:k + NηHk:∞

)
+(

E
[
ψ2
max + ψ4

max

]
+ 1

)
·Σ, ψmax = Cl and l = max{l20, l21, . . . , l2N−1}.

According to Theorem 4.2, the last two terms in errvariance correspond to the error introduced by the
privacy mechanism. Note that in the non-private case, i.e., ϵ = ∞, the term τ2 = 4k̄

(
log(1/δ) +

ϵ)/ϵ2 becomes zero, and errvariance reduces to the non-private one (Zou et al., 2021b). Additionally,
the error bound in Theorem 4.2 is expressed as a function with respect to the full eigenspectrum of
H (i.e., λi’s), which does not explicitly depend on the problem dimension d. This result is therefore
stronger than the existing dimension dependent utility bounds (Varshney et al., 2022; Liu et al.,
2023). Note that ψmax = Cl in Ḡp determines the magnitude of the additive random noise to
achieve DP. The term C is dominated by tr(HΣ−1) and l ≲ max

{
∥wt −w∗∥2H + σ2

ζ

}N−1

t=0
.

Moreover, the error bound in Theorem 4.2, particularly the private error terms (e.g., the last two
terms), strongly depends on the design of Σ (see the definition of Ḡp). Therefore, seeking a good
design of Σ is important to achieve a better utility guarantee. In particular, we prefer Σ with a H-like
head space (in contrast to I), so that the quantities ⟨I0:k,Σ⟩ and ⟨H−1

0:k,Σ⟩ can be well controlled.
Additionally, Σ should also attain a relatively heavy tail so that the tr(HΣ−1) in ψmax will not
explode. This is consistent with our high-level idea of the design of Σ in (3.1).
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Table 1: Excess risks for our method under different eigenspectrum decays. The results are presented
under (ϵ, δ)-DP with constant ϵ and log(1/δ), and parameters other than N , d are considered to be
constants. * The results are restated by using different stepsizes to achieve the optimal excess risks.

Method Excess Risk for Polynomial Excess Risk for Exponential
Decay: λi = i−r for r > 1 Decay: λi = e−i

NON-PRIVATE SGD* (Zou et al., 2021b) Õ
(
N− r

1+r

)
Õ
(
N−1

)
DP-FTRL-I Õ

(
N− r

1+2r

)
Õ
(
N−1/2

)
Corollary 4.4

DP-FTRL-Σ Õ
(
N− r

3+r
∧ 2r

1+3r

)
Õ
(
N−2/3

)
Corollary 4.6

4.1 UTILITY AND PRIVACY TRADE-OFFS FOR IDENTITY NOISE COVARIANCE MATRIX

In this section, we present the utility guarantee of our method using the identity noise covariance
matrix. To simplify the results, we assume that σz , λ1(H), and tr(H) are in the constant level.
Corollary 4.3 (General utility guarantee for Σ = I). Under the same conditions of data, label noise,
and parameters τ2, ϵ̃, δ̃, m̃, η, C as in Theorem 4.2. If we assume ∥w0 − w∗∥2 ≤ B, then with
probability at least 1− 1/N , the output of Algorithm 1 satisfies

E
[
L(wN )

]
− L(w∗) ≲

B2

Nη
+

(
σ2
ζ

N
+

B2

N2η

)
·
(
k∗ +Nη

∑
i>k∗

λi

)
︸ ︷︷ ︸

Non-private error component

+ l2τ2η ·
(
k∗ +Nη

∑
i>k∗

λi

)
︸ ︷︷ ︸

Private error component

,

where k∗ = max{k : λk ≥ 1/(Nη)}, and l = max{l20, l21, . . . , l2N−1}.

In Corollary 4.3, we decompose the excess risk into two components: the non-private error com-
ponent and the private error component. The former can be further decomposed into the bias and
variance errors (i.e., the first and second terms in the developed bound). Moreover, it can also be
observed that the quantity k∗ + Nη

∑
i>k∗ is rather critical in the excess risk bound, which can

be understood as the effective dimension of the problem, denoted by EffectDim. Then, in order to
achieve vanishing excess risk, we need to guarantee that Nη ≫ 1 and η · EffectDim ≪ 1, which
suggests that the effective dimension should satisfy EffectDim ≪ N .

To better illustrate the utility guarantee and identify the problem instances that the vanishing excess
risk can be achieved, we consider some examples of eigenspectrums and present their corresponding
guarantees as follows. The results presented consider parameters other thanN , d, and ϵ as constants.
Corollary 4.4 (Utility with I on specific distributions). Under the same conditions as Corollary 4.3.

1. If the eigenspectrum of H satisfies λi = i−r for some r > 1, then with probability at least

1− 1/N , we have E
[
L(wN )

]
− L(w∗) = Õ

(
N− r

1+r

(
1 +

(
ϵ−2N

r
1+r

) r
1+2r

))
.

2. If the eigenspectrum of H satisfies λi = e−i, then with probability at least 1 − 1/N , the output

of Algorithm 1 satisfies E
[
L(wN )

]
− L(w∗) = Õ

(
N−1

(
1 +

(
ϵ−2N

) 1
2

))
.

According to Corollary 4.4, our method with Σ = I achieves a vanishing excess risk that is inde-
pendent of the problem dimension when the eigenspectrum decays polynomially or exponentially.
It’s worth noting that the state-of-the-art methods (Varshney et al., 2022; Liu et al., 2023) for the
private linear regression problem provide an excess risk of Õ

(
d/N + d2/(ϵ2N2)

)
. However, this

approach becomes invalid in the over-parameterized setting, as the dimension d can be much larger
thanN . If we choose a constant privacy budget ϵ = O(1) for our method, we can achieve the excess
risk of Õ

(
N−r/(1+2r)

)
and Õ

(
N−1/2

)
for polynomial and exponential decay, respectively. Fur-

thermore, if we are willing to pay for the privacy budget ϵ = O
(
Nr/(2+2r)

)
and ϵ = O

(
N1/2

)
, our

method can recover the non-private (Zou et al., 2021b) excess risk of Õ
(
N−r/(1+r)) and Õ

(
N−1

)
for polynomial and exponential decay, respectively.
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4.2 UTILITY AND PRIVACY TRADE-OFFS FOR SPECIALLY DESIGNED COVARIANCE MATRIX

We provide the utility guarantee of our method with the noise covariance matrix in (3.2). We assume
that σz , λ1(H), and tr(H) are in the constant level in the following results.

Corollary 4.5 (General utility guarantee for Σ =M−1
(
λI+X̃X̃⊤)). Under the same conditions of

parameters τ2, ϵ̃, δ̃, m̃, η, C as in Theorem 4.2, suppose Assumptions 2.2, 2.3 hold, ∥w0 −w∗∥2 ≤
B, and M ≥ N . If we choose Σ = M−1

(
λI + X̃X̃⊤) with λ = M/(Nη) , then with probability

at least 1− 1/N , the output of Algorithm 1 satisfies

E
[
L(wN )

]
− L(w∗) ≲

B2

Nη
+

(
σ2
ζ

N
+

B2

N2η

)
·
(
k∗ +Nη

∑
i>k∗

λi

)
︸ ︷︷ ︸

Non-private error component

+ l2τ2 ·
[
η2 · tr(H2) ·

(
k∗ +Nη

∑
i>k∗

λi

)
+

1

N
·
(
k∗ +Nη

∑
i>k∗

λi

)3]
︸ ︷︷ ︸

Private error component

,

where k∗ = max{k : λk ≥ 1/(Nη)}, and l = max{l20, l21, . . . , l2N−1}.

By combining Corollaries 4.3 and 4.5, it is clear that (1) the non-private error component will
maintain the same as it does not depend on Σ; (2) the private error components for Σ = I and
Σ =M−1(λI+ X̃X̃⊤) are roughly η ·EffectDim and η2 ·EffectDim+ (EffectDim)3/N , respec-
tively. Then, noting that we need to guarantee Nη ≫ 1 to achieve vanishing bias error, it can be
seen that the private error component achieved by specially designed Σ outperforms that achieved
by Σ = I for the data distribution with small EffectDim (i.e., the eigenspectrum has a fast decay).

To better present the advantage of the specially designed noise covariance over the identity one, we
again consider some example data distributions and calculate their corresponding utility guarantees
in the following corollary. We consider parameters other than N , d and ϵ to be constants as before.

Corollary 4.6 (Utility with Σ = M−1
(
λI + X̃X̃⊤) on specific distributions). Under the same

conditions as Corollary 4.3.

1. If the eigenspectrum of H satisfies λi = i−r for some r > 1, then with probability at least

1−1/N , we have E
[
L(wN )

]
−L(w∗) = Õ

(
N− r

1+r

[
1+

(
ϵ−2N

2
1+r

) r
3+r

+
(
ϵ−2N

r−1
1+r

) r
1+3r

])
.

2. If the eigenspectrum of H satisfies λi = e−i, then with probability at least 1 − 1/N , the output

of Algorithm 1 satisfies E
[
L(wN )

]
− L(w∗) = Õ

(
N−1

(
1 +

(
ϵ−2N

) 1
3

))
.

According to Corollary 4.6, our method with the covariance matrix in (3.2) can also achieve a
vanishing empirical risk under the same eigenspectrum decay conditions as in Corollary 4.4. If we
choose ϵ = O(1), we can achieve Õ

(
N− r

3+r∧
2r

1+3r
)

and Õ
(
N−2/3

)
excess risk for polynomial and

exponential decay. Therefore, our method with this designed Σ achieves a better excess risk than
the one using I with the excess risk of Õ

(
N− r

1+2r
)

and Õ
(
N−1/2

)
when the eigenspectrum decays

at least quadratically fast, i.e., r ≥ 2. Moreover, if we are willing to pay for the privacy budget
ϵ = O

(
N

1
1+r ∨N

r−1
2+2r

)
and ϵ = O

(
N1/2

)
for polynomial and exponential decay, our method can

also recover the non-private excess risk as before. Table 1 summarizes these results for comparison.

5 CONCLUSION AND FUTURE WORK

We develop a new variant of DP-FTRL for private linear regression in the over-parameterized
regime. The key innovation of our method is the utilization of non-isotropic noise, enabling us
to obtain improved privacy and utility trade-offs. We prove that our method achieves a sharp excess
risk, depending on the eigenspectrum of the data covariance matrix instead of the problem dimen-
sion. Specific examples of data distribution further validate the effectiveness of our method. As for
future work, exploring different designs of Σ and studying how to overcome the limitation of using
public data are both very interesting directions. Moreover, it is also interesting to extend our results
to the kernel setting.
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A ADDITIONAL ALGORITHMS

Algorithm 2: RESIDUALEST

1 Input: Data {(x̃i, ỹi)}mi=1, model w, parameters ϵ̃, δ̃
2 Option 1: {(x̃i, ỹi)}mi=1 is a public dataset
3 l =

√
2
∑
i=1 ri/m, where ri = (ỹi − ⟨w, x̃i⟩)2

4 Option 2: {(x̃i, ỹi)}mi=1 is a private data
5 Obtain {ri}mi=1 and split {ri}mi=1 into ñ subsets of equal size, each with |Sj | = m̃ data for
j ∈ [ñ], where ri = (ỹi − ⟨w, x̃i⟩)2, ñ = ⌈β1 log(N/δ̃)/ϵ̃⌉, where β1 is some large constant

6 Obtain {r̄j}ñj=1, where r̄j =
∑
i∈Sj

ri/m̃

7 Partition [0,∞) into geometrically increasing intervals, i.e.,
Ω = {· · · , [2−1, 1), [1, 2), [2, 22), · · · } ∪ {0}

8 Compute r̂k =
∑ñ
j=1 I(r̄j ∈ Bk)/ñ, where Bk is the interval in Ω

9 if r̂k ∈ (0, 2 log(1/δ̃)/(ϵ̃ñ) + (1/ñ)) then
10 r̃k = r̂k + zk, where zk ∼ Lap

(
0, 2/(ϵ̃ñ)

)
11 else
12 r̃k = 0

13 Let [l1, l2] be the nonempty interval containing the largest r̃k and set l =
√
2l2

14 Ouput: l

In Algorithm 1, we propose to use the residual estimator established in Liu et al. (Liu et al., 2023) to
estimate ℓ1/2(wt;xt, yt). The detailed description of this method is in Algorithm 2. The theoretical
guarantees of Algorithm 2 can be found in Lemma B.3.

Algorithm 3: Private Tree Aggregation Protocol

1 Input: Vectors g0, . . . ,gN−1 (in an online sequence), Noise covariance σ2Σ

2 Initialization: Create a binary tree T of size 2⌈log2N⌉+1 − 1 with leaves m1,m2, . . . ,mN

3 Online phase: At each iteration t, execute lines 3 to 17
4 Accept gt from the data stream
5 Let p = {n1, n2, . . . , nk} be a set of nodes from the root of T to the t-th leaf, where k is the

depth of T , n1 is the root, and nk is the leaf mt

6 Tree update: lines 4 to 8
7 Let pj = {nj , nj+1, . . . , nk}, where nj is the last node in p that is a left child in T
8 for i ∈ [k] do
9 νi = νi + gt, where νi is the associated value of node ni

10 if ni ∈ pj then
11 νi = νi + z, where z ∼ N(0, σ2Σ)

12 Obtain private sum: lines 10 to 13
13 Initialize g̃≤t = 0 and let {b1, . . . , bk} be the k bit binary representation of t
14 for i ∈ [k] do
15 if bi = 1 then
16 g̃≤t = g̃≤t + bi, where bi = νi if ni is the left child, otherwise bi is the value

associated with the left sibling of ni

17 Output: g̃≤t

In Algorithm 1, we propose to use the tree aggregation protocol to achieve differential privacy. More
specifically, the tree aggregation protocol we used (Algorithm 3) is motivated by Guha Thakurta &
Smith (2013); Kairouz et al. (2021). We create a binary tree (see initialization in Algorithm 3) T with

size 2

⌈
log2N

⌉
+1 − 1 and N leaves (denoted by m1, . . . ,mN ) and initializes the values associated

with each node to the zero vector (see Figure 1). At t-th iteration, the tree aggregation protocol will
first accept a new vector g. Then, it adds the newly received vector g to all nodes along the path to

14
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the root of T starting from the t-th leaf mt, and adding Gaussian noise to the nodes along this path
from mt to the first left child (see tree update in Algorithm 3). Finally, it retrieves the noisy sum
g̃, which serves as the private estimate of the sum of all the previously received vectors, using the
values stored in T (see obtain private sum in Algorithm 3).

m1 m2 m3 m4 m5 m6 m7 m8

g1 g2 g3 g4 g5 g6 g7 g8

g1:2 g3:4 g5:6 g7:8

g1:4 g5:8

g1:8

Figure 1: Illustration of a binary tree with 8 leaf nodes in the tree aggregation protocol. mi denotes
the i-th leaf nodes with associated value gi. gk:l =

∑l
j=k gj denotes the value associated with the

internal node in the tree.

B PROOFS

B.1 PROOFS OF PRIVACY GUARANTEES

In our analysis, we use the following lemma (Mironov, 2017) to convert the RDP guarantee to the
(ϵ, δ)-DP.

Lemma B.1. If a randomized mechanism M : Sn → R satisfies (α, ρ)-RDP, then M satisfies
(ρ+ log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

Now we are ready to provide the privacy guarantees of Algorithm 1.

Proof of Theorem 4.1. To establish the privacy guarantees of Algorithm 1, we need to prove that
{wt}t∈[N ] and {lt}N−1

t=0 are private. Since the training dataset {(xi, yi)}N−1
i=0 and estimating data

{(x̃i, ỹi)}mi=1 are disjoint, we only need to provide the privacy guarantees of {wt}t∈[N ] and {lt}N−1
t=0

separately.

We first show that the complete binary tree T is private since each g̃≤t for t ∈ [N ] is a combination
of at most k = ⌈log2N⌉ + 1 nodes in T . We will then show that Algorithm 2 is also differen-
tially private. Finally, we can prove that Algorithm 1 is private due to the parallel composition of
differential privacy.

Let {vj}Kj=1 and {v′
j}Kj=1 be the values of the nodes in the post-order tree traversal generated by

adding Gaussian noises (line 11 in Algorithm 3) based on the neighboring datasets S and S′ with
i-th data (will be stored in leaf node mi in T ) is different. Let {v1, v2, . . . , vK} be any set of values
of nodes in the post-order tree traversal of the binary tree T . We have the joint density of v1, . . . ,vK
as

p
(
v1 = v1, . . . ,vK = vK

)
=

K∏
j=1

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)
=

∏
j∈pi

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)
·
∏
j /∈pi

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)
,

where pi is the path from leaf node mi to the root of T . Similarly, we can get the joint density of
v′
1, . . . ,v

′
K as

p
(
v′
1 = v1, . . . ,v

′
K = vK

)
15
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=
∏
j∈pi

p
(
v′
j = vj |v1 = v1, . . . ,v

′
j−1 = vj−1

)
·
∏
j /∈pi

p
(
v′
j = vj |v1 = v1, . . . ,v

′
j−1 = vj−1

)
.

Therefore, let M(S) and M(S′) be the distributions of the output values of the nodes on the neigh-
boring datasets S and S′, we have (with a little bit of abuse of notations)

Dα

(
M(S)||M(S′)

)
=

1

α− 1
log

∫
V

∏
j∈pi

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)1−α
×

∏
j /∈pi

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)1−α
×

∏
j∈pi

p
(
v′
j = vj |v′

1 = v1, . . . ,v
′
j−1 = vj−1

)α
×

∏
j /∈pi

p
(
v′
j = vj |v′

1 = v1, . . . ,v
′
j−1 = vj−1

)α
dv.

Since for j /∈ pi, we have

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)
= p

(
v′
j = vj |v′

1 = v1, . . . ,v
′
j−1 = vj−1

)
,

we can integrate over vj for j /∈ pi to obtain

Dα

(
M(S)||M(S′)

)
=

1

α− 1
log

∫
V

∏
j∈pi

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)1−α
×

∏
j∈pi

p
(
v′
j = vj |v′

1 = v1, . . . ,v
′
j−1 = vj−1

)α
dv.

(B.1)

Notice that each node along the path pi is a summation query and will only be affected by its
leaf nodes. Therefore, the sensitivity of each node along this path is upper bounded by 2ψ where
ψ = max{ψ1, . . . , ψj} and ψ1, . . . , ψj is the norm bound of its leaf nodes. As a result, according
to Lemma 2.6, line 11 in Algorithm 3 can ensure that each node along path pi is (α, α/τ2)-RDP
for all i ∈ [N ] (recall the definition of σ2 = τ2ψ2 in Algorithm 1). Therefore, for each integral in
(B.1), we have∫

Vj

p
(
vj = vj |v1 = v1, . . . ,vj−1 = vj−1

)1−α
p
(
v′
j = vj |v′

1 = v1, . . . ,v
′
j−1 = vj−1

)α
dvj

≤ exp
(
α(α− 1)/(2τ2)

)
.

Plugging the above result into (B.1), we can obtain

Dα

(
M(S)||M(S′)

)
≤ 1

α− 1
log

[ ∏
j∈pi

exp(α(α− 1)/2)

]
≤ kα

2τ2
,

where k = ⌈log2N⌉ + 1. Thus, we show that the tree aggregation protocol is (α, αk/τ2)-RDP.
Therefore, wN is (α, αρ)-RDP, where ρ = k/τ2.

Next, we translate the RDP to DP. According to Lemma B.1, wN is (ϵ, δ)-DP with ϵ = αρ +

log(1/δ)/(α − 1). Therefore, we can choose α = 1 +
√
log(1/δ)/ρ to get the smallest ϵ =

ρ+ 2
√
log(1/δ)ρ. Thus, we can obtain ρ =

(√
log(1/δ) + ϵ−

√
log(1/δ)

)2
= k/τ2. Therefore,

let

τ2 =
k

ρ
≤

4k
(
log(1/δ) + ϵ

)
ϵ2

,

the tree aggregation protocol is (ϵ, δ)-DP.

Next, we show that {lt}N−1
t=0 is differentially private. According to Lemma 2.3 in Karwa &

Vadhan (2017), if we choose ϵ̃ = ϵ/
√

8N log(2/δ) and δ̃ = δ/(2N), then Algorithm 2 is
(ϵ/

√
8N log(2/δ), δ/(2N))-DP. Therefore, by the advanced composition result (Kairouz et al.,

2015), we have that {lt}N−1
t=0 is (ϵ, δ)-DP.
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B.2 PROOFS OF UTILITY GUARANTEES

B.2.1 UPPER BOUNDS ON THE STOCHASTIC GRADIENT

To establish the utility guarantee of Algorithm 1, we will first show that the eventE =
{∥∥xtx⊤

t wt−
xtyt

∥∥
Σ−1 ≤ ψt,∀0 ≤ t ≤ N − 1

}
holds with high probability, where ψt = Clt, lt is the output

of Algorithm 2, and C = 3
√

2γ1γ4 tr(Σ−1H) logN . Therefore, under the event E, we do not
need to perform any clipping procedure, and line 5 in Algorithm 1 reduces to gt = xtx

⊤
t wt−xtyt.

Therefore, we can directly use the learning guarantee results derived in the next subsection, i.e.,
section B.2.2. To prove the event E holds, we need following lemmas
Lemma B.2. Under Assumption 2.2, we have

• (Bounded norm) There exist positive constants γ1 = 2σ2
z , such that for any PSD matrix Σ,

the following holds with probability at least 1− c1β∥∥Σ− 1
2x

∥∥2
2
≤ γ1 tr(Σ

−1H) log(1/β),

where c1 is an absolute constant.

• (Bounded product) There exist positive constants γ2 = σ2
z , such that for any fixed vector

v, with probability at least 1− c2β

⟨x,v⟩2 ≤ γ2v
⊤Hv log(1/β),

where c2 is an absolute constant.

In addition, under Assumption 2.3, we have

• (Bounded noise) There exists positive constant γ3 = σ2
ζ , such that the following holds with

probability at least 1− c3β

ζ2 ≤ γ3 log(1/β),

where c3 is an absolute constant.
Lemma B.3. For Algorithm 2 with option 1, if we have m = Ω(logN), then we have l2 ≥ ∥w∗ −
w∥2H + σ2

ζ holds with probability at least 1 − 1/N10. Algorithm 2 with option 2 is (ϵ̃, δ̃)-DP.
In addition, if we have m = Ω

(
β1 log(β2/δ̃) logN/ϵ̃), then with probability at least 1 − 1/β2,

∥w∗ −w∥2H + σ2
ζ ≤ l2 ≤ 2

(
∥w∗ −w∥2H + σ2

ζ

)
.

Now we are ready to prove the results. We have
∥xtx⊤

t wt − xtyt∥Σ−1 ≤ ∥xt∥Σ−1 · ℓ1/2(wt;xi, yi).

By Lemma B.2, we have ∥xt∥2Σ−1 ≤ γ1 tr(Σ
−1H) log(1/β) holds with high probability. In addi-

tion, we have

ℓ1/2(wt;xt, yt) = x⊤
t (wt −w∗) + ζt ≤

√
2
(
x⊤
t (wt −w∗)

)2
+ 2ζ2t .

According to Lemma B.2, we have with high probability(
x⊤
t (wt −w∗)

)2 ≤ γ2 log(1/β)∥wt −w∗∥2H.
Additionally, due to Lemma B.2, we have with high probability

ζ2t ≤ γ3 log(1/β).

Therefore, we have

ℓ1/2(wt;xt, yt) ≤
√

2
(
x⊤
t (wt −w∗)

)2
+ 2ζ2t ≤

√
2γ4 log(1/β)

(
∥wt −w∗∥2H + σ2

ζ

)
,

where γ4 = max{γ2, 1}. Next, we need to estimate the upper bound of ∥wt −w∗∥2H + σ2
ζ at each

iteration. To this end, we propose to use Algorithm 2. Thus, according to Lemma B.3, we have with
high probability ∥wt −w∗∥2H + σ2

ζ ≤ l2t . As a result, we have

∥xtx⊤
t wt − xtyt∥2Σ−1 ≤ ∥xt∥2Σ−1 · ℓ(wt;xi, yi)

≤ γ1 tr(Σ
−1H) log(1/β) · 2γ4 log(1/β)

(
∥wt −w∗∥2H + σ2

ζ

)
≤ 2l2t γ1γ4 log

2(1/β) tr(Σ−1H).

Thus, if we choose C2 = 2γ1γ4 log
2(1/β) tr(Σ−1H), set β = 1/N3, by union bound, the event E

holds with probability at least 1− 1/N .
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B.2.2 LEARNING GUARANTEES

Connection between DP-SGD and DP-FTRL. Next, we will establish the connection between
Algorithm 1 and DP-SGD, and thus use the technique developed in Zou et al. (Zou et al., 2021b).
According to line 9 in Algorithm 1, we have

wt+1 = argmin
w

⟨g̃≤t,w⟩+ 1

2η
∥w∥22, (B.2)

where g̃≤t is the differentially private estimate of
∑t
i=0 ∇ℓ(wi;xi, yi) generated by the tree ag-

gregation protocol (see Algorithm 3). It has been observed (Kairouz et al., 2021) that g̃≤t =∑t
i=0 ∇ℓ(wi;xi, yi) + νt, where νt is a combination of at most O

(
⌈log2 t⌉

)
independent random

Gaussian vectors. Plugging this form in to (B.2), we have

wt+1 = argmin
w

t∑
i=0

⟨∇ℓ(wi;xi, yi),w⟩+ ⟨νt,w⟩+ 1

2η
∥w∥22. (B.3)

Since w0 = 0, we can obtain

wt+1 = wt − η · [∇ℓ(wt;xi, yi) + ξt], (B.4)

where ξt = νt − νt−1, ν−1 = 0. According to (B.4), we have the update rule of DP-FTRL as

wt+1 = wt − η · [∇ℓ(wt;xi, yi) + ξt] = wt − η · [xix⊤
i wt − xiyi + ξt]

where ξt = νt−νt−1, ν−1 = 0. In addition, we have y = ⟨w∗,x⟩+ ϵ. As a result, we can perform
a similar bias-variance decomposition in Zou et al. (Zou et al., 2021b). Note that we will focus on
the outer product of the error vector wt −w∗:

Errt := EAlg

[
(wt −w∗)(wt −w∗)⊤

]
.

Besides, we also introduce the following tensor operations on the matrix space that will be repeatedly
applied in the theoretical analysis:
Definition B.4. Given stepsize η ≲ 1/ tr(H), we define

I = I⊗ I, M = E[x⊗4], M̃ = H⊗H.

Besides, given any PSD matrix A, we define the operators T and T̃ that satisfies

(I − ηT ) ◦A = E[(I− ηxx⊤)A(I− ηxx⊤)], (I − ηT̃ ) ◦A = E[(I− ηH)A(I− ηH)].

Then it can be also verified that

(I − ηT ) ◦A = (I − ηT̃ ) ◦A+ (M−M̃) ◦A.

Based on the above tensor operations, the following theorem provides the bias-variance decomposi-
tion of Errt as well as their updated forms.
Theorem B.5. Under Assumptions 2.1 and 2.3, let β = 16σ2

z , the error covariance Errt can be
decomposed as follows,

Errt = Bt +Ct,

where

Bt = (I − ηT ) ◦Bt−1, B0 = (w0 −w∗)(w0 −w∗)⊤;

Ct = (I − ηT ) ◦Ct−1 + η2Gt, C0 = 0, Gt ⪯ σ2
ζH+O

(
E
[
ψ(t)2 + ψ(t)4

]
τ2 log2N

)
Σ+D,

where

D ⪯ O
(
τ2 log2N

){[ ∑
j∈S(t)

(I − ηT̃ )t−j+1

]
◦Σ+O(ηβ log2N) · tr(HΣ) ·

(
I− (I− ηH)N

)}
,

S(t) is a index set with |S(t)| ≤ ⌈log2N⌉+ 1.
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Next, we will establish the guarantee on the excess risk E[LD(w̄)] − LD(w
∗). In particular, this

will be performed based on the update forms of bias covariance Bt and variance covariance Ct in
Theorem B.5. First, note that we consider the iterate average as the algorithm output, the following
lemma provides the bound on the excess risk:

Lemma B.6 (Lemma B.3 in Zou et al. (Zou et al., 2021b)). Let w̄N = 1/N
∑N−1
t=0 wt, then if the

stepsize satisfies η ≤ 1/λ1(H), we have

E[LD(w̄N )]− LD(w
∗) ≤ 1

N2

N−1∑
t=0

N−1∑
k=t

⟨(I− γH)k−tH,Bt⟩︸ ︷︷ ︸
bias

+
1

N2

N−1∑
t=0

N−1∑
k=t

⟨(I− γH)k−tH,Ct⟩︸ ︷︷ ︸
variance

.

Upper bound for the variance error. The key to proving the upper bound of the variance error is
to establish a sharp characterization of Ct. Recall the update rule of Ct:

Ct = (I − ηT ) ◦Ct−1 + η2Gt, C0 = 0.

Then, we would like to remark that although the above update rule is similar to that of the standard
SGD, the proof technique in Zou et al. (Zou et al., 2021b) cannot be applied. In particular, Zou
et al. (Zou et al., 2021b) first proves an upper bound for C∞ and uses this quantity to control the
update of Ct. However, when introducing the additive noise, the matrix Gt will no longer be well
aligned with H so that C∞ will explode (e.g., becoming H−1Σ). To this end, rather than leveraging
C∞ as a reference to control the dynamics of Ct, we consider to use a sharper reference CN . The
following lemma gives a “rough” bound on CN .
Lemma B.7. Let G be an union upper bound on G0, . . . ,GN−1, then under Assumption 2.1, if the
step size satisfies η ≲ 1/

(
tr(H) logN

)
, let β = 16σ4

z , it holds that

C0 ⪯ · · · ⪯ CN ⪯ βη2

1− βη tr(H)
· ⟨I− (I− ηH)N ,G⟩ ·

(
I− (I− ηH)N

)
+ η2 ·

N−1∑
t=0

(I − ηT̃ )t ◦G.

Given this rough bound of Ct for all t ≤ N , we can then get the following bound on the variance
error.
Lemma B.8. If the step size satisfies η ≲ 1/

(
tr(H) logN

)
, then let β = 16σ2

z , the following holds
for any k ≥ 1,

variance ≲
βη

N
· ⟨I0:k +NηHk:∞, Ḡ⟩ ·

(
k +N2η2

∑
i>k

λ2i
)
+

1

N
· ⟨H−1

0:k +N2η2Hk:∞, Ḡ⟩,

where

Ḡ = σ2
ζ ·H+ τ2β · (log2N)2η tr(HΣ) ·

(
I0:k +NηHk:∞

)
+
(
E
[
ψ(N)2 + ψ(N)4

]
+ 1

)
· τ2 · log2N ·Σ.

Upper bound for the bias error. By Lemma B.11 in Zou et al. (Zou et al., 2021b), the upper
bound on the bias error can be directly obtained, which is summarized in the following lemma.
Lemma B.9. If the step size satisfies η ≤ 1/λ1, then it holds that for any k ≥ 1,

bias ≤ 1

η2N2
· ∥w0 −w∗∥2

H−1
0:k

+ ∥w0 −w∗∥2Hk:∞

+
2β

(
∥w0 −w∗∥2I0:k +Nη∥w0 −w∗∥2Hk:∞

)
Nη(1− βη tr(H))

·
(
k

N
+Nη2

∑
i>k

λ2i

)
. (B.5)

B.3 PROOFS FOR COROLLARIES

In this section, we provide proofs of our corollaries.
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B.3.1 PROOF OF COROLLARY 4.3

Proof of Corollary 4.3. In addition, according to Lemma B.8, we have

variance ≤ βη

N
· ⟨I0:k +NηHk:∞, Ḡ⟩ · (k +N2η2

∑
i>k

λ2i ) +
1

N
· ⟨H−1

0:k +N2η2Hk:∞, Ḡ⟩,

where k ≥ 1, and

Ḡ = σ2
ζ ·H+ τ2β · (log2N)2η tr(HΣ) ·

(
I0:k +NηHk:∞

)
+
(
E
[
ψ(N)2 + ψ(N)4

]
+ 1

)
· τ2 · log2N ·Σ.

and ψ(N)2 = 18lγ1γ4 log
2(N) tr(Σ−1H), l = max{l20, l21, . . . , l2N−1}. Therefore, we can get

(ignore some constant parameters)

Ḡ ⪯ O(polylog(N)) ·
[
σ2
ζH+ τ2η tr(HΣ)I+ l2τ2 tr(Σ−1H)2Σ

]
⪯ O(polylog(N)) ·

[
σ2
ζH+ τ2I+ l2τ2 tr(Σ−1H)2Σ

]
,

where the second line comes from η ≤ 1/(β tr(HΣ)). As a result, we have

variance ≲
βη

N
· ⟨I0:k +NηHk:∞, σ

2
ζH⟩ · (k +N2η2

∑
i>k

λ2i ) +
1

N
· ⟨H−1

0:k +N2η2Hk:∞, σ
2
ζH⟩

+
βη

N
· ⟨I0:k +NηHk:∞, τ

2I+ l2τ2 tr(Σ−1H)2Σ⟩ · (k +N2η2
∑
i>k

λ2i )

+
1

N
· ⟨H−1

0:k +N2η2Hk:∞, τ
2I+ l2τ2 tr(Σ−1H)2Σ⟩. (B.6)

Note that the first line on the right hand side corresponds to the nonprivate variance and the re-
maining part corresponds to the error introduced by the private mechanism. Note that we have

τ2 ≤ 4
(
⌈log2N⌉+1

)(
log(1/δ)+ϵ

)
ϵ2 . When ϵ goes to infinity, which means we do not have any privacy

guarantee, then the variance error reduces to the non-private one. In the following discussion, we
assume β = 16σ2

z = O(1), tr(H) ≤ ρ1 and λ1 ≤ 1, where ρ1 = Θ(1), and we mainly focus on the
error introduced by the private mechanism, denoted by as it will dominate the non-private part (note
that H ⪯ I).

First, we consider the nonprivate part. According to (B.6), noting that β is in the constant order, we
have

variancenp ≲
η

N
· ⟨I0:k +NηHk:∞, σ

2
ζH⟩ · (k +N2η2

∑
i>k

λ2i ) +
1

N
· ⟨H−1

0:k +N2η2Hk:∞, σ
2
ζH⟩.

(B.7)

Then we set k∗ = max{k : λk ≥ 1/(Nη)}, we have I0:k +NηHk:∞ ⪯ I and then

variancenp ≲
σ2
ζη

N
· tr(H) · (k∗ +N2η2

∑
i>k∗

λ2i ) +
σ2
ζ

N
· (k∗ +N2η2

∑
i>k∗

λ2i )

≲
σ2
ζ

N
· (k∗ +N2η2

∑
i>k∗

λ2i ),

where we use the fact that η tr(H) ≤ 1 in the last inequality.

In addition, according to (B.5) and the assumption that ∥w0 −w∗∥2 ≤ B, it holds that

bias ≲
B2

η2N2λk∗
+B2λk∗+1 +

2
(
B2 +Nηλk∗+1B

2
)

Nη(1− η tr(H))
·
(
k∗

N
+Nη2

∑
i>k∗

λ2i

)
≲
B2

Nη
+

B2

N2η
·
(
k∗ +N2η2

∑
i>k∗

λ2i

)
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≲
B2

Nη
+

B2

N2η
·
(
k∗ +Nη

∑
i>k∗

λi

)
, (B.8)

where the last line is due to the fact that λi ≤ 1/(Nη) for all i > k∗.

Combining (B.7) and (B.8), we have

errnp ≲
σ2
ζ

N
· (k∗ +N2η2

∑
i>k∗

λ2i ) +
B2

Nη
+

B2

N2η
·
(
k∗ +Nη

∑
i>k∗

λi

)
(B.9)

≂
B2

Nη
+

(
σ2
ζ

N
+

B2

N2η

)
·
(
k∗ +Nη

∑
i>k∗

λi

)
. (B.10)

On the other hand, according to (B.6), we have

variancep ≲
l2τ2

N
·
[
η ·

[
k∗ +Nη tr(Hk∗:∞)

]
·
(
k∗ +N2η2

∑
i>k∗

λ2i

)
+
[
tr(H−1

0:k∗) +N2η2 tr(Hk∗:∞)
]]

≲
l2τ2

N
·
[
η ·

(
k∗ +Nη

∑
i>k∗

λi

)2

+Nη

(
k∗ +Nη

∑
i>k∗

λi

)]
, (B.11)

where the second inequality holds since tr(H−1
0:k∗) =

∑k∗

i=1 λ
−1
i ≤ Nη · k∗. Further note that we

have assumed η ≤ 1/ tr(H), thus

k∗ +Nη
∑
i>k∗

λi ≤ Nη
∑
i

λi ≤ N. (B.12)

Therefore, (B.11) becomes

variancep ≲ l2τ2η ·
(
k∗ +Nη

∑
i>k∗

λi

)
.

Combine the above result with (B.11), we can get that

errp ≲ errnp + variancep

≲
B2

Nη
+

(
σ2
ζ

N
+

B2

N2η

)
·
(
k∗ +Nη

∑
i>k∗

λi

)
︸ ︷︷ ︸

Non-private error component

+ l2τ2η ·
(
k∗ +Nη

∑
i>k∗

λi

)
︸ ︷︷ ︸

Private error component

.

This completes the proof.

B.3.2 PROOF OF COROLLARY 4.4

Proof of Corollary 4.4. If λi = i−r, we can immediately get that k∗ = (Nη)
1
r and

k∗ +Nη
∑
i>k∗

λi ≂ (Nη)
1
r +Nη · (Nη)

1−r
r ≂ (Nη)

1
r .

Therefore, we can get

errp ≲

(
σ2
ζ

N
+

B2

N2η

)
· (Nη) 1

r +
B2

Nη
+ l2τ2η · (Nη) 1

r .

Note that we can choose the following step size

η ≂ min

{
N− 1

1+r , N− 1+r
1+2r τ−

2r
1+2r

}
,
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we can get

errp ≲
(
σ2
ζ +B2) ·N− r

1+r + (B2 + l2
)
· (τ−2N)−

r
1+2r .

Therefore, we have

errp = Õ
(
N− r

1+r + τ
2r

1+2rN− r
1+2r

)
= Õ

(
N− r

1+r ·
(
1 +

(
τ2N

r
1+r

) r
1+2r

))
.

Note that τ2 = Õ(1/ϵ2). Therefore, to achive the nonprivate rate, we need to pay for the extra
privacy at the order of ϵ = Õ

(
N

r
2+2r

)
.

If λi = e−i, we can get k∗ = log(Nη) and then

k∗ +Nη
∑
i>k∗

λi ≂ log(Nη) +Nη · (Nη)−1 ≂ log(Nη).

Then, the excess risk bound becomes

errp ≲

(
σ2
ζ

N
+

B2

N2η

)
· log(Nη) + B2

Nη
+ l2τ2η · log(Nη)

≲
σ2
ζ

N
+
B2

Nη
+ l2τ2η.

Then we can choose the following step size

η ≂ min
{
1, (Nτ2)−1/2

}
,

and obtain

errp ≲
1

N
+ (τ−2N)−1/2 = Õ

(
N−1

(
1 + (ϵ−2N)1/2

))
,

where we use the fact that τ2 = Õ(1/ϵ) in the last equality. This completes the proof.

B.3.3 PROOF OF COROLLARY 4.5

Proof of Corollary 4.5. In this case, we consider the following design of Σ:

Σ =M−1(X̃X̃⊤ + λI).

Then we first give the following two useful lemmas.

Lemma B.10. Under Assumption 2.2, let denote k̂ := mink{k : λk+1M ≤ λ +
∑
i>k λi} and

set Σ = M−1(λI + X̃X̃⊤) for some positive constant λ > 0, then with probability at least 1 −
exp(−Ω(M)),

tr(Σ†H) ≲

(
k̂ ·

λ+
∑
j>k̂ λj

λ
+
∑
i>k̂

Mλi
λ

)
.

Lemma B.11. Let H =
∑
i λiviv

⊤
i be the eigen-decomposition of H, then for any PSD matrix A

that can be decomposed as A =
∑
i µiviv

⊤
i , we have with probability at least 1−exp(−Ω(M1/2)),

tr(AΣ) ≲
λ

M
tr(A) + tr(AH).

By Lemma B.8, we have

Ḡ ≤ O
(
polylog(N)

)
·
[
σ2
ζH+ τ2η tr(HΣ) · (I0:k +NηHk:∞) + l2τ2 tr(Σ−1H)2Σ

]
.
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Note that the design of the noise covariance matrix Σ does not affect the non-private error compo-
nent, we only need to consider the private error component. In particular, we have

variancep

≲
l2τ2

N
· tr(HΣ) ·

[
η2 · ⟨I0:k +NηHk:∞, I0:k +NηHk:∞⟩ ·

(
k +N2η2

∑
i>k

λ2i

)
+ η · ⟨H−1

0:k +N2η2Hk:∞, I0:k +NηHk:∞⟩
]

+
l2τ2

N
· tr(Σ−1H)2 ·

[
η · ⟨I0:k +NηHk:∞,Σ⟩ ·

(
k +N2η2

∑
i>k

λ2i

)
+ ⟨H−1

0:k +N2η2Hk:∞,Σ⟩
]

≂
l2τ2

N
· tr(HΣ) ·

[
η2 ·

(
k +N2η2

∑
i>k

λ2i

)2

+ η ·
(∑
i≤k

λ−1
i +N3η3

∑
i>k

λ2i

)]
︸ ︷︷ ︸

I1

+
l2τ2

N
· tr(Σ−1H)2 ·

[
η · ⟨I0:k +NηHk:∞,Σ⟩ ·

(
k +N2η2

∑
i>k

λ2i

)
+ ⟨H−1

0:k +N2η2Hk:∞,Σ⟩
]

︸ ︷︷ ︸
I2

.

Regarding I1, we can again set k∗ = max{k : λk ≥ 1/(Nη)}, then

I1 ≤ η2 ·
(
k∗ +Nη

∑
i>k∗

λi

)2

+Nη2 ·
(
k∗ +Nη

∑
i>k∗

λi

)
≲ Nη2

(
k∗ +Nη

∑
i>k∗

λi

)
,

where the second inequality is by (B.12). Regarding I2, two quantities demand to be characterized:
⟨I0:k+NηHk:∞,Σ⟩ and ⟨H−1

0:k+N
2η2Hk:∞,Σ⟩. Then by Lemma B.11, we have with probability

at least 1− exp(−Ω(M1/2)), it holds that

⟨I0:k +NηHk:∞,Σ⟩ ≲ λ

M
tr(I0:k +NηHk:∞) + ⟨I0:k +NηHk:∞,H⟩

=
λ

M
·
(
k +Nη

∑
i>k

λi

)
+

∑
i≤k

λi +Nη
∑
i>k

λ2i .

Besides, we have

⟨H−1
0:k +N2η2Hk:∞,Σ⟩ ≲ λ

M
tr(H−1

0:k +N2η2Hk:∞) + ⟨H−1
0:k +N2η2Hk:∞,H⟩

=
λ

M
·
(∑
i≤k

λ−1
i +N2η2

∑
i>k

λi

)
+ k +N2η2

∑
i>k

λ2i .

Then, letting λ = M
Nη and setting k = k∗, using the fact that Nη

∑
i>k∗ λ

2 ≤
Nηλk∗+1

∑
i>k∗ λi ≥

∑
i>k∗ λi, we further get that

⟨I0:k +NηHk:∞,Σ⟩ ≲ 1

Nη
·
(
k +Nη

∑
i>k∗

λi

)
+ tr(H);

⟨H−1
0:k +N2η2Hk:∞,Σ⟩ ≲ k +Nη

∑
i>k∗

.

Therefore, we can finally get the following bound for I2,

I2 ≲
1

N
·
(
k∗ +Nη

∑
i>k∗

λi

)2

+ (η tr(H) + 1) ·
(
k∗ +Nη

∑
i>k∗

λi

)
.

Applying the fact that η ≤ tr(H) and (B.12), we have

I2 ≲ k∗ +Nη
∑
i>k∗

λi.
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Combining the results for I1 and I2, we can finally get the following upper bound for variancep:

variancep ≲ l2τ2η2 · tr(HΣ) ·
(
k∗ +Nη

∑
i>k∗

λi

)
+
l2τ2

N
· tr(Σ−1H)2 ·

(
k∗ +Nη

∑
i>k∗

λi

)
.

Furthermore, by the assumption that M ≥ N and using our choice λ = M/(Nη) ≥ 1/η ≥ tr(H),
we can get the following by Lemma B.10

tr(Σ2H) ≲

(
k̂ · λ+ tr(H)

λ
+
∑
i>k̂

Mλi
λ

)
≲ k̂ +Nη

∑
i>k̂

λi ≲ k∗ +Nη
∑
i>k∗

λi,

where k̂ := mink{k : λk+1M ≤ λ+
∑
i>k λi} and the last inequality holds since λi ≂ 1/Nη for all

i ∈ [k∗, k̂] (or i ∈ [k̂, k∗]). Besides, we also get the following by Lemma B.11: with probability at
least 1− exp(−Ω(M1/2)), it holds that tr(HΣ) ≲ 1/(Nη) tr(H) + tr(H2) ≲ tr(H2). Therefore,
we can finally get the following bound for variancep:

variancep ≲ l2τ2 ·
[
η2 · tr(H2) ·

(
k∗ +Nη

∑
i>k∗

λi

)
+

1

N
·
(
k∗ +Nη

∑
i>k∗

λi

)3]
.

Combining with the non-private error results in (B.9), we can finally obtain

errp ≲ errnp + variancep

≲
B2

Nη
+

(
σ2
ζ

N
+

B2

N2η

)
·
(
k∗ +Nη

∑
i>k∗

λi

)
︸ ︷︷ ︸

Non-private error component

+ l2τ2 ·
[
η2 · tr(H2) ·

(
k∗ +Nη

∑
i>k∗

λi

)
+

1

N
·
(
k∗ +Nη

∑
i>k∗

λi

)3]
︸ ︷︷ ︸

Private error component

.

B.3.4 PROOF OF COROLLARY 4.6

Proof of Corollary 4.6. If λi = i−r, we can immediately get k∗ = (Nη)
1
r and

k∗ +Nη
∑
i>k∗

λi ≂ (Nη)
1
r +Nη · (Nη)

1−r
r ≂ (Nη)

1
r .

Therefore, we can get

errp ≲

(
σ2
ζ

N
+

B2

N2η

)
· (Nη) 1

r +
B2

Nη
+ l2τ2 ·

[
η2 · tr(H2) · (Nη) 1

r +
1

N
· (Nη) 1

r

]
.

Then, assuming σ2
ζ , B2, l2, and tr(H2) are constants, we further obtain

errp ≲
1

Nη
+

(Nη)
1
r

N
+ τ2 ·

[
η2 · (Nη) 1

r +
1

N
· (Nη) 3

r

]
.

Therefore, we can pick

η ≂ min

{
N− 1

1+r , τ−
2r

r+3N− 3
r+3 , τ−

2r
1+3rN− 1+r

1+3r

}
,

and obtain the following bound of errp,

errp ≲ N− r
1+r + (τ−2N)−

r
3+r + (τ−1N)−

2r
1+3r

= Õ
(
N− r

1+r

[
1 +

(
ϵ−2N

2
1+r

) r
3+r

+
(
ϵ−2N

r−1
1+r

) r
1+3r

])
,
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where we use the fact that τ2 = Õ(ϵ−2).

If λi = e−i, then we can get k∗ +Nη
∑
i>k∗ λi ≂ log(N), then

errp ≲
1

Nη
+ τ2 ·

(
η2 +

1

N

)
.

Picking the stepsize

η ≂ min

{
1, (Nτ2)−1/3,

1

N2τ2

}
,

applying the fact that τ2 = Õ(ϵ−2), we can then get

errp ≲
1

N
+ (τ−2N2)−1/3 + (Nτ−2)−1 = Õ

(
N−1

(
1 +

(
ϵ−2N

) 1
3

))
.

B.4 PROOFS OF THEOREM B.5

In this section, we provide the proof of Theorem B.5.

Properties of the additive noises ξt. Recall that we have

wt+1 = wt − η · [xix⊤
i wt − xiyi + ξt] (B.13)

where ξt = νt − νt−1, ν−1 = 0. According to Algorithm 3, we have that ξt is a combination
of at most ⌈log2 t + 1⌉ random Gaussian vectors, i.e., ξt =

∑
k∈K(t) ψ(k)zk, where K(t) is an

index set and K(t) = {2Q−1, 2Q−1 + 2Q−2, . . . , 2Q−1 + 2Q−2 + · · · + 20} when t = 2Q with
Q ∈ N. When t ∈ (2Q−1, 2Q), K(t) consists of at most (⌈log2 t⌉ + 1) terms staring from 2Q−1 to
t. ψ(k) = max{ψ1, . . . , ψk}, and zk ∼ N(0, τ2Σ). The reason that we use the indexed zk is that
ξt and ξj may have the same zk, and the index will help us in the analysis. In addition, consider ξt
and ξj , where j < t and j /∈ K(t), we have

E
[
ξjξ

⊤
t

]
= 0, (B.14)

where the equality is due to the fact that only ξk will depend on zk, where k ∈ K(t).

Bias-variance decomposition. According to (B.13) and yi = x⊤
i w

∗ + ζi, we have

wt+1 −w∗ =
(
I− ηxtx

⊤
t

)
(wt −w∗) + ηxtζt − ηξt.

Therefore, we can obtain

E
[
(wt+1 −w∗)(wt+1 −w∗)⊤

]
= E

[(
I− ηxtx

⊤
t

)
(wt −w∗)(wt −w∗)⊤

(
I− ηxtx

⊤
t

)]
+ η2E

[
ζ2t xtx

⊤
t

]
− ηE

[(
I− ηxtx

⊤
t

)
wtξ

⊤
t

]
− ηE

[
ξtw

⊤
t

(
I− ηxtx

⊤
t

)]
+ η2E

[
ξtξ

⊤
t

]
,

where the first line on R.H.S. is the original bias-variance decomposition, and the second line on
R.H.S. is the extra variance error introduced by the random noise generated by the private mecha-
nism. We next consider the term E

[(
I− ηxtx

⊤
t

)
wtξ

⊤
t

]
, we have

wt+1 =
(
I− ηxtx

⊤
t

)
wt + ηxtyt + ηξt =

t∑
j=1

(
AtAt−1 · · ·Aj(ηxj−1yj−1 + ηξj−1)

)
+ ηxtyt + ηξt,

where At = I− ηxtx
⊤
t . Therefore, we can obtain

wtξ
⊤
t =

t−1∑
j=1

(
At−1At−2 · · ·Aj(ηxj−1yj−1 + ηξj−1)

)
ξ⊤t + ηxt−1yt−1ξ

⊤
t + ηξt−1ξ

⊤
t .
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According to (B.14), E
[
ξjξ

⊤
t

]
̸= 0 when j ∈ K(t) and |K(t)| = ⌈log2 t⌉ + 1 = k(t). As a result,

we have
E
[(
I− ηxtx

⊤
t

)
wtξ

⊤
t

]
= E

[
ηAt

∑
j∈K(t)

(
At−1At−2 · · ·Ajξj−1

)
ξ⊤t

]
+ E

[
ηAtξt−1ξ

⊤
t

]
+ E

[
ηAtxt−1yt−1ξ

⊤
t

]
.

Note that we have

E
[
ηAtxt−1yt−1ξ

⊤
t

]
= E

[
ηAtxt−1yt−1

( ∑
k′∈K(t)

ψ(k′)zk′

)⊤]
= 0,

where the last equality is due to the fact that {zi}ti=1 are zero mean and are independent of other
rvs. In addition, for j ∈ K(t), we have

ξj−1ξ
⊤
t =

( ∑
k∈K(j−1)

ψ(k)zk

)( ∑
k′∈K(t)

ψ(k′)zk′

)⊤

,

Therefore, we can obtain

E
[
AtAt−1At−2 · · ·Ajξj−1ξ

⊤
t

]
= E

[
At:j

( ∑
k∈K(j−1)

ψ(k)zk

)( ∑
k′∈K(t)

ψ(k′)zk′

)⊤]
= E

[
At:j

( ∑
k1∈K(j−1,t)

ψ(k1)
2zk1z

⊤
k1 +

∑
k ̸=k′

ψ(k)ψ(k′)zkz
⊤
k′

)]
= E

[
At:j

( ∑
k1∈K(j−1,t)

ψ(k1)
2zk1z

⊤
k1

)]
= τ2

∑
k1∈K(j−1,t)

E
[
ψ(k1)

2At:jΣ],

where At:j = At · · ·Aj , K(j − 1, t) = K(j − 1) ∩ K(t), and the third and last lines are due to the
fact that {zi}ti=1 are independent of {ψi}ti=1 and {Ai}ti=1. Therefore, we can get

E
[
ηAt

∑
j∈K(t)

(
At−1At−2 · · ·Ajξj−1

)
ξ⊤t

]
=

∑
j∈K(t)

∑
k1∈K(j−1,t)

ητ2E
[
ψ(k1)

2At:jΣ].

Following the same proof, we can obtain that

E
[
ηAtξt−1ξ

⊤
t

]
=

∑
k1∈K(t−1,t)

ητ2E
[
ψ(k1)

2AtΣ]. (B.15)

Thus, we have
− ηE

[(
I− ηxtx

⊤
t

)
wtξ

⊤
t

]
− ηE

[
ξtw

⊤
t

(
I− ηxtx

⊤
t

)]
= −η2τ2

∑
j∈K(t)

∑
k1∈K(j−1,t)

(
E
[
ψ(k1)

2At:jΣ] + E
[
ψ(k1)

2ΣAj:t]
)

⪯ η2τ2k(N)
∑
j∈K(t)

E
[
AtAt−1 · · ·AjΣAj · · ·At−1At

]
+ η2τ2E

[
ψ(t)4]k(N)Σ.

As a result, we can obtain
E
[
(wt+1 −w∗)(wt+1 −w∗)⊤

]
⪯ E

[(
I− ηxtx

⊤
t

)
(wt −w∗)(wt −w∗)⊤

(
I− ηxtx

⊤
t

)]
+ η2E

[
ζ2t xtx

⊤
t

]
+ η2τ2k(N)

∑
j∈K(t)

E
[
At · · ·AjΣAj · · ·At

]
+ η2τ2(E

[
ψ(t)2 + ψ(t)4

]
)k(N)Σ,

(B.16)

where the upper bound of η2E
[
ξtξ

⊤
t

]
is due to the similar proof from (B.15).

Now the remaining proof can be conducted based on the following lemma.
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Lemma B.12. If the stepsize satisfies η ≤ 1/(4β tr(H) logN
)
, then let S(t) be a set of iterate

indices that satisfy j ≤ t ∀j ∈ S(t), we have∑
j∈S(t)

E
[
At · · ·AjΣAj · · ·At

]
⪯

[ ∑
j∈S(t)

(I − ηT̃ )t−j+1

]
◦Σ

+O(ηβ|S(t)|) · tr(HΣ) ·
(
I− (I− ηH)N

)
.

Proof of Theorem B.5. According to Lemma B.12 and use the fact that |K(t)| = O(log2N), k(t) ≤
k(N) = O(log2N), we can obtain the following by (B.16): for all t ≤ N

E
[
(wt+1 −w∗)(wt+1 −w∗)⊤

]
⪯ E

[(
I− ηxtx

⊤
t

)
(wt −w∗)(wt −w∗)⊤

(
I− ηxtx

⊤
t

)]
+ η2E

[
ζ2t xtx

⊤
t

]
+ η2τ2(E

[
ψ(t)2 + ψ(t)4

]
)k(N)Σ

+O
(
η2τ2 log2N

)
·
{[ ∑

j∈S(t)

(I − ηT̃ )t−j+1

]
◦Σ+O(ηβ log2N) · tr(HΣ) ·

(
I− (I− ηH)N

)}
,

where S(t) is a set of iterate indices satisfying |S(t)| = O(log2N). Then accordingly, we have the
new bias-variance decomposition: considering the bias and variance-covariance matrices Bt and Ct

that satisfy E
[
(wt −w∗)(wt −w∗)⊤

]
= Bt +Ct, we have

Bt+1 = E
[(
I− ηxtx

⊤
t

)
Bt

(
I− ηxtx

⊤
t

)]
, B0 = (w0 −w∗)(w0 −w∗)⊤,

and

Ct+1 ⪯ E
[(
I− ηxtx

⊤
t

)
Ct

(
I− ηxtx

⊤
t

)]
+ η2E

[
ζ2t xtx

⊤
t

]
+ η2τ2(E

[
ψ(t)2 + ψ(t)4

]
)k(N)Σ

+ η2D

C0 = 0,

where

D ⪯ O
(
τ2 log2N

){[ ∑
τ∈S(t)

(I − ηT̃ )t−τ+1

]
◦Σ+O(ηβ log2N) · tr(HΣ) ·

(
I− (I− ηH)N

)}
.

This completes the proof.

B.5 PROOFS OF ADDITIONAL LEMMAS

B.5.1 PROOF OF LEMMA 2.6

Proof of Lemma 2.6. By the definition of Rényi divergence, we have

Dα

(
N(0,Σ)||N(µ,Σ)

)
=

1

α− 1
log

∫
Rd

1√
(2π)k|Σ|

· exp
[
−

(
αzΣ†z+ (α− 1)(z− µ)⊤Σ†(z− µ)

)
/2
]

=
1

α− 1
log

∫
Rd

1√
(2π)k|Σ|

· exp
[
−

(
z⊤Σ†z+ 2(1− αµ⊤Σ†z+ (α− 1)µ⊤Σ†µ)

)
/2
]

=
1

α− 1
log

{
exp

[
α(α− 1)µ⊤Σ†µ

]
/2
}

=
α

2
· ∥µ∥2Σ† .

B.5.2 PROOF OF LEMMA B.2

Proof of Lemma B.2. For Bounded norm, we use the following lemma.
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Lemma B.13. Suppose z is a zero mean, sub-Gaussian random vector with sub-Gaussian norm σz .
Let B be an m× n matrix, then for any t ≥ 0, we have

P
(
∥Bz∥22 ≥ σ2

z∥B∥2F + t
)
≤ exp

(
− ct

σ2
z∥B∥22

)
,

where c is an absolute constant.

According to Lemma B.13, we can choose B = Σ− 1
2H

1
2 and t = σ2

z∥B∥22 log(1/β), we can obtain
that with probability at least 1− c′β∥∥Σ− 1

2x
∥∥2
2
≤ 2σ2

z tr(Σ
−1H) log(1/β),

where c′ ≥ βc−1.

For Bounded product, using Markov inequality, we have

P
(
⟨x,v⟩2 ≥ t2

)
= P

(
⟨z,H 1

2v⟩2 ≥ t2
)

= P
(
e

⟨z,ṽ⟩2

σ2
zE⟨z,ṽ⟩2 ≥ e

t2

σ2
zE⟨z,ṽ⟩2

)
≤ e

− t2

σ2
zE⟨z,ṽ⟩2 · E

(
e

⟨z,ṽ⟩2

σ2
zE⟨z,ṽ⟩2

)
≤ 2e

− t2

σ2
zE⟨z,ṽ⟩2 ,

where ṽ = H
1
2v and the last inequality is due to Assumption 2.2. By choosing t2 =

σ2
zE⟨z, ṽ⟩2 log(1/β), we can derive the result.

For Bounded noise, according to Assumption 2.3, we can directly prove it by the definition of sub-
Gaussian random variable with γ3 = σ2

ζ .

B.5.3 PROOF OF LEMMA B.3

Proof of Lemma B.3. Therefore, we propose to estimate the upper bound of ∥wt − w∗∥2H + σ2
ζ

at each iteration. To this end, we can use: (1) public data to estimate it; or (2) The (ϵ0, δ0)-DP
algorithm, i.e., the stability-based histogram (Bun et al., 2016; Karwa & Vadhan, 2017; Liu et al.,
2023), on half of the data to estimate it. Here ϵ0 = ϵ/4

√
T log(1/δ0) and δ0 = δ/(2T ) (due to the

composition rule, we need to make sure each iteration our method is private, and by composition,
we have for T iteration, our method is (ϵ, δ)-DP). For both of the methods, the key idea is to make
use of

For option 1, we have {(x̃i, ỹi)}mi=1 is public dataset. Recall that we have {ri}mi=1 with ri = (ỹi −
⟨wt, x̃i⟩)2. Thus, we have

ri = ζ̃2i + 2ζ̃i(w
∗ −wt)

⊤x̃i +
(
x̃⊤
i (w

∗ −wt)
)2
.

In addition, by Bernstein’s inequality, we have∣∣∣∣ 1m
m∑
i=1

⟨x̃i,w∗ −wt⟩2 − ∥w∗ −wt∥2H
∣∣∣∣ ≤ C1∥w∗ −wt∥2H,∣∣∣∣ 1m

m∑
i=1

ζ̃2i − σ2
ζ

∣∣∣∣ ≤ C2σ
2
ζ ,∣∣∣∣ 1m

m∑
i=1

ζ̃i⟨x̃i,w∗ −wt⟩
∣∣∣∣ ≤ C3σζ∥w∗ −wt∥H,

where C1, C2, C3 are much less than 1 due to large number of m ≥ O(logN). Then, by triangle
inequality, we have∣∣∣∣ 1m

m∑
i=1

ri −
(
∥w∗ −wt∥2H + σ2

ζ

)∣∣∣∣ ≤ C4

(
∥w∗ −wt∥2H + σ2

ζ

)
, (B.17)
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where C4 ≤ 1/2 given m ≥ O(logN). Thus, if we have public data, we can use 2
∑m
i=1 ri/m to

estimate the upper bound of ∥w∗ −wt∥2H + σ2
ζ .

For option 2, we have {(x̃i, ỹi)}mi=1 is a private dataset. Recall that we split the data {ri}mi=1 with
ri = (ỹi − ⟨wt, x̃i⟩)2 into ñ subsets of equal size, each with |Sj | = m̃ data for j ∈ [ñ]. According
to (Karwa & Vadhan, 2017), if δ̃ ≤ 1/ñ, and we have

ñ ≥ 8

ϵ̃β
log

(
4

δ̃α

)
,

we can obtain

P
(
|r̃k − r̂k| ≥ β

)
≤ α.

Therefore, if m̃ is large enough, i.e., m̃ ≥ O(logN), according to (B.17), we have∣∣r̄k − (
∥w∗ −wt∥2H + σ2

ζ

)∣∣ ≤ C4

(
∥w∗ −wt∥2H + σ2

ζ

)
.

Thus, if we choose C4 ≤ 1/4 (by having large enough m̃), we can show that all r̄k’s lie in two
consecutive bins. According to the private algorithm, we can see that all r̃k’s lie in the same two
consecutive bins. Let [l1, l2] be the nonempty bins containing the most r̃k’s. We can ensure that
2l2 ≥ ∥w∗−wt∥2H+σ2

ζ . Therefore, we can use 2l2 to estimate the upper bound of ∥w∗−wt∥2H+σ2
ζ .

In this case, we require

ñ ≥ 8

ϵ̃β
log

(
4

δ̃α

)
=

16
√

2N log(2/δ)

ϵβ
log

(
8N

δα

)
and m̃ ≥ O(logN),

where we plugging ϵ̃ = ϵ/
√
8N log(2/δ) and δ̃ = δ/(2N).

B.5.4 PROOF OF LEMMA B.7

We first provide the following useful lemma.
Lemma B.14. Under Assumption 2.1, for every A ⪰ 0, let β = 16σ4

z , it holds that

(M−M̃) ◦ T −1 ◦A ⪯ M◦ T −1 ◦A ⪯ β tr(A)

1− βγ tr(H)
·H ⪯ β tr(A)H.

Proof. It can be shown by the same methods as in (Zou et al., 2021b; Jain et al., 2017b;a).

Proof of Lemma B.7. Based on the update rule of Ct, we can further obtain

CN = η2
N−1∑
t=0

(I − ηT )t ◦Gt.

Then, it is clear that if η ≤ 1/λ1, we have I − ηT is a PSD mapping so that

C0 ⪯ C1 ⪯ · · · ⪯ CN .

Then denote G as an union upper bound on G0, . . . ,GN−1, then due to the fact that (I − ηT ) is a
PSD mapping, we further have

CN ⪯ η2
N−1∑
t=0

(I − ηT )t ◦G = η · T −1 ◦ (I − (I − ηT )N ) ◦G.

Note that T̃ − T , I − ηT̃ and I − ηT is a PSD mapping, we have

(I − ηT̃ )N ◦G ⪯ (I − ηT̃ )N−1 ◦ (I − ηT ) ◦G ⪯ · · · ⪯ (I − ηT )N ◦G.

Then using the fact that T −1 is a PSD mapping, we further thave

CN ⪯ η · T −1 ◦ (I − (I − ηT )N ) ◦G.
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Then we can apply Lemma B.14 and obtain

(M−M̃) ◦CN ⪯ η · (M−M̃) ◦ T −1 ◦ (I − (I − ηT̃ )N ) ◦G

⪯ βη

1− βη tr(H)
· tr

(
(I − (I − ηT̃ )N ) ◦G

)
·H

⪯ βη

1− βη tr(H)
· ⟨I− (I− ηH)N ,G⟩ ·H.

Then, given the above rough bound on CN , we can further obtain a refined version as follows:

Ct+1 = (I − ηT̃ ) ◦Ct + η2 · (M−M̃) ◦Ct + η2Gt

⪯ (I − ηT̃ ) ◦Ct + η2 · (M−M̃) ◦CN + η2G.

Then, it follows that

CN ⪯ η2 ·
N−1∑
t=0

(I − ηT̃ )N−1−t ◦ (M−M̃) ◦CN + η2 ·
N−1∑
t=0

(I − ηT̃ )N−1−t ◦G

⪯ βη3

1− βη tr(H)
· ⟨I− (I− ηH)N ,G⟩ ·

N−1∑
t=0

(I − ηT̃ )N−1−t ◦H+ η2 ·
N−1∑
t=0

(I − ηT̃ )N−1−t ◦G

=
βη2

1− βη tr(H)
· ⟨I− (I− ηH)N ,G⟩ ·

(
I− (I− ηH)N

)
+ η2 ·

N−1∑
t=0

(I − ηT̃ )t ◦G.

This completes the proof.

B.5.5 PROOF OF LEMMA B.8

Proof of Lemma B.8. By Lemma B.6, we have

variance =
1

N2

N−1∑
t=0

N−1∑
k=t

⟨(I− ηH)k−tH, Ct⟩

=
1

N2η

N−1∑
t=0

⟨I− (I− ηH)N−t, Ct⟩

≤ 1

N2η
⟨I− (I− ηH)N ,

N−1∑
t=0

Ct⟩

≤ 1

Nη
⟨I− (I− ηH)N , CN ⟩,

where the first inequality is due to the fact that Ct ⪯ CN for all t ≤ N (see Lemma B.7). Then
applying Lemma B.7, we have

variance ≤ 1

Nη
· ⟨I− (I− ηH)N ,CN ⟩

≤ 2βη

N
· ⟨I− (I− ηH)N ,G⟩ · ⟨I− (I− ηH)N , I− (I− ηH)N ⟩

+
η

N
· ⟨I− (I− ηH)N ,

N−1∑
t=0

(I − ηT̃ )t ◦G⟩

=
2βη

N
· ⟨I− (I− ηH)N ,G⟩ · ⟨I− (I− ηH)N , I− (I− ηH)N ⟩

+
η

N
· ⟨
N−1∑
t=0

(I − ηT̃ )t ◦
(
I− (I− ηH)N

)
,G⟩
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≤ 2βη

N
· ⟨I− (I− ηH)N ,G⟩ · ⟨I− (I− ηH)N , I− (I− ηH)N ⟩

+
1

N
· ⟨
(
I− (I− ηH)N

)2
H−1,G⟩. (B.18)

Further by Theorem B.5, we can get for any t ≤ N ,

Gt ⪯ σ2
ζH+O

(
E
[
ψ(t)2 + ψ(t)4

]
τ2 log2N

)
Σ

+O
(
τ2 log2N

){[ ∑
τ∈K̄(t)

(I − ηT̃ )t−τ+1

]
◦Σ+O(ηβ log2N) · tr(HΣ) ·

(
I− (I− ηH)N

)}
.

Noting that ψ(t) ≤ ψ(N) for all t ≤ N and (I−ηT̃ )◦A ⪯ A for any PSD matrix A that commutes
with H. Therefore, we can further get that

⟨A,G⟩ ≲ σ2
ζ · ⟨A,H⟩+ τ2β · (log2N)2η · tr(HΣ) ·

〈
A,

(
I− (I− ηH)N

)〉
+
(
E
[
ψ(N)2 + ψ(N)4

]
+ 1

)
· τ2 · log2N · ⟨A,Σ⟩,

where A can be any PSD matrix that commutes with H. Moreover, noting that for any x ∈ (0, 1/η),
we have 1− (1− ηx)N ≤ min{1, Nηx}, then

I− (I− ηH)N ⪯ I0:k +NηHk:∞

for any k ≥ 0. Therefore, we can define a new matrix as follows:

Ḡ = σ2
ζ ·H+ τ2β · (log2N)2η tr(HΣ) ·

(
I0:k +NηHk:∞

)
+
(
E
[
ψ(N)2 + ψ(N)4

]
+ 1

)
· τ2 · log2N ·Σ.

Therefore, putting the above results into (B.18), we obtain

variance ≲
βη

N
· ⟨I0:k +NηHk:∞, Ḡ⟩ ·

(
k +N2η2

∑
i>k

λ2i
)
+

1

N
· ⟨H−1

0:k +N2η2Hk:∞, Ḡ⟩.

This completes the proof.

B.5.6 PROOF OF LEMMA B.12

The following lemma is useful in the subsequent proof.
Lemma B.15 (Lemma C.4 in Wu et al. (Wu et al., 2022)). For a sequence of PSD matrices
{Mt}t=0...N that satisfy Mt = (I − ηT ) ◦Mt−1 and M0 = Σ, then if η ≤ 1/(4β tr(H) logN

)
,

it holds that for any t ∈ [0, N ]

tr(HMt) ≤ 4 ·
〈

1

ηN
I0:k +Hk:∞,Σ

〉
,

where k ∈ [N ] can be arbitrarily chosen.

Proof of Lemma B.12. Note that Σ is independent of At, . . . ,Aj , therefore when taking the expec-
tation of over At, . . . ,Aj , then can be treated equally. In particular, for any t and j, we have

E
[
At · · ·AjΣAj · · ·At

]
= (I − ηT )t−j+1 ◦Σ.

Then define Ms = (I − ηT )s ◦Σ and M0 = Σ, we can get the following:

Ms+1 = (I − ηT ) ◦Ms ⪯ (I − ηT̃ ) ◦Ms + βη2 · tr(HMs) ·H. (B.19)

Then by Lemma B.15 and set k = 0, we can immediately obtain that

tr(HMs) ≤ 4 · tr(HΣ).

Plugging the above inequality into (B.19), we have

Ms ⪯ (I − ηT̃ ) ◦Ms−1 + 4βη2 · tr(HΣ) ·H
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= (I − ηT̃ )s ◦Σ+ 4βη2 · tr(HΣ) ·
s−1∑
r=0

(I − ηT̃ )r ◦H

⪯ (I − ηT̃ )s ◦Σ+ 4βη2 · tr(HΣ) ·
N−1∑
r=0

(I − ηT̃ )r ◦H

⪯ (I − ηT̃ )s ◦Σ+ 4βη · tr(HΣ) ·
(
I− (I− ηH)N

)
Then, it suffices to prove the upper bound for

∑
j∈S(t) Mt−j+1. In particular, applying the above

result leads to∑
j∈S(t)

Mt−j+1 ⪯
∑
j∈S(t)

(I − ηT̃ )t−j+1 ◦Σ+ 4βη · tr(HΣ) ·
(
I− (I− ηH)N

)
· |S(t)|

⪯
[ ∑
j∈S(t)

(I − ηT̃ )t−j+1

]
◦Σ+O(ηβ|S(t)|) · tr(HΣ) ·

(
I− (I− ηH)N

)
.

This completes the proof.

B.5.7 PROOF OF LEMMA B.10

Proof of Lemma B.10. Note that Σ = M−1(λI + X̃X̃⊤), by the Woodbury identity (Golub &
Van Loan, 2013), we have

(λI+ X̃X̃⊤)† = λ−1I− λ−2X̃(I+ λ−1X̃⊤X̃)−1X̃⊤

Therefore, we can further obtain

tr(Σ†H) =M · tr
(
λ−1H− λ−2HX̃(I+ λ−1X̃⊤X̃)−1X̃⊤)

=M · λ−1 tr(H)−Mλ−2 tr
(
X̃⊤HX̃(I+ λ−1X̃⊤X̃)−1

)
. (B.20)

Then by Assumption 2.2, let H =
∑
i λiviv

⊤
i , where λi and vi denote the i-th largest eigenvalue

of H and its corresponding eigenvector, we can further define zi = X̃⊤vi/λ
1/2
i ∈ RM . Then zi’s

will be independent σz-subGaussian random vectors and the following identities hold:

X̃⊤X̃ =
∑
i

λiziz
⊤
i , X̃⊤HX̃ =

∑
i

λ2i ziz
⊤
i .

Then, we can further obtain that

tr
(
X̃⊤HX̃(I+ λ−1X̃⊤X̃)−1

)
= tr

((∑
i

λ2i ziz
⊤
i

)(
I+ λ−1

∑
i

λiziz
⊤
i

)−1)

=
∑
i

λ2i · z⊤i
(
I+ λ−1

∑
i

λiziz
⊤
i

)−1

zi.

By This further implies that

tr(Σ†H) =M ·
(
λ−1

∑
i

λi − λ−2
∑
i

λ2i · z⊤i
(
I+ λ−1

∑
i

λiziz
⊤
i

)−1

zi

)

=Mλ−1 ·
∑
i

{
λi − λ−1λ2i · z⊤i

(
I+ λ−1

∑
i

λiziz
⊤
i

)−1

zi

}
. (B.21)

By Sherman-Morrison formula, denote A = I+λ−1
∑
i λiziz

⊤
i and A−i = I+λ−1

∑
j ̸=i λjzjz

⊤
j ,

we have

z⊤i

(
I+ λ−1

∑
i

λiziz
⊤
i

)−1

zi = z⊤i

(
A−1

−i −
λ−1λiA

−1
−i ziz

⊤
i A

−1
−i

1 + λ−1λiz⊤i A
−1
−i zi

)
zi
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= z⊤i A
−1
−i zi −

λ−1λi
(
z⊤i A

−1
−i zi

)2
1 + λ−1λiz⊤i A

−1
−i zi

=
z⊤i A

−1
−i zi

1 + λ−1λiz⊤i A
−1
−i zi

.

Moreover, we have

λi − λ−1λ2i · z⊤i
(
I+ λ−1

∑
i

λiziz
⊤
i

)−1

zi = λi −
λ−1λ2i z

⊤
i A

−1
−i zi

1 + λ−1λiz⊤i A
−1
−i zi

=
λi

1 + λ−1λiz⊤i A
−1
−i zi

.

Putting the above results into (B.21) leads to

tr(Σ†H) =Mλ−1 ·
∑
i

λi

1 + λ−1λiz⊤i A
−1
−i zi

=M ·
∑
i

λi

λ+ λiz⊤i A
−1
−i zi

.

We then provide the following lemma that is adapted from the proof of Lemma 7 in Tsigler &
Bartlett (2020).
Lemma B.16. Under Assumption 2.2, denote k̂ := mink{k : λk+1M ≤ λ+

∑
i>k λi}, then with

probability at least 1− exp(−Ω(n)), it holds that

z⊤i A
−1
−i zi ≥ C · λM

λ+
∑
j>k̂ λj

,

where C is an absolute positive constant.

Based on the above lemma, we can obtain

tr(Σ†H) =M ·
∑
i

λi

λ+ λiz⊤i A
−1
−i zi

≤M ·
∑
i

λi

λ+ C · Mλiλ
λ+

∑
j>k̂

λj

.

Note that λiM ≥ λ+
∑
j>k̂ λj for all i ≤ k̂, then we have

tr(Σ†H) ≤ C ′ ·M ·
(∑
i≤k̂

λ+
∑
j>k̂ λj

Mλ
+
∑
i>k̂

λi
λ

)
= C ′ ·

(
k̂ ·

λ+
∑
j>k̂ λj

λ
+

∑
i>k̂

Mλi
λ

)
.

This completes the proof.

B.5.8 PROOF OF LEMMA B.11

Proof of Lemma B.11. Recall that Σ =M−1(λI+ X̃X̃⊤), we have

tr(AΣ) =
λ

M
tr(A) +

1

M
tr(X̃⊤AX̃).

Similar to the proof of Lemma B.10, defining zi = X̃vi/λ
1/2
i , we can get

tr(X̃⊤AX̃) = tr

(∑
i

λiµiziz
⊤
i

)
=

∑
i

λiµi · ∥zi∥22. (B.22)

Then noting that zi is a sub-Gaussian random vector with identity covariance matrix, we can further
get that with probability at 1− exp(−Ω(M1/2)),

tr(X̃⊤AX̃) ≤ C ·M
∑
i

λiµi = C ·M tr(AH), (B.23)

for some absolute constant C > 1. Putting (B.23) into (B.22), we obtain

tr(AΣ) ≤ C ·
(
λ

M
tr(A) + tr(AH)

)
.

This completes the proof.
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